EP0000286B1 - Appareil pour la formation continue d'images sur une bande photosensible au moyen d'une impression par projection - Google Patents

Appareil pour la formation continue d'images sur une bande photosensible au moyen d'une impression par projection Download PDF

Info

Publication number
EP0000286B1
EP0000286B1 EP78300105A EP78300105A EP0000286B1 EP 0000286 B1 EP0000286 B1 EP 0000286B1 EP 78300105 A EP78300105 A EP 78300105A EP 78300105 A EP78300105 A EP 78300105A EP 0000286 B1 EP0000286 B1 EP 0000286B1
Authority
EP
European Patent Office
Prior art keywords
tape
pattern
cylindrical
drum
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78300105A
Other languages
German (de)
English (en)
Other versions
EP0000286A1 (fr
Inventor
John Henry Bruning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Western Electric Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Western Electric Co Inc filed Critical Western Electric Co Inc
Publication of EP0000286A1 publication Critical patent/EP0000286A1/fr
Application granted granted Critical
Publication of EP0000286B1 publication Critical patent/EP0000286B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/46Projection printing apparatus, e.g. enlarger, copying camera for automatic sequential copying of different originals, e.g. enlargers, roll film printers

Definitions

  • the present invention relates to apparatus for continuously patterning a photosensitive tape by projection printing, comprising the steps of translating the photosensitive tape between a tape-feeding source and a tape-receiving source; and optically coupling an optical system between a predetermined pattern to be projected and the tape.
  • the step of translating the tape between the source and receiver, and the step of optically coupling are both described in U.S. Patent 3,562,005. The latter, however, only discloses continuous contact printing, and discontinuous projection printing.
  • GB patent 1,339,550 discloses a projection printing system for duplicating commercial type documents. It discloses continuous scanning and printing using two drums rotating at the same speed and provides the degree of accuracy required for such a printing system. Such a system can not however, provide the degree of accuracy required in high precision printing.
  • wire-bonding was the most commonly used method for making external connections to an integrated circuit (IC) chip.
  • An alternative to wire-bonding consists of using a tape carrier, similar to a movie film, having lead frames formed along its surface.
  • a polyimide film carries a copper lead pattern that repeats itself along the length of the film.
  • the finger-like leads of an individual site on the film are bonded simultaneously to the pads of an IC chip, as for example, described in U.S. Patents No. 3,689,991 and 3,968,563.
  • Photoresist techniques form the image of the desired lead frame in a step-and-repeat fashion along the film-mounted copper laminate.
  • This step-and-repeat projection requires indexing, settling and alignment, all of which are time-consuming and expensive operations.
  • such a projection technique is difficult if long lengths of tapes are needed since accelerations associated with high speed indexing are damaging to the fragile tape.
  • the high cost of the polyimide carrier increases the cost per site of such a tape especially when small quantities of custom tapes are needed.
  • German patent No. 758,260 discloses a continuous projection printing system for duplicating film for the motion picture industry.
  • negative film to be duplicated is fed by a sprocket drive system continuously past an object position
  • copy film is fed by another sprocket drive system continuously past an image position.
  • the two sprockets are mechanically linked together and facilitate duplication with a degree of precision commensurate with the requirements of the motion picture industry.
  • a conventional projection lens system is located between the object and image positions and necessitates a significant spacing between the object and image positions.
  • apparatus for continuously patterning a photo-sensitive tape by projection printing comprising driving means for continuously translating the photosensitive tape in a predetermined direction at a predetermined speed past one particular location a cylindrical transparent body having its longitudinal axis perpendicular to the said predetermined direction and a cylindrical surface thereof spaced from but adjacent to the said particular location and adapted to have defined thereon a predetermined pattern to be projected, means for coupling the driving means and the cylindrical body such that the pattern continuously rotates at said predetermined speed, and an optical projection system for projecting an image of the pattern onto one side of the tape at said one particular location, characterised in that the coupling means is provided solely by electrical drive circuitry synchronously locking the driving means and the cylindrical body, in that the resolution of the optical system is less than the minimum dimensions of the pattern, and in that the electrical drive circuitry is designed to ensure that any deviation from synchronism between the movement of the pattern and the tape is less than the resolution of the optical system.
  • One advantage of the embodiments is to achieve a highly accurate method and apparatus for continuously patterning a photo- sensitive tape or foil. Another advantage is to achieve a high-speed continuous patterning process of a tape or foil by means of projection exposure techniques.
  • Another advantage is to realize a projection exposure system having a very long mask life.
  • the embodiments provide a simple, flexible and high-speed projection exposure system for photosensitive tapes or foils.
  • a photosensitive tape or foil is continuously patterned and the tape or foil is prevented from breaking, thereby achieving an economically attractive projecting process.
  • an apparatus for continuously patterning a photosensitive tape 1 comprises a tape-feeding reel 2, a tape-receiving reel 3, and a tape-translating drum 4 for translating the tape 1 at a predetermined speed between reels 2 and 3.
  • the tape 1 can be of any form as described in the art, and the photo- sensitive region is applied to the tape in accordance with tape processing requirements.
  • the drum 4 is mechanically coupled to a driving mechanism 5 comprising, for example, an electric motor having its shaft directly driving the drum 4.
  • driving mechanism 5 comprising, for example, an electric motor having its shaft directly driving the drum 4.
  • other translating mechanisms may be substituted for drum 4, as will be explained in connection with another illustrative embodiment of the invention.
  • a cylindrical transparent body 6 is positioned with its longitudinal axis perpendicular to the direction of translation of tape 1 on the drum 4. In other words, in the embodiment of Fig. 1, the axes of body 6 and drum 4 are parallel.
  • Transparent cylindrical body 6 carries on a surface 7 thereof a predetermined pattern or mask 8 to be projected on the photosensitive tape 1.
  • the pattern 8 may be directly on the outer surface 7 and may be formed by first coating the surface with a thin metal film and then selectively removing portions thereof by thermal machining of the film.
  • Another alternative for depositing pattern 8 onto the cylindrical surface 7 consists in first producing a predetermined pattern on a 16 mm or 35 mm filmstrip by means of conventional techniques.
  • the filmstrip comprising a plurality of individual frames or patterns could be wrapped around the cylindrical body 6 and held by vacuum against the surface 7. Both ends of the filmstrip would be butted to produce a contiguous set of patterns on the cylindrical surface 7.
  • the cylindrical body 6 is mechanically coupled to a driving mechanism 9 comprising, for example, a motor having its shaft directly driving the body 6.
  • the cylindrical transparent body 6 and the drum 4 are synchronously coupled electrically by means of a coupling circuit 10 responsive to a reference frequency signal to.
  • the coupling circuit 10 may comprise a pair of phase-locked loops arranged such that the cylindrical transparent body 6 is the "slave".
  • both cylinder 4 and 6 rotate at precisely the same rate but in opposite directions as shown by the arrows in Fig. 1.
  • an electrical link exists between drum 4 and cylinder 6 resulting in locking of both cylinders to each other.
  • the apparatus further comprises an optical system 11 positioned between cylindrical body 6 and drum 4 for projecting an image of the pattern 8 onto the tape 1.
  • the optical system 11 may be positioned as shown in Fig.
  • Fig. 2 Shown in Fig. 2 is an enlarged portion of the illustrative embodiment of Fig. 1 including the structural details of the optical system 11.
  • a known one-to-one imaging optical system is described in an article by J. Dyson entitled “Unit Magnification Optical System without Seidel Aberrations,” published in Journal of the Optical Society of America, volume 49, No. 7, July 1959, pages 713-716.
  • This known Dyson system consists of two components, namely, a concave spherical mirror of radius R, and a thick piano-convex lens of radius r, refractive index n and thickness equal to r.
  • the optical system 11 of Fig. 2 is a modified Dyson-type system comprising a piano-convex lens 111 of radius r and refractive index n and a spherical concave mirror 112 of radius R having substantially coincident centers of curvature.
  • the plane face of the piano-convex lens 111 is cemented to two right-angle prisms 113 and 114 in order to bring object and image to usable positions.
  • the pattern 8 to be imaged on the tape 1 is preferably placed or formed on the outer surface of the cylindrical transparent body 6 which is made, for example, of quartz. A narrow strip of this pattern 8 is imaged by the system onto the photosensitive resist coated tape which is held in the proper focal plane by the lower drum 4.
