DE4133882A1 - Automatic vehicle guidance system - allows vehicle to accurately follow path taken by lead vehicle - Google Patents

Automatic vehicle guidance system - allows vehicle to accurately follow path taken by lead vehicle

Info

Publication number
DE4133882A1
DE4133882A1 DE4133882A DE4133882A DE4133882A1 DE 4133882 A1 DE4133882 A1 DE 4133882A1 DE 4133882 A DE4133882 A DE 4133882A DE 4133882 A DE4133882 A DE 4133882A DE 4133882 A1 DE4133882 A1 DE 4133882A1
Authority
DE
Germany
Prior art keywords
vehicle
angle
steering angle
guidance system
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4133882A
Other languages
German (de)
Inventor
Heiner Dipl Ing Gefken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Priority to DE4133882A priority Critical patent/DE4133882A1/en
Publication of DE4133882A1 publication Critical patent/DE4133882A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0293Convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means

Abstract

The automatic guidance system is used to allow one vehicle to follow the path taken by a guide vehicle. The position of a lead vehicle (1) is continuously monitored by an electronic camera mounted on the following vehicle (1). As the vehicles move around a curve the distance (d) and offset (Delta Y) between the vehicles are determined. The steering angle (delta A) of the following vehicle is determined by the formula, delta A is approx. equal to Delta Y divided by d squared. USE/ADVANTAGE - Safe and accurate guidance of vehicle.

Description

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1. Oberstes Ziel eines derartigen Verfahrens ist es, dem Fahrer des Fahrzeugs, worunter im Rahmen der Erfindung stets das dem Führungsfahrzeug folgende Fahrzeug verstanden wird, das Fahren zu erleichtern und dadurch die Sicherheit im Verkehr zu erhöhen.The invention relates to a method according to the preamble of Claim 1. The primary aim of such a method is it, the driver of the vehicle, including in the context of the invention the vehicle following the leading vehicle is always understood, to facilitate driving and thereby safety in traffic increase.

Wie aus der DE-PS 29 28 972 hervorgeht, gehören zum Stand der Technik nicht nur beispielsweise mit Radar- oder Lasereinrichtungen ausgerüstete Fahrzeuge, in denen Vorrichtungen vorgesehen sind, die bei Unterschreiten eines kritischen Abstandswerts zu einem voraus­ fahrenden Fahrzeug Stellbefehle für die Antriebsmaschine und/oder die Bremse des Fahrzeugs erzeugen, sondern auch bereits Vorrichtun­ gen, die eine Führung des Fahrzeugs durch das vorausfahrende Füh­ rungsfahrzeug durch Erzeugung entsprechender Steuerbefehle sicher­ stellen. Dabei bezieht sich die Schrift speziell auf den Fall des Kolonnenfahrens, d. h. mit mechanischer Berührung zwischen ent­ sprechenden Einrichtungen an den aufeinanderfolgenden Fahrzeugen.As is apparent from DE-PS 29 28 972 belong to the state of the Technology not only with radar or laser devices, for example equipped vehicles in which devices are provided which when falling below a critical distance value to one in advance moving vehicle control commands for the engine and / or generate the brake of the vehicle, but also device conditions that lead the vehicle through the leading vehicle vehicle by generating appropriate control commands put. The font specifically refers to the case of Column driving, d. H. with mechanical contact between ent speaking devices on the successive vehicles.

Bekannt (DE-PS 33 32 615, JSME International Journal, Vol. 31, 1988, Seite 108 ff.) sind auch optisch unter Verwendung einer Fern­ sehkamera derart geführte Fahrzeuge, daß die fahrzeugfeste Kamera das Bild eines auf dem Boden, d. h. der Fahrbahn, verlegten Füh­ rungsstreifens erfaßt und aus den Bildsignalen Steuersignale für das Fahrzeug gewonnen werden. Nachteilig dabei ist die erforder­ liche Änderung der Infrastruktur.Known (DE-PS 33 32 615, JSME International Journal, Vol. 31, 1988, page 108 ff.) Are also optically using a Fern vision camera guided vehicles that the vehicle-fixed camera  the image of one on the floor, d. H. the roadway, misplaced rungsstreens detected and control signals for the image signals the vehicle can be won. The disadvantage here is the required infrastructure change.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1 zu schaffen, das ohne Anforderun­ gen an die Infrastruktur auskommt und dem Fahrer eines Fahrzeug die Möglichkeit bietet, in einem endlichen Abstand einem Führungsfahr­ zeug zu folgen, also ohne "Ankoppeln" an dieses.The invention has for its object a method according to the The preamble of claim 1 to create that without requirements infrastructure and the driver of a vehicle Possibility offers a guide driving at a finite distance stuff to follow, so without "coupling" to it.

Die erfindungsgemäße Lösung dieser Aufgabe besteht in den kenn­ zeichnenden Merkmalen des Hauptanspruchs, vorteilhafte Ausbildungen der Erfindung beschreiben die Unteransprüche.The inventive solution to this problem consists in the drawing features of the main claim, advantageous training the invention describe the subclaims.

Soweit bisher Fahrzeuge mit Einrichtungen zur Ermittlung des Ab­ stands zu einem vorausfahrenden Fahrzeug ausgerüstet wurden, han­ delt es sich um Radar- oder Lasereinrichtungen, die jedoch allen­ falls für eine Abstandsmessung, nicht aber für eine Steuerung des Fahrzeugs auch längs gekrümmter Bahnen oder Spuren die erforder­ liche Genauigkeit besitzen. Das erfindungsgemäße Verfahren verwen­ det demgegenüber eine starr in das Fahrzeug eingebaute elektro­ nische Kamera (Video- oder Fernsehkamera), die signifikante, d. h. bildmäßig leicht auswertbare Heckbereiche das Führungsfahrzeugs zur Gewinnung von Bildsignalen erfaßt, die dann in an sich bekannter Weise zur Gewinnung von Signalen für den jeweils erforderlichen Wert des Lenkwinkels gemäß der im Kennzeichen der Ansprüche 1 und 2 angegebenen Beziehung ausgewertet werden. Die so gewonnenen Signale dienen zur direkten Beeinflussung der Lenkung des Fahrzeugs, ohne daß der Fahrer eingreifen muß. Dazu können sie einem mit einer Lenkwelle des Fahrzeugs verbundenen Schrittmotor zugeführt werden.So far vehicles with facilities for determining the Ab were equipped for a vehicle in front, han it is radar or laser equipment, but all if for a distance measurement, but not for controlling the Vehicle also along curved tracks or tracks that require possess accuracy. Use the method according to the invention on the other hand detects an electro built into the vehicle African camera (video or television camera), the significant, d. H. Easily evaluable rear areas of the leading vehicle Acquisition of image signals recorded, which are then known per se Way of obtaining signals for the respectively required Value of the steering angle according to that in the characterizing part of claims 1 and 2 specified relationship can be evaluated. The signals obtained in this way serve to directly influence the steering of the vehicle without that the driver must intervene. You can do this with one Steering shaft of the vehicle connected stepper motor are supplied.

Die eigentliche Problematik bei der Führung eines Fahrzeugs tritt bei Kurvenfahrt auf, d. h. wenn das Führungsfahrzeug eine Kurve beschreibt und das ihm folgende Fahrzeug ebenfalls längs dieser Kurve fahren soll. Zunächst muß davon ausgegangen werden, daß der Krümmungsradius der Kurvenbahn eine Rolle spielt, der meßtechnisch nicht zu erfassen ist. Das erfindungsgemäße Verfahren eliminiert in eleganter Weise diese Schwierigkeiten, da die Beziehung diesen Krümmungsradius nicht mehr enthält. Dabei wird von der Tatsache ausgegangen, daß der Abstand zwischen den beiden Fahrzeugen erheb­ lich größer als der Radstand des Fahrzeugs ist, und daß dasselbe hinsichtlich der Größe des Abstands in bezug auf die zu erwartenden seitlichen Abweichungen des Führungsfahrzeugs von der Längsachse des ihm folgenden Fahrzeugs gilt. Damit verwendet das erfindungsge­ mäße Verfahren für die Auswertung nur zwei Meßgrößen, nämlich den Abstand zwischen den Fahrzeugen und die seitliche Abweichung des Führungsfahrzeugs von der Längsachse des ihm folgenden Fahrzeugs. Diese seitliche Abweichung ist verständlicherweise bei linearer Fahrstrecke Null, bei Kurvenfahrt dagegen verschieden von Null und explizit nicht bestimmbar.The real problem with driving a vehicle occurs when cornering on, d. H. when the lead vehicle turns describes and the vehicle following him also along this Should take a curve. First of all, it must be assumed that the  Radius of curvature of the cam track plays a role, the metrological cannot be recorded. The method according to the invention is eliminated in elegantly these difficulties because the relationship these Radius of curvature no longer contains. It is from the fact assumed that the distance between the two vehicles increased Lich larger than the wheelbase of the vehicle, and that the same regarding the size of the distance in relation to the expected lateral deviations of the leading vehicle from the longitudinal axis of the vehicle following him applies. So that uses fiction method for the evaluation of only two measured variables, namely the Distance between the vehicles and the lateral deviation of the Leading vehicle from the longitudinal axis of the vehicle following it. This lateral deviation is understandably linear Travel distance zero, when cornering, however, different from zero and cannot be determined explicitly.

Zur Erläuterung der verschiedenen verwendeten Beziehungen ist in Fig. 1 der Fall der stationären Kreisfahrt von zwei Fahrzeugen 1 (Führungsfahrzeug) und 2 auf der Fahrkurve 3 dargestellt. Die Fahrtrichtung ist durch den Pfeil angedeutet. Das Fahrzeug 2 durch­ fährt in dem betrachteten Augenblick aufgrund des entsprechenden Lenkeinschlags seiner Vorderräder 4 und 5 eine Kurve mit dem Krümmungsradius R2, das Führungsfahrzeug 1 eine Kurve mit dem Krümmungsradius R1. Wie unmittelbar ersichtlich, ist der Achsab­ stand 1 des Fahrzeugs 2 relativ klein gegenüber dem in Achsrichtung des Fahrzeugs 2 gemessenen Abstand d zum Führungsfahrzeug 1 (in Wirklichkeit sind die Seitenabweichungen Δy kleiner, so daß sie durch bildmäßiges Erfassen signifikanter Bereiche des Hecks des Führungsfahrzeugs 1 ermittelt werden können).To explain the various relationships used, the case of stationary circular travel of two vehicles 1 (leading vehicle) and 2 on the driving curve 3 is shown in FIG. 1. The direction of travel is indicated by the arrow. At the instant considered, the vehicle 2 is driving through a curve with the radius of curvature R 2 due to the corresponding steering angle of its front wheels 4 and 5 , and the leading vehicle 1 is making a curve with the radius of curvature R 1 . As is immediately seen, the center distance was 1 of the vehicle 2 relative small compared with the measured in the axial direction of the vehicle 2 distance d to the leading vehicle 1 (in reality the side deviations Dy are smaller, so that it determines by imagewise detecting significant areas of the rear end of the leading vehicle 1 can be).

Mit der im Hauptanspruch angegebenen Formel können bei beliebigen Fahrzeugabständen d Lenkwinkelsignale für die Lenkung des Fahr­ zeugs 2 gewonnen werden, so daß sich bei der in Fig. 1 angenommenen Kreisfahrt beider Fahrzeuge 1 und 2 ein Gleichgewichtszustand ein­ stellt, bei dem letztlich die durch Bildauswertung gemessene Quer­ abweichung Δy dem eingestellten Lenkwinkel entspricht und das Fahr­ zeug 2 auf dem gleichen Radius wie das Führungsfahrzeug 1 fährt. Bei konstantem Abstand d ändert sich der erforderliche Lenkwinkel δA proportional zu der jeweiligen Querabweichung Δy. Das bedeutet, daß sich bei größeren Querabweichungen Δy, wie sie durch einen Spurversatz oder durch eine Schrägstellung in kurvenäußerer Richtung auftreten können, ein größerer Lenkwinkel ergibt; damit wird vom Fahrzeug 2 ein kleinerer Radius befahren, so daß sich dieses wieder nach dem Führungsfahrzeug ausrichtet. Störungen werden sowohl bei stationärer Kreisfahrt als auch bei Geradeaus­ fahrt ausgeglichen. Der stationäre Fahrzustand ist erreicht, wenn der Seitenversatz konstant ist.With the formula given in the main claim, steering angle signals for steering the vehicle 2 can be obtained at any vehicle spacing, so that when the circular travel of both vehicles 1 and 2 is assumed in FIG. 1, a state of equilibrium is established, in which ultimately the measured by image evaluation Cross deviation Δy corresponds to the set steering angle and the driving tool 2 drives on the same radius as the leading vehicle 1 . At a constant distance d, the required steering angle δ A changes in proportion to the respective transverse deviation Δy. This means that with larger transverse deviations Δy, as can occur due to a track offset or due to an inclination in the outer direction of the curve, there is a larger steering angle; This means that the vehicle 2 travels a smaller radius so that it aligns again with the leading vehicle. Faults are compensated for both in a stationary circular drive and when driving straight ahead. The stationary driving state is reached when the lateral offset is constant.

Bei diesem Fahrbetrieb kann man sagen, daß das Fahrzeug 2 gleichsam wie ein Anhänger von dem Führungsfahrzeug 1 elektronisch gezogen wird.In this driving can be said that the vehicle 2 is pulled to speak as a follower of the leading vehicle 1 electronically.

Schwierigkeiten können sich dann ergeben, wenn der Abstand d zwischen den Fahrzeugen in bezug auf die Fahrspur so groß ist, daß das Führungsfahrzeug 1 bereits in eins Kurve hineingefahren ist, während das Fahrzeug 2 sich noch auf einem geradlinigen Teil der Spur befindet. Dieser Fall ist in Fig. 2 dargestellt. Das Fahr­ zeug 2 befindet sich noch auf dem linearen Bereich 20 der Fahrspur, während das Führungsfahrzeug 1 bereits unter Erzeugung eines Quer­ abstands Δy auf dem gekrümmten Spurbereich 21 fährt. Geht man davon aus, daß die Kamera starr am Fahrzeug 2 befestigt ist, so haben bei diesem fahrdynamischen Modell zwei Faktoren einen besonderen Ein­ fluß: Der Schwimmwinkel, d. h. der Winkel zwischen der Geschwindig­ keitsrichtung und der Längsachse des Fahrzeugs 2, beeinflußt die Messung der Querabweichung Δy. Ferner erfordert der Schräglaufwin­ kel der Vorderräder des Fahrzeugs 2 eine Korrektur des gemäß der Beziehung im Hauptanspruch berechneten Lenkwinkels δA.Difficulties can arise if the distance d between the vehicles with respect to the lane is so large that the leading vehicle 1 has already entered a curve while the vehicle 2 is still on a straight part of the lane. This case is shown in Fig. 2. The driving tool 2 is still on the linear region 20 of the lane, while the lead vehicle 1 is already driving generating a transverse distance Δy on the curved lane region 21 . Assuming that the camera is rigidly attached to the vehicle 2 , two factors have a particular influence in this dynamic vehicle model: The float angle, ie the angle between the speed direction and the longitudinal axis of the vehicle 2 , influences the measurement of the transverse deviation Δy. Further, the skew angle of the front wheels of the vehicle 2 requires correction of the steering angle δ A calculated according to the relationship in the main claim.

Man könnte nun daran denken, diese beiden Werte exakt zu berechnen. Nachteilig ist aber, daß eine derartige Berechnung genaue Daten des Fahrzeugs und der Reifen erfordern, die demgemäß fahrzeugindividu­ ell sind. One could now think of calculating these two values exactly. It is disadvantageous, however, that such a calculation accurate data of the Vehicle and the tire require, accordingly, individual vehicle are ell.  

Die im Anspruch 2 angegebene Beziehung vermeidet diese Problematik, indem sie davon ausgeht, daß Schwimmwinkel und Schräglaufwinkel der Querbeschleunigung und damit dem Quadrat der Längsgeschwindigkeit des Fahrzeugs 2 proportional sind. Sie werden daher durch einen Korrekturfaktor a·v2 berücksichtigt, worin a eine fahrzeugtypspe­ zifische Konstante ist, die experimentell ermittelt wird.The relationship specified in claim 2 avoids this problem by assuming that the slip angle and slip angle of the lateral acceleration and thus the square of the longitudinal speed of the vehicle 2 are proportional. They are therefore taken into account by a correction factor a · v 2 , where a is a vehicle-specific constant that is determined experimentally.

Wie sich gezeigt hat, ergibt die Vernachlässigung des Kurvenradius bei diesem Korrekturfaktor nur sehr kleine Fehler in der Querab­ weichung, so daß diesbezüglich eine zusätzliche Korrektur nicht erforderlich ist.As has been shown, the curve radius is neglected with this correction factor, only very small errors in the cross softening, so that no additional correction in this regard is required.

Auch in diesem fahrdynamischen Falle dient die Ermittlung des je­ weils erforderlichen Lenkwinkels δA zur Gewinnung von Ansteuersi­ gnalen für die Lenkung des Fahrzeugs 2.In this dynamic driving case, too, the determination of the steering angle δ A required in each case serves to obtain control signals for the steering of the vehicle 2 .

Mit der Erfindung ist demgemäß ein gattungsgemäßes Verfahren ge­ schaffen, das mit hoher Genauigkeit ohne Aufwand seitens der In­ frastruktur oder seitens des Führungsfahrzeugs das Nachführen eines folgenden Fahrzeugs auf einer ggf. auch gekrümmten Spur gestattet.With the invention is accordingly a generic method ge create that with high accuracy without effort on the part of In structure or on the part of the lead vehicle the tracking of a following vehicle on a possibly curved lane.

Claims (3)

1. Verfahren zum selbsttätigen Nachführen eines Fahrzeugs auf der Spur eines vorausfahrenden Fahrzeugs (Führungsfahrzeugs) , dadurch gekennzeichnet, daß mittels einer fahrzeugseitig ange­ ordneten elektronischen Kamera laufend Bildsignale für signifi­ kante Heckbereiche des Führungsfahrzeugs (1) erzeugt, daraus durch elektronische Bildauswertung laufend der in Richtung der Längsachse des Fahrzeugs (2) gemessene Abstand (d) zwischen diesem und dem Führungsfahrzeug (1) sowie der Seitenversatz (Δy) desselben gegen die Längsachse des Fahrzeugs (2) ermittelt und die erforderlichen Werte des Lenkwinkels (δA) gemäß errechnet werden, worin Ψ der relative Gierwinkel des Fahrzeugs ist.1. A method for automatically tracking a vehicle in the lane of a preceding vehicle (leader vehicle), characterized in that image signals for signifi ed rear areas of the leader vehicle ( 1 ) are continuously generated by means of an electronic camera arranged on the vehicle side, from there by electronic image evaluation continuously in the direction the longitudinal axis of the vehicle ( 2 ) measured distance (d) between the latter and the leading vehicle ( 1 ) and the lateral offset (Δy) of the latter relative to the longitudinal axis of the vehicle ( 2 ) and the required values of the steering angle (δ A ) according to can be calculated, where Ψ is the relative yaw angle of the vehicle. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Berücksichtigung des Schwimmwinkels und des Schräglaufwinkels der Vorderräder (4, 5) des Fahrzeugs (2) die erforderlichen Werte (δA) des Lenkwinkels gemäß errechnet werden, worin v die Längsgeschwindigkeit des Fahr­ zeugs (2) und a ein experimentell ermittelter fahrzeugspezifi­ scher Faktor sind. 2. The method according to claim 1, characterized in that to take into account the float angle and the slip angle of the front wheels ( 4 , 5 ) of the vehicle ( 2 ) the required values (δ A ) of the steering angle according to are calculated, in which v the longitudinal speed of the vehicle ( 2 ) and a are an experimentally determined vehicle-specific factor. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als signifikanter Heckbereich des Führungsfahrzeugs (1) die Spurbreite als Querabstand zwischen Hinterreifen bildmäßig erfaßt wird.3. The method according to claim 1 or 2, characterized in that as a significant rear area of the guide vehicle ( 1 ), the track width is captured as a transverse distance between the rear tires.
DE4133882A 1990-10-24 1991-10-12 Automatic vehicle guidance system - allows vehicle to accurately follow path taken by lead vehicle Withdrawn DE4133882A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4133882A DE4133882A1 (en) 1990-10-24 1991-10-12 Automatic vehicle guidance system - allows vehicle to accurately follow path taken by lead vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4033718 1990-10-24
DE4133882A DE4133882A1 (en) 1990-10-24 1991-10-12 Automatic vehicle guidance system - allows vehicle to accurately follow path taken by lead vehicle

Publications (1)

Publication Number Publication Date
DE4133882A1 true DE4133882A1 (en) 1992-04-30

Family

ID=25897933

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4133882A Withdrawn DE4133882A1 (en) 1990-10-24 1991-10-12 Automatic vehicle guidance system - allows vehicle to accurately follow path taken by lead vehicle

Country Status (1)

Country Link
DE (1) DE4133882A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19722292A1 (en) * 1997-05-28 1998-12-03 Maibach Verkehrssicherheit Movable work site securing method on roadways e.g. multiple lane road
DE19722947C1 (en) * 1997-05-31 1999-02-25 Bosch Gmbh Robert Method and device for determining a future course range of a vehicle
DE19749086C1 (en) * 1997-11-06 1999-08-12 Daimler Chrysler Ag Device for determining data indicating the course of the lane
US6546320B2 (en) 2000-06-06 2003-04-08 Suzuki Motor Corporation Control apparatus for hybrid vehicle
US6853906B1 (en) 1998-12-01 2005-02-08 Robert Bosch Gmbh Method and device for determining a future travel-path area of a vehicle
EP1504948A2 (en) * 2003-08-07 2005-02-09 Robert Bosch Gmbh Adaptive cruise control device for motor vehicles
EP2055835A1 (en) 2007-10-30 2009-05-06 Saab Ab Method and arrangement for determining position of vehicles relative each other
DE102008033729A1 (en) * 2008-07-18 2010-01-21 Josef Fliegl Method and device for steering a trailer
DE102009007342A1 (en) * 2009-02-04 2010-08-05 Hella Kgaa Hueck & Co. Method and device for determining an applicable lane marking
EP2637072A1 (en) 2012-03-05 2013-09-11 Volvo Car Corporation Path following of a target vehicle
WO2013171089A1 (en) 2012-05-16 2013-11-21 Continental Teves Ag & Co. Ohg Method and system for autonomous tracking of a following vehicle on the track of a leading vehicle
US8593521B2 (en) 2004-04-15 2013-11-26 Magna Electronics Inc. Imaging system for vehicle
US8599001B2 (en) 1993-02-26 2013-12-03 Magna Electronics Inc. Vehicular vision system
US8636393B2 (en) 2006-08-11 2014-01-28 Magna Electronics Inc. Driver assistance system for vehicle
US8637801B2 (en) 1996-03-25 2014-01-28 Magna Electronics Inc. Driver assistance system for a vehicle
US8665079B2 (en) 2002-05-03 2014-03-04 Magna Electronics Inc. Vision system for vehicle
DE102012023498A1 (en) 2012-12-03 2014-06-05 Continental Automotive Gmbh Method for guiding automatic and/or assistive vehicle i.e. motor car, involves transmitting stored information to vehicle to decide whether track portion is suitable to guide automatic and/or assisting vehicle by environment sensor system
DE102006058413B4 (en) * 2006-12-12 2014-08-07 Daimler Ag A method for displaying an operating state of a driver assistance system and driver assistance system with a display device for carrying out the method
US8842176B2 (en) 1996-05-22 2014-09-23 Donnelly Corporation Automatic vehicle exterior light control
US9436880B2 (en) 1999-08-12 2016-09-06 Magna Electronics Inc. Vehicle vision system
EP3373095A1 (en) * 2017-03-08 2018-09-12 MAN Truck & Bus AG Method for sequence control in the traverse direction of a vehicle within a platoon and vehicle for carrying out the method
CN109552417A (en) * 2018-12-27 2019-04-02 华晟(青岛)智能装备科技有限公司 A kind of calibration method and system of driving wheel angle zero bias
WO2020001826A1 (en) * 2018-06-26 2020-01-02 Continental Automotive Gmbh Vehicle combination, method for operating the vehicle combination, computer program, and computer-readable storage medium
DE102018210399A1 (en) 2018-06-26 2020-01-02 Continental Automotive Gmbh Follower vehicle with a communication device, vehicle network, method for operating the follower vehicle, computer program and computer-readable storage medium
DE102021204225A1 (en) 2021-04-28 2022-11-03 Zf Friedrichshafen Ag Vehicle and method for roadside assistance in automated vehicles

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8599001B2 (en) 1993-02-26 2013-12-03 Magna Electronics Inc. Vehicular vision system
US8917169B2 (en) 1993-02-26 2014-12-23 Magna Electronics Inc. Vehicular vision system
US8993951B2 (en) 1996-03-25 2015-03-31 Magna Electronics Inc. Driver assistance system for a vehicle
US8637801B2 (en) 1996-03-25 2014-01-28 Magna Electronics Inc. Driver assistance system for a vehicle
US8842176B2 (en) 1996-05-22 2014-09-23 Donnelly Corporation Automatic vehicle exterior light control
DE19722292A1 (en) * 1997-05-28 1998-12-03 Maibach Verkehrssicherheit Movable work site securing method on roadways e.g. multiple lane road
DE19722292B4 (en) * 1997-05-28 2016-08-11 MAIBACH Verkehrssicherheits- und Lärmschutzeinrichtungen GmbH Method and arrangement for securing a mobile workstation on a roadway
DE19722947C1 (en) * 1997-05-31 1999-02-25 Bosch Gmbh Robert Method and device for determining a future course range of a vehicle
DE19749086C1 (en) * 1997-11-06 1999-08-12 Daimler Chrysler Ag Device for determining data indicating the course of the lane
US6853906B1 (en) 1998-12-01 2005-02-08 Robert Bosch Gmbh Method and device for determining a future travel-path area of a vehicle
US9436880B2 (en) 1999-08-12 2016-09-06 Magna Electronics Inc. Vehicle vision system
US6546320B2 (en) 2000-06-06 2003-04-08 Suzuki Motor Corporation Control apparatus for hybrid vehicle
US9555803B2 (en) 2002-05-03 2017-01-31 Magna Electronics Inc. Driver assistance system for vehicle
US9171217B2 (en) 2002-05-03 2015-10-27 Magna Electronics Inc. Vision system for vehicle
US11203340B2 (en) 2002-05-03 2021-12-21 Magna Electronics Inc. Vehicular vision system using side-viewing camera
US10683008B2 (en) 2002-05-03 2020-06-16 Magna Electronics Inc. Vehicular driving assist system using forward-viewing camera
US10351135B2 (en) 2002-05-03 2019-07-16 Magna Electronics Inc. Vehicular control system using cameras and radar sensor
US10118618B2 (en) 2002-05-03 2018-11-06 Magna Electronics Inc. Vehicular control system using cameras and radar sensor
US8665079B2 (en) 2002-05-03 2014-03-04 Magna Electronics Inc. Vision system for vehicle
US9834216B2 (en) 2002-05-03 2017-12-05 Magna Electronics Inc. Vehicular control system using cameras and radar sensor
US9643605B2 (en) 2002-05-03 2017-05-09 Magna Electronics Inc. Vision system for vehicle
EP1504948A2 (en) * 2003-08-07 2005-02-09 Robert Bosch Gmbh Adaptive cruise control device for motor vehicles
EP1504948A3 (en) * 2003-08-07 2005-04-20 Robert Bosch Gmbh Adaptive cruise control device for motor vehicles
US9736435B2 (en) 2004-04-15 2017-08-15 Magna Electronics Inc. Vision system for vehicle
US10110860B1 (en) 2004-04-15 2018-10-23 Magna Electronics Inc. Vehicular control system
US9008369B2 (en) 2004-04-15 2015-04-14 Magna Electronics Inc. Vision system for vehicle
US11847836B2 (en) 2004-04-15 2023-12-19 Magna Electronics Inc. Vehicular control system with road curvature determination
US11503253B2 (en) 2004-04-15 2022-11-15 Magna Electronics Inc. Vehicular control system with traffic lane detection
US8593521B2 (en) 2004-04-15 2013-11-26 Magna Electronics Inc. Imaging system for vehicle
US9191634B2 (en) 2004-04-15 2015-11-17 Magna Electronics Inc. Vision system for vehicle
US10735695B2 (en) 2004-04-15 2020-08-04 Magna Electronics Inc. Vehicular control system with traffic lane detection
US9428192B2 (en) 2004-04-15 2016-08-30 Magna Electronics Inc. Vision system for vehicle
US10462426B2 (en) 2004-04-15 2019-10-29 Magna Electronics Inc. Vehicular control system
US8818042B2 (en) 2004-04-15 2014-08-26 Magna Electronics Inc. Driver assistance system for vehicle
US9609289B2 (en) 2004-04-15 2017-03-28 Magna Electronics Inc. Vision system for vehicle
US10306190B1 (en) 2004-04-15 2019-05-28 Magna Electronics Inc. Vehicular control system
US10187615B1 (en) 2004-04-15 2019-01-22 Magna Electronics Inc. Vehicular control system
US10015452B1 (en) 2004-04-15 2018-07-03 Magna Electronics Inc. Vehicular control system
US9948904B2 (en) 2004-04-15 2018-04-17 Magna Electronics Inc. Vision system for vehicle
US10787116B2 (en) 2006-08-11 2020-09-29 Magna Electronics Inc. Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera
US11951900B2 (en) 2006-08-11 2024-04-09 Magna Electronics Inc. Vehicular forward viewing image capture system
US10071676B2 (en) 2006-08-11 2018-09-11 Magna Electronics Inc. Vision system for vehicle
US11623559B2 (en) 2006-08-11 2023-04-11 Magna Electronics Inc. Vehicular forward viewing image capture system
US11148583B2 (en) 2006-08-11 2021-10-19 Magna Electronics Inc. Vehicular forward viewing image capture system
US8636393B2 (en) 2006-08-11 2014-01-28 Magna Electronics Inc. Driver assistance system for vehicle
US11396257B2 (en) 2006-08-11 2022-07-26 Magna Electronics Inc. Vehicular forward viewing image capture system
DE102006058413B4 (en) * 2006-12-12 2014-08-07 Daimler Ag A method for displaying an operating state of a driver assistance system and driver assistance system with a display device for carrying out the method
EP2055835A1 (en) 2007-10-30 2009-05-06 Saab Ab Method and arrangement for determining position of vehicles relative each other
DE102008033729A1 (en) * 2008-07-18 2010-01-21 Josef Fliegl Method and device for steering a trailer
DE102009007342A1 (en) * 2009-02-04 2010-08-05 Hella Kgaa Hueck & Co. Method and device for determining an applicable lane marking
US9626571B2 (en) 2009-02-04 2017-04-18 Hella Kgaa Hueck & Co. Method and device for determining a valid lane marking
US10183666B2 (en) 2009-02-04 2019-01-22 Hella Kgaa Hueck & Co. Method and device for determining a valid lane marking
US9020680B2 (en) 2012-03-05 2015-04-28 Volvo Car Corporation Travel direction determination method and system
EP2637072A1 (en) 2012-03-05 2013-09-11 Volvo Car Corporation Path following of a target vehicle
CN103309349B (en) * 2012-03-05 2017-04-12 沃尔沃汽车公司 Method and device for determining a direction of travel
CN103309349A (en) * 2012-03-05 2013-09-18 沃尔沃汽车公司 Method and device for determining a direction of travel
US9189961B2 (en) 2012-05-16 2015-11-17 Continental Teves Ag & Co. Ohg Method and system for autonomous tracking of a following vehicle in the lane of a leading vehicle
WO2013171089A1 (en) 2012-05-16 2013-11-21 Continental Teves Ag & Co. Ohg Method and system for autonomous tracking of a following vehicle on the track of a leading vehicle
DE102012208256A1 (en) 2012-05-16 2013-11-21 Continental Teves Ag & Co. Ohg Method and system for autonomously tracking a follower vehicle on the track of a Leader vehicle
DE102012023498A1 (en) 2012-12-03 2014-06-05 Continental Automotive Gmbh Method for guiding automatic and/or assistive vehicle i.e. motor car, involves transmitting stored information to vehicle to decide whether track portion is suitable to guide automatic and/or assisting vehicle by environment sensor system
EP3373095A1 (en) * 2017-03-08 2018-09-12 MAN Truck & Bus AG Method for sequence control in the traverse direction of a vehicle within a platoon and vehicle for carrying out the method
DE102018210371B4 (en) 2018-06-26 2020-07-09 Continental Automotive Gmbh Vehicle network, method for operating the vehicle network, computer program and computer-readable storage medium
DE102018210371A1 (en) * 2018-06-26 2020-01-02 Continental Automotive Gmbh Vehicle network, method for operating the vehicle network, computer program and computer-readable storage medium
DE102018210399A1 (en) 2018-06-26 2020-01-02 Continental Automotive Gmbh Follower vehicle with a communication device, vehicle network, method for operating the follower vehicle, computer program and computer-readable storage medium
WO2020001826A1 (en) * 2018-06-26 2020-01-02 Continental Automotive Gmbh Vehicle combination, method for operating the vehicle combination, computer program, and computer-readable storage medium
CN109552417A (en) * 2018-12-27 2019-04-02 华晟(青岛)智能装备科技有限公司 A kind of calibration method and system of driving wheel angle zero bias
DE102021204225A1 (en) 2021-04-28 2022-11-03 Zf Friedrichshafen Ag Vehicle and method for roadside assistance in automated vehicles

Similar Documents

Publication Publication Date Title
DE4133882A1 (en) Automatic vehicle guidance system - allows vehicle to accurately follow path taken by lead vehicle
EP0445671B2 (en) Procedure as well as use of a device for investigating the effects of a motor vehicle accident
EP3090922B1 (en) Method for guiding an agricultural trailer and agricultural trailer combination
DE102012006206B4 (en) Method and device for detecting an imminent collision between a towing vehicle and its trailer
DE4228414A1 (en) Sensor signal processing e.g. for vehicle suspension regulation and=or control - generates correction values from signals related to vehicle movement or inertial reference system to convert from fixed reference system to reference system locked to movement path
DE102014111122A1 (en) Method for the at least semi-autonomous maneuvering of a motor vehicle, driver assistance system and motor vehicle
WO2008086850A1 (en) Method and device for determining the speed of a vehicle
EP2318263B1 (en) Method and apparatus for supporting a parking process of a vehicle
EP3612794B1 (en) Method and device for performing a wheel alignment check
DE102005014954A1 (en) Measured yaw angle deviation determining method for motor vehicle, involves determining measured yaw angle and distance of assigned point of vehicle to lane limit, from data and determining real yaw angle from distance and speed information
DE102010047161A1 (en) Method and device for supporting a parking operation of a vehicle
DE2411549A1 (en) DEVICE FOR THE CONTROL OF VEHICLES MOVING ALONG A DETERMINED TRACK
DE102010056438A1 (en) Method for automatic guiding of motor vehicle by driver assistance system of motor vehicle, involves detecting running ahead vehicle by distance sensor of driver assistance system
DE19941034A1 (en) Adjustment device with an adjustment device for a headlight or for a distance sensor of a vehicle
DE60129760T2 (en) Motor vehicle front and rear wheel steering angle control device and its control method
WO2002031437A1 (en) Device for determining the wheel geometry and/or axle geometry
DE102015116220A1 (en) Method for the at least semi-autonomous maneuvering of a motor vehicle with recognition of an odometry error, computing device, driver assistance system and motor vehicle
DE102018116935B4 (en) Method for maintaining the lane of a two-lane vehicle
EP0568167B1 (en) Method for determining the rolling resistance of railway vehicles
EP3162667A1 (en) Method for at least semi-autonomous maneuvering of a motor vehicle into a parking space with kerb, driver assistance system and motor vehicle
DE4041149C1 (en) Vehicle type classification within traffic flow - comparing vehicle silhouette with patterns stored in memory
WO1999065751A1 (en) Method for curve recognition and axle alignment in rail vehicles
DE3905929C1 (en) Method and device for detecting side (cross) wind influencing the handling of a vehicle
DE2547057C2 (en) Device for measuring the alignment or alignment of tracks, in particular railway tracks
DE4008167A1 (en) Measuring motor vehicle steering angle of lock - by measuring distance travelled perpendicular to vehicle direction of motion of wheels of undriven pair

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8139 Disposal/non-payment of the annual fee