EP0174019B1 - Steel strip plated with a zinc-based coating layer containing an inorganic dispersoid - Google Patents

Steel strip plated with a zinc-based coating layer containing an inorganic dispersoid Download PDF

Info

Publication number
EP0174019B1
EP0174019B1 EP85111166A EP85111166A EP0174019B1 EP 0174019 B1 EP0174019 B1 EP 0174019B1 EP 85111166 A EP85111166 A EP 85111166A EP 85111166 A EP85111166 A EP 85111166A EP 0174019 B1 EP0174019 B1 EP 0174019B1
Authority
EP
European Patent Office
Prior art keywords
zinc
coating layer
steel strip
plated steel
surface coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85111166A
Other languages
German (de)
French (fr)
Other versions
EP0174019A1 (en
Inventor
Minoru C/O Nippon Steel Corporation Kitayama
Yasuhiko C/O Nippon Steel Corporation Miyoshi
Kazumi C/O Nippon Steel Corporation Nishimura
Yoshio C/O Nippon Steel Corporation Shindo
Fumio C/O Nippon Steel Corporation Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of EP0174019A1 publication Critical patent/EP0174019A1/en
Application granted granted Critical
Publication of EP0174019B1 publication Critical patent/EP0174019B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/265After-treatment by applying solid particles to the molten coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials

Definitions

  • the present invention relates to a zinc-plated steel strip with a zinc-based coating layer containing an inorganic dispersoid. More particularly, the present invention relates to a zinc-plated steel strip having at least one zinc-based coating layer containing fine inorganic dispersoid particles and formed on at least one surface of the steel strip, which zinc-plated steel strip exhibits excellent resistance to corrosion, enhanced workability, and superior weldability and is useful for producing cars, building and construction materials, and home electric appliances.
  • surface-treated steel strips are required to exhibit a high resistance to corrosion not only before but also after being painted. That is, surface coated steel strips have to exhibit a satisfactory paint adhesion and satisfactory resistances to perforation corrosion and to red rust when the paint film layer is scratched.
  • surface-treated steel strips must exhibit excellent workability and weldability.
  • Japanese Examined Patent Publication No. 56-49999 discloses a plated steel strip having an electroplating layer comprising a matrix consisting of zinc alone and 2.0 to 15% of Si0 2 particles, and optionally, an electroplating surface layer consisting of 1 g/m 2 or more of zinc alone.
  • Japanese Examined Patent Publication No. 57-17960 discloses a plated steel strip having a base plating layer consisting of zinc alone and a surface plating layer comprising a matrix consisting of Mn alone and particles consisting of at lesat one member selected from metallic Ni, Cu, AI and Cr and oxides of Ti, AI and Mg, and having a thickness of 0.1 ⁇ m or more.
  • Japanese Examined Patent Publication No. 46-37882 discloses a plated light metal article having a base plating layer consisting of zinc alone and a surface electroplating layer comprising a matrix consisting of nickel alone and a dispersoid consisting of solid particles having a size of 1 1l[11 or less and located in the surface portion of the surface electroplating layer.
  • Japanese Unexamined Patent Publication No. 56-123,395 discloses a plated steel strip having an electroplating layer comprising a matrix consisting of zinc alone or a Ni-Zn alloy and chromium hydrate particles having a size of 0.3 pm or more and dispersed in the surface portion of the layer with a depth of 0.3 pm from the surface of the layer.
  • Japanese Unexamined Patent Publication No. 52-109,439 discloses a plated metal article having a base electroplating layer consisting of nickel alone and a surface electroplating layer comprising a nickel matrix and silicon carbide particles.
  • a base electroplating layer consisting of nickel alone
  • a surface electroplating layer comprising a nickel matrix and silicon carbide particles.
  • the resultant plated steel strips are not always satisfactory in view of the strict requirements mentioned above.
  • JP-A-79 159 342 discloses a process for producing a corrosion resistant plated composite steel strip in which a surface of a steel strip substrate is coated with an electroplating layer comprising a matrix consisting of zinc and fine particles consisting of Si0 2 sol, Ti0 2 sol and Zr0 2 sol, and dispersed in the zinc matrix.
  • JP-A-79 146 228 discloses a plated steel strip in which a cold-rolled steel strip substrate is coated with an electroplating base layer consisting of a matrix consisting of zinc alone and Si0 2 fine particles, and the base layer is coated with an electroplating surface layer consisting of zinc alone.
  • Metal Finishing Abstracts vol. 22, No. 6, November/December 1980, page 292 discloses a plated steel strip comprising a steel strip substrate, an under-coating layer composed of a matrix consisting of zinc alone and AI 2 0 3 particles dispersed in the matrix, and an upper coating layer consisting of chromium alone.
  • An object of the present invention is to provide a zinc-plated steel strip which exhibits excellent resistance to corrosion even after the plated steel strip is painted and the paint film layer is scratched.
  • Another object of the present invention is to provide a zinc-plated steel strip which exhibits excellent workability and weldability.
  • the zinc-plated steel strip with a zinc-based coating layer of the present invention which comprises a substrate consisting of a steel strip and at least one surface coating layer plated on at least one portion of at least one surface of the steel strip substrate, the surface coating layer consisting essentially of a matrix consisting of at least one zinc alloy and fine dispersoid particles dispersed in the matrix and consisting of at least one member selected from the group consisting of oxides, carbides, nitrides, borides, phosphides, and sulfides of aluminum, iron, titanium, molybdenum, copper, zinc, nickel, cobalt, lanthanum, cerium and silicon.
  • the zinc-plated steel strip of the present invention may further comprise an intermediate coating layer formed between the steel strip substrate and the surface coating layer and consisting of at least one member selected from the group consisting of zinc and zinc alloys.
  • a zinc alloy-surface coating layer plated on a surface of a steel strip and containing specific inorganic dispersoid particles is highly effective for enhancing resistance of the steel strip to corrosion, especially perforation corrosion after the plated steel strip is painted and processed.
  • the reasons for the special effect of the above-mentioned specific zinc alloy coating layer are not completely clear. It is assumed, however, that the specific inorganic dispersoid particles in the surface coating layer form a sort of a barrier against the corrosion so as to restrict undesirable corrosional oxidation-reduction reaction in the coating layer. Also, it was found by the inventors of the present invention that the surface coating layer containing the specific fine inorganic dispersoid particles is effective for enhancing the weldability, especially spot weldability, of the plated steel strip.
  • an intermediate coating layer consisting of zinc or zinc alloy and formed between the steel strip substrate and the surface coating layer containing the specific inorganic dispersoid particles is highly effective for enhancing the specific effects of the surface coating layer, especially, for enhancing the resistance to perforation corrosion of the processed portion and the workability, of the plated steel strip.
  • the term "workability of the plated steel strip” refers to a resistance of the plated steel strip to powdering of the coating layer, that is, peeling of the coating layer from the substrate when processed.
  • the reasons for the above-mentioned effects of the intermediate coating layer are not clear. It is supposed, however, that the surface coating layer and the intermediate coating layer have a synergistic effect on, the plated steel strip. Also, it is supposed that the intermediate coating layer exhibits a special type of lubricating effect between the substrate and the surface coating layer.
  • a substrate consisting of a steel strip has at least one plated surface coating layer consisting essentially of a matrix consisting of a plated zinc alloy and fine dispersoid particles dispersed in the matrix and consisting of at least one member selected from oxides, carbides, nitrides, borides, phosphides and sulfides of aluminum (AI), iron (Fe), titanium (Ti), molybdenum (Mo), copper (Cu), zinc (Zn), nickel (Ni), cobalt (Co), lanthanum (La), cerium (Ce), and silicon (Si).
  • AI aluminum
  • Fe iron
  • Ti titanium
  • Mo molybdenum
  • Cu copper
  • Zn zinc
  • Ni nickel
  • Co cobalt
  • La lanthanum
  • Ce cerium
  • Si silicon
  • the steel strip usable as a substrate for the present invention is not limited to specific types of steel strips. However, usually, the steel strip is preferably selected from ordinary steel strips, AI-killed steel strips and high tensile steel strips.
  • the resultant surface coating layer exhibits an excellent effect in enhancing the resistance to corrosion and workability and weldability of the plated steel strip.
  • These effects of the surface coating layer of the present invention are excellent compared with those of other zinc or zinc alloy coating layers which are free from the specific inorganic dispersoid or contain other dispersoids.
  • the surface coating layer be in an amount of from 1 to 400 g/m 2 , and has a thickness of from 0.1 to 40 pm.
  • the matrix consists of a zinc alloy.
  • the zinc alloy is preferably selected from alloys of from 20% to 99.7% by weight of zinc with 0.3% to 80% by weight of at least one additional metal member selected from the group consisting of nickel, copper, cobalt, chromium, tellurium, lanthanium, cerium, iron, and manganese.
  • the above-mentioned specific additional metal in a content of from 0.3% to 80% by weight is effective for enhancing the paint adhesion of the surface coating layer to the steel strip substrate surface when the surface coating layer is scratched and for improving the resistance of the surface coating layer to corrosion, especially, to perforation corrosion within a strict corrosional environment.
  • the amount of inorganic dispersoid is preferably 0.01% or more, more preferably from 0.01 % to 95%, still more preferably from 0.01 % to 30%, based on the entire weight of the surface coating layer.
  • the resultant plated steel strip exhibits unsatisfactory weldability.
  • the content of the inorganic dispersoid does not exceed 95% based on the entire weight of the surface coating layer. Also, when the plated steel strip is required to have excellent resistance to powdering after the plated steel strip is strictly processed, it is preferable to limit the content of the inorganic dispersoid to 30% or less based on the entire weight of the surface coating layer.
  • the fine inorganic dispersoid particles in the surface coating layer preferably have an average size of 5 microns or less, preferably, from 0.01 to 1 Ilm. Fine inorganic dispersoid particles having an average size of 51lm or less are highly effective for enhancing the resistance of the resultant plated steel strip to powdering when the strip is subjected to severe processing.
  • the term "average size" refers to a size of the particles in a largest distribution percentage.
  • the surface coating layer of the present invention may cover the entire surface of the steel strip substrate. Otherwise, the surface of the steel strip substrate may be partially covered by the surface coating layer, for example, in the form of a plurality of stripes.
  • an intermediate coating layer consisting of zinc or a zinc alloy may be formed between the steel strip substrate and the surface coating layer.
  • the intermediate coating layer may be formed so as to partially cover or entirely cover the surface of the steel strip substrate.
  • the intermediate coating layer consists of zinc or a zinc alloy.
  • the zinc alloy is selected from alloys of 20% to 99% by weight of zinc and 1 % to 80% by weight of at least one metal other than zinc, preferably selected from the group consisting of nickel, cobalt, chromium, iron, and molybdenum.
  • the intermediate coating layer is preferably in an amount of from 0.5 to 400 g/m 2 , more preferably, from 1 to 200 g/m 2 , and preferably has a thickness of from 0.1 to 20 pm.
  • the surface coating layer in the zinc-plated steel strip of the present invention may have a covering layer formed thereon by means of a silane-coupling treatment or a chemical conversion treatment.
  • silane-coupling treatment refers to a treatment of the surface of the surface coating layer with a silane-coupling agent, for example, vinylchlorosilane or vinyltrimethoxysilane.
  • chemical conversion treatment refers to a phosphate treatment or a chromate treatment applied to the surface coating layer of the plated steel strip.
  • the silane-coupling treatment and chemical conversion treatment are effective for enhancing the primary adhering property of the surface of the plated steel strip to lacquer.
  • the surface coating layer can be produced on a surface of the steel strip substrate by means of an electric plating or a vacuum evaporation plating procedure in the presence of fine inorganic dispersoid particles.
  • the electric plating method is applied to the production of the surface coating layer.
  • the electric plating procedure is carried out in a plating bath containing sulfate or chloride of zinc and at least one additional metal having a pH of 1 to 3 at a current density of 1 to 200 A/dm 2 at a line speed of 1 to 250 m/min.
  • the inorganic dispersoid particles are deposited in the plated metal matrix. It is assumed that the dispersoid particles are deposited due to the attraction caused by static electricity or the mechanical force applied thereto.
  • the intermediate coating layer can be produced by means of electric plating, vacuum evaporation plating, or hot galvanizing.
  • the zinc-plated steel strip of the present invention may have only one surface coating layer formed on only one surface of the substrate, two surface coating layers formed on both the surfaces of the substrate, or a combination of a surface coating layer and an intermediate coating layer formed on only one surface of the substrates or on each surface of the substrate.
  • the other surface of the substrate may be plated with a coating layer other than the surface coating layer and the intermediate coating layer of the present invention or with the same coating layer as the intermediate coating layer of the present invention.
  • the resistance of a specimen to corrosion was determined as follows.
  • a specimen was subjected to a dipping type chemical conversion treatment with zinc phosphate.
  • the treatment specimen was coated with a cathodic ED coating layer having a thickness of 20 pm.
  • the painted specimen was subjected to a cyclic corrosion test (CCT) in which a salt spray test was combined with a drying-wetting-cooling test.
  • CCT cyclic corrosion test
  • the specimen was tested for perforation corrosion of the processed portion of the steel strip was of a lapped panel. This test was carried out over 4 weeks, and the maximum depth of pits formed in the specimen was measured. The workability of the specimen was evaluated by a deep drawing test.
  • the resistance of the deep drawn specimen to powdering was determined by a tape test.
  • the weldability of the specimen was determined as follows. Two zinc-plated specimens were laid back to back with the plated surfaces outside. These were then spot-welded. The size of the nuggets formed in the welded portion was measured to determine the appropriate welding current for the specimens.
  • the surface rusting test was carried out by a cross-cut method.
  • the paint adhesion of the scratched portion of the specimen was determined by a cross-cut method in which the cross-cut specimen was subjected to the CCT for 4 weeks and the maximum width of blisters formed in the specimen was measured.
  • the results of the above-mentioned tests were evaluated as follows:
  • the content of the inorganic dispersoid particles in the surface coating layer be 0.01 % or more, based on the entire weight of the surface coating layer, in order to enhance the weldability of the plated steel strip.
  • Tn view of Examples 17 to 23 it is preferable for the purpose of improving the perforation corrosion resistance of the processed portion of the plated steel strip to control the content of the inorganic dispersoid particles to a level not exceeding 95% based on the entire weight of the surface coating layer.
  • Example 34 to 164 except for Examples 116, 118, and 120 to 140, a surface of a substrate consisting of an ordinary steel strip was plated with an intermediate coating layer having the composition and thickness as shown in Table 2 (1) to (9) and then with a surface coating layer having the composition and thickness shown in Table 2.
  • Comparative Examples 1 to 6 the same substrate as that mentioned above was plated with an intermediate coating layer and then with a surface coating layer each having the composition and thickness in Table 2(7).
  • Example 116 a surface of the substrate was covered partially with the intermediate coating layer at a covering rate of 50%.
  • Comparative Example 1 wherein the intermediate coating layer contains Si0 2 particles whereas the surface coating layer is free from the inorganic dispersoid particles, the resultant plated steel strip exhibited a very poor perforation corrosion resistance, whereas the paint adhesion of the scratched portion to lacquer was excellent.
  • the surface coating layer contained no inorganic dispersoid. This feature resulted in poor weldability of the resultant plated steel strip.
  • the preferable dispersoids for the zinc-nickel alloy matrix in the surface coating layer are oxides of aluminum, iron, titanium, and silicon.
  • the preferable metals to be alloyed with zinc in the surface coating layer are nickel, cobalt, chromium, iron, and manganese.
  • the resultant plated steel strips having an intermediate coating layer consisting of zinc or a zinc alloy and a surface coating layer containing dispersoid particles consisting of Si0 2 and having an average size of 5 microns or less exhibited excellent corrosion resistance, workability, and weldability and, therefore, are most preferable products of the present invention.
  • the preferable thickness of the surface coating layer is in the range of from 0.1 to 40 microns. Also, in view of Examples 141 to 145, it is preferable that the thickness of the intermediate coating layer is in the range of from 0.1 to 20 microns.
  • Examples 116 and 117 showed that the plated steel strips having surface and intermediate coating layers or a surface coating layer in the form of a plurality of stripes are satisfactory.

Description

    Background of the invention (1) Field of the invention
  • The present invention relates to a zinc-plated steel strip with a zinc-based coating layer containing an inorganic dispersoid. More particularly, the present invention relates to a zinc-plated steel strip having at least one zinc-based coating layer containing fine inorganic dispersoid particles and formed on at least one surface of the steel strip, which zinc-plated steel strip exhibits excellent resistance to corrosion, enhanced workability, and superior weldability and is useful for producing cars, building and construction materials, and home electric appliances.
  • (2) Description of the related art
  • Generally, surface-treated steel strips are required to exhibit a high resistance to corrosion not only before but also after being painted. That is, surface coated steel strips have to exhibit a satisfactory paint adhesion and satisfactory resistances to perforation corrosion and to red rust when the paint film layer is scratched.
  • Also, surface-treated steel strips must exhibit excellent workability and weldability.
  • In response to the above-mentioned requirements, various types of plated steel strips having zinc-based coating layers are used, and there have been various attempts to improve plated steel strips having zinc-based coating layers.
  • Japanese Examined Patent Publication No. 56-49999 discloses a plated steel strip having an electroplating layer comprising a matrix consisting of zinc alone and 2.0 to 15% of Si02 particles, and optionally, an electroplating surface layer consisting of 1 g/m2 or more of zinc alone.
  • Japanese Examined Patent Publication No. 57-17960 discloses a plated steel strip having a base plating layer consisting of zinc alone and a surface plating layer comprising a matrix consisting of Mn alone and particles consisting of at lesat one member selected from metallic Ni, Cu, AI and Cr and oxides of Ti, AI and Mg, and having a thickness of 0.1 µm or more.
  • Japanese Examined Patent Publication No. 46-37882 discloses a plated light metal article having a base plating layer consisting of zinc alone and a surface electroplating layer comprising a matrix consisting of nickel alone and a dispersoid consisting of solid particles having a size of 1 1l[11 or less and located in the surface portion of the surface electroplating layer.
  • Japanese Unexamined Patent Publication No. 56-123,395 discloses a plated steel strip having an electroplating layer comprising a matrix consisting of zinc alone or a Ni-Zn alloy and chromium hydrate particles having a size of 0.3 pm or more and dispersed in the surface portion of the layer with a depth of 0.3 pm from the surface of the layer.
  • Japanese Unexamined Patent Publication No. 52-109,439 discloses a plated metal article having a base electroplating layer consisting of nickel alone and a surface electroplating layer comprising a nickel matrix and silicon carbide particles. However, the resultant plated steel strips are not always satisfactory in view of the strict requirements mentioned above.
  • Under the above-mentioned circumstances, it is strongly desired to provide a new type of plated steel strip which exhibits excellent resistance to corrosion after painting and high resistances to perforation corrosion and powdering after processing.
  • JP-A-79 159 342 discloses a process for producing a corrosion resistant plated composite steel strip in which a surface of a steel strip substrate is coated with an electroplating layer comprising a matrix consisting of zinc and fine particles consisting of Si02 sol, Ti02 sol and Zr02 sol, and dispersed in the zinc matrix.
  • JP-A-79 146 228 discloses a plated steel strip in which a cold-rolled steel strip substrate is coated with an electroplating base layer consisting of a matrix consisting of zinc alone and Si02 fine particles, and the base layer is coated with an electroplating surface layer consisting of zinc alone.
  • Metal Finishing Abstracts, vol. 22, No. 6, November/December 1980, page 292 discloses a plated steel strip comprising a steel strip substrate, an under-coating layer composed of a matrix consisting of zinc alone and AI203 particles dispersed in the matrix, and an upper coating layer consisting of chromium alone.
  • Summary of the invention
  • An object of the present invention is to provide a zinc-plated steel strip which exhibits excellent resistance to corrosion even after the plated steel strip is painted and the paint film layer is scratched.
  • Another object of the present invention is to provide a zinc-plated steel strip which exhibits excellent workability and weldability.
  • The above-mentioned objects can be attained by the zinc-plated steel strip with a zinc-based coating layer of the present invention, which comprises a substrate consisting of a steel strip and at least one surface coating layer plated on at least one portion of at least one surface of the steel strip substrate, the surface coating layer consisting essentially of a matrix consisting of at least one zinc alloy and fine dispersoid particles dispersed in the matrix and consisting of at least one member selected from the group consisting of oxides, carbides, nitrides, borides, phosphides, and sulfides of aluminum, iron, titanium, molybdenum, copper, zinc, nickel, cobalt, lanthanum, cerium and silicon.
  • The zinc-plated steel strip of the present invention may further comprise an intermediate coating layer formed between the steel strip substrate and the surface coating layer and consisting of at least one member selected from the group consisting of zinc and zinc alloys.
  • Description of the preferred embodiments
  • It was found that a zinc alloy-surface coating layer plated on a surface of a steel strip and containing specific inorganic dispersoid particles is highly effective for enhancing resistance of the steel strip to corrosion, especially perforation corrosion after the plated steel strip is painted and processed. The reasons for the special effect of the above-mentioned specific zinc alloy coating layer are not completely clear. It is assumed, however, that the specific inorganic dispersoid particles in the surface coating layer form a sort of a barrier against the corrosion so as to restrict undesirable corrosional oxidation-reduction reaction in the coating layer. Also, it was found by the inventors of the present invention that the surface coating layer containing the specific fine inorganic dispersoid particles is effective for enhancing the weldability, especially spot weldability, of the plated steel strip.
  • Furthermore, it was found by the inventors of the present invention that an intermediate coating layer. consisting of zinc or zinc alloy and formed between the steel strip substrate and the surface coating layer containing the specific inorganic dispersoid particles is highly effective for enhancing the specific effects of the surface coating layer, especially, for enhancing the resistance to perforation corrosion of the processed portion and the workability, of the plated steel strip.
  • The term "workability of the plated steel strip" refers to a resistance of the plated steel strip to powdering of the coating layer, that is, peeling of the coating layer from the substrate when processed.
  • The reasons for the above-mentioned effects of the intermediate coating layer are not clear. It is supposed, however, that the surface coating layer and the intermediate coating layer have a synergistic effect on, the plated steel strip. Also, it is supposed that the intermediate coating layer exhibits a special type of lubricating effect between the substrate and the surface coating layer.
  • In the zinc-plated steel strip of the present invention, a substrate consisting of a steel strip has at least one plated surface coating layer consisting essentially of a matrix consisting of a plated zinc alloy and fine dispersoid particles dispersed in the matrix and consisting of at least one member selected from oxides, carbides, nitrides, borides, phosphides and sulfides of aluminum (AI), iron (Fe), titanium (Ti), molybdenum (Mo), copper (Cu), zinc (Zn), nickel (Ni), cobalt (Co), lanthanum (La), cerium (Ce), and silicon (Si).
  • The steel strip usable as a substrate for the present invention is not limited to specific types of steel strips. However, usually, the steel strip is preferably selected from ordinary steel strips, AI-killed steel strips and high tensile steel strips.
  • As stated above, when the above-mentioned specific inorganic dispersoid particles are contained in the zinc alloy matrix, the resultant surface coating layer exhibits an excellent effect in enhancing the resistance to corrosion and workability and weldability of the plated steel strip. These effects of the surface coating layer of the present invention are excellent compared with those of other zinc or zinc alloy coating layers which are free from the specific inorganic dispersoid or contain other dispersoids.
  • In the zinc-plated steel strips of the present invention, it is preferable that the surface coating layer be in an amount of from 1 to 400 g/m2, and has a thickness of from 0.1 to 40 pm.
  • In the surface coating layer, the matrix consists of a zinc alloy. The zinc alloy is preferably selected from alloys of from 20% to 99.7% by weight of zinc with 0.3% to 80% by weight of at least one additional metal member selected from the group consisting of nickel, copper, cobalt, chromium, tellurium, lanthanium, cerium, iron, and manganese.
  • In the zinc alloy, the above-mentioned specific additional metal in a content of from 0.3% to 80% by weight is effective for enhancing the paint adhesion of the surface coating layer to the steel strip substrate surface when the surface coating layer is scratched and for improving the resistance of the surface coating layer to corrosion, especially, to perforation corrosion within a strict corrosional environment.
  • In the surface coating layer, the amount of inorganic dispersoid is preferably 0.01% or more, more preferably from 0.01 % to 95%, still more preferably from 0.01 % to 30%, based on the entire weight of the surface coating layer.
  • When the amount of the inorganic dispersoid in the surface coating layer is less than 0.01 %, the resultant plated steel strip exhibits unsatisfactory weldability.
  • When the plated steel strip is required to exhibit extremely high resistance to corrosion, in view of the sacrifice corrosion control effect of the zinc alloy, it is preferable that the content of the inorganic dispersoid does not exceed 95% based on the entire weight of the surface coating layer. Also, when the plated steel strip is required to have excellent resistance to powdering after the plated steel strip is strictly processed, it is preferable to limit the content of the inorganic dispersoid to 30% or less based on the entire weight of the surface coating layer.
  • The fine inorganic dispersoid particles in the surface coating layer preferably have an average size of 5 microns or less, preferably, from 0.01 to 1 Ilm. Fine inorganic dispersoid particles having an average size of 51lm or less are highly effective for enhancing the resistance of the resultant plated steel strip to powdering when the strip is subjected to severe processing. The term "average size" refers to a size of the particles in a largest distribution percentage.
  • The surface coating layer of the present invention may cover the entire surface of the steel strip substrate. Otherwise, the surface of the steel strip substrate may be partially covered by the surface coating layer, for example, in the form of a plurality of stripes.
  • In the zinc-plated steel strip of the present invention, an intermediate coating layer consisting of zinc or a zinc alloy may be formed between the steel strip substrate and the surface coating layer.
  • The intermediate coating layer may be formed so as to partially cover or entirely cover the surface of the steel strip substrate. The intermediate coating layer consists of zinc or a zinc alloy. Preferably, the zinc alloy is selected from alloys of 20% to 99% by weight of zinc and 1 % to 80% by weight of at least one metal other than zinc, preferably selected from the group consisting of nickel, cobalt, chromium, iron, and molybdenum.
  • The intermediate coating layer is preferably in an amount of from 0.5 to 400 g/m2, more preferably, from 1 to 200 g/m2, and preferably has a thickness of from 0.1 to 20 pm.
  • The surface coating layer in the zinc-plated steel strip of the present invention may have a covering layer formed thereon by means of a silane-coupling treatment or a chemical conversion treatment.
  • The term "silane-coupling treatment" refers to a treatment of the surface of the surface coating layer with a silane-coupling agent, for example, vinylchlorosilane or vinyltrimethoxysilane. The term "chemical conversion treatment" refers to a phosphate treatment or a chromate treatment applied to the surface coating layer of the plated steel strip.
  • The silane-coupling treatment and chemical conversion treatment are effective for enhancing the primary adhering property of the surface of the plated steel strip to lacquer.
  • The surface coating layer can be produced on a surface of the steel strip substrate by means of an electric plating or a vacuum evaporation plating procedure in the presence of fine inorganic dispersoid particles. Preferably, the electric plating method is applied to the production of the surface coating layer. For example, the electric plating procedure is carried out in a plating bath containing sulfate or chloride of zinc and at least one additional metal having a pH of 1 to 3 at a current density of 1 to 200 A/dm2 at a line speed of 1 to 250 m/min.
  • In the production of the surface coating layer, it is not completely clear how the inorganic dispersoid particles are deposited in the plated metal matrix. It is assumed that the dispersoid particles are deposited due to the attraction caused by static electricity or the mechanical force applied thereto.
  • The intermediate coating layer can be produced by means of electric plating, vacuum evaporation plating, or hot galvanizing.
  • The zinc-plated steel strip of the present invention may have only one surface coating layer formed on only one surface of the substrate, two surface coating layers formed on both the surfaces of the substrate, or a combination of a surface coating layer and an intermediate coating layer formed on only one surface of the substrates or on each surface of the substrate.
  • When one surface of the substrate has a surface coating layer or a combination of an intermediate coating layer and a surface coating layer, the other surface of the substrate may be plated with a coating layer other than the surface coating layer and the intermediate coating layer of the present invention or with the same coating layer as the intermediate coating layer of the present invention.
  • The present invention will be further explained by way of specific examples, which, however, are representative and do not restrict the scope of the present invention in any way.
  • In the examples, the resistance of a specimen to corrosion was determined as follows.
  • A specimen was subjected to a dipping type chemical conversion treatment with zinc phosphate. The treatment specimen was coated with a cathodic ED coating layer having a thickness of 20 pm.
  • The painted specimen was subjected to a cyclic corrosion test (CCT) in which a salt spray test was combined with a drying-wetting-cooling test.
  • The specimen was tested for perforation corrosion of the processed portion of the steel strip was of a lapped panel. This test was carried out over 4 weeks, and the maximum depth of pits formed in the specimen was measured. The workability of the specimen was evaluated by a deep drawing test.
  • The resistance of the deep drawn specimen to powdering was determined by a tape test.
  • The weldability of the specimen was determined as follows. Two zinc-plated specimens were laid back to back with the plated surfaces outside. These were then spot-welded. The size of the nuggets formed in the welded portion was measured to determine the appropriate welding current for the specimens.
  • The surface rusting test was carried out by a cross-cut method.
  • The paint adhesion of the scratched portion of the specimen was determined by a cross-cut method in which the cross-cut specimen was subjected to the CCT for 4 weeks and the maximum width of blisters formed in the specimen was measured. The results of the above-mentioned tests were evaluated as follows:
    Figure imgb0001
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
  • Examples 1 to 33
  • In each of Examples 1 to 33, a surface of a substrate consisting of an ordinary steel strip was plated with a surface coating layer as shown in detail in Table 1(1), (2), and (3). The properties of the resultant plated steel strips are also shown in Table 1(1), (2), and (3).
  • In view of Examples 18 to 24, it is preferable that the content of the inorganic dispersoid particles in the surface coating layer be 0.01 % or more, based on the entire weight of the surface coating layer, in order to enhance the weldability of the plated steel strip.
  • In view of Examples 17 to 21, it is preferable for the purpose of enhancing the powdering resistance of the plated steel strip to control the content of the inorganic dispersoid particle to a level not exceeding 30% based on the entire weight of the surface coating layer.
  • Tn view of Examples 17 to 23, it is preferable for the purpose of improving the perforation corrosion resistance of the processed portion of the plated steel strip to control the content of the inorganic dispersoid particles to a level not exceeding 95% based on the entire weight of the surface coating layer.
  • In view of Examples 25 to 33, it is preferable for the purpose of enhancing the adhering property of scratched portion of the plated steel strip to control the content of the inorganic dispersoid particles to the level of 0.3% or more based on the entire weight of the surface coating layer. Also, it is preferable for the purpose of enhancing the pitting corrosion resistance and rust resistance to limit the content of the inorganic dispersoid particles to a level not exceeding 80% based on the entire weight of the surface coating layer.
  • Examples 34 to 164 and Comparative Example 1 to 9
  • In each of Examples 34 to 164, except for Examples 116, 118, and 120 to 140, a surface of a substrate consisting of an ordinary steel strip was plated with an intermediate coating layer having the composition and thickness as shown in Table 2 (1) to (9) and then with a surface coating layer having the composition and thickness shown in Table 2.
  • In each of Examples 116, 118, and 120 to 140, the same substrate as that mentioned above was directly plated with a surface coating layer having the composition and thickness as indicated in Table 2.
  • In Comparative Examples 1 to 6, the same substrate as that mentioned above was plated with an intermediate coating layer and then with a surface coating layer each having the composition and thickness in Table 2(7).
  • In Comparative Examples 7 to 9, the same substrate as that mentioned above was plated directly with the surface coating layer as shown in Table 2(9).
  • In Example 116, a surface of the substrate was covered partially with the intermediate coating layer at a covering rate of 50%.
  • In each of Examples 118 and 119, the surface of the surface coating layer was treated with a silane-coupling agent.
  • In Comparative Example 1, wherein the intermediate coating layer contains Si02 particles whereas the surface coating layer is free from the inorganic dispersoid particles, the resultant plated steel strip exhibited a very poor perforation corrosion resistance, whereas the paint adhesion of the scratched portion to lacquer was excellent.
  • In Comparative Example 2, dispersoid particles consisting of Cr203 resulted in a poor weldability of the resultant plated steel strip.
  • In Comparative Examples 3 and 4, a surface coating layer matrix consisting of nickel or manganese resulted in a poor perforation corrosion resistance of the resultant plated steel strip.
  • In each of Comparative Examples 5 and 6, the surface coating layer contained no inorganic dispersoid. This feature resulted in poor weldability of the resultant plated steel strip.
  • In each of Comparative Examples 7 and 9 the dispersoid consisting of Zr02 or Cr203 resulted in poor powdering resistance and weldability of the resultant plated steel strip.
  • In Comparative Example 8, the dispersoid consisting of WC resulted in a poor paint adhesion and in poor weldability of the resultant plated steel strip.
  • In view of Examples 120 to 129, the preferable dispersoids for the zinc-nickel alloy matrix in the surface coating layer are oxides of aluminum, iron, titanium, and silicon.
  • In view of Examples 130 and 136, the preferable metals to be alloyed with zinc in the surface coating layer are nickel, cobalt, chromium, iron, and manganese.
  • In view of Examples 58 to 69, and 92 to 97, the resultant plated steel strips having an intermediate coating layer consisting of zinc or a zinc alloy and a surface coating layer containing dispersoid particles consisting of Si02 and having an average size of 5 microns or less exhibited excellent corrosion resistance, workability, and weldability and, therefore, are most preferable products of the present invention.
  • In view of Examples 98 to 104, the preferable thickness of the surface coating layer is in the range of from 0.1 to 40 microns. Also, in view of Examples 141 to 145, it is preferable that the thickness of the intermediate coating layer is in the range of from 0.1 to 20 microns.
  • In view of Examples 107 to 115, it is known that in the surface coating layer matrix consisting of a zinc alloy, when the content of the additional metal to be alloyed with zinc is 0.3% by weight or more, the resultant plated steel strip exhibited an enhanced paint adhesion of a scratched portion. When the content of the additional metal is 80% by weight or less, the processed portion of the plated steel strip exhibited an excellent perforation corrosion resistance.
  • Examples 116 and 117 showed that the plated steel strips having surface and intermediate coating layers or a surface coating layer in the form of a plurality of stripes are satisfactory.
  • When the plated steel stripes of the present invention were surface treated with a silane coupling agent, the resultant products exhibited excellent corrosion resistance, workability, and weldability as shown in Examples 118 and 119.
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020

