DE19955586A1 - Wind-power generator station - Google Patents

Wind-power generator station

Info

Publication number
DE19955586A1
DE19955586A1 DE19955586A DE19955586A DE19955586A1 DE 19955586 A1 DE19955586 A1 DE 19955586A1 DE 19955586 A DE19955586 A DE 19955586A DE 19955586 A DE19955586 A DE 19955586A DE 19955586 A1 DE19955586 A1 DE 19955586A1
Authority
DE
Germany
Prior art keywords
generator
variable
wind
network
speed drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19955586A
Other languages
German (de)
Inventor
Werner Kitz
Klaus Wurm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE19955586A priority Critical patent/DE19955586A1/en
Publication of DE19955586A1 publication Critical patent/DE19955586A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7064Application in combination with an electrical generator of the alternating current (A.C.) type
    • F05B2220/70644Application in combination with an electrical generator of the alternating current (A.C.) type of the asynchronous type, i.e. induction type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/1016Purpose of the control system in variable speed operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

A wind-power plant includes a rotor (1) at least one power/system generator (4), and a gear-box (3) positioned between the rotor and the power/system-generator. A device is provided for effecting dynamic matching of the power/system-generator (4) to the respective wind situation. A variable-speed- (revs) drive (6) is specifically used for the dynamic matching of the gear-box (3) i.e. more specifically, an asynchronous motor or generator, with a converter (frequency changer) (5). The gear (3), system-generator (4) and the variable-speed drive (6) form a closed-loop control (8) circuit.

Description

Die Erfindung betrifft eine Windkraftanlage mit einem Rotor und wenigstens einem Generator.The invention relates to a wind turbine with a rotor and at least one generator.

Bei den in Kraftwerken eingesetzten Generatoren ist die Fre­ quenz des erzeugten Stroms proportional der Ankerdrehzahl. Es muß deshalb die Drehzahl der Antriebsmaschine während des Be­ triebs exakt konstant gehalten werden, falls eine bestimmte Frequenz des erzeugten Stroms gefordert wird. Diese Forderung ist leicht erfüllbar, wenn es sich um stationäre Anlagen han­ delt, deren Antriebsmaschinen für diesen Zweck eigens kon­ struiert wurden.For the generators used in power plants, the Fre frequency of the generated current proportional to the armature speed. It must therefore the speed of the drive machine during loading drives are kept exactly constant if a certain one Frequency of the generated electricity is required. This requirement is easy to fulfill when it comes to stationary systems delt, the drive machines of which are specifically designed for this purpose were structured.

Bei einer Windkraftanlage treten in Folge eines stochastisch auftretenden Windes Leistungsschwankungen auf, die bisher mittels einer Rotorblattverstellung ausgeregelt werden. Nach­ teilig dabei ist, daß die Rotorblattverstellung der Wind­ kraftanlage nur eine langsame Leistungsregelung zuläßt. Die DE 197 52 940 A1 beschreibt ein Verfahren und eine Vorrich­ tung zur dynamischen Leistungsregelung einer angetriebenen Synchronmaschine. Dabei wird in Abhängigkeit von Lageistwer­ ten der Synchronmaschine und eines ermittelten Netzspannungs­ raumzeigers ein Lastwinkelistwert ermittelt und durch Drehung des Ständers der angetriebenen Synchronmaschine auf einen in Abhängigkeit einer Leistungsregelung ermittelten Lastwinkel­ sollwerts geregelt. Somit können Wirkleistungspendelungen ei­ ner geregelten, angetriebenen Synchronmaschine ausgeregelt werden. Nachteilig dabei ist der erhöhte Automatisierungsein­ satz und die aufwendige Regelung.In a wind turbine, stochastically occur occurring wind power fluctuations that previously be adjusted by means of a rotor blade adjustment. After Part of it is that the rotor blade adjustment of the wind power plant allows only a slow power control. The DE 197 52 940 A1 describes a method and a device device for dynamic power control of a driven Synchronous machine. Depending on the position, the actual ten of the synchronous machine and a determined mains voltage space pointer determined a load angle actual value and by rotation of the stator of the driven synchronous machine to one in Load angle determined as a function of a power control setpoint regulated. Active power oscillations can thus ner regulated, driven synchronous machine adjusted become. The disadvantage of this is the increased level of automation sentence and the complex regulation.

Ausgehend davon liegt der Erfindung die Aufgabe zugrunde, Leistungsschwankungen bei Windkraftanlagen in einfacher Art und Weise hochdynamisch auszuregeln, so daß die Frequenz un­ ter Berücksichtigung der jeweils zulässigen Normen (ICE 38) von im wesentlichen 50 Hz bzw. 60 Hz eingehalten wird.Proceeding from this, the object of the invention is Power fluctuations in wind turbines in a simple way and way to adjust highly dynamic, so that the frequency un  taking into account the respective permissible standards (ICE 38) of essentially 50 Hz or 60 Hz is observed.

Die Lösung der gestellten Aufgabe gelingt erfindungsgemäß da­ durch, daß sich zwischen Rotor und Netzgenerator ein Getriebe befindet und dabei Mittel vorhanden sind, die über das Ge­ triebe eine hochdynamische Anpassung des Netzgenerators an die jeweilige Windsituation bewirken.The task is solved according to the invention that there is a gear between the rotor and the generator is located and there are funds available that over Ge drive a highly dynamic adaptation of the network generator cause the respective wind situation.

Erfindungsgemäß wird dabei der Regelaufwand um die Netznenn­ frequenz zu halten erheblich reduziert. Die Netzgeneratoren können dabei als Asynchron- oder Synchrongeneratoren ausge­ führt werden. Windböen oder andere stochastisch auf den Wind­ rotor einwirkenden Kräfte und die daraus resultierenden Fre­ quenzschwankungen an den Generatorausgangsklemmen halten sich innerhalb der zulässigen Toleranzen, so daß der Generator di­ rekt in das öffentliche Netz speisen kann.According to the invention, the control effort is about the nominal network keeping frequency significantly reduced. The network generators can be used as asynchronous or synchronous generators leads. Wind gusts or others stochastically on the wind forces acting on the rotor and the resulting fre Frequency fluctuations at the generator output terminals persist within the allowable tolerances so that the generator di can feed directly into the public network.

Vorteilhafterweise wird die hochdynamische Getriebeanpassung durch einen drehzahlveränderlichen Antrieb vorgenommen. Als Getriebe ist vorzugsweise ein Planetenradgetriebe vorgesehen. Dabei werden insbesondere niederpolige Asynchronmotoren ein­ gesetzt, die kraftschlüssig mit dem Getriebe auf an sich be­ kannte Art und Weise verbunden sind. Dieser Asynchronmotor ist im Verhältnis zum hochpoligen (< 10 Pole) Netzgenerator aufgrund seiner an ihn gestellten Anforderungen wesentlich kleiner ausgelegt. Der drehzahlveränderliche Antrieb weist außer einem Asynchronmotor vorzugsweise einen Spannungs- Zwischenkreis-Umrichter auf. Die elektrische Versorgung des drehzahlveränderlichen Antrieb erfolgt direkt über die Aus­ gangklemmen des Netzgenerators oder über eine eigene Netzan­ kopplung. Durch den erfindungsgemäßen Gedanken verringert sich die Anzahl der Pole des Netzgenerators und damit dessen Gewicht gegenüber herkömmlichen Netzgeneratoren erheblich, so daß ein Einsatz derartiger Windkraftanlagen, insbesondere im Offshore Bereich, erleichtert wird. The highly dynamic gear adaptation is advantageous made by a variable-speed drive. As A planetary gear is preferably provided. In particular, low-pole asynchronous motors are used set that be non-positively with the gear on itself known way are connected. This asynchronous motor is in relation to the multi-pole (<10 pole) network generator due to its requirements designed smaller. The variable-speed drive has in addition to an asynchronous motor, preferably a voltage DC link converter. The electrical supply of the Variable-speed drive takes place directly via the off connection terminals of the network generator or via its own network coupling. Reduced by the idea of the invention the number of poles of the network generator and thus its number Weight significantly compared to conventional network generators that use of such wind turbines, especially in Offshore area.  

In einer weiteren Ausführungsform bilden Getriebe, Netzgene­ rator und drehzahlveränderlicher Antrieb einen geschlossenen Regelkreis. Damit wird gewährleistet, daß sich die Ausgangs­ frequenz des Netzgenerators innerhalb vorgegebener Toleranzen bewegt, da, sobald Windböen oder andere stochastische Win­ dereignisse am Rotorblatt angreifen, diese hochdynamisch über den Getriebeeingriff ausgeregelt werden. Dabei dient insbe­ sondere die Netzgenerator-Drehzahl als Führungsgröße des Re­ gelprozesses. Die Netzgenerator-Drehzahl wird erfaßt und der Regeleinheit zugeführt. Die Drehzahl kann auch über die Stromerfassung mittels des Heyland-Kreises ermittelt werden. Andere kennzeichnenden Größen des Netzgeneratorbetriebs sind ebenso dem Regelkreis zur weiteren Optimierung und Erhöhung der Regelgeschwindigkeit zuführbar.In a further embodiment, gears form network genes rator and variable-speed drive a closed Control loop. This ensures that the starting frequency of the network generator within specified tolerances moves there as soon as gusts of wind or other stochastic win events on the rotor blade attack them in a highly dynamic manner the transmission intervention can be corrected. In particular, especially the grid generator speed as the reference variable of the Re gel process. The network generator speed is recorded and the Control unit fed. The speed can also be adjusted via the Electricity acquisition can be determined using the Heyland circle. Other characteristic sizes of network generator operation are also the control loop for further optimization and increase can be fed to the control speed.

Asynchronmotoren bzw. -generatoren haben dabei den grundsätz­ lichen Vorteil nicht fremd-erregt werden zu müssen. Es ist aber notwendig, daß diese Asynchronmaschinen die Blindlei­ stung aus dem Netz beziehen.Asynchronous motors and generators have the basic principle advantage not to have to be excited by someone else. It is but necessary for these asynchronous machines to be blind Get power from the network.

Der drehzahlveränderliche Antrieb soll bei einem Mehrangebot an Windenergie, diese als Netzgenerator umsetzen und bei ei­ ner mangelnden Windenergiebereitstellung, die fehlende Ener­ gie als Motor ins Getriebe einspeisen, so daß jederzeit die erforderliche Nennfrequenz am Abgang des Netzgenerators be­ reitsteht. Der drehzahlveränderliche Antrieb und dabei insbe­ sondere die Asynchronmaschine und der Umrichter müssen somit für die Differenzleistung zum Nennbetrieb des Netzgenerators ausgelegt sein. Wobei unter Differenzleistung die Leistung zu verstehen ist, die der drehzahlveränderliche Antrieb aufgrund z. B. eines Windüberangebots als Netzgenerator aufnehmen muß, als auch die Leistung, die er aufgrund eines Windmangels mo­ torisch über das Getriebe dem Netzgenerator zukommen lassen muß. Der Übergang zwischen Motor- und Generatorbetrieb ge­ schieht gemäß des Helandkreises über den Betriebspunkt "Schlupf gleich Null". The variable-speed drive is said to be in the case of an additional offer of wind energy, implement it as a grid generator and at egg a lack of wind energy supply, the lack of energy Feed the motor into the gearbox so that the required nominal frequency at the outlet of the network generator be is riding. The variable-speed drive and in particular in particular, the asynchronous machine and the converter must therefore for the differential power to the nominal operation of the network generator be designed. And under differential power the power increases understand is that the variable-speed drive due e.g. B. must take up a surplus wind as a network generator, as well as the performance he mo due to lack of wind Send it to the network generator torically via the gearbox got to. The transition between engine and generator operation ge shoots over the operating point according to the Heland circle "Zero slip".  

Durch eine derartige Windkraftanlage reduzieren sich Kosten für Netzgenerator und Umrichter als auch die Wartungskosten. Damit sind derartige Windkraftanlagen insbesondere für abge­ legene oder schwer zugängliche Gegenden geeignet, in denen eine intensive Wartung unmöglich ist.Such a wind power plant reduces costs for grid generator and converter as well as the maintenance costs. Such wind turbines are especially for abge suitable or difficult to access areas where intensive maintenance is impossible.

Die Erfindung sowie weitere vorteilhafte Ausgestaltungen der Erfindung gemäß Merkmale der Unteransprüche werden im folgen­ den anhand eines schematisch dargestellten Ausführungsbei­ spiels in der Zeichnung näher erläutert. Dabei zeigt:The invention and further advantageous configurations of the Invention according to the features of the subclaims will follow the on the basis of a schematically illustrated embodiment game explained in more detail in the drawing. It shows:

Fig. 1 den prinzipiellen Aufbau einer derartigen Windkraftan­ lage. Fig. 1 shows the basic structure of such a Windkraftan.

In Fig. 1 einer erfindungsgemäßen Windkraftanlage dient ein an sich bekannter Rotor 1 dazu, die Windenergie über eine Achse 2 auf ein Getriebe 3 zu übertragen. In diesem Getriebe 3 ist der Netzgenerator 4 mit dem drehzahlveränderlichen Antrieb 6 und der Achse 2 mechanisch starr gekoppelt. Der drehzahlver­ änderliche Antrieb 6 wird über seinen Stromrichter 5 elek­ trisch an das 50/60 Hz Netz gekoppelt. Dabei bezeichnet das 50/60 Hz Netz, ein Netz, das die ortsübliche Netzfrequenz aufweist (also 50 Hz, 60 Hz oder auch 16 2/3 Hz ect.) Der drehzahlveränderliche Antrieb 6 wird je nach Windenergieange­ bot von dem 50/60 Hz Netz gespeist oder speist in dieses Netz. Je nach dem, ob die elektrische Maschine des drehzahl­ veränderlichen Antriebs 6 als Generator oder Motor wirkt. Im Abgang des Netzgenerators 4 sind Sensoren bzw. Meßaufnehmer 7 vorgesehen, die den Betrieb abbildende Größen (z. B. den Gene­ ratorstrom) erfassen und an eine nicht näher dargestellte Re­ geleinheit vorzugsweise im Umrichter 5 weiterleiten. Über den drehzahlveränderlichen Antrieb erfolgt somit eine hochdynami­ sche Anpassung des Getriebes 3 an die jeweilige Windsituati­ on.In FIG. 1 of a wind power plant according to the invention, a rotor 1 known per se serves to transmit the wind energy to a transmission 3 via an axis 2 . In this transmission 3 , the network generator 4 is mechanically rigidly coupled to the variable-speed drive 6 and the axis 2 . The variable-speed drive 6 is electrically coupled to the 50/60 Hz network via its converter 5 . The 50/60 Hz network refers to a network that has the local network frequency (i.e. 50 Hz, 60 Hz or 16 2/3 Hz ect.) The variable-speed drive 6 is offered by the 50/60 Hz network, depending on the wind energy supply fed or feeds into this network. Depending on whether the electrical machine of the variable-speed drive 6 acts as a generator or motor. In the outlet of the network generator 4 sensors or sensors 7 are provided which detect the operation-mapping variables (for example the generator current) and forward them to a control unit (not shown), preferably in the converter 5 . Via the variable-speed drive, a highly dynamic adaptation of the transmission 3 to the respective wind situation takes place.

Dabei sind folgende Betriebszustände zu unterscheiden: A distinction must be made between the following operating states:  

Es liegen quasistationäre Windverhältnisse vor, die dem Nenn­ betrieb der Anlage entsprechen, d. h. ein Ausregeln des Netz­ generators 4 durch den drehzahlveränderlichen Antriebs 6 ist nicht notwendig. Die durch den Rotor 1 der Windkraftanlage aufgenommene Energie wird direkt ohne Eingriff des drehzahl­ veränderlichen Antriebs 6 über den Netzgenerator 4 an das Netz weitergeleitet.There are quasi-steady wind conditions that correspond to the nominal operation of the system, ie it is not necessary to regulate the network generator 4 by the variable-speed drive 6 . The energy absorbed by the rotor 1 of the wind power plant is passed on to the network directly via the network generator 4 without the intervention of the variable-speed drive 6 .

Bei Erhöhung des Windenergieangebots würde der Rotor 1 schneller drehen und damit der Netzgenerator 4 seine Nennfre­ quenz von z. B. 50/60 Hz verlassen. Dies wird dadurch vermie­ den, daß der drehzahlveränderliche Antrieb 6 die überschüssi­ ge Energie, d. h. die Differenz zwischen Nennbetrieb und Über­ angebot aufnimmt und als zusätzlicher Generator in elektri­ sche Energie umwandelt und über den Umrichter ebenfalls ins Netz einspeist.When increasing the wind energy supply, the rotor 1 would rotate faster and thus the network generator 4 would have its nominal frequency of z. B. leave 50/60 Hz. This is avoided by the fact that the variable-speed drive 6 absorbs the excess energy, ie the difference between rated operation and excess supply and converts it into electrical energy as an additional generator and also feeds it into the network via the converter.

Falls das Windenergieangebot unterhalb des für den Nennbe­ trieb des Netzgenerators 4 erforderlichen Angebots liegt, d. h. der Netzgenerator 4 nur eine Frequenz kleiner 50/60 Hz abgeben könnte, regelt der drehzahlveränderliche Antrieb 6 über einen Regler 8 aufgrund der über die Meßaufnehmer 7 übermittelten Daten dies aus, indem er motorisch die Energie­ differenz zwischen Nennbetrieb und tatsächlichen Energieange­ bot bereitstellt. Damit arbeitet der drehzahlveränderliche Antrieb motorisch der Energie vom Netz bezieht und in das Ge­ triebe einspeist, so daß der Netzgenerator 4 weiterhin eine Nennfrequenz von z. B. 50/60 Hz abgibt.If the wind energy supply is below the supply required for the nominal operation of the network generator 4 , ie the network generator 4 could only emit a frequency less than 50/60 Hz, the variable-speed drive 6 regulates this via a controller 8 on the basis of the data transmitted via the sensor 7 by providing the energy difference between the nominal operation and the actual energy supply. So that the variable-speed drive motor draws the energy from the network and feeds into the Ge transmissions, so that the network generator 4 continues to have a nominal frequency of z. B. 50/60 Hz.

Falls das Energieangebot weiter absinken sollte, so daß der drehzahlveränderliche Antrieb 6 die Differenz zwischen Ener­ gieminimum und Energienennbetrieb nicht decken sollte, wird die Anlage durch einen nicht näher dargestellten Schaltele­ mente wie z. B. Leistungs- oder Lastschalter abgeschaltet.If the energy supply should decrease further, so that the variable-speed drive 6 should not cover the difference between the energy minimum and the energy nominal operation, the system is operated by a switching element, not shown, such as, for. B. Circuit breaker or load switch switched off.

Ebenso wird die Anlage abgeschaltet, falls sowohl der Netzge­ nerator 4 als auch der drehzahlveränderliche Antrieb 6 das Energieangebot, das am Rotor 1 ansteht, nicht übernehmen kön­ nen. In diesem Fall ist ein Stillstand der Anlage oder eine langsame Regelung der Rotorblätter vorgesehen, die das Ge­ samtsystem in den Arbeitsbereich hebt. Die Summe der Überset­ zungsverhältnisse ist dabei immer konstant. Als Netzgenerato­ ren bzw. elektrische Maschine für den drehzahlveränderlichen Antrieb eignen sich insbesondere für unzugängliche Gebiete, wartungsfreundliche Asynchronmotoren. Es sind aber ebenso Synchronmaschinen verwendbar.Likewise, the system is switched off, if both the Netzge generator 4 and the variable-speed drive 6 can not take over the energy available at the rotor 1 . In this case, a standstill of the system or a slow regulation of the rotor blades is provided, which lifts the entire system into the work area. The sum of the gear ratios is always constant. As a network generator or electrical machine for the variable-speed drive, maintenance-friendly asynchronous motors are particularly suitable for inaccessible areas. But synchronous machines can also be used.

Als Führungsgröße des Regelkreises im Netz- oder Inselbetrieb sind insbesondere die Generatordrehzahl, der Ständerstrom oder die Schlupffrequenz der Asynchronmaschine vorgesehen.As the reference variable of the control loop in grid or island operation are in particular the generator speed, the stator current or the slip frequency of the asynchronous machine is provided.

Claims (5)

1. Windkraftanlage mit einem Rotor (1), wenigstens einem Netzgenerator (4), dadurch gekennzeich­ net, daß sich zwischen Rotor (1) und Netzgenerator (4) ein Getriebe (3) befindet und dabei Mittel vorhanden sind, die über das Getriebe (3) eine hochdynamische Anpassung des Netzgenerators (4) an die jeweilige Windsituation bewirken.1. Wind power plant with a rotor ( 1 ), at least one network generator ( 4 ), characterized in that between the rotor ( 1 ) and the network generator ( 4 ) there is a transmission ( 3 ) and means are available which are via the transmission ( 3 ) cause a highly dynamic adaptation of the network generator ( 4 ) to the respective wind situation. 2. Windkraftanlage nach Anspruch 1, dadurch ge­ kennzeichnet, daß für die hochdynamische Ge­ triebeanpassung zumindest ein drehzahlveränderlicher Antrieb (6) vorgesehen ist.2. Wind power plant according to claim 1, characterized in that at least one variable-speed drive ( 6 ) is provided for the highly dynamic Ge gear adaptation. 3. Windkraftanlage nach Anspruch 2, dadurch ge­ kennzeichnet, daß als drehzahlveränderlicher Antrieb ein Asynchronmotor oder -generator mit Umrichter (5) eingesetzt ist.3. Wind power plant according to claim 2, characterized in that an asynchronous motor or generator with converter ( 5 ) is used as a variable-speed drive. 4. Windkraftanlage nach Anspruch 3, dadurch ge­ kennzeichnet, daß Getriebe (3), Netzgenerator (4) und drehzahlveränderlicher Antrieb (6) einen geschlosse­ nen Regelkreis bilden.4. Wind power plant according to claim 3, characterized in that gear ( 3 ), network generator ( 4 ) and variable-speed drive ( 6 ) form a closed-loop control. 5. Windkraftanlage nach Anspruch 4, dadurch ge­ kennzeichnet, daß der Regelkreis den Netzgene­ ratorstrom als Führungsgröße aufweist.5. Wind turbine according to claim 4, characterized ge indicates that the control loop is the network genes rator current as a reference variable.
DE19955586A 1999-11-18 1999-11-18 Wind-power generator station Ceased DE19955586A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19955586A DE19955586A1 (en) 1999-11-18 1999-11-18 Wind-power generator station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19955586A DE19955586A1 (en) 1999-11-18 1999-11-18 Wind-power generator station

Publications (1)

Publication Number Publication Date
DE19955586A1 true DE19955586A1 (en) 2001-06-13

Family

ID=7929535

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19955586A Ceased DE19955586A1 (en) 1999-11-18 1999-11-18 Wind-power generator station

Country Status (1)

Country Link
DE (1) DE19955586A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927502B2 (en) * 2000-05-12 2005-08-09 Aloys Wobben Three-phase asynchronous motor driven azimuthal drive for wind power installations
DE102004007461A1 (en) * 2004-02-13 2005-09-01 Helgers Finanzberatung Gmbh Method for operating a wind turbine, and accordingly configured wind turbine
US6945752B1 (en) 1998-11-26 2005-09-20 Aloys Wobben Azimuthal driving system for wind turbines
WO2006010190A1 (en) * 2004-07-30 2006-02-02 Gerald Hehenberger Power train for a wind power plant
US7190086B2 (en) * 2001-06-02 2007-03-13 Aloys Wobben Wind energy plant with an asynchronous machine for determining the azimuth position
DE102005049426A1 (en) * 2005-10-15 2007-04-19 Nordex Energy Gmbh Method for operating a wind energy plant
EP1895157A2 (en) * 2006-08-31 2008-03-05 NORDEX ENERGY GmbH Method for operating a wind farm with a synchronous generator and an overriding drive
DE102006040930A1 (en) * 2006-08-31 2008-03-20 Nordex Energy Gmbh Method for operating a wind turbine with a synchronous generator and a superposition gear
DE102007019665A1 (en) 2007-04-26 2008-10-30 Nordex Energy Gmbh Wind energy plant operating method, involves providing stall controller having rotor blade that defines blade angle with rotation plane, and inducing passive stall with predetermined power by increasing or decreasing rotor speed
WO2010040167A1 (en) * 2008-10-09 2010-04-15 Gerald Hehenberger Method for operating a differential gear for an energy production plant
WO2010040166A2 (en) * 2008-10-09 2010-04-15 Gerald Hehenberger Wind power station
WO2010040165A2 (en) * 2008-10-09 2010-04-15 Gerald Hehenberger Differential for a wind power station
WO2009016508A3 (en) * 2007-07-30 2010-05-27 Orbital 2 Limited Improvements in and relating to electrical power generation from fluid flow
WO2010108209A2 (en) * 2009-03-26 2010-09-30 Gerald Hehenberger Energy production plant, in particular wind power station
DE102007008761B4 (en) * 2007-02-22 2010-10-07 Schuler Pressen Gmbh & Co. Kg Wind turbine with braced gear
WO2010040168A3 (en) * 2008-10-09 2010-11-18 Gerald Hehenberger Wind power station
AT510119A1 (en) * 2010-07-01 2012-01-15 Hehenberger Gerald Dipl Ing DIFFERENTIAL GEARBOX FOR A WIND POWER PLANT AND METHOD FOR OPERATING THIS DIFFERENTIAL GEARING
US9446822B2 (en) 2008-04-23 2016-09-20 Principle Power, Inc. Floating wind turbine platform with ballast control and water entrapment plate systems
US9810204B2 (en) 2010-10-15 2017-11-07 Principle Power, Inc. Floating wind turbine platform structure with optimized transfer of wave and wind loads
US9879654B2 (en) 2013-05-20 2018-01-30 Principle Power, Inc. System and method for controlling offshore floating wind turbine platforms
US10421524B2 (en) 2014-10-27 2019-09-24 Principle Power, Inc. Connection system for array cables of disconnectable offshore energy devices
US11225945B2 (en) 2019-05-30 2022-01-18 Principle Power, Inc. Floating wind turbine platform controlled to optimize power production and reduce loading

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3445535A1 (en) * 1983-12-14 1985-06-27 Peter Jan Fournais Method and installations for supplying power to an AC network, using a diesel engine
DE3628137A1 (en) * 1986-08-19 1988-02-25 Bbc Brown Boveri & Cie Wind power installation (system)
DE3402015C2 (en) * 1984-01-21 1990-11-15 Asea Brown Boveri Ag, 6800 Mannheim, De
DE4224228A1 (en) * 1991-08-23 1993-02-25 Valmet Oy Coupling between propeller and gearbox of wind generator - attaches propeller to main shaft passing through hollow layshaft with ring-gear coupling between shafts
DE19634464A1 (en) * 1995-08-28 1997-04-03 Lothar Kloft Eddy current retarder for wind power generator installation
DE19624809A1 (en) * 1996-06-21 1998-01-02 Weier Elektromotorenwerke Gmbh Active filter for compensating rapid power fluctuations in three=phase network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3445535A1 (en) * 1983-12-14 1985-06-27 Peter Jan Fournais Method and installations for supplying power to an AC network, using a diesel engine
DE3402015C2 (en) * 1984-01-21 1990-11-15 Asea Brown Boveri Ag, 6800 Mannheim, De
DE3628137A1 (en) * 1986-08-19 1988-02-25 Bbc Brown Boveri & Cie Wind power installation (system)
DE4224228A1 (en) * 1991-08-23 1993-02-25 Valmet Oy Coupling between propeller and gearbox of wind generator - attaches propeller to main shaft passing through hollow layshaft with ring-gear coupling between shafts
DE19634464A1 (en) * 1995-08-28 1997-04-03 Lothar Kloft Eddy current retarder for wind power generator installation
DE19624809A1 (en) * 1996-06-21 1998-01-02 Weier Elektromotorenwerke Gmbh Active filter for compensating rapid power fluctuations in three=phase network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP 61-106097 in Jap. Abstr. *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6945752B1 (en) 1998-11-26 2005-09-20 Aloys Wobben Azimuthal driving system for wind turbines
US6927502B2 (en) * 2000-05-12 2005-08-09 Aloys Wobben Three-phase asynchronous motor driven azimuthal drive for wind power installations
US7190086B2 (en) * 2001-06-02 2007-03-13 Aloys Wobben Wind energy plant with an asynchronous machine for determining the azimuth position
US7288851B2 (en) 2001-06-02 2007-10-30 Aloys Wobben Wind power installation with an asynchronous machine for establishing the azimuth position
DE102004007461A1 (en) * 2004-02-13 2005-09-01 Helgers Finanzberatung Gmbh Method for operating a wind turbine, and accordingly configured wind turbine
JP2008508456A (en) * 2004-07-30 2008-03-21 ヘーエンベルガー,ゲラルド Wind train power train
WO2006010190A1 (en) * 2004-07-30 2006-02-02 Gerald Hehenberger Power train for a wind power plant
DE102005049426A1 (en) * 2005-10-15 2007-04-19 Nordex Energy Gmbh Method for operating a wind energy plant
DE102005049426B4 (en) * 2005-10-15 2009-12-03 Nordex Energy Gmbh Method for operating a wind energy plant
DE102006040930A1 (en) * 2006-08-31 2008-03-20 Nordex Energy Gmbh Method for operating a wind turbine with a synchronous generator and a superposition gear
EP1895157A2 (en) * 2006-08-31 2008-03-05 NORDEX ENERGY GmbH Method for operating a wind farm with a synchronous generator and an overriding drive
DE102006040929A1 (en) * 2006-08-31 2008-03-20 Nordex Energy Gmbh Method for operating a wind turbine with a synchronous generator and a superposition gear
DE102006040929B4 (en) * 2006-08-31 2009-11-19 Nordex Energy Gmbh Method for operating a wind turbine with a synchronous generator and a superposition gear
EP1895157A3 (en) * 2006-08-31 2010-03-10 NORDEX ENERGY GmbH Method for operating a wind farm with a synchronous generator and an overriding drive
EP1998041A3 (en) * 2007-02-22 2013-09-11 Schuler Pressen GmbH & Co. KG Wind turbine with braced gears
DE102007008761B4 (en) * 2007-02-22 2010-10-07 Schuler Pressen Gmbh & Co. Kg Wind turbine with braced gear
DE102007019665A1 (en) 2007-04-26 2008-10-30 Nordex Energy Gmbh Wind energy plant operating method, involves providing stall controller having rotor blade that defines blade angle with rotation plane, and inducing passive stall with predetermined power by increasing or decreasing rotor speed
RU2471087C2 (en) * 2007-07-30 2012-12-27 Орбитал 2 Лимитед Driving mechanism of power generator (versions), method to control frequency of power generator driving mechanism rotation, turbine (versions)
WO2009016508A3 (en) * 2007-07-30 2010-05-27 Orbital 2 Limited Improvements in and relating to electrical power generation from fluid flow
CN101815862B (en) * 2007-07-30 2012-10-17 轨道2有限公司 Improvements in and relating to electrical power generation from fluid flow
US9446822B2 (en) 2008-04-23 2016-09-20 Principle Power, Inc. Floating wind turbine platform with ballast control and water entrapment plate systems
WO2010040165A3 (en) * 2008-10-09 2010-10-07 Gerald Hehenberger Differential for a wind power station
WO2010040166A2 (en) * 2008-10-09 2010-04-15 Gerald Hehenberger Wind power station
WO2010040168A3 (en) * 2008-10-09 2010-11-18 Gerald Hehenberger Wind power station
WO2010040167A1 (en) * 2008-10-09 2010-04-15 Gerald Hehenberger Method for operating a differential gear for an energy production plant
WO2010040166A3 (en) * 2008-10-09 2010-10-07 Gerald Hehenberger Wind power station
WO2010040165A2 (en) * 2008-10-09 2010-04-15 Gerald Hehenberger Differential for a wind power station
AT507394B1 (en) * 2008-10-09 2012-06-15 Gerald Dipl Ing Hehenberger WIND TURBINE
AT507395A3 (en) * 2008-10-09 2012-09-15 Hehenberger Gerald DIFFERENTIAL GEARBOX FOR WIND POWER PLANT
AT507393B1 (en) * 2008-10-09 2012-11-15 Gerald Dipl Ing Hehenberger WIND TURBINE
WO2010108209A2 (en) * 2009-03-26 2010-09-30 Gerald Hehenberger Energy production plant, in particular wind power station
CN102365456A (en) * 2009-03-26 2012-02-29 格拉尔德·黑亨贝格尔 Energy production plant, in particular wind power station
CN102365456B (en) * 2009-03-26 2014-01-08 格拉尔德·黑亨贝格尔 Energy production plant, in particular wind power station
WO2010108209A3 (en) * 2009-03-26 2011-04-07 Gerald Hehenberger Energy production plant, in particular wind power station
AT510119A1 (en) * 2010-07-01 2012-01-15 Hehenberger Gerald Dipl Ing DIFFERENTIAL GEARBOX FOR A WIND POWER PLANT AND METHOD FOR OPERATING THIS DIFFERENTIAL GEARING
AT510119B1 (en) * 2010-07-01 2015-06-15 Hehenberger Gerald Dipl Ing DIFFERENTIAL GEARBOX FOR A WIND POWER PLANT AND METHOD FOR OPERATING THIS DIFFERENTIAL GEARING
US9810204B2 (en) 2010-10-15 2017-11-07 Principle Power, Inc. Floating wind turbine platform structure with optimized transfer of wave and wind loads
US9879654B2 (en) 2013-05-20 2018-01-30 Principle Power, Inc. System and method for controlling offshore floating wind turbine platforms
US10267293B2 (en) 2013-05-20 2019-04-23 Principle Power, Inc. Methods for controlling floating wind turbine platforms
US10421524B2 (en) 2014-10-27 2019-09-24 Principle Power, Inc. Connection system for array cables of disconnectable offshore energy devices
US10858075B2 (en) 2014-10-27 2020-12-08 Principle Power, Inc. Floating electrical connection system for offshore energy devices
US11225945B2 (en) 2019-05-30 2022-01-18 Principle Power, Inc. Floating wind turbine platform controlled to optimize power production and reduce loading

Similar Documents

Publication Publication Date Title
DE19955586A1 (en) Wind-power generator station
EP1540811B1 (en) Operating method for a wind turbine with a supersynchronous cascade
EP2411669B2 (en) Method for operating a wind turbine
EP1125060B1 (en) Control logic for a wind energy system
DE19532409B4 (en) Method for operating a wind turbine and an associated wind turbine
EP1895157B1 (en) Method for operating a wind farm with a synchronous generator and an overriding drive
DE102011087109B3 (en) Apparatus and method for recovering energy from a fluid flow
EP1012943B1 (en) System for supplying electromotive consumers with electric energy
DE3225456A1 (en) METHOD FOR EXPLOITING WIND ENERGY FOR GENERATING ELECTRICITY WITH CONSTANT FREQUENCY
EP4249748A2 (en) Method for controlling a wind turbine
EP1892412A1 (en) Method for operating wind farms
WO2011018527A2 (en) Asynchronous generator system and wind turbine having an asynchronous generator system
EP1379780B1 (en) Method for operating a wind energy plant
EP1821382A2 (en) Wind farm with an additional gearswitch assembly for low-wind operation
EP2265816B1 (en) Double-fed asynchronous generator and method for its operation
DE102009037523A1 (en) Wind park system, has wind turbines including generator i.e. self-excited synchronous generator, with adjustable excitation that is indirectly adjusted depending upon reactive power requirement of wind park controlling device
EP1548278A2 (en) Wind energy plant with a self powered control device with an active power and reactive power regulation module
DE102007020615A1 (en) Powertrain for a diving power generation plant
DE19509974A1 (en) Method for braking an AC motor
EP3759338B1 (en) Combined power plant and method for operation
DE3151851C2 (en) Power generation plant
DE102011008061A1 (en) Wind-power plant i.e. off-shore-system, for power generation, has generator with low power causing rotation speed reduction for another generator with high power, where generators are coupled with each other and commonly driven
DE3710150C2 (en)
DE919833C (en) Electromechanical converter for an alternating or three-phase wind power plant with a constant number of periods
DE19533950A1 (en) AC generator with constant frequency output for application in power stations

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection