EP0000305A1 - Antenna having low side-lobes and high polarisation purity - Google Patents

Antenna having low side-lobes and high polarisation purity Download PDF

Info

Publication number
EP0000305A1
EP0000305A1 EP78400024A EP78400024A EP0000305A1 EP 0000305 A1 EP0000305 A1 EP 0000305A1 EP 78400024 A EP78400024 A EP 78400024A EP 78400024 A EP78400024 A EP 78400024A EP 0000305 A1 EP0000305 A1 EP 0000305A1
Authority
EP
European Patent Office
Prior art keywords
lens
antenna
horn
reflector
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP78400024A
Other languages
German (de)
French (fr)
Inventor
Nhu Bui Hai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0000305A1 publication Critical patent/EP0000305A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/001Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems for modifying the directional characteristic of an aerial
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas

Definitions

  • the present invention relates to an antenna with large angular decoupling and high polarization purity.
  • lens antennas are part of the satellite dishes; the lens is mainly used to compensate for the phase shift in the opening of the horn which illuminates the reflector, in the form of a paraboloid, of the antenna.
  • the parabolic antenna of which this lens is a part has the drawbacks of secondary lobes and masks mentioned above.
  • lens antennas are antennas in which the lens radiates directly into space; the lens is then made of artificial dielectric, that is to say that it is made, for example, of plates with holes or of metallic lamellae and that it is not isotropic.
  • a horn radiates a spherical wave; this horn is placed at the focal point of the lens which it illuminates and the direction of its maximum radiation is coincident with the axis of the lens.
  • This type of antenna does not have a mask effect but their longitudinal bulk is often very important because the focal length of the lens is generally long so as to reduce the thickness of the lens; this drawback is, of course, all the more marked as the radiating reopening of the antenna is greater.
  • the lenses used are not isotropic, it is not possible, with orthogonal rectilinear polarizations, to keep good decoupling at these polarizations after passing through the lens.
  • the present intention aims to reduce the aforementioned drawbacks.
  • an antenna with large angular decoupling and high polarization purity is characterized in that it comprises a radioelectric lens, a horn offset from the axis of the lens and a solid and flat reflector arranged for give the horn an image substantially located at the focal point of the lens and in that the lens is an isotropic lens and the reflector is a solid reflector.
  • antennas comprising a lens, one or more first horns substantially located at the focal point of the lens, one or more second horns offset with respect to the axis of the lens and a plane reflector giving second horns a sensi image clearly located at the focal point of the lens;
  • this reflector arranged between the lens and the first horns is a polarized reflector which, depending on a suitable choice of the polarizations of the first and second horns, is transparent to the waves relating to the first horns and reflective for the waves relating to the second horns.
  • Such antennas by the very fact of the use of polarized reflectors which degrade the purity of polarization, do not make it possible to obtain a large angular decoupling and a high purity of polarization.
  • the polarized reflectors are most often made of a plurality of wires, generally arranged in a plane and are not solid reflectors, radio-electrically speaking, since they allow part of the waves to pass radioelectric.
  • the reflectors having a continuous reflecting surface will be called solid reflectors.
  • Figure 1 shows a radio lens 1 and a horn 2 which radiates a spherical wave.
  • the wave emitted by the horn 2 lights up a solid, metallic, planar reflector 3, and, after reflection on this reflector, lights up the lens 1.
  • the path F'ABCD of a ray coming from the horn 2 has been indicated on the figure.
  • the lens 1 is a converging lens with an optical axis XX of focus F.
  • Point F ' where the Cornet 2, is the symmetric of the focal point F with respect to the reflecting plane of the solid reflector 3.
  • the spherical wave emitted by the horn 2 After passing through the lens 1, the spherical wave emitted by the horn 2 is transformed into a plane wave since, for the lens, it seems to come from the focal point F.
  • the assembly of FIG. 1 has a maximum overall length much lower in the horizontal plane.
  • FIG. 2 shows an exemplary embodiment of an antenna according to the invention.
  • FIG. 2 shows an antenna of the type shown in FIG. 1 with its lens 1, its solid, metallic reflector, plane 3 and its horn 2.
  • the horn is placed in the high position, that is to say that it is situated above the reflector 3 and not below it as in FIG. 1.
  • the metal wall, 5, surrounds the antenna, from the horn to the periphery of the lens and extends a little beyond the lens.
  • This metal envelope 5 substantially follows the contours of the beam, not shown, emitted by the horn 2, reflected by the solid reflector 3 and transmitted by the lens 1; this metal wall ensures the assembly of the horn, the reflector and the lens; it also constitutes a protective screen against external parasitic radiation and makes it possible to reduce the level of parasitic lobes of the antenna.
  • This metal wall is lined in the vicinity of the horn and in its lower part, between the reflector 3 and the lens 1, with a microwave absorbent, 7, 8 which also contributes to the reduction of the secondary lobes of the antenna.
  • a radome 6, fixed to the metal wall 5, can be placed in front of the radiating opening of the antenna as shown in FIG. 2.
  • Lens 1 is a stepped lens (zoned lens in the English literature) with an isotropic dielectric of the charged polyethylene type, with a refractive index equal to 2.3. This lens is covered on both sides with a layer of dielectric foam, 10, with a refractive index equal to 1.5.
  • the dielectric layer of average thickness substantially equal to ⁇ m / 4, where ⁇ m is the average wavelength of use of the antenna, serves to adapt the lens to the propagation medium; in the case of the example described where the average frequency of use is 11.2 GHz, the thickness of the dielectric foam layer is 5.5 mm.
  • the fixing device 9 is formed of tubes.
  • the set of adjustment cylinders such as 41 makes it possible to adjust the direction of the maximum radiation of the antenna by ⁇ 5 ° in elevation and in azimuth.
  • This antenna is intended to operate in the frequency band from 10.7 to 11.7 GHz, simultaneously in vertical polarization and in horizontal polarization and simultaneously in transmission and reception according to the CCIR frequency plans.
  • the antennas according to the invention are not limited to the two examples described.
  • the antenna can comprise different horns all located in the vicinity of an image F '(see FIG. 1) which is given by a reflector of the focal point of a lens. This makes it possible to simultaneously obtain, with the same lens, several directions of propagation with a slight reduction in performance.
  • metal wall 5 it is also possible to replace the metal wall 5 with a wall made of another material, for example metallized fiberglass.
  • the antennas described were antennas used in transmission; it is understood that, due to the principle of the reversibility of electromagnetic waves, the present invention also applies to the case of these same antennas used in reception.

Abstract

The antenna is produced using an isotropic dielectric lens (1), a solid, flat reflector (3) and a horn (2). The horn (2) which is offset relative to the axis (XX) of the lens (1) radiates a spherical wave. The reflector (3) provides from the horn (2) an image situated at the focus (F) of the lens (1). Having crossed the lens (1), the spherical wave emitted by the horn (2) is transformed into a plane wave. Use of the antenna in high-density radiolinks. <IMAGE>

Description

La présenta invention concerne une antenne à grand découplage angulaire et à grande pureté de polarisation.The present invention relates to an antenna with large angular decoupling and high polarization purity.

Il est très désirable d'avoir de telles antennes dans les liaisons par faisceaux hertziens afin de permettre d'augmenter la densité-dû réseau..Cette densité est limitée par les imperfections des antennes telles que les lobes secondaires proches du rayonnement maximum et les masques, ces derniers réduisant plus particulièrement la qualité du rayonnement en polarisation croisée.It is very desirable to have such antennas in the radio-relay links in order to increase the density-due network .. This density is limited by the imperfections of the antennas such as the secondary lobes close to the maximum radiation and the masks , the latter more particularly reducing the quality of the radiation in cross polarization.

Il est connu dn réaliser de3 antennes Cassegrain à décentrage ne présentant que peu d'effets de masque mais la partie du rayonnement issue du cornet d'une telle antenne et qui n'est pas interceptée par le réflecteur auxiliaire, contribue à augmenter le niveau des lobes proches du rayonnement maximum. Par ailleurs, la structure excentrée n'est pas favorable à l'obtention d'une grande pureté de polarisation.It is known to make 3 offset Cassegrain antennas with only a few mask effects, but the part of the radiation coming from the horn of such an antenna and which is not intercepted by the auxiliary reflector, contributes to increasing the level of lobes close to maximum radiation. Furthermore, the eccentric structure is not favorable for obtaining high polarization purity.

Il est également connu de réaliser des antennes comportant une lentille en diélectrique.It is also known to produce antennas comprising a dielectric lens.

Certaines de ces antennes à lentille font partie des antennes paraboliques ; la lentille sert principalement à compenser le déphasage dans l'ouverture du cornet qui éclaire le réflecteur, en forme de paraboloïde, de l'antenne. Mais l'antenne parabolique dont fait partie cette lentille présente les inconvénients de lobes secondaires et de masques évoqués plus avant.Some of these lens antennas are part of the satellite dishes; the lens is mainly used to compensate for the phase shift in the opening of the horn which illuminates the reflector, in the form of a paraboloid, of the antenna. However, the parabolic antenna of which this lens is a part has the drawbacks of secondary lobes and masks mentioned above.

D'autres antennes à lentille sont des antennes dans lesquelles la lentille rayonne directement dans l'espace ; la lentille est alors en diélectrique artificiel, c'est-à-dire qu'elle est constituée, par exemple, de plaques à trous ou de lamelles métalliques et qu'elle n'est pas isotrope. Dans de telles antennes un cornet rayonne une onde sphérique ; ce cornet est placé au foyer de la lentille qu'il éclaire et la direction de son rayonnement maximum est confondue avec l'axe de la lentille. Ce type d'antennes ne présents pas d'effet de masque mais leur encombrement longitudinal.est souvent très important car la focale de la lentille est généralement longue de manière à réduire l'épaisseur de la lentille ; cet inconvénient est, bien entendu, d'autant plus marqué que réouverture rayonnante de l'antenne est plus grande. De plus, les lentilles utilisées n'étant pas isotropes, il n'est pas possible, avec des polarisations rectilignes orthogonales, de garder un bon découplage à ces polarisations après la traversée de la lentille.Other lens antennas are antennas in which the lens radiates directly into space; the lens is then made of artificial dielectric, that is to say that it is made, for example, of plates with holes or of metallic lamellae and that it is not isotropic. In such antennas a horn radiates a spherical wave; this horn is placed at the focal point of the lens which it illuminates and the direction of its maximum radiation is coincident with the axis of the lens. This type of antenna does not have a mask effect but their longitudinal bulk is often very important because the focal length of the lens is generally long so as to reduce the thickness of the lens; this drawback is, of course, all the more marked as the radiating reopening of the antenna is greater. In addition, since the lenses used are not isotropic, it is not possible, with orthogonal rectilinear polarizations, to keep good decoupling at these polarizations after passing through the lens.

La présente intention a pour but de réduire les inconvénients précités.The present intention aims to reduce the aforementioned drawbacks.

Selon l'invention, une antenne à grand découplage angulaire et à grande pureté de polarisation, est caractérisée en ce qu'elle comporte une lentille radioélectrique, un cornet décalé par rapport à l'axe de la lentille et un réflecteur plein et plan disposé pour donner du cornet une image sensiblement située au foyer de la lentille et en ce que la lentille est une lentille isotrope et le réflecteur est un réflecteur plein.According to the invention, an antenna with large angular decoupling and high polarization purity, is characterized in that it comprises a radioelectric lens, a horn offset from the axis of the lens and a solid and flat reflector arranged for give the horn an image substantially located at the focal point of the lens and in that the lens is an isotropic lens and the reflector is a solid reflector.

Il est à noter qu'il existe des antennes comportant une lentille, un ou plusieurs premiers cornets sensiblement situés au foyer de la lentille, un ou plusieurs seconds cornets décalés par rapport à l'axe de la lentille et un réflecteur plan donnant des seconds cornets une image sensiblement située au foyer de la lentille ; ce réflecteur disposé entre la lentille et les premiers cornets est un réflecteur polarisé qui en fonction d'un choix convenable des polarisations des premiers et seconds cornets est transparent aux ondes relatives aux premiers cornets et réfléchissant pour les ondes relatives aux seconds cornets. De telles antennes, du fait même de l'utilisation de réflecteurs polarisés qui dégradent la pureté de polarisation, ne permettent pas d'obtenir un grand découplage angulaire et une grande pureté de polarisation. On rappellera à cette occasion que les réflecteurs polarisés sont, le plus souvent, faits d'une pluralité de fils, généralement disposés dans un plan et ne sont pas des réflecteurs pleins, radio- électriquement parlant, puisqu'ils laissent passer une partie des ondes radioélectriques. Pour les distinguer des réflecteurs polarisés, dans ce qui suit et dans les revendications, les réflecteurs présentant une surface réfléchissante continue seront appelés réflecteurs pleins.It should be noted that there are antennas comprising a lens, one or more first horns substantially located at the focal point of the lens, one or more second horns offset with respect to the axis of the lens and a plane reflector giving second horns a sensi image clearly located at the focal point of the lens; this reflector arranged between the lens and the first horns is a polarized reflector which, depending on a suitable choice of the polarizations of the first and second horns, is transparent to the waves relating to the first horns and reflective for the waves relating to the second horns. Such antennas, by the very fact of the use of polarized reflectors which degrade the purity of polarization, do not make it possible to obtain a large angular decoupling and a high purity of polarization. It will be recalled on this occasion that the polarized reflectors are most often made of a plurality of wires, generally arranged in a plane and are not solid reflectors, radio-electrically speaking, since they allow part of the waves to pass radioelectric. To distinguish them from polarized reflectors, in what follows and in the claims, the reflectors having a continuous reflecting surface will be called solid reflectors.

L'invention sera mieux comprise à l'aide de la description ci-après et des figures s'y rapportant qui représentent :

  • - la figure 1 , le schéma de principe d'une antenne selon l'invention ;
  • - La figure 2 le schéma simplifié d'une réalisation d'antenne selon l'invention.
The invention will be better understood with the aid of the description below and of the figures relating thereto which represent:
  • - Figure 1, the block diagram of an antenna according to the invention;
  • - Figure 2 the simplified diagram of an antenna embodiment according to the invention.

Les éléments qui se correspondent d'une figure à l'autre sont désignés par les mémes repères.The elements which correspond from one figure to another are designated by the same references.

La figure 1 montre une lentille radioélectrique 1 et un cornet 2 qui rayonne une onde sphérique. L'onde émise par le cornet 2 éclaire un réflecteur plein , métallique, plan, 3 , et, après réflexion sur ce réflecteur, éclaire la lentille 1. Le trajet F'ABCD d'un rayon issu du cornet 2 a été indiqué sur la figure.Figure 1 shows a radio lens 1 and a horn 2 which radiates a spherical wave. The wave emitted by the horn 2 lights up a solid, metallic, planar reflector 3, and, after reflection on this reflector, lights up the lens 1. The path F'ABCD of a ray coming from the horn 2 has been indicated on the figure.

La lentille 1 est une lentille convergente d'axe optique XX de foyer F . Le point F' , où a été placé le Cornet 2 , est le symétrique du foyer F par rapport au plan réfléchissant du réflecteur plein 3.The lens 1 is a converging lens with an optical axis XX of focus F. Point F ', where the Cornet 2, is the symmetric of the focal point F with respect to the reflecting plane of the solid reflector 3.

Après avoir traversé la lentille 1, l'onde sphérique émise par le cornet 2 est transformée en une onde plane étant donné que, pour la lentille, elle semble venir du foyer F.After passing through the lens 1, the spherical wave emitted by the horn 2 is transformed into a plane wave since, for the lens, it seems to come from the focal point F.

Aucun masque ne vient perturber le fonctionnement de l'antenne. De plus, par rapport à une antenne composée de la même lentille éclairée directement par un cornet situé au foyer F, le montage de la figure 1 présente une longueur hors-tout maximum bien inférieure dans le plan horizontal.No mask disturbs the functioning of the antenna. In addition, compared to an antenna composed of the same lens directly lit by a horn located at the focal point F, the assembly of FIG. 1 has a maximum overall length much lower in the horizontal plane.

Il faut aussi noter, au sujet de l'antenne de la figure 1 , que l'utilisation du réflecteur plan n'entraîne pas de rotation de polarisation et, par conséquent, permet de garder à la polarisation la pureté qu'elle avait à la sortie du cornet.It should also be noted, with regard to the antenna of FIG. 1, that the use of the flat reflector does not cause polarization rotation and, consequently, makes it possible to keep the purity which it had at polarization. out of the cone.

La figure 2 montre un exemple de réalisation d'une antenne selon l'invention.FIG. 2 shows an exemplary embodiment of an antenna according to the invention.

La figure 2 montre une antenne du type de celle qui est représentée sur la figure 1 avec sa lentille 1, son réflecteur plein, métallique, plan 3 et son cornet 2.FIG. 2 shows an antenna of the type shown in FIG. 1 with its lens 1, its solid, metallic reflector, plane 3 and its horn 2.

Un support 4, constitué de poutres métalliques, est relié par des vérins de réglage, tels que 41, à un dispositif de fixation 9 solidaire de l'ensemble constitué par le cornet 2 , le réflecteur 3, la lentille 1 et une paroi métallique, 5 , en forme de conque.A support 4, made up of metal beams, is connected by adjustment jacks, such as 41, to a fixing device 9 secured to the assembly constituted by the horn 2, the reflector 3, the lens 1 and a metal wall, 5, conch-shaped.

Sur la figure 2, le cornet est placé en position haute c'est-à-dire qu'il est situé au-dessus du réflecteur 3 et non pas au-dessous comme dans la figure 1.In FIG. 2, the horn is placed in the high position, that is to say that it is situated above the reflector 3 and not below it as in FIG. 1.

La paroi métallique, 5 , entoure l'antenne, du cornet à la périphérie de la lentille et se prolonge un peu au- délà de la lentille. Cette enveloppe métallique 5 épouse sensiblement les contours du faisceau, non représenté, émis par le cornet 2, réfléchi par le réflecteur plein 3 et transmis par la lentille 1 ; cette paroi métallique assure l'assemblage du cornet, du réflecteur et de la lentille ; elle constitue également un écran de protection contre les radiations parasites extérieures et permet de réduire le niveau des lobes parasites de l'antenne. Cette paroi métallique est tapissée au voisinage du cornet et dans sa partie basse, entre le réflecteur 3 et la lentille 1 , d'un absorbant hyperfréquence, 7 , 8 qui contribue également à la réduction des lobes secondaires de l'antenne.The metal wall, 5, surrounds the antenna, from the horn to the periphery of the lens and extends a little beyond the lens. This metal envelope 5 substantially follows the contours of the beam, not shown, emitted by the horn 2, reflected by the solid reflector 3 and transmitted by the lens 1; this metal wall ensures the assembly of the horn, the reflector and the lens; it also constitutes a protective screen against external parasitic radiation and makes it possible to reduce the level of parasitic lobes of the antenna. This metal wall is lined in the vicinity of the horn and in its lower part, between the reflector 3 and the lens 1, with a microwave absorbent, 7, 8 which also contributes to the reduction of the secondary lobes of the antenna.

Lorsque l'antenne est située dans un site géographique où des formations de givre sont à craindre un radome 6 , fixé à la paroi métallique 5 , peut être placé devant l'ouverture rayonnante de l'antenne comme représentée sur la figure 2.When the antenna is located in a geographical site where frost formations are to be feared, a radome 6, fixed to the metal wall 5, can be placed in front of the radiating opening of the antenna as shown in FIG. 2.

La lentille 1 est une lentille à échelons (zoned lens dans la littérature anglo-saxonne) à diélectrique isotrope du type polyéthylène chargé, d'indice de réfraction égal à 2,3. Cette lentille est recouverte sur ses deux faces d'une couche de mousse diélectrique, 10, d'indice de réfraction égal à 1,5. La couche de diélectrique, d'épaisseur moyenne sensiblement égale à λ m/4 , où λ m est la longueur d'onde moyenne d'utilisation de l'antenne, sert à adapter la lentille au milieu de propagation ; dans le cas de l'exemple décrit où la fréquence moyenne d'utilisation est de 11,2 GHz , l'épaisseur de la couche de mousse de diélectrique est de 5,5 mm.Lens 1 is a stepped lens (zoned lens in the English literature) with an isotropic dielectric of the charged polyethylene type, with a refractive index equal to 2.3. This lens is covered on both sides with a layer of dielectric foam, 10, with a refractive index equal to 1.5. The dielectric layer, of average thickness substantially equal to λ m / 4, where λ m is the average wavelength of use of the antenna, serves to adapt the lens to the propagation medium; in the case of the example described where the average frequency of use is 11.2 GHz, the thickness of the dielectric foam layer is 5.5 mm.

Le dispositif de fixation 9 est formé de tubes. L'ensemble de vérins de réglage tels que 41 permet de régler la direction du rayonnement maximum de l'antenne de ± 5° en site et en azimut.The fixing device 9 is formed of tubes. The set of adjustment cylinders such as 41 makes it possible to adjust the direction of the maximum radiation of the antenna by ± 5 ° in elevation and in azimuth.

L'antenne qui vient d'être décrite présente :

  • - un diamètre d'ouverture de 2 mètres
  • - et une longueur hors-tout de l'ensemble réflecteur- lentille de 1,4 mètres.
The antenna which has just been described presents:
  • - an opening diameter of 2 meters
  • - and an overall length of the reflector-lens assembly of 1.4 meters.

Cette antenne est destinée à fonctionner dans la bande de fréquences allant de 10,7 à 11,7 GHz, simultanément en polarisation verticale et en polarisation horizontale et simultanément en émission et en réception suivant les plans de fréquences CCIR.This antenna is intended to operate in the frequency band from 10.7 to 11.7 GHz, simultaneously in vertical polarization and in horizontal polarization and simultaneously in transmission and reception according to the CCIR frequency plans.

Les résultats obtenus avec cette antenne sont les suivants :

  • - gain par rapport à une antenne isotrope : 44,5 dB
  • - découplage en polarisation croisée avec une même fréquence d'utilisation : supérieur à 45 dB dans l'axe de propagation de l'antenne et, partout ailleurs, supérieur à 4D dB
  • - niveau de - 60 dB en dessous du niveau maximum à partir d'un angle de 15° par rapport au rayonnement maximum en copolarité et à partir d'un angle de 5° en polarisation croisée.
The results obtained with this antenna are as follows:
  • - gain compared to an isotropic antenna: 44.5 dB
  • - cross-polarization decoupling with the same frequency of use: greater than 45 dB in the antenna propagation axis and, everywhere else, greater than 4D dB
  • - level of - 60 dB below the maximum level from an angle of 15 ° with respect to the maximum radiation in copolarity and from an angle of 5 ° in cross polarization.

'Les antennes selon l'invention ne sont pas limitées aux deux exemples décrits. C'est ainsi que, par exemple, l'antenne peut comporter différents cornets tous situés au voisinage d'une image F' (voir figure 1) que donne un réflecteur du foyer d'une lentille. Ceci permet d'obtenir simultanément, avec une même lentille, plusieurs directions de propagation moyennant une faible réduction de performances.The antennas according to the invention are not limited to the two examples described. Thus, for example, the antenna can comprise different horns all located in the vicinity of an image F '(see FIG. 1) which is given by a reflector of the focal point of a lens. This makes it possible to simultaneously obtain, with the same lens, several directions of propagation with a slight reduction in performance.

Il est également possible de remplacer la paroi métallique 5 par une paroi en un autre matériau, par exemple en fibre de verre métallisée.It is also possible to replace the metal wall 5 with a wall made of another material, for example metallized fiberglass.

De plus, dans ce qui précède, les antennes décrites étaient des antennes utilisées en émission ; il est entendu, qu'en raison du principe de la réversibilité des ondes électromagnétiques, la présente invention s'applique également au cas de ces mêmes antennes utilisées en réception.In addition, in the foregoing, the antennas described were antennas used in transmission; it is understood that, due to the principle of the reversibility of electromagnetic waves, the present invention also applies to the case of these same antennas used in reception.

Claims (4)

1. Antenne à grand découplage angulaire et à grande pureté de polarisation, caractérisée en ce qu'elle comporte une lentille radioélectrique, un cornet décalé par rapport à l'axe de la lentille et un réflecteur plein et plan disposé pour donner du cornet une image sensiblement située au foyer de la lentille et en ce que la lentille est une lentille isotrope et le réflecteur est un réflecteur plein.1. Antenna with large angular decoupling and high polarization purity, characterized in that it comprises a radioelectric lens, a horn offset from the axis of the lens and a solid and flat reflector arranged to give the horn an image substantially located at the focal point of the lens and in that the lens is an isotropic lens and the reflector is a solid reflector. 2. Antenne selon la revendication 1, caractérisée en ce qu'elle comporte une paroi qui entoure le faisceau interne à l'antenne et relie mécaniquement'entre eux le cornet, le réflecteur et la lentille.2. Antenna according to claim 1, characterized in that it has a wall which surrounds the internal beam of the antenna and mechanically connects the horn, the reflector and the lens to one another. 3. Antenne selon la revendication 1, caractérisée en ce que la lentille est une lentille à échelons.3. Antenna according to claim 1, characterized in that the lens is a stepped lens. 4. Antenne selon la revendication 2, caractérisée en ce que la paroi est une paroi métallique recouverte, au moins partiellement, d'absorbant hyperfréquence.4. An antenna according to claim 2, characterized in that the wall is a metal wall covered, at least partially, with microwave absorbent.
EP78400024A 1977-06-28 1978-06-16 Antenna having low side-lobes and high polarisation purity Withdrawn EP0000305A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7719822A FR2396435A1 (en) 1977-06-28 1977-06-28 ANTENNA WITH LARGE ANGULAR DECOUPLING AND HIGH PURITY OF POLARIZATION
FR7719822 1977-06-28

Publications (1)

Publication Number Publication Date
EP0000305A1 true EP0000305A1 (en) 1979-01-10

Family

ID=9192677

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78400024A Withdrawn EP0000305A1 (en) 1977-06-28 1978-06-16 Antenna having low side-lobes and high polarisation purity

Country Status (4)

Country Link
EP (1) EP0000305A1 (en)
JP (1) JPS5411654A (en)
FR (1) FR2396435A1 (en)
IT (1) IT1105372B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0066455A1 (en) * 1981-05-26 1982-12-08 Andrew Corporation Reflector-type microwave antennas with absorber lined conical feed
EP0140598A1 (en) * 1983-10-17 1985-05-08 Andrew Corporation Horn-reflector microwave antennas with absorber lined conical feed
WO1985004527A1 (en) * 1984-04-02 1985-10-10 Gabriel Electronics Incorporated Horn reflector antenna with absorber lined conical feed
WO2013127567A1 (en) * 2012-02-27 2013-09-06 Robert Bosch Gmbh Radar sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762944B2 (en) 2007-03-26 2011-08-31 浜松ホトニクス株式会社 Terahertz antenna module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR955838A (en) * 1950-01-20
FR1098286A (en) * 1953-03-06 1955-07-21 Marconi Wireless Telegraph Co Multi-beam aerial systems enhancements
GB767531A (en) * 1954-06-09 1957-02-06 Marconi Wireless Telegraph Co Improvements in or relating to polarised radio mirrors
FR1150023A (en) * 1956-04-24 1958-01-06 Directional circular polarized antenna
US3761935A (en) * 1972-03-06 1973-09-25 Republic Electronic Ind Inc Wide angle microwave scanning antenna array with distortion correction means

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1100098B (en) * 1957-03-22 1961-02-23 Telefunken Gmbh Surface radiator for the emission and reception of electromagnetic waves from several widely spaced frequency bands

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR955838A (en) * 1950-01-20
FR1098286A (en) * 1953-03-06 1955-07-21 Marconi Wireless Telegraph Co Multi-beam aerial systems enhancements
GB767531A (en) * 1954-06-09 1957-02-06 Marconi Wireless Telegraph Co Improvements in or relating to polarised radio mirrors
FR1150023A (en) * 1956-04-24 1958-01-06 Directional circular polarized antenna
US3761935A (en) * 1972-03-06 1973-09-25 Republic Electronic Ind Inc Wide angle microwave scanning antenna array with distortion correction means

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. AP-23, nr. 6, november 19 75, New York, H.P.COLEMAN et al. "Paraboloïdal reflector off-set fed with a corrugated conical horn", pages 817-819. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0066455A1 (en) * 1981-05-26 1982-12-08 Andrew Corporation Reflector-type microwave antennas with absorber lined conical feed
EP0140598A1 (en) * 1983-10-17 1985-05-08 Andrew Corporation Horn-reflector microwave antennas with absorber lined conical feed
WO1985004527A1 (en) * 1984-04-02 1985-10-10 Gabriel Electronics Incorporated Horn reflector antenna with absorber lined conical feed
AU580997B2 (en) * 1984-04-02 1989-02-09 Gabriel Electronics Incorporated Horn reflector antenna with absorber lined conical feed
US5317328A (en) * 1984-04-02 1994-05-31 Gabriel Electronics Incorporated Horn reflector antenna with absorber lined conical feed
WO2013127567A1 (en) * 2012-02-27 2013-09-06 Robert Bosch Gmbh Radar sensor
US9768517B2 (en) 2012-02-27 2017-09-19 Robert Bosch Gmbh Radar sensor

Also Published As

Publication number Publication date
JPS5411654A (en) 1979-01-27
FR2396435B1 (en) 1981-06-26
IT1105372B (en) 1985-10-28
IT7850062A0 (en) 1978-06-27
FR2396435A1 (en) 1979-01-26

Similar Documents

Publication Publication Date Title
CA2243603C (en) Radiating structure
US8937577B2 (en) Substrate lens antenna device
EP0045682B1 (en) Antenna feed for a transmitting-receiving antenna
EP1568104B1 (en) Multiple-beam antenna with photonic bandgap material
WO2000014825A9 (en) Antenna
EP0170154A1 (en) Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites
EP0000305A1 (en) Antenna having low side-lobes and high polarisation purity
EP1554777A1 (en) Multibeam antenna with photonic bandgap material
CH623171A5 (en)
EP0045254B1 (en) Compact dual-frequency microwave feed
WO2020043632A1 (en) Antenna for transmitting and/or receiving an electromagnetic wave, and system comprising this antenna
FR2518828A1 (en) Frequency spatial filter for two frequency microwave antenna - comprising double sandwich of metallic grids and dielectric sheets
CN110739547A (en) Cassegrain antenna
FR2854737A1 (en) Earth communications geostationary satellite multiple beam antenna having focal point radiation pattern and photonic band gap material outer surface with periodicity default providing narrow pass band
CA1314972C (en) Surface of revolution type reflector antenna
EP4046241A1 (en) Array antenna
FR2590081A1 (en) LINEAR POLARIZED GRID REFLECTING ANTENNA WITH IMPROVED TRANSVERSE POLARIZATION PERFORMANCE
EP3155689B1 (en) Flat antenna for satellite communication
FR2671235A1 (en) Offset antenna with radome
US20230344139A1 (en) Systems and methods for mitigating interference from satellite gateway antenna
FR2909225A1 (en) POWER SUPPLY DEVICE FOR A REFLECTOR ANTENNA
FR2956777A1 (en) ANTENNA TO REFLECTORS
KR19990000865U (en) Parabola antenna
FR2854734A1 (en) Earth communications geostationary satellite multiple beam antenna having focal point radiation pattern and photonic band gap material outer surface with periodicity default providing narrow pass band
FR2637130A1 (en) Cassegrain optical antenna with high output

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn
RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUI HAI, NHU