Claims (15)

1. A zinc-plated steel strip with a zinc-based-coating layer, comprising:
a substrate consisting of a steel strip; and
at least one surface coating layer plated on at least a portion of at least one surface of the steel strip substrate,
the surface coating layer consisting essentially of a matrix consisting of at least one zinc alloy and fine dispersoid particles dispersed in the matrix and consisting of at least one member selected from the group consisting of oxides, carbides, nitrides, borides, phosphides and sulfides of aluminum, iron, titanium, molybdenum, copper, zinc, nickel, cobalt, lanthanum, cerium, and silicon.
2. The zinc-plated steel strip as claimed in claim 1, wherein the zinc alloy is selected from alloys of zinc with at least one additional metal member selected from the group consisting of nickel, copper, cobalt, chromium, tellurium, lanthanum, cerium, iron, and manganese.
3. The zinc-plated steel strip as claimed in claim 1, which further comprises an intermediate coating layer formed between the steel strip substrate and the surface coating layer and consisting of at least one member selected from the group consisting of zinc and zinc alloys.
4. The zinc-plated steel strip as claimed in claim 3, wherein the surface coating layer covers partially the surface of the steel strip substrate.
5. The zinc-plated steel strip as claimed in claim 3, wherein the intermediate coating layer partially covers the surface of the steel strip substrate.
6. The zinc-plated steel strip as claimed in claim 1, wherein the fine dispersoid particles are in an amount of at least 0.01% based on the entire weight of the surface coating layer.
7. The zinc-plated steel strip as claimed in claim 1, wherein the fine dispersoid particles are in an amount of from 0.01% to 95% based on the entire weight of the surface coating layer.
8. The zinc-plated steel strip as claimed in claim 7, wherein the fine dispersoid particles are in an amount of from 0.01 % to 30% based on the entire weight of the surface coating layer.
9. The zinc-plated steel strip as claimed in claim 1 or 3, which further comprises a covering layer formed on the surface coating layer by means of a silane-coupling treatment or a chemical conversion treatment.
10. The zinc-plated steel strip as claimed in claim 8, wherein the fine dispersoid particles consisting of at least one member selected from oxides, carbides, nitrides, borides, phosphides, and sulfides of aluminum, iron, titanium, and silicon are dispersed in an amount of 0.01% to 30% based on the entire weight of the surface coating layer in a matrix consisting of a zinc alloy of 99.7% by weight or less of zinc with 0.3% by weight or more of at least one additional member selected from the group consisting of nickel, cobalt, chromium, iron, and manganese.
11. The zinc-plated steel strip as claimed in claim 10, wherein the amount of the additional metal member selected from nickel, cobalt, chromium, iron, and manganese is in the range of from 0.3% to 80% by weight.
12. The zinc-plated steel strip as claimed in claim 8, wherein the fine dispersoid particles consist of at least one member selected from the group consisting of oxides, carbides, nitrides, borides, phosphides, and sulfides and have an average size of 5 Ilm or less.
13. The zinc-plated steel strip as claimed in claim 1, wherein the surface coating layer consist essentially of 0.01 % to 30% by weight of the fine dispersoid particles consisting of at least one member selected from the group consisting of oxides, carbides, nitrides, borides, phosphides and sulfides of aluminum, iron titanium and silicon and having an average size of 5 microns or less and the balance of the matrix consisting of a zinc alloy consisting of 0.5% to 80% by weight of at least one member selected from the group consisting of nickel, cobalt, chromium, iron and manganese at the balance of zinc.
14. The zinc-plated steel strip as claimed in claim 13, wherein the surface coating layer is formed on an intermediate coating layer consisting of at least one member selected from the group consisting of zinc and zinc alloys.
15. The zinc-plated steel strip as claimed in claim 3, wherein the surface coating layer has a thickness of from 0.1 to 40 pm and comprises 70% to 99.99% by weight of a matrix consisting of a zinc alloy of 20% to 99.7% by weight of zinc with 0.3% to 80% by weight of at least one additional metal member selected form nickel, cobalt, chromium, iron, and manganese, and 0.01% to 30% by weight of fine dispersoid particles consisting of silicon oxide and having an average size of 0.020 µm or less; and the intermediate coating layer has a thickness of from 0.1 to 20 pm and comprises zinc or zinc alloy.
EP85111166A 1984-09-06 1985-09-04 Steel strip plated with a zinc-based coating layer containing an inorganic dispersoid Expired EP0174019B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59185300A JPS6164899A (en) 1984-09-06 1984-09-06 Zn composite plated steel sheet
JP185300/84 1984-09-06

Publications (2)

Publication Number Publication Date
EP0174019A1 EP0174019A1 (en) 1986-03-12
EP0174019B1 true EP0174019B1 (en) 1989-03-01

Family

ID=16168441

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85111166A Expired EP0174019B1 (en) 1984-09-06 1985-09-04 Steel strip plated with a zinc-based coating layer containing an inorganic dispersoid

Country Status (3)