  • the optical system 11 can image the full tape width, and utilizes a very small field size or strip in the scan direction.
  • the narrow strip object and image derived by a manner not shown lie close to the optical axis thus obviating the need for a beamsplitter.
  • the optical system 11 is telecentric and hence insensitive to first-order distortions due to focal plane shifts. Since the design is completely symmetrical, distortion, coma, and lateral color are zero.
  • Resolution is nearly diffraction limited over a 2 mmx 16 mm field at F/2.5 and still has acceptable resolution at a 2x22 mm field at F/4. Resolution in all cases is better than 5 ⁇ m which is adequate for lead patterns whose narrowest feature would be larger than 50 ,am. Over the range of 3000-4400 Angstroms the optical system is nearly achromatic.
  • Illumination is provided, for example, by a 1 kW water-cooled mercury capillary arc 12.
  • alternative light sources may be used.
  • Water cooling filters out most of the infrared radiation beyond 1 ⁇ m and assures cool operation.
  • a combination of lenses and mirrors schematically shown in Fig. 2 is coupled to the arc for directing the arc's rays onto the cylindrical surface 7.
  • the operation of the optical system is such that an object 13 that is part of the pattern 8, when illuminated by light source 12, is projected onto an image plane corresponding to the tape 1.
  • the incoming object rays 15 are first reflected by right-angle prism 113 and directed through lens 111 and mirror 112.
  • the rays from mirror 112, after reflection by right-angle prism 114, are directed to the tape 1 to form the image thereon.
  • object 13 and image have the same orientation in the direction of the tape 1.
  • the movement of the image 14 is in the same direction as the movement of the tape 1, thus enabling a continuous projection patterning of the tape.
  • the tape-carrying drum 4 and the cylindrical transparent body 6 are synchronously coupled by means of coupling circuit 10.
  • the latter is schematically illustrated in Fig. 3 wherein the drum 4 and the cylindrical body 6 are mechanically driven by electric motors 5 and 9, respectively.
  • the drum 4 and the body 6, rotate at precisely the same rate, namely synchronously, but in opposite rotational directions.
  • the drum 4 and the body 6 are locked to each other within the lens resolution of the optical system on the circumference, i.e., within less than 5 ,um. This corresponds to a rotational tolerance of approximately 20 arc seconds.
  • the body 6 can move with respect to the tape-carrying drum 4 with a speed accuracy of 0.001%.
  • the drum 4 is locked to a predetermined speed by means of a reference frequency signal f . coupled to one input terminal of phase detector 33.
  • the other input terminal of the phase detector 33 is coupled to the output terminal of optical encoder 31.
  • a low-pass filter 35 has its input terminal coupled to the phase detector 33 output terminal, and its output terminal coupled to one input terminal of operational amplifier 37.
  • the other input terminal of operational amplifier 37 is coupled to the output terminal of optical encoder 31 via a frequency-to-amplitude converter 39.
  • the output terminal of amplifier 37 is coupled to the driving motor 5 of the tape-carrying drum 4.
  • the upper half of the coupling circuit 10 coupled to the cylindrical transparent body 6 and its driving motor 9 is identical to the lower half of the loop 10, i.e. it comprises a phase detector 34, a low-pass filter 36, an operational amplifier 38 and a frequency-to-amplitude converter 40.
  • the motion of tape-carrying drum 4 serves as the "master”.
  • the output of the optical encoder 31 serves as the reference frequency to which the cylindrical transparent body 6 is the "slave".
  • low frequency torque disturbances on the drum 4 are tracked by the body 6, and high frequencies are damped by the inertia of the loop and motors.
  • the system comprising the drum 4, the body 6, the motors 5 and 9, and the coupling circuit 10 is stiff enough so that torque disturbances in the tape disturb the tape position by less than the image resolution.
  • the reference frequency signal f o is, for example, a 1000 Hz signal and the optical encoders 31 and 32 are 16-bit encoders generating 2" or 65,536 pulses/revolution.
  • the phase detectors 33 and 34, the filters 35 and 36, the amplifiers 37 and 38, and the converters 39 and 40 may be selected from conventional and commercially available components.
  • the tape-carrying drum 4 and the cylindrical transparent body 6 can both be the "slaves" of the reference frequency signal f o . This is achieved by coupling the reference signal f o to phase detectors 33 and 34, and by connecting the optical encoder 31 output signal only to the other input terminal of phase detector 33.
  • the drum and the body would be “slaves” and locked to f o .
  • FIG. 4 Another illustrative embodiment of the present invention for patterning both sides of a photoresist coated tape is shown in Figs. 4 and 5.
  • the apparatus for projecting an image onto the continuous tape 1 comprises the first cylindrical transparent body or drum 6 having on its cylindrical surface 7 the predetermined pattern 8 to be projected.
  • a first optical system 11 is positioned between the drum 6 and the tape 1 as described in connection with the embodiment shown in Fig. 1.
  • a second cylindrical transparent drum 6' is positioned with its longitudinal axis parallel to the axis of drum 6.
  • a second predetermined pattern 8' is formed on cylindrical surface 7' of drum 6'.
  • a second optical system 11' identical to the optical system 11, is positioned between the drum 6' and the tape 1.
  • Photosensitive tape 1 is translated at a constant and predetermined speed by means of guiding rolls 41 and 42 between a tape-feeding reel and a tape-receiving reel (not shown).
  • the motion of guiding rolls 41 and 42 serves as the "master" reference frequency in the phase-locked loops of Fig. 3.
  • Both drums 6 and 6', rotating in opposite directions, are locked to the guiding rolls 41 and 42 and are, therefore, the "slaves" in the coupling circuit 10 of Fig. 3.
  • double-sided illumination of the tape is required.
  • a single light source 12 such as a 1 kW water-cooled mercury capillary arc
  • mirrors 51 and 52 for directing the radiations from source 12 toward the patterns 8 and 8' on drums 6 and 6'.
  • the foregoing is achieved by interposing a condenser 53 and a mirror 57 between mirror 51 and pattern 8.
  • another condenser 54 and a second mirror 58 are interposed between mirror 52 and pattern 8' of drum 6'.
  • Condensers 53 and 54 may, for example, comprise all reflecting optical components such as a spherical concave mirror for receiving the radiations reflected by mirrors 51 or 52, and a spherical convex mirror for reflecting the incoming radiations from the concave mirror and directing them to the mirrors 57 or 58.
  • a spherical concave mirror for receiving the radiations reflected by mirrors 51 or 52
  • a spherical convex mirror for reflecting the incoming radiations from the concave mirror and directing them to the mirrors 57 or 58.
  • Both mirrors 57 and 58 are positioned within the transparent drums 6 and 6' in order to reflect the incoming radiations from source 12 by a 90-degree angle. With the arrangement shown in Fig. 5, illumination for tape exposure from both sides is available from the same source 12.
  • Both drums 6 and 6' are preferably made of quartz ground and polished to high accuracy.
  • the quartz drums 6 and 6' have, for example, a 381 mm circumference which is a convenient multiple of standard tape pitches.
  • the patterns 8 and 8' may be formed, for example, directly on surfaces 7 and 7' by thermal machining.
  • patterns 8 and 8' may be formed on a filmstrip wrapped around the drums 6 and 6' and held by vacuum against surfaces 7 and 7'.
  • other means of forming a pattern onto a cylindrical surface can alternatively be used.
  • topside exposure of photosensitive tape 1 is obtained by projection printing from the drum 6 of pattern 8 as explained in connection with the previously described embodiments.
  • the back or other side of tape 1 is patterned by means of contact printing of a pattern 60 onto the tape.
  • the pattern 60 on drum 6' and pattern 8 on drum 6 may be identical. However, different patterns may be used when it is desirable to project on both sides of the tape a different beam lead pattern.
  • Contact printing consists of first forming a mask 60 according to conventional mask producing techniques, and wrapping the mask around the cylindrical surface 7' of drum 6'.
  • both drums 6 and 6' are synchronously coupled and locked to each other by means of coupling circuit 10.
  • Double-sided exposure either through projection printing as shown in Fig. 4, or through projection printing on one side and contact printing on the other as shown in Fig. 6, is required for etching with negative photoresists.
  • Contact printing requires changing of the mask 60 after a predetermined number of runs.
  • Projection printing instead, offers the advantage of avoiding contact between the mask and the resist coated tape.
  • the apparatus of Figs. 6 and 7 enables the combination of these two patterning techniques for double-sided patterning by using only one optical system 11.
  • the photosensitive tape 1 may be a photoresist coated copper tape or a photoresist coated continuous metal-composite tape. Either negative photoresists or positive photoresists may be employed. After patterning the photosensitive copper tape by using any of the above-described method and apparatus, the copper is etched where exposed (if positive resist is used) leaving a set of thin copper leads suitable for simultaneous bonding to a chip.

Claims (9)

1. Appareil pour former une image de façon continue sur une bande photosensible (1) au moyen de l'impression par projection, comprenant des moyens d'entraînement (2, 3, 4) destinés à transporter de façon continue la bande photosensible (1) dans une direction prédéterminée et à une vitesse prédéterminée, en la faisant passer devant un emplacement particulier (14), un corps cylindrique transparent (6) dont l'axe longitudinal est perpendiculaire à la direction prédéterminée et dont une surface cylindrique (7) est espacée de l'emplacement particulier mais adjacente à celui-ci, et qui est conçue de façon à présenter un motif prédéterminé (8) destiné à être projeté, des moyens (5, 9, 10) destinés à accoupler les moyens d'entraînement et le corps cylindrique de façon que le motif tourne continuellement à la vitesse prédéterminée, et un système de projection optique (11, 12) destiné, à projeter une image du motif sur une face de la bande audit emplacement particulier, caractérisé en ce que les moyens d'accouplement sont constitués exclusivement par des circuits électriques d'attaque (10, 5, 9) qui verrouillent de façon synchrone les moyens d'entraînement et le corps cylindrique, en ce que la résolution du système optique est inférieure aux dimensions minimales du motif, et en ce que les circuits électriques d'attaque sont conçus de façon à faire en sorte que tout écart par rapport au synchronisme entre le mouvement du motif et de la bande soit inférieur à la résolution du système optique.
2. Appareil selon la revendication 1, caractérisé en ce que les moyens d'entraînement comprennent un tambour cylindrique (4) qui comporte une surface extérieure destinée à venir en contact avec la bande et à déplacer cette dernière, et en ce que le système optique est conçu de façon à permettre l'existence d'un espacement relativement faible entre les parties adjacentes du corps transparent et du tambour.
3. Dispositif selon la revendication 2, caractérisé en ce que les axes du tambour et du corps sont parallèles, en ce que la bande qui se trouve audit emplacement (14) se déplace dans la même direction que la partie adjacente (13) du corps, et en ce que le système optique est positionné entre la bande audit emplacement et la partie adjacente du corps et fait en sorte qu'une partie du faisceau projeté s'étende latéralement par rapport audit espacement faible.
4. Dispositif selon la revendication 3, caractérisé en ce que le système optique comprend des surfaces réfléchissantes (112, 113, 114) destinées à faire en sorte que l'image projetée (14) audit emplacement soit dans la même direction que le motif (13) qui se trouve sur la partie adjacente du corps.
5. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que le motif prédéterminé est une partie d'un film (8) enroulé autour de ladite surface cylindrique.
6. Appareil selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le motif prédéterminé est directement formé sur ladite surface cylindrique.
7. Appareil selon la revendication 1, caractérisé en ce que, pour former une image de façon continue sur les deux faces de la bande, l'appareil est en outre caractérisé par un second corps cylindrique transparent (6') situé de l'autre côté de la bande et adjacent audit emplacement particulier, avec la surface (7') du second corps conçue de façon à présenter un second motif prédéterminé (8'), le second corps étant verrouillé de façon synchrone sur les moyens d'entraînement, afin que sous l'effet de la rotation du second corps, le second motif prédéterminé adjacent audit emplacement particulier soit déplacé dans la direction prédéterminée et à la vitesse prédéterminée, et des moyens de projection optiques (54, 58, 1 1') destinés à projeter sur la bande, à travers le second corps, le second motif adjacent audit emplacement particulier, avec l'image projetée dans ladite direction prédetérminée.
8. Appareil selon la revendication 2, 3 ou 4, caractérisé en ce que, dans le but de former une image de façon continue sur les deux faces de la bande, l'appareil est en outre caractérisé par des moyens (12, 60) destinés à former sur l'autre face de la bande une image d'un second motif prédéterminé, au moyen de l'impression par contact.
9. Appareil selon la revendication 8, caractérisé en ce que le second motif (60) est positionné sur la surface du tambour cylindrique.
EP78300105A 1977-06-30 1978-06-29 Appareil pour la formation continue d'images sur une bande photosensible au moyen d'une impression par projection Expired EP0000286B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US811971 1977-06-30
US05/811,971 US4190352A (en) 1977-06-30 1977-06-30 Method and apparatus for continuously patterning a photosensitive tape

Publications (2)

Publication Number Publication Date
EP0000286A1 EP0000286A1 (fr) 1979-01-10
EP0000286B1 true EP0000286B1 (fr) 1982-09-08

Family

ID=25208107

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78300105A Expired EP0000286B1 (fr) 1977-06-30 1978-06-29 Appareil pour la formation continue d'images sur une bande photosensible au moyen d'une impression par projection

Country Status (6)

Country Link
US (1) US4190352A (fr)
EP (1) EP0000286B1 (fr)
JP (1) JPS5413772A (fr)
CA (1) CA1099823A (fr)
DE (1) DE2862024D1 (fr)
ES (1) ES471323A1 (fr)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302096A (en) * 1980-02-11 1981-11-24 Sperry Corporation Graphic forms overlay apparatus
DE3249685C2 (fr) * 1981-05-15 1987-09-24 General Signal Corp., Stamford, Conn., Us
US4914474A (en) * 1988-06-10 1990-04-03 Eastman Kodak Company Speed control for film and document transport drives in a microfilm camera
US5563867A (en) * 1994-06-30 1996-10-08 Discovision Associates Optical tape duplicator
JPH09129546A (ja) * 1995-11-06 1997-05-16 Nikon Corp 両面露光装置及び両面露光方法
US5923403A (en) * 1997-07-08 1999-07-13 Anvik Corporation Simultaneous, two-sided projection lithography system
US6933098B2 (en) 2000-01-11 2005-08-23 Sipix Imaging Inc. Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web
US6930818B1 (en) 2000-03-03 2005-08-16 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US6947202B2 (en) * 2000-03-03 2005-09-20 Sipix Imaging, Inc. Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance
US6865012B2 (en) 2000-03-03 2005-03-08 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US6788449B2 (en) * 2000-03-03 2004-09-07 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US6885495B2 (en) * 2000-03-03 2005-04-26 Sipix Imaging Inc. Electrophoretic display with in-plane switching
US6833943B2 (en) 2000-03-03 2004-12-21 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US7233429B2 (en) * 2000-03-03 2007-06-19 Sipix Imaging, Inc. Electrophoretic display
US7158282B2 (en) * 2000-03-03 2007-01-02 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US7408696B2 (en) 2000-03-03 2008-08-05 Sipix Imaging, Inc. Three-dimensional electrophoretic displays
US7052571B2 (en) * 2000-03-03 2006-05-30 Sipix Imaging, Inc. Electrophoretic display and process for its manufacture
US20070237962A1 (en) * 2000-03-03 2007-10-11 Rong-Chang Liang Semi-finished display panels
US7715088B2 (en) * 2000-03-03 2010-05-11 Sipix Imaging, Inc. Electrophoretic display
US7557981B2 (en) * 2000-03-03 2009-07-07 Sipix Imaging, Inc. Electrophoretic display and process for its manufacture
US6831770B2 (en) * 2000-03-03 2004-12-14 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US8282762B2 (en) * 2001-01-11 2012-10-09 Sipix Imaging, Inc. Transmissive or reflective liquid crystal display and process for its manufacture
US6795138B2 (en) * 2001-01-11 2004-09-21 Sipix Imaging, Inc. Transmissive or reflective liquid crystal display and novel process for its manufacture
TW527529B (en) * 2001-07-27 2003-04-11 Sipix Imaging Inc An improved electrophoretic display with color filters
TW539928B (en) 2001-08-20 2003-07-01 Sipix Imaging Inc An improved transflective electrophoretic display
TWI308231B (en) * 2001-08-28 2009-04-01 Sipix Imaging Inc Electrophoretic display
US8023071B2 (en) * 2002-11-25 2011-09-20 Sipix Imaging, Inc. Transmissive or reflective liquid crystal display
TWI297089B (en) * 2002-11-25 2008-05-21 Sipix Imaging Inc A composition for the preparation of microcups used in a liquid crystal display, a liquid crystal display comprising two or more layers of microcup array and process for its manufacture
JP5114061B2 (ja) * 2006-04-26 2013-01-09 株式会社オーク製作所 投影露光装置
US8610986B2 (en) * 2009-04-06 2013-12-17 The Board Of Trustees Of The University Of Illinois Mirror arrays for maskless photolithography and image display
US8339573B2 (en) * 2009-05-27 2012-12-25 3M Innovative Properties Company Method and apparatus for photoimaging a substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE758260C (de) * 1941-08-27 1953-08-24 Fritz Dipl-Ing Dr Walter Optische Kopiermaschine mit Schrumpfungsausgleich
GB1339550A (en) * 1969-12-22 1973-12-05 Xerox Corp Multiple exposure imaging apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1598956A (en) * 1922-01-21 1926-09-07 Eastman Kodak Co Photographic multiple projection printer
US1591466A (en) * 1922-03-09 1926-07-06 Eastman Kodak Co Photographic printer
US1801450A (en) * 1926-11-12 1931-04-21 Freeman H Owens Optical printer
US2849298A (en) * 1955-05-03 1958-08-26 St Regis Paper Co Printed circuitry laminates and production thereof
US3689991A (en) * 1968-03-01 1972-09-12 Gen Electric A method of manufacturing a semiconductor device utilizing a flexible carrier
US3562005A (en) * 1968-04-09 1971-02-09 Western Electric Co Method of generating precious metal-reducing patterns
US3614224A (en) * 1969-05-14 1971-10-19 Columbia Broadcasting Syst Inc Methods and apparatus for producing film disc segments
US3751165A (en) * 1970-06-12 1973-08-07 Canon Kk Photographic contact printing device
US3968563A (en) * 1975-03-27 1976-07-13 E. I. Du Pont De Nemours And Company Precision registration system for leads
US3998544A (en) * 1975-06-13 1976-12-21 Terminal Data Corporation Synchronous auxiliary camera projector
JPS5616589Y2 (fr) * 1975-12-12 1981-04-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE758260C (de) * 1941-08-27 1953-08-24 Fritz Dipl-Ing Dr Walter Optische Kopiermaschine mit Schrumpfungsausgleich
GB1339550A (en) * 1969-12-22 1973-12-05 Xerox Corp Multiple exposure imaging apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Optical Society of America, Vol 49, no 7, 1959, p713-716, Schaffert's Electrophotography *

Also Published As

Publication number Publication date
ES471323A1 (es) 1979-01-16
JPS6335097B2 (fr) 1988-07-13
EP0000286A1 (fr) 1979-01-10
US4190352A (en) 1980-02-26
CA1099823A (fr) 1981-04-21
JPS5413772A (en) 1979-02-01
DE2862024D1 (en) 1982-10-28

Similar Documents

Publication Publication Date Title
EP0000286B1 (fr) Appareil pour la formation continue d'images sur une bande photosensible au moyen d'une impression par projection
US4269505A (en) Device for the projection printing of the masks of a mask set onto a semiconductor substrate
US8994916B2 (en) Double-sided maskless exposure system and method
US4153371A (en) Method and apparatus for reduction-projection type mask alignment
US4371264A (en) Optical system for aligning two patterns and photo-repeater using such a system
US5138368A (en) Fabrication of printed wiring boards by projection imaging
US5329335A (en) Method and apparatus for projection exposure
US4367046A (en) Optical system for aligning two patterns and a photorepeater embodying such a system
JPS6193454A (ja) 写真平板式マスク整合装置
JP3244783B2 (ja) 位置合わせ装置及び方法、並びにこれを用いた露光装置と半導体デバイス製造方法
US6329104B1 (en) Position alignment system for holographic lithography process
JPH0917718A (ja) 露光装置及びこれを用いたデバイス生産方法
EP0561302B1 (fr) Fabrication de marques d'alignement pour la lithographie holographique
JPS60107835A (ja) 投影露光装置
JP2593822B2 (ja) 露光装置
US3860749A (en) Method and device for the production of printing stencils
JP2003077823A (ja) 露光装置及び露光方法
JPS62293248A (ja) フレキシブル基板の両面露光方法
JP2593823B2 (ja) プリント基板製作の露光方法
JP2884767B2 (ja) 観察装置
JP2588860B2 (ja) プリント基板製作の露光方法
JP3291769B2 (ja) 位置検出装置、露光装置及び露光方法
JP2593824B2 (ja) プリント基板製作の露光方法及び装置
JPS62144325A (ja) 目合せ位置決め方法
JPS61256636A (ja) 縮小投影露光装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

REF Corresponds to:

Ref document number: 2862024

Country of ref document: DE

Date of ref document: 19821028

EAL Se: european patent in force in sweden

Ref document number: 78300105.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970416

Year of fee payment: 20

Ref country code: FR

Payment date: 19970416

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970428

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970502

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970515

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970630

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 980629 *WESTERN ELECTRIC CY INC.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980629

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 19980628

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 19980629

EUG Se: european patent has lapsed

Ref document number: 78300105.0

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT