DE3523160A1 - Cascade thrust precessor - Google Patents

Cascade thrust precessor

Info

Publication number
DE3523160A1
DE3523160A1 DE19853523160 DE3523160A DE3523160A1 DE 3523160 A1 DE3523160 A1 DE 3523160A1 DE 19853523160 DE19853523160 DE 19853523160 DE 3523160 A DE3523160 A DE 3523160A DE 3523160 A1 DE3523160 A1 DE 3523160A1
Authority
DE
Germany
Prior art keywords
rotation
masses
shaft
gimble
cascade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19853523160
Other languages
German (de)
Inventor
Peter Dr Kuemmel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUEMMEL, PETER, DR., 7022 ECHTERDINGEN, DE
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19853523160 priority Critical patent/DE3523160A1/en
Publication of DE3523160A1 publication Critical patent/DE3523160A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/409Unconventional spacecraft propulsion systems

Abstract

The thrust, arrow 1, of the frame 5 is proportional to the contrarotating synchronous rotation speeds of shafts 10, 10' and their rotation masses; ISBNs;3921291-00-3, -01-1, -02-x and ISSN: 0720-9614, pages 17-23. In order to increase the efficiency, unbalance and centrifugal force are counteracted as follows: instead of large, solid rotation masses being allowed to contrarotate with the shafts 10, 10', two small masses 2, 2' and 2'', 2''' are provided at least on each side. Said masses are supported in gimble rings so that they can be set into intrinsic rotation. Rotation of the gimble rings having the rotation masses 2, 2' on the shaft 10 in the opposite direction to 2'', 2''' on the shaft 10' causes constrained presession. In order to increase the thrust intensity, the rotation masses are supported in a cascade-like manner and interleaved in any desired number of gimble rings all of which are in turn driven to be intrinsically rotating. The rotations of all the gimble rings involved and the presession force directions have to take place in opposite directions both on the shaft 10 of the masses 2 to 2'' and on the shaft 10' of the mass 2'' to the mass 2'''. The rotation directions of those on the shaft 10 must also be in the opposite direction to those in mirror-image form on the shaft 10'. <IMAGE>

Description

Durch gelenkte Kreiselpräzession wird Schwerpunktversatz und Vortrieb erzeugt:Directed gyro precession creates a shift in the center of gravity and propulsion:

Für die Schuberzeugung im Raum sind masseabschleudernde Systeme und Verfahren bis heute führend. Relativistische Systeme, vgl. Literatur: 1, 2, 3, 4 und 5 zeigten keine ausreichende Wirkung. Die Anmeldung zum Thema Schubkreisel, vgl. Literatur Nr. 7, zeigte jedoch, daß relativistische Antriebe gemäß Inhalt der Literatur 3, 4, 5 und 6 in ihrer Leistung zu steigern sind. Hierauf aufbauend kam die angemeldete Erfindung zustande.Mass throwing systems and processes are used to generate thrust in the room still leading today. Relativistic systems, cf. Literature: 1, 2, 3, 4 and 5 did not show sufficient effect. Registration on the subject of pushing gyros, see. Literature No. 7, however, showed that relativistic drives according to content literature 3, 4, 5 and 6 are to be increased in their performance. Building on that came the invention invented.

Wird im in sich abgeschlossenen System der Kreiseldrall durch äußere Bewegungskräfte so beeinträchtigt, daß Präzession entsteht, kann man das Ausmaß der von außen wirkenden Bewegungskraft in Proportion zur erlangten Präzession setzen, vergleichbar mit der Methode der Trägheitsnavigation. Nach dem physikalischen Gesetz der Umkehrbarkeit aller Prozess wird erfindungsgemäß im in sich abgeschlossenen System Kraft verbraucht, um Präzession zu erzeugen. Die Präzession wird gekenechtet. Dies bringt eine nach außen wirkende Bewegungskraft zum Vorschein, die in Proportion zum Ausmaß der künstlich im System erzeugten Präzession steht und Schwerpunktversatz bedeutet. Der erfindungsgemäße Kaskadenschubpräzessor soll symmetrische, linearisierte und steuerbare Präzession erzeugen, die durch Schwerpunktversatz im in sich abgeschlossenen System Schub und damit Vortrieb generiert. Is the gyro twist in the self-contained system by external motive forces the extent can be so impaired that precession arises the external force of movement in proportion to the precession achieved set, comparable to the method of inertial navigation. According to the physical According to the invention, the law of reversibility of all processes is described in self-contained system uses force to create precession. The precession is slaughtered. This brings an outward motive force to the fore, which is proportional to the extent of artificially in System generated precession stands and means center of gravity offset. The invention Cascade thrust processor is said to be symmetrical, linearized and generate controllable precession, which is caused by an offset in the center of gravity closed system thrust and thus propulsion generated.  

In Fig. 1, dem Schubrotator, sind zwei gegenläufig rotierende Massen 2, 2′ angeordnet. Im 2-dimensional in sich abgeschlossenen System eines Pendels entsteht Vortrieb in Richtung des Pfeiles 1. Dieser errechnet sich durch die Feldablenkung α bewegter Massen gemäß V/c oder ω/c sowie der Schwerpunktversatzformel SV = r · sinα · r stellt den Radius der Rotationsmassen dar. Zentrifugalkräfte begrenzen die Schubwerte, vgl. Literatur Nr. 3 und 6! Um dennoch größeren nutzbaren Vortrieb zu erlangen, lassen sich erfindungsgemäß ineinander verschachtelte Kardanringrahmen mit darin rotierenden Massen drehen. Dadurch kann im erfindungsgemäßen Kaskadenschubpräzessor die Wirkung vergrößerter Massen erlangt werden, ohne daß zu hohe Drehzahlen erforderlich sind. Wird gemäß Fig. 2 eine Rotationsmasse 2 in einem Kardanring 3 gelagert und dessen Achse 4 angetrieben, lassen sich zwei Systeme dieser Kardanringe 3, 3′ mit Rotationsmassen 2, 2′ in einem Gesamtrahmen 5, Fig. 3 lagern. Bei gegenläufiger Rotation der Kardanringe 3 und 3′, Fig. 3, entsteht Vortrieb in Richtung des Pfeiles 1. Wird synchrone Laufzahl der Rotationsmassen 2 und 2′ sowie der Kardanringe 3 und 3′ gewährleistet, entsteht kein Drehmoment um die Symmetrieachse 6, aber eines um die Symmetrieachse 7. Dieser Umstand ist der spiegelbildlich, aber dennoch gekrümmten Richtung der beiden Präzessionskräfte des Systems gemäß der Dreifingerregel zuzuschreiben. Um auch orthogonal zur Symmetrieachse 6 eine Symmetrieachse 7 ohne Drehmoment zu erlangen, ist eine symmetrische Doppelung der Vorrichtung in Fig. 3 vorgesehen. Um geradlinig Vortrieb in Richtung des Pfeiles 1, Fig. 4 zu erzeugen, sind die Drehrichtungen der Rotationsmassen 2, 2′, 2″, 2‴ und der Kardanrahmen 3, 3′, 3″, 3‴ mit deren Antriebswellen 4, 4′, wie in der Zeichnung Fig. 4 angegeben, einzuhalten. Das entspricht den Gesetzen der Kreisellehre und der Dreifingerregel. Präzessionsrichtungen und Intensitäten gemäß angeordneten Pfeilen 8, 8′, 8″, 8‴, Fig. 5 und dreidimensional schraffierten Pfeilkrümmungsflächen, sind bei synchron laufenden Drehzahlen im in sich abgeschlossenen System symmetrisch. Um die Symmetrieachsen 6 und 7, Fig. 5, entstehen keine Drehmomente mehr. In Fig. 6 wird Rahmen 5, Fig. 4, als zusätzlicher Kardanring 5 vorgesehen. Läßt man diesen mit dem in sich angeordneten Kardanring 3 rotieren, in dem wiederum die Rotationsmasse 2 dreht, ist mit zusätzlicher Energieinvestition zu rechnen, die nur als geknechtete Präzession für Schwerpunktversatz sorgen kann. Eine weitere Wirkungssteigerung wird aus Fig. 7 ersichtlich. Die Rotationsmasse 2 ist in Kardanringen 3, 5 und 9, dreidimensional gelagert. Dies findet als Kaskade Benennung. Aus Fig. 8 wird erkennbar, daß man anstatt einer rotationszentrischen Kreiselmasse 2, Fig. 7, eine verschachtelte Kaskade mit 3-dimensionaler Kardanlagerung einer zentralen Rotationsmasse verwenden kann. Dieses System weist zwei Kaskaden auf. Werden Doppelkaskadensysteme gemäß Fig. 8 viermal wie bei Fig. 4 in gegenläufig rotierenden Paaren verwendet, kommt ein erfindungsgemäßer Kaskadenschubpräzessor zweiter Ordnung, nämlich mit zwei Kaskadenverschachtelungen zustande, Fig. 9. Zur weiteren Leistungssteigerung kann der erfindungsgemäße Kaskadenschubpräzessor nach 3-facher, 4-facher oder n-facher Ordnung verschachtelt sein. Die Anzahl der gegenläufig rotierenden Kaskadenpaare gemäß Fig. 4 und Fig. 9 kann somit über zwei hinaus vorgesehen werden, wenn Rotationssymmetrie und Rotationszentrik gewahrt bleiben. Zwei Paare stellen nur die Mindestanzahl aus Symmetriegründen dar. Die Rotationsuntersetzungsgetriebe 11, 11′, Fig. 10, zum Antrieb der jeweiligen Kardanrahmen sind auch gewichts- und struktursymmetrisch gegenüberliegend angeordnet. Alle Rotationen dieser Antriebe haben synchron zu erfolgen. Die Verkabelung 12, 12′ läuft vom Inneren der hohlen Antriebswellen 13, Fig. 10 entlang der Kardanringe 3 zum Antrieb 11, 11′. Von dort aus finden Weiterführungen über die Lamellenkollektoren 14, 14′ zur hohlen Antriebswelle 15 statt. Auf diese Weise lassen sich Stromversorgungen für beliebig viele Verschachtelungen bis hin zur zentralen Rotationsmasse vornehmen.In Fig. 1, the thrust rotator, two counter-rotating masses 2, 2 ' are arranged. In the 2-dimensional self-contained system of a pendulum, propulsion occurs in the direction of arrow 1 . This is calculated by the field deflection α of moving masses according to V / c or ω / c and the center of gravity offset formula SV = r · sin α · r represents the radius of the rotating masses. Centrifugal forces limit the thrust values, cf. Literature No. 3 and 6! In order to achieve greater usable propulsion nonetheless, gimbal frames with nested masses rotating therein can be rotated according to the invention. As a result, the effect of increased masses can be obtained in the cascade thrust processor according to the invention without the need for excessive speeds. As shown in FIG. 2, a rotating mass 2 is supported in a gimbal ring 3 and the axis 4 is driven, can be two systems of these gimbals 3, 3 'with rotating masses 2, 2' are stored in an overall frame 5, Fig. 3. With opposite rotation of the gimbals 3 and 3 ', Fig. 3, propulsion occurs in the direction of arrow 1 . If a synchronous running number of the rotating masses 2 and 2 ' and the gimbals 3 and 3' is guaranteed, there is no torque around the axis of symmetry 6 , but one about the axis of symmetry 7 . This is due to the mirror image, but still curved direction of the two precession forces of the system according to the three-finger rule. In order to obtain a symmetry axis 7 without torque, also orthogonal to the symmetry axis 6 , a symmetrical duplication of the device in FIG. 3 is provided. In order to produce straightforward propulsion in the direction of arrow 1 , Fig. 4, the directions of rotation of the rotating masses 2, 2 ', 2 ", 2 ‴ and the gimbal 3, 3', 3", 3 ‴ with their drive shafts 4, 4 ' , as indicated in the drawing Fig. 4, to be observed. This corresponds to the laws of the gyroscope and the three-finger rule. Precession directions and intensities according to arrows 8, 8 ', 8 ", 8 ‴, Fig. 5 and three-dimensionally hatched arrow curvature surfaces are symmetrical at synchronous speeds in a self-contained system. Torques no longer arise around the axes of symmetry 6 and 7, FIG. 5. In Fig. 6, frame 5 , Fig. 4, is provided as an additional gimbal 5 . If this is rotated with the gimbal 3 arranged in itself, in which the rotating mass 2 rotates, additional energy investment can be expected, which can only provide a shift in the center of gravity as a bonded precession. A further increase in effectiveness is evident from FIG. 7. The rotating mass 2 is three-dimensionally supported in gimbals 3, 5 and 9 . This is called a cascade. From Fig. 8 it can be seen that instead of a rotation-centric gyroscope 2, Fig. 7, a nested cascade with 3-dimensional gimbals of a central rotation mass can be used. This system has two cascades. If four cascade systems according to FIG. 8 are used four times as in FIG. 4 in pairs rotating in opposite directions, a second-order cascade thrust processor according to the invention, namely with two cascade interleaving, is realized , FIG. 9. The cascade thrust processor according to the invention can be increased 3 times, 4 times or n- fold order. The number of oppositely rotating cascade pairs according to FIG. 4 and FIG. 9 can thus be provided beyond two if rotational symmetry and rotational centricity are maintained. Two pairs represent only the minimum number for reasons of symmetry. The rotary reduction gears 11, 11 ', Fig. 10, for driving the respective gimbals are also arranged opposite one another in terms of weight and structure. All rotations of these drives have to be synchronized. The wiring 12, 12 ' runs from the inside of the hollow drive shafts 13, Fig. 10 along the gimbals 3 to the drive 11, 11' . From there, continuations take place via the lamella collectors 14, 14 ' to the hollow drive shaft 15 . In this way, power supplies can be made for any number of nestings up to the central rotational mass.

Literatur:Literature:

1. KESSLER, A., Impulsgenerator, Offenlegungsschrift 2 61 33 442, Anmeldung v. 29/03/76 in München
2. KRANICH, M., wie 1,
3. KÜMMEL, P., Negative Schwerkraft durch Rotation I, qual., 1970, ISBN 3 921 291-00-3,
4. KÜMMEL, P., Negative Schwerkraft durch Rotation II, quant., 1971, ISBN 3 921 291-01-1,
5. KÜMMEL, P., Antigravitation durch Ablenken von Schwerewellen, 1973, ISBN 3 921 291-02-X,
6. KÜMMEL, P., Zur Ellipsenbildung beim Foucault-Pendel, 1981, ISSN 0720-9614, S. 17 bis 23,
7. KÜMMEL, P., Patentanmeldung zum Thema Schubkreisel, P 32 34 800,2 der Nummer 17 75 472 v. 20/09/82.
1. KESSLER, A., pulse generator, laid-open specification 2 61 33 442, application from. 29/03/76 in Munich
2. CRANE, M., like 1,
3. KÜMMEL, P., Negative Gravity through Rotation I, qual., 1970, ISBN 3 921 291-00-3,
4. KÜMMEL, P., Negative Gravity through Rotation II, quant., 1971, ISBN 3 921 291-01-1,
5. KÜMMEL, P., Antigravity by Deflecting Gravity Waves, 1973, ISBN 3 921 291-02-X,
6. KÜMMEL, P., On the ellipse formation of the Foucault pendulum, 1981, ISSN 0720-9614, pp. 17 to 23,
7. KÜMMEL, P., patent application on the subject of pushing gyros, P 32 34 800.2 number 17 75 472 v. 20/09/82.

Claims (1)

Kaskadenschubpräzessor, gekennzeichnet dadurch, daß mindestens zwei Paare von Kaskadensystemen so gegenläufig und synchron im Gesamtrahmen 5, Fig. 9 um die Achsen 10, 10′ angetrieben rotieren und im struktur- und gewichtszentrischen Rahmen 5 des in sich abgeschlossenen Systems, Fig. 9, einerseits die Drehrichtungen der gegenläufig rotierenden Systeme an der engsten gegenüberliegenden Stelle gleich jener des Vortriebs gemäß Pfeil 1, Fig. 1 und 9 sind, andererseits keine Drehmomente um die Symmetrieachsen 6 und 7 entstehen und dadurch ein linearer Schub in Richtung des Pfeiles 1, Fig. 9, generierst wird, wobei die Kaskadensysteme aus einzeln angetriebenen 3-dimensionalen ineinander angeordneten Kardanringen bestehen, von denen beliebig viele Kaskaden ineinander verschachtelt sein können, jedoch die innersten Kaskaden Rotationsmassen 2, 2′, 2″, 2‴, Fig. 9, als Präzessionserreger enthalten müssen.Kaskadenschubpräzessor, characterized in that at least two pairs of cascade systems so in opposite directions and in synchronism in the overall frame 5 rotate driven about the axes 10, 10 'Fig. 9 and in the structural and weight central frame 5 of the self-contained system, Fig. 9, on the one hand the directions of rotation of the counter-rotating systems at the narrowest opposite point are the same as those of the propulsion according to arrow 1, FIGS. 1 and 9, on the other hand there are no torques about the axes of symmetry 6 and 7 and thereby a linear thrust in the direction of arrow 1, FIG. 9 , is generated, whereby the cascade systems consist of individually driven 3-dimensional gimbals arranged one inside the other, of which any number of cascades can be nested, but the innermost cascade rotation masses 2, 2 ', 2 ″, 2 ‴, Fig. 9, as precursors must contain.
DE19853523160 1985-06-28 1985-06-28 Cascade thrust precessor Withdrawn DE3523160A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19853523160 DE3523160A1 (en) 1985-06-28 1985-06-28 Cascade thrust precessor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19853523160 DE3523160A1 (en) 1985-06-28 1985-06-28 Cascade thrust precessor

Publications (1)

Publication Number Publication Date
DE3523160A1 true DE3523160A1 (en) 1987-01-08

Family

ID=6274442

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19853523160 Withdrawn DE3523160A1 (en) 1985-06-28 1985-06-28 Cascade thrust precessor

Country Status (1)

Country Link
DE (1) DE3523160A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1002852B (en) * 1996-10-15 1998-02-06 Self-propelled engine exploiting the thrust of the fluids creat ed by electrically propelled shuttles.
US5860317A (en) * 1994-05-05 1999-01-19 Gyron Limited Propulsion system
US6340137B1 (en) * 1998-08-26 2002-01-22 Honeywell International Inc. Moment control unit for spacecraft attitude control
US6401556B1 (en) 1999-06-23 2002-06-11 Peter Winston Hamady Precessional device and method thereof
DE4304129C2 (en) * 1993-02-11 2002-10-17 Bosch Gmbh Robert Device and method for generating a linear movement and a rotary movement by changing the angular momentum
WO2003042632A1 (en) * 2001-10-17 2003-05-22 Ingeniería Diseño Y Análisis, S.L. Gyroscopic actuator
US6629908B2 (en) 2000-05-09 2003-10-07 Peter Winston Hamady Precessional apparatus and method thereof
US6729580B2 (en) * 2001-04-05 2004-05-04 Northrop Grumman Corporation Method and system for directing an object using gyroscopes
US7181987B2 (en) 2003-05-02 2007-02-27 Peter Winston Hamady Precessional device and method
CN106275513A (en) * 2016-08-30 2017-01-04 曹峻峰 The gyroscope group that moves in turn field of force electromotor and novel continuing can spacecrafts

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4304129C2 (en) * 1993-02-11 2002-10-17 Bosch Gmbh Robert Device and method for generating a linear movement and a rotary movement by changing the angular momentum
US5860317A (en) * 1994-05-05 1999-01-19 Gyron Limited Propulsion system
GR1002852B (en) * 1996-10-15 1998-02-06 Self-propelled engine exploiting the thrust of the fluids creat ed by electrically propelled shuttles.
US6340137B1 (en) * 1998-08-26 2002-01-22 Honeywell International Inc. Moment control unit for spacecraft attitude control
US6401556B1 (en) 1999-06-23 2002-06-11 Peter Winston Hamady Precessional device and method thereof
US6629908B2 (en) 2000-05-09 2003-10-07 Peter Winston Hamady Precessional apparatus and method thereof
US6729580B2 (en) * 2001-04-05 2004-05-04 Northrop Grumman Corporation Method and system for directing an object using gyroscopes
WO2003042632A1 (en) * 2001-10-17 2003-05-22 Ingeniería Diseño Y Análisis, S.L. Gyroscopic actuator
US7181987B2 (en) 2003-05-02 2007-02-27 Peter Winston Hamady Precessional device and method
US7451667B2 (en) 2003-05-02 2008-11-18 Peter Winston Hamady Precessional device and method
US7854177B2 (en) 2003-05-02 2010-12-21 Peter Winston Hamady Precessional device and method
CN106275513A (en) * 2016-08-30 2017-01-04 曹峻峰 The gyroscope group that moves in turn field of force electromotor and novel continuing can spacecrafts

Similar Documents

Publication Publication Date Title
DE3523160A1 (en) Cascade thrust precessor
DE2533475C3 (en) Epicyclic gear
DE821734C (en) Device for limiting the speed of gas turbines
DE2825490A1 (en) Perpetual motion gyro system - generates propulsive force by being rotated in plane through axes of several rotating masses
DE2946340A1 (en) Magnetic coupling for rotating shafts - with shaft axes at right angles or other large angle and disc with segments arranged in concentric rings
WO1992016746A1 (en) Centrifugal drive
DE2534251C2 (en) Axial piston compressor
DE4312188A1 (en) Impulsive mass accelerator drive
DE3902221A1 (en) Novel drive system engines (motors)
DE1476678C (en) Device for exerting a unidirectional traction or thrust force on one bracing the mass body against an external mass system
DE3234800A1 (en) Thrust gyro
DE4313546A1 (en) Double-voltage and ring-voltage (double-stress and tangential-stress) impulse motor (momentum motor)
DE2536469A1 (en) Orbiting masses for vehicle drive - are rotated eccentrically about radial axes to produce resultant driving force
DE19613296A1 (en) Teaching aid for demonstrating circular motion
DE2416283A1 (en) Vehicle centrifugal drive for generating axial thrust - has freely supported inertial planets driven from hub via universal joints
DE880472C (en) Floor care device
DE4017474A1 (en) Mechanical force generator - consists of gyroscopic, masses rotating about two axis and fastened to shaft
WO2018037271A1 (en) Modified periphery-independent drive
DE19705565A1 (en) Permanent magnet machine with magnetic screening for powering generators, ships etc
DE10241239A1 (en) Electric power motor for required torque has a planetary magnet moving on a closed path around a central magnet&#39;s central axis and rotating on its own axis
DE19850295C1 (en) Method for fast, periodic and low-energy reversal of a rotating vector for a rotating body at high angular velocity consists of two supporting structures in counterrotation and body parts fixed to spoke ends of each supporting structure.
DE19654528A1 (en) Cascade gyroscope device for providing propulsion force by gravitational field deflection
DE3830928A1 (en) Thrust drive system
DE1213355B (en) Soil compactor
DE4020888A1 (en) Cascade rotor with three=dimensional gyro mass - achieves special variant of roll axis rotation sense for all four masses and synchronised pitch and yaw axis rotation

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: KUEMMEL, PETER, DR., 7022 ECHTERDINGEN, DE

8139 Disposal/non-payment of the annual fee