Country Link
EP (1) EP0174019B1 (en)
JP (1) JPS6164899A (en)
DE (1) DE3568459D1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0291606A2 (en) * 1987-04-13 1988-11-23 Nippon Steel Corporation High corrosion resistant plated composite steel strip and method for producing same
EP0293476A1 (en) * 1986-12-06 1988-12-07 Nisshin Steel Co., Ltd. Double-electroplated steel plate
GB2206127A (en) * 1987-06-25 1988-12-29 Occidental Chem Co Improved electrogalvanized coating for steel
FR2617195A1 (en) * 1987-06-25 1988-12-30 Occidental Chem Co IMPROVED ELECTRO-GALVANIZED COATING FOR STEEL
GB2209178A (en) * 1987-08-28 1989-05-04 Occidental Chem Co Improved hot-dip galvanized coating for steel
FR2623822A1 (en) * 1987-11-26 1989-06-02 Nippon Steel Corp ZN-NI-BASED COMPOSITE VENEER-BASED PLASTIC STEEL SHEET AND METHOD OF MANUFACTURING THE SAME
US4839241A (en) * 1987-05-11 1989-06-13 Nippon Kokan Kabushiki Kaisha Composite zinc-silica electro-galvanized steel sheet excellent in corrosion resistance
US4868066A (en) * 1987-10-19 1989-09-19 Macdermid, Incorporated Mechanically plated coatings containing lubricant particles
GB2178760B (en) * 1985-08-05 1989-12-20 Usui Kokusai Sangyo Kk Multilayered coated corrosion resistant steel material
US4897317A (en) * 1987-03-31 1990-01-30 Nippon Steel Corporation Corrosion resistant Zn-Cr plated steel strip
US4904545A (en) * 1987-07-10 1990-02-27 Nkk Corporation Composite electroplated steel sheet
US4910095A (en) * 1987-12-29 1990-03-20 Nippon Steel Corporation High corrosion resistant plated composite steel strip
US4915906A (en) * 1988-06-17 1990-04-10 Canadian Patents And Development Limited/Societie Canadienne Des Brevets Et D'exploitation Limitee Novel zinc-based alloys, preparation and use thereof for producing thermal-sprayed coatings having improved corrosion resistance and adherence
FR2641547A1 (en) * 1989-01-10 1990-07-13 Maubeuge Fer High-protection painted galvanised product
US5006420A (en) * 1989-06-21 1991-04-09 Nkk Corporation Electroplated steel sheet having a plurality of coatings, excellent in workability, corrosion resistance and water-resistant paint adhesivity
US5134039A (en) * 1988-04-11 1992-07-28 Leach & Garner Company Metal articles having a plurality of ultrafine particles dispersed therein
US5429881A (en) * 1990-05-23 1995-07-04 Toyota Jidosha Kabushiki Kaisha Surface treated aluminum or aluminum alloy material
WO2001051681A2 (en) * 2000-01-11 2001-07-19 C+C Cours Gmbh Lustrous metal surfaces
US6468674B2 (en) 1999-10-07 2002-10-22 Bethlehem Steel Corporation Coating composition for steel—product, a coated steel product, and a steel product coating method
US6689489B2 (en) 1999-10-07 2004-02-10 Isg Technologies, Inc. Composition for controlling spangle size, a coated steel product, and a coating method
US7118807B2 (en) 2000-11-13 2006-10-10 Dacral, S.A. Use of MoO3 as corrosion inhibitor, and coating composition containing such an inhibitor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192899A (en) * 1987-02-05 1988-08-10 Nippon Steel Corp Zn dispersion-plated steel sheet having superior plating adhesion
JPS63192900A (en) * 1987-02-05 1988-08-10 Nippon Steel Corp Multiply plated steel sheet having superior plating adhesion and corrosion resistance after painting
JPS63203798A (en) * 1987-02-19 1988-08-23 Nippon Steel Corp Composite plated steel sheet having excellent workability
JPS63243299A (en) * 1987-03-30 1988-10-11 Nippon Steel Corp Composite plating steel sheet and its production
US4794050A (en) * 1987-06-08 1988-12-27 Occidental Chemical Corporation Resistance welding of galvanized steel
JPH0238598A (en) * 1988-07-28 1990-02-07 Nkk Corp High corrosion resistant double-layer galvanized steel sheet
FR2766844B3 (en) * 1997-07-29 1999-05-28 Lorraine Laminage ECONOMICAL AND WEAR-RESISTANT LUMINESCENT SHEET, METHOD OF MANUFACTURING AND USES
GB2340131A (en) * 1998-07-29 2000-02-16 Ford Motor Co Corrosion resistant surface coating based on zinc
KR100415265B1 (en) * 2001-03-26 2004-01-16 한국전력공사 An inhibition method of the secondary side stress corrosion cracking in nuclear steam generator tubes
CA2391476C (en) * 2002-03-25 2007-08-07 Bethlehem Steel Corporation A coating composition for steel product, a coated steel product, and a steel product coating method
FR2839729B1 (en) * 2002-05-16 2005-02-11 Univ Toulouse METHOD FOR PROTECTING AN ALUMINUM STEEL OR ALLOY SUBSTRATE AGAINST CORROSION ENABLING IT TO PROVIDE TRIBOLOGICAL PROPERTIES, AND SUBSTRATE OBTAINED
US7211323B2 (en) * 2003-01-06 2007-05-01 U Chicago Argonne Llc Hard and low friction nitride coatings and methods for forming the same
JP5906753B2 (en) * 2011-02-24 2016-04-20 Jfeスチール株式会社 Alloy hot-dip galvanized steel sheet
TWI551435B (en) 2014-05-05 2016-10-01 國立臺灣大學 Steel sheet and fabrication method thereof
CN113005494A (en) * 2021-03-03 2021-06-22 无锡益联机械有限公司 Radial tire bead wire containing surface coating and preparation method thereof
CN113512724B (en) * 2021-06-22 2022-04-26 中山大学 Corrosion-resistant titanium steel composite material containing copper-molybdenum alloy layer and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138093A (en) * 1983-12-26 1985-07-22 Kawasaki Steel Corp Surface treated steel sheet having high corrosion resistance

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2178760B (en) * 1985-08-05 1989-12-20 Usui Kokusai Sangyo Kk Multilayered coated corrosion resistant steel material
EP0293476A1 (en) * 1986-12-06 1988-12-07 Nisshin Steel Co., Ltd. Double-electroplated steel plate
EP0293476A4 (en) * 1986-12-06 1991-03-13 Nisshin Steel Co., Ltd. Double-electroplated steel plate
US4908279A (en) * 1986-12-06 1990-03-13 Nisshin Steel Co., Ltd. Multilayer electroplated steel sheet
US4897317A (en) * 1987-03-31 1990-01-30 Nippon Steel Corporation Corrosion resistant Zn-Cr plated steel strip
EP0291606A2 (en) * 1987-04-13 1988-11-23 Nippon Steel Corporation High corrosion resistant plated composite steel strip and method for producing same
US4800134A (en) * 1987-04-13 1989-01-24 Teruaki Izaki High corrosion resistant plated composite steel strip
EP0291606A3 (en) * 1987-04-13 1990-01-17 Nippon Steel Corporation High corrosion resistant plated composite steel strip and method for producing same
US4839241A (en) * 1987-05-11 1989-06-13 Nippon Kokan Kabushiki Kaisha Composite zinc-silica electro-galvanized steel sheet excellent in corrosion resistance
GB2206127A (en) * 1987-06-25 1988-12-29 Occidental Chem Co Improved electrogalvanized coating for steel
US4873153A (en) * 1987-06-25 1989-10-10 Occidental Chemical Corporation Hot-dip galvanized coating for steel
GB2206127B (en) * 1987-06-25 1991-11-27 Occidental Chem Co Improved electrogalvanized coating for steel
FR2617193A2 (en) * 1987-06-25 1988-12-30 Occidental Chem Co IMPROVED HOT GALVANIZATION COATING FOR STEEL
FR2617195A1 (en) * 1987-06-25 1988-12-30 Occidental Chem Co IMPROVED ELECTRO-GALVANIZED COATING FOR STEEL
US4904545A (en) * 1987-07-10 1990-02-27 Nkk Corporation Composite electroplated steel sheet
GB2209178A (en) * 1987-08-28 1989-05-04 Occidental Chem Co Improved hot-dip galvanized coating for steel
GB2209178B (en) * 1987-08-28 1991-09-11 Occidental Chem Co Improved hot-dip galvanized coating for steel
US4868066A (en) * 1987-10-19 1989-09-19 Macdermid, Incorporated Mechanically plated coatings containing lubricant particles
GB2212816A (en) * 1987-11-26 1989-08-02 Nippon Steel Corp Zn-Ni based composite electroplated material and multi-layer composite plated material
FR2623822A1 (en) * 1987-11-26 1989-06-02 Nippon Steel Corp ZN-NI-BASED COMPOSITE VENEER-BASED PLASTIC STEEL SHEET AND METHOD OF MANUFACTURING THE SAME
GB2212816B (en) * 1987-11-26 1992-04-08 Nippon Steel Corp Zn-ni based composite electroplated material and multi-layer composite plated material
US4910095A (en) * 1987-12-29 1990-03-20 Nippon Steel Corporation High corrosion resistant plated composite steel strip
US5082536A (en) * 1987-12-29 1992-01-21 Nippon Steel Corporation Method of producing a high corrosion resistant plated composite steel strip
US5134039A (en) * 1988-04-11 1992-07-28 Leach & Garner Company Metal articles having a plurality of ultrafine particles dispersed therein
US4915906A (en) * 1988-06-17 1990-04-10 Canadian Patents And Development Limited/Societie Canadienne Des Brevets Et D'exploitation Limitee Novel zinc-based alloys, preparation and use thereof for producing thermal-sprayed coatings having improved corrosion resistance and adherence
FR2641547A1 (en) * 1989-01-10 1990-07-13 Maubeuge Fer High-protection painted galvanised product
US5006420A (en) * 1989-06-21 1991-04-09 Nkk Corporation Electroplated steel sheet having a plurality of coatings, excellent in workability, corrosion resistance and water-resistant paint adhesivity
US5429881A (en) * 1990-05-23 1995-07-04 Toyota Jidosha Kabushiki Kaisha Surface treated aluminum or aluminum alloy material
US6468674B2 (en) 1999-10-07 2002-10-22 Bethlehem Steel Corporation Coating composition for steel—product, a coated steel product, and a steel product coating method
US6689489B2 (en) 1999-10-07 2004-02-10 Isg Technologies, Inc. Composition for controlling spangle size, a coated steel product, and a coating method
WO2001051681A2 (en) * 2000-01-11 2001-07-19 C+C Cours Gmbh Lustrous metal surfaces
US7118807B2 (en) 2000-11-13 2006-10-10 Dacral, S.A. Use of MoO3 as corrosion inhibitor, and coating composition containing such an inhibitor
US7250076B2 (en) 2000-11-13 2007-07-31 Dacral Use of MoO3 as corrosion inhibitor, and coating composition containing such an inhibitor

Also Published As

Publication number Publication date
DE3568459D1 (en) 1989-04-06
JPS6164899A (en) 1986-04-03
JPS6316479B2 (en) 1988-04-08
EP0174019A1 (en) 1986-03-12

Similar Documents

Publication Publication Date Title
EP0174019B1 (en) Steel strip plated with a zinc-based coating layer containing an inorganic dispersoid
EP0047987B1 (en) Cationic electrodeposition lacquer-coated steel material
EP0763608B1 (en) Rust-preventive steel sheet for fuel tank and process for producing the sheet
EP0237140A2 (en) Coated metal
KR920009994B1 (en) Double-electroplated steel plate
EP0245828A2 (en) Surface treated steel material particularly electroplated steel sheet
EP0125657A1 (en) Corrosion-resistant steel strip having Zn-Fe-P alloy electroplated thereon
JPS60211096A (en) Surface treated steel sheet having high corrosion resistance
JPS62224699A (en) Steel sheet coated with zn-base layer by dispersion plating and having superior weldability
JPS6343479B2 (en)
JPS61207597A (en) Alloyed hot dip galvanized steel sheet having superior workability
JP3111889B2 (en) Galvanized steel sheet
JPS62230999A (en) Dispersion-plated steel sheet having high corrosion resistance
JPS6320498A (en) Metallic powder-containing zn composite electroplated steel sheet
JPS591694A (en) Rust preventive steel sheet
JPH0637707B2 (en) Multi-layer plated steel sheet with excellent flaking resistance
JPH03219950A (en) Organic composite coated steel plate
JPH0331495A (en) Surface-treated metallic material having highly corrosion resistance
JPH01162794A (en) Zinc-chromium-iron family metal electroplated steel sheet
JPH04337099A (en) High corrosion resistant surface treated steel sheet excellent in impact resistance and adhesion
JPH04198492A (en) Organic composite coated steel sheet
JPS60243298A (en) Plated steel sheet having superior electrodeposition property and corrosion resistance
JPH05253540A (en) Organic film coated zn base alloy plated al alloy plate
JPH0533313B2 (en)
JPH0382746A (en) Surface treated steel sheet excellent in workability and coating suitability

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19860414

17Q First examination report despatched

Effective date: 19870811

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3568459

Country of ref document: DE

Date of ref document: 19890406

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960827

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960910

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960913

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603