DE19927533B4 - Miniaturized analysis system - Google Patents

Miniaturized analysis system Download PDF

Info

Publication number
DE19927533B4
DE19927533B4 DE19927533A DE19927533A DE19927533B4 DE 19927533 B4 DE19927533 B4 DE 19927533B4 DE 19927533 A DE19927533 A DE 19927533A DE 19927533 A DE19927533 A DE 19927533A DE 19927533 B4 DE19927533 B4 DE 19927533B4
Authority
DE
Germany
Prior art keywords
electrodes
components
adhesive
analysis systems
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19927533A
Other languages
German (de)
Other versions
DE19927533A1 (en
Inventor
Friedhelm Dr. Eisenbeiß
Bernd Dr. Stanislawski
Thomas Greve
Renate Bender
Roland Dr. Hergenröder
Günther Dr. Weber
Benedikt Dr. Graß
Andreas Prof.Dr. Neyer
Mattias Jöhnck
Dirk Siepe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IP VERWERTUNGS GMBH, 82031 GRUENWALD, DE
Original Assignee
Der Spektrochemie und Angewandten Spektroskopie Ev Gesell zur Forderung
GES FOERDERUNG SPEKTROCHEMIE
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Der Spektrochemie und Angewandten Spektroskopie Ev Gesell zur Forderung, GES FOERDERUNG SPEKTROCHEMIE, Merck Patent GmbH filed Critical Der Spektrochemie und Angewandten Spektroskopie Ev Gesell zur Forderung
Priority to DE19927533A priority Critical patent/DE19927533B4/en
Priority to PCT/EP2000/005206 priority patent/WO2000077509A1/en
Priority to JP2001503517A priority patent/JP4317340B2/en
Priority to EP00938768A priority patent/EP1188047A1/en
Priority to AU54032/00A priority patent/AU5403200A/en
Priority to PCT/EP2000/005518 priority patent/WO2000077511A1/en
Priority to JP2001503518A priority patent/JP4387624B2/en
Priority to AU54051/00A priority patent/AU5405100A/en
Priority to EP00938793A priority patent/EP1194769A1/en
Publication of DE19927533A1 publication Critical patent/DE19927533A1/en
Application granted granted Critical
Publication of DE19927533B4 publication Critical patent/DE19927533B4/en
Priority to US11/000,419 priority patent/US20050077175A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • B29C65/526Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive by printing or by transfer from the surfaces of elements carrying the adhesive, e.g. using brushes, pads, rollers, stencils or silk screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/4473Arrangements for investigating the separated zones, e.g. localising zones by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • G01N35/085Flow Injection Analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4835Heat curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4845Radiation curing adhesives, e.g. UV light curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • B29C65/7805Positioning the parts to be joined, e.g. aligning, indexing or centring the parts to be joined comprising positioning features
    • B29C65/7817Positioning the parts to be joined, e.g. aligning, indexing or centring the parts to be joined comprising positioning features in the form of positioning marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • B29C65/7832Positioning the parts to be joined, e.g. aligning, indexing or centring by setting the overlap between the parts to be joined, e.g. the overlap between sheets, plates or web-like materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • B29C65/7847Holding or clamping means for handling purposes using vacuum to hold at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6052Construction of the column body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/64Electrical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Abstract

Die Erfindung betrifft Herstellung und Aufbau von mikrostrukturierten Analysensystemen. Das erfindungsgemäße Verfahren ermöglicht die Produktion von Analysensystemen aus Kunststoff, die eine flüssigkeits- und gasdichte Kanalstruktur aufweisen, in der sich an beliebigen Stellen Dünnschichtelektroden befinden können.The invention relates to the manufacture and construction of microstructured analysis systems. The method according to the invention enables the production of plastic analysis systems which have a liquid- and gas-tight channel structure in which thin-film electrodes can be located at any point.

Description

Die Erfindung betrifft die Herstellung und den Aufbau von miniaturisierten Analysensystemen, insbesondere solchen mit Steuer- und Meßvorrichtung für elektrische Leitfähigkeit.The invention relates to the manufacture and the construction of miniaturized analysis systems, in particular those with control and measuring device for electrical Conductivity.

Miniaturisierte Analysensysteme, insbesondere solche mit mikrofluidischer Kanalstruktur gewinnen zunehmend an Bedeutung. Auf besonderes Interesse stoßen miniaturisierte Analysensysteme, die Möglichkeiten zur elektrophonetischen Auftrennung und Analyse von Proben bieten.Miniaturized analysis systems, especially those with a microfluidic channel structure increasingly important. Miniaturized ones are of particular interest Analysis systems, the possibilities for the electrophonetic separation and analysis of samples.

Analyseeinheiten, die für derartige Anwendungen eingesetzt werden können, bestehen zumeist aus einer Bodenplatte (Substrat) und einem Deckel, zwischen denen sich Mikrokanalstrukuren, Elektroden und andere erforderliche Funktionalitäten, wie Detektoren, Reaktoren, Ventile etc. befinden.Analysis units for such Applications can be used usually consist of a base plate (substrate) and a lid, between which there are microchannel structures, electrodes and other required functionalities such as detectors, reactors, valves etc. are located.

Zu den Ansprüchen, die an ein mikrofluidisches Analysensystem gestellt werden müssen, gehört eine ausreichende Stabilität bezüglich mechanischer, chemischer, elektrischer und thermischer Einwirkungen. Für die Kanalstrukturen bedeutet mechanische Stabilität insbesondere Dimensions- und Volumenstabilität, was wichtige Voraussetzung für z.B. eine quantitativ reproduzierbare Probenaufgabe ist. Auch innere Druckstabilität der Mikrokanäle ist hinsichtlich des Einsatzes von z.B. Pumpen zum Befüllen der Mikrokanäle notwendig. Die verwendeten Materialien müssen selbstverständlich chemisch inert gegen das in den Kanälen transportierte Medium sein. Soweit Elektroden in den Kanal eingebracht werden, sollten diese mit hoher Genauigkeit (wenige μm) in dem Kanal positionierbar sein, um z.B. bei Verwendung als Detektorelektrode reproduzierbare Ergebnisse liefern zu können. Dazu ist auch Voraussetzung, daß die Kontaktflächen innerhalb des Kanals frei von Verunreinigungen sind. Die Elektroden sollten ferner einen geringen Innenwiderstand und einen potentiell hohen Stromdurchfluß erlauben. Dies gilt insbesondere für sogenannte Leistungselektroden, mit denen in Abhängigkeit des verwendeten Mediums innerhalb der Kanäle ein elektrokinetischer Fluß erzeugt werden kann. Letztlich sollten die Elektroden leicht anschließbar sein.To the claims made on a microfluidic Analysis system must be put heard sufficient stability in terms of mechanical, chemical, electrical and thermal effects. For the Channel structures mean mechanical stability especially dimensional and volume stability, what important requirement for e.g. is a quantitatively reproducible sample task. Even inner ones pressure stability of the microchannels is with regard to the use of e.g. Pumps for filling the microchannels necessary. The materials used must of course be chemical inert to that in the channels transported medium. As far as electrodes are inserted in the channel, these should be positioned in the channel with high accuracy (a few μm) be e.g. reproducible results when used as a detector electrode to be able to deliver. It is also a prerequisite that the contact surfaces are free of contaminants within the channel. The electrodes should also a low internal resistance and a potentially high one Allow current flow. This applies in particular to so-called power electrodes with which depending on the medium used within the channels creates an electrokinetic flow can be. Ultimately, the electrodes should be easy to connect.

Als Material zur Herstellung derartiger Analyseeinheiten dient häufig Silizium oder Glas. Nachteil dieser Materialien ist jedoch, daß sie sich nicht zur kostengünstigen Massenfabrikation der Analysensysteme eignen. Hierzu sind Materialien auf Kunststoffbasis wesentlich besser geeignet. Die Bauteile, wie Substrat und Deckel, die die eigentlichen Mikrostrukturen enthalten, können dann durch bekannte Verfahren, wie Heißprägen, Spritzguß oder Reaktionsguß kostengünstig hergestellt werden.As a material for making such Analysis units are often used Silicon or glass. However, the disadvantage of these materials is that they are not cheap Mass production of the analysis systems are suitable. There are materials for this on a plastic basis much more suitable. The components like Substrate and lid, which contain the actual microstructures, can then manufactured inexpensively by known methods such as hot stamping, injection molding or reaction molding become.

Für das Verschließen der resultierenden offenen Mikrostrukturen mit Deckeln hingegen gibt es bisher für Bauteile aus Kunststoff keine massenproduktionsfähigen Techniken. Dies gilt insbesondere für solche Mikrokanalstrukturen, bei denen zusätzlich metallische Elektroden an beliebigen Stellen innerhalb einer geschlossenen Kanalstruktur zu positionieren sind.For the closing the resulting open microstructures with lids has been around for Plastic components are not mass production techniques. this applies especially for those microchannel structures in which additional metallic electrodes anywhere within a closed channel structure to be positioned.

In EP 0 738 306 wird ein Verfahren zum Verschließen von Mikrokanalstrukturen beschrieben, wobei ein gelöster Thermoplast auf das strukturierte Polymersubstrat aufgeschleudert wird. Dieser gelöste Thermoplast hat eine niedrigere Schmelztemperatur als die zu verklebenden Teile. Das thermische Verbinden von Deckel und Substrat erfolgt bei 140°C. Die Oberfläche des Kanals besteht somit aus dem thermoplastischen Klebstoff.In EP 0 738 306 describes a method for closing microchannel structures, wherein a dissolved thermoplastic is spun onto the structured polymer substrate. This dissolved thermoplastic has a lower melting temperature than the parts to be glued. The cover and substrate are thermally bonded at 140 ° C. The surface of the channel therefore consists of the thermoplastic adhesive.

In US 5,571,410 werden mikrofluidische Strukturen mit Laser-Ablation in KaptonTM erzeugt und mit einer KJ® beschichteten KaptonTM -Folie verschweißt.In US 5,571,410 For example, microfluidic structures with laser ablation are created in Kapton TM and welded with a KJ ® coated Kapton TM film.

Becker et al. (H. Becker, W. Dietz, P. Dannberg, „Microfluidic manifolds by polymer hot embossing for μTAS applications," Proceedings Micro Total Analysis Systems 1998, 253-256, Banff, Canada) berichten über die Herstellung von mikrofluidischen Kanälen in heißgeprägtem PMMA, welche durch chemisch-unterstütztes Bonding mit PMMA-Deckeln verschlossen werden.Becker et al. (H. Becker, W. Dietz, P. Dannberg, "Microfluidic manifolds by polymer hot embossing for μTAS applications, "Proceedings Micro Total Analysis Systems 1998, 253-256, Banff, Canada) report on the Manufacture of microfluidic channels in hot-stamped PMMA, which is achieved through chemically-supported bonding be closed with PMMA lids.

In WO 97/38300 wird ein Verfahren beschrieben, bei dem ein Deckel mit einer homogenen Polydimethylsiloxan (PDMS)-Klebschicht benetzt wird und mit einer Fluidikstruktur auf Polyacrylbasis verklebt wird.WO 97/38300 describes a method described in which a lid with a homogeneous polydimethylsiloxane (PDMS) adhesive layer is wetted and with a fluid structure Polyacrylic base is glued.

Alle zuvor erwähnten Verfahren ermöglichen zwar, durch Verbinden eines Substrats mit einem Deckel Mikrokanalstrukturen zu erzeugen, sie erlauben jedoch nicht die Integration von Elektroden, welche direkten Kontakt zum Medium in den Kanälen haben.All of the methods mentioned above enable by connecting a substrate to a lid microchannel structures but they do not allow the integration of electrodes, which have direct contact with the medium in the channels.

In EP 0 767 257 ist ein Verfahren zur Integration von Elektroden in Mikrostrukturen beschrieben, doch erlaubt dieses Verfahren nicht eine flüssigkeitsisolierte Kontaktierung, da zum photochemischen Abscheiden des Metalles in den Kanälen diese mit Metallsalzlösungen gespült werden müssen.In EP 0 767 257 describes a method for the integration of electrodes in microstructures, but this method does not allow liquid-insulated contacting, since the metal in the channels must be rinsed with metal salt solutions in order to photochemically deposit them.

Eine Methode zur Integration von Elektroden an beliebigen Stellen innerhalb eines mikrostrukturierten Kanals mit der Möglichkeit zur flüssigkeitsisolierten Kontaktierung der Elektroden wurde von Fielden et al. (P.R.-Fielden, S.J. Baldock, N.J. Goddard, L.W. Pickering, J.E. Prest, R.D. Snook, B.J.T. Brown, D.I. Vaireanu, „A miniaturized Planar isotachophoresis separation device for transition metals with integrated conductivity detection", Proceedings Micro Total Analysis Systems '98, 323-326, Banff, Canada) beschrieben. Die Autoren haben eine mikrofluidische Kanalstruktur in Silikon (PDMS) abgeformt und drücken diese mechanisch gegen eine mit Elektroden (Kupfer) versehene Platine. Die Kanäle werden somit durch zwei unterschiedliche Materialien begrenzt. Um die resultierenden Kanäle geschlossen zu halten, muß ein konstanter mechanischer Druck aufrechterhalten werden. Durch den Druck auf das Silikonkissen treten in diesem System leicht Verformungen der Kanalstrukturen auf.A method of integrating Electrodes anywhere in a microstructured Channel with the possibility for liquid insulated Contacting of the electrodes was carried out by Fielden et al. (P.R.-Fielden, S.J. Baldock, N.J. Goddard, L.W. Pickering, J.E. Perst, R.D. Snook, B.J.T. Brown, D.I. Vaireanu, "A miniaturized planar isotachophoresis separation device for transition metals with integrated conductivity detection ", Proceedings Micro Total Analysis Systems '98, 323-326, Banff, Canada). The authors have a microfluidic channel structure in silicone (PDMS) molded and press this mechanically against a circuit board provided with electrodes (copper). The canals are thus limited by two different materials. Around the resulting channels to keep closed must constant mechanical pressure can be maintained. By the In this system, pressure on the silicone cushion easily causes deformation of the channel structures.

Aufgabe der vorliegenden Erfindung ist es deshalb, ein verbessertes mikrofluides Analysensystem bereitzustellen, dessen Substrat und Deckel aus polymeren organischen Materialien bestehen und fest miteinander verbunden sind. und in das an jeder beliebigen Stelle Elektroden mit Möglichkeiten zur flüssigkeitsisolierten Kontaktierung eingebracht werden können. Falls Elektroden in das Analysensystem integriert werden sollen, besteht eine zusätzliche Aufgabe darin, daß die Elektroden an jeder beliebigen Stelle im Kanalsystem integriert werden können und nicht durch das Bondingverfahren beschädigt oder abgelöst werden.Object of the present invention is therefore to provide an improved microfluidic analysis system its substrate and lid made of polymeric organic materials exist and are firmly connected. and in that at any Make electrodes with possibilities for liquid insulated Contacting can be introduced. If electrodes in the Analysis system to be integrated, there is an additional task in that the Electrodes integrated at any point in the duct system can be and not be damaged or detached by the bonding process.

Es wurde gefunden, daß die Kombination eines neuen Verfahrens zur Herstellung haftfester Edelmetallschichten auf Kunststoffoberflächen mit einer speziellen Bonding-Technik zum Zusammenfügen zweier Kunststoffbauteile es ermöglicht, mikrofluide Analysensysteme mit den im Stand der Technik und in der Aufgabenstellung diskutierten Eigenschaften herzustellen.It was found that the combination a new process for the production of adhesive precious metal layers on plastic surfaces with a special bonding technique for joining two Plastic components it allows microfluidic analysis systems with the in the prior art and in to produce properties discussed for the task.

Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung mikrostrukturierter Analysensysteme, genauer einer Einheit mit Mikrokanalstruktur für Analysensysteme, das im wesentlichen folgende Schritt umfaßt:Object of the present invention is therefore a process for the production of microstructured analysis systems, more precisely a unit with a microchannel structure for analysis systems, which essentially includes the following step:

  • a) Bereitstellen mindestens eines Substrats und mindestens eines Deckels aus Kunststoff, wobei mindestens ein Bauteil mikrostrukturiert ist, d.h. ein Kanalsystem aufweist;a) providing at least one substrate and at least one plastic lid, at least one Component is microstructured, i.e. has a channel system;
  • b) Benetzen von entweder Substrat oder Deckel mit Klebstoff durch Verfahren wie Walzenauftrag oder Tampondruck, wobei die Kanäle frei von Klebstoff bleiben; b) Wetting either substrate or lid with adhesive by methods such as roller application or pad printing, the channels being free stay from glue;
  • c) Justieren der Bauteile;c) adjusting the components;
  • d) Zusammenpressen der Bauteile;d) pressing the components together;
  • e) Aushärten des Klebers.e) curing of the glue.

Bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens ist es, in Schritt a) mindestens ein Bauteil einzusetzen, das mit auf seiner Oberfläche haftenden Elektroden versehen ist.Preferred embodiment of the method according to the invention is to use at least one component in step a) which on its surface adhering electrodes is provided.

Gegenstand der Erfindung ist weiterhin ein Analysensystem bzw. eine Einheit mit Mikrokanalstruktur für Analysensysteme, hergestellt nach dem erfindungsgemäßen Verfahren.The subject of the invention is furthermore an analysis system or a unit with a microchannel structure for analysis systems, produced by the method according to the invention.

Bevorzugte Ausführungsform der Einheit mit Mikrokanalstruktur für Analysensysteme ist ein System, das Elektroden mit einer Haftschicht aus Chromoxid und einer Schicht aus Edelmetall aufweist.Preferred embodiment of the unit with micro-channel structure for analysis systems is a system that electrodes with an adhesive layer made of chromium oxide and has a layer of precious metal.

1 zeigt beispielhaft eine mögliche Struktur zweier Bauteile eines Analysensystems. 1 shows an example of a possible structure of two components of an analysis system.

2 und 3 zeigen zwei Möglichkeiten für die Kontaktierung der Elektroden. 2 and 3 show two options for contacting the electrodes.

Als mikrofluide Analysensysteme mit Meß- und Steuervorrichtungen zur elektrischen Leitfähigkeit gelten erfindungsgemäß Systeme, in denen durch Zusammenfügen von mindestens zwei Bauteilen, wie z.B. Substrat und Deckel, Mikrokanalstrukturen erzeugt werden können, die flüssigkeitsund/oder gasdicht verschlossen werden können. Substrat und Deckel sind dazu fest miteinander verbunden. Zusätzlich können diese Systeme an jeder beliebigen Stelle des Kanalsystems Elektroden enthalten, die in freiem Kontakt zum Inneren des Kanals stehen.As microfluidic analysis systems with Measuring and Control devices for electrical conductivity apply to systems according to the invention, in which by putting them together of at least two components, e.g. Substrate and lid, micro-channel structures can be generated the liquid and / or gas tight can be closed. The substrate and lid are firmly connected to each other. In addition, these can Systems at any point in the duct system contain electrodes, that are in free contact with the interior of the channel.

Die mikrofluiden Analysensysteme können durch Variation verschiedener Parameter, wie beispielsweise der Kanalstruktur, dem Anschluß von anderen Systemen, wie Pumpen, Zuleitungen etc., beliebiger Anordnung der Elektroden usw. für unterschiedliche Anwendungen angepasst werden. Besonders bevorzugt sind die erfindungsgemäßen Analysensysteme für Anwendungen im Bereich der elektrophonetischen Trennung und Analyse, beispielsweise für Kapillarelektrophorese oder Isotachophorese sowie für mikropräparative Synthesen oder Derivatisierungen von Stoffen.The microfluidic analysis systems can by Variation of various parameters, such as the channel structure, the connection of other systems, such as pumps, supply lines etc., any arrangement of electrodes etc. for different applications can be adapted. Particularly preferred are the analysis systems according to the invention for applications in the field of electrophonetic separation and analysis, for example for capillary electrophoresis or isotachophoresis as well as for micropreparative Synthesis or derivatization of substances.

Die Bauteile der Systeme bestehen bevorzugt aus kommerziell erhältlichen thermoplastischen Kunststoffen, wie PMMA (Polymethylmethacrylat), PC (Polycarbonat) oder PMP (Polymethylpenten), cycloolefinischen Copolymeren oder duroplastischen Kunststoffen, wie beispielsweise Epoxidharzen. Bevorzugterweise bestehen alle Bauteile, d.h. Substrate und Deckel, eines Systems aus demselben Material.The components of the systems exist preferably from commercially available thermoplastics, such as PMMA (polymethyl methacrylate), PC (Polycarbonate) or PMP (polymethylpentene), cycloolefinic copolymers or thermosetting plastics, such as epoxy resins. All components preferably exist, i.e. Substrates and lids, of a system made of the same material.

Die Bauteile können nach dem Fachmann bekannten Methoden hergestellt werden. Bauteile, die Mikrostrukturen enthalten, können beispielsweise durch etablierte Verfahren, wie Heißprägen, Spritzguß oder Reaktionsguß, produziert werden. Besonders bevorzugt werden Bauteile eingesetzt, die nach bekannten Techniken zur Massenproduktion vervielfältigt werden können. Mikrostrukturierte Bauteile können Kanalstrukturen mit Querschnittsflächen zwischen 10 und 250000 μm2 besitzen.The components can be produced by methods known to the person skilled in the art. Components that contain microstructures can be produced, for example, by established processes such as hot stamping, injection molding or reaction molding. Components that can be reproduced using known techniques for mass production are particularly preferably used. Microstructured components can have channel structures with cross-sectional areas between 10 and 250000 μm 2 .

Die Elektroden, die in die erfindungsgemäßen Analysensysteme eingebracht sind, werden typischerweise für die Generierung eines Flusses von Ionen oder für Detektionszwecke eingesetzt. Sie müssen eine hinreichende Haftfestigkeit auf den Kunststoffbauteilen aufweisen. Dies ist sowohl für das Zusammenfügen der einzelnen Bauteile als auch für den späteren Einsatz der Analysensysteme von Bedeutung.The electrodes used in the analysis systems according to the invention are typically used to generate a river of ions or for Detection purposes used. You must have adequate adhesive strength have on the plastic components. This is both for joining the individual components as well as for the later Use of the analysis systems of importance.

Für die Wahl des Elektrodenmaterials ist vor allem die geplante Verwendung des Analysensystems ausschlaggebend. Da Systeme mit Mikrokanalstrukturen und integrierten Elektroden im wesentlichen im Bereich der Analytik zur Anwendung kommen, sollten die Elektroden aus chemisch inerten Materialien, wie z.B. Edelmetallen (Platin, Gold) bestehen.For The choice of electrode material is primarily the planned use of the analysis system is crucial. Because systems with micro-channel structures and integrated electrodes mainly in the field of analytics should be used, the electrodes should be made of chemically inert materials, such as. Precious metals (platinum, gold) exist.

Die Wahl derartiger Materialien und Methoden zur Aufbringung sind dem Fachmann bekannt. Typischerweise erfolgt die Metallisierung von Kunststoffoberflächen durch elektrochemisches Abscheiden von Metallen aus Metallsalzlösungen. Hierfür ist es allgemein üblich, in einem mehrstufigen Prozeß zunächst die Kunststoffoberfläche chemisch oder mechanisch vorzubehandeln, einen diskontinuierlichen Primer aufzubringen und abschließend die elektrochemische Abscheidung durchzuführen. Beschreibungen dieser Metallisierungstechniken finden sich z.B. in US 4,590,115 , EP 0 414 097 , EP 0 417 037 und bei Wolf und Gieseke (G.D. Wolf, N. Gieseke, „Neues Verfahren zur ganzflächigen und partiellen Metallisierung von Kunststoffen," Galvanotechnik 84, 2218-2226, 1993). Den naßchemischen Verfahren gemeinsam ist, daß relativ aufwendige Vorbehandlungsprozesse notwendig sind, um ausreichende Haftfestigkeiten zu erreichen.The choice of such materials and methods of application are known to the person skilled in the art. Typically, plastic surfaces are metallized by electrochemical deposition of metals from metal salt solutions. For this it is common practice to first chemically or chemically process the plastic surface in a multi-stage process pretreat mechanically, apply a discontinuous primer and finally carry out the electrochemical deposition. Descriptions of these metallization techniques can be found, for example, in US 4,590,115 . EP 0 414 097 . EP 0 417 037 and with Wolf and Gieseke (GD Wolf, N. Gieseke, "New Process for the Full-Surface and Partial Metallization of Plastics," Galvanotechnik 84, 2218-2226, 1993). What the wet-chemical processes have in common is that relatively complex pretreatment processes are necessary in order to achieve adequate To achieve adhesive strengths.

In DE 196 02 659 wird das haftfeste Aufbringen von Kupfer auf mehrphasige Polymermischungen mittels Aufdampfen oder Sputtern beschrieben. Als Ursache der guten Haftung wird die Zusammensetzung der Polymermischungen genannt. Demnach müssen die Mischungen Polyarylensulfide, Polyimide oder einen aromatischen Polyester enthalten.In DE 196 02 659 describes the adherent application of copper to multiphase polymer mixtures by means of vapor deposition or sputtering. The cause of the good adhesion is the composition of the polymer mixtures. Accordingly, the mixtures must contain polyarylene sulfides, polyimides or an aromatic polyester.

Der Einfluß von Plasmavorbehandlungen zur Erzielung besserer Hafteigenschaften von Metallen auf Kunststoffoberflächen wird von Friedrich (J. Friedrich, „Plasmabehandlung von Polymeren", kleben & dichten 41, 28-33, 1997) am Beispiel verschiedener kommerziell erhältlicher Thermoplaste zusammengefaßt. Allgemeines Ziel der Plasmavorbehandlung ist es, polare funktionelle Gruppen an der Polymeroberfläche zu generieren, so daß eine erhöhte Haftfestigkeit metallischer Schichten resultiert. Beispielhaft wird die Wirkung von Chrom als Haftschicht bei der Metallisierung von Kunststoffen beschrieben. Als Ursache der guten Haftung von Chrom z.B. wird eine Wechselwirkung polarer Gruppen, wie z.B. Carbonyl- oder Estergruppen, mit 3d-Orbitalen des Chroms genannt.The influence of plasma pretreatments to achieve better adhesive properties of metals on plastic surfaces by Friedrich (J. Friedrich, “Plasma Treatment of polymers ", glue & seal 41, 28-33, 1997) using the example of various commercially available Thermoplastics summarized. The general goal of plasma pretreatment is polar functional Groups on the polymer surface to generate so that a increased adhesive strength metallic layers results. The effect is exemplary of chrome as an adhesive layer in the metallization of plastics described. As the cause of the good adhesion of chrome e.g. becomes an interaction polar groups, e.g. Carbonyl or ester groups, with 3d orbitals called the chrome.

Besonders bevorzugt werden die Elektrodenstrukturen auf den Kunststoffbauteilen mittels einer neuartigen Zwei-Schicht-Technik erzeugt. Dazu wird erfindungsgemäß zunächst eine haftvermittelnde Schicht aus Chromoxid erzeugt. Es zeigte sich, daß Chromoxid im Gegensatz zu Edelmetallen hervorragende Hafteigenschaften auf Kunststoffoberflächen besitzt. Zudem ist Chromoxid im Gegensatz zu elementarem Chrom und anderen Übergangsmetallen wesentlich beständiger gegenüber Redoxprozessen. Auf die Haftschicht aus Chromoxid wird dann das Edelmetall, wie beispielsweise Platin oder dessen Legierungen oder Gold, aufgetragen.The electrode structures are particularly preferred on the plastic components using a new two-layer technique generated. For this purpose, according to the invention, a adhesion-promoting layer made of chromium oxide. It was found that chromium oxide unlike precious metals, it has excellent adhesive properties Plastic surfaces has. In addition, chromium oxide is in contrast to elemental chromium and other transition metals much more stable across from Redox processes. This is then on the chromium oxide adhesive layer Precious metal, such as platinum or its alloys or Gold, applied.

Das selektive Aufbringen von Chromoxid und der darauf abzuscheidenden Edelmetallschicht auf Kunststoffsubstraten erfolgt bevorzugt im lift-off-Verfahren oder mittels der sogenannten Schattenmaskentechnik oder der Strukturierung von zunächst ganzflächig aufgebrachten metallischen Schichten. Diese Verfahrenstechniken sind Standardprozesse der Mikrostrukturtechnik. Im folgenden werden die für die Zwei-Schicht-Technik erforderlichen Arbeitsschritte für die genannten Verfahren kurz beschrieben.The selective application of chromium oxide and the layer of precious metal to be deposited on plastic substrates is preferably carried out using the lift-off method or using so-called shadow mask technology or structuring from initially the whole area applied metallic layers. These process techniques are standard processes in microstructure technology. The following will be the for the two-shift technique required for the steps mentioned Procedure briefly described.

Lift-off-Verfahren: Das selektiv zu metallisierende Kunststoffbauteil wird mit einem Photolack beschichtet. Dieser Photolack darf dabei das zu metallisierende Kunststoffteil nicht bzw. nur leicht anlösen. Für PMMA hat sich z.B. ein Photolack der Firma Allresist, Berlin (AR 5300/8) als geeignet erwiesen. Nach Belichtung und Entwicklung der zu metallisierenden Strukturen erfolgt das Aufbringen der metallischen Schichten in einer Sputteranlage. Das Aufbringen der Chromoxidschicht erfolgt während des Sputterprozesses durch das Einleiten von Sauerstoff in das typischerweise verwendete Argon-Plasma der Sputteranlage. Als Sputtertarget wird ein konventionelles Chrom-Target verwendet. Typische Chromoxid- Schichtdicken sind 20-50 nm. Alternativ kann direkt ein Chromoxid-Target eingesetzt werden. Das Sputtern von Platin bzw. dessen Legierungen oder von Gold wird direkt anschließend unter Standardbedingungen, d.h. im Argon-Plasma, durchgeführt. In dem eigentlichen lift-off-Prozeß wird der noch vorhandene Photolack und mit diesem die auf dem Lack befindliche Metallschicht in einem Entwickler der Firma Allresist (AR 300-26) von dem Kunststoffbauteil abgelöst.Lift-off procedure: The selective one Plastic component to be metallized is coated with a photoresist. This photoresist may be the plastic part to be metallized do not or only slightly dissolve. For PMMA e.g. a photoresist from Allresist, Berlin (AR 5300/8) proven suitable. After exposure and development of the metallized The metallic layers are applied in structures a sputtering system. The chrome oxide layer is applied while of the sputtering process by typically introducing oxygen into it used argon plasma from the sputtering system. As a sputtering target used a conventional chrome target. Typical chromium oxide layer thicknesses are 20-50 nm. Alternatively, a chromium oxide target can be used directly become. The sputtering of platinum or its alloys or of Gold turns right afterwards under standard conditions, i.e. in argon plasma. By doing actual lift-off process the still existing photoresist and with it the one on the lacquer Metal layer in a developer from Allresist (AR 300-26) detached from the plastic component.

Schattenmaskentechnik: Das selektiv zu metallisierende Kunststoffteil wird mit einer sogenannten Schattenmaske abgedeckt. Diese hat an den zu metallisierenden Bereichen Aussparungen. Durch diese hindurch werden die Metallschichten in Analogie zum lift-off-Verfahren aufgesputtert.Shadow mask technique: The selective Plastic part to be metallized is provided with a so-called shadow mask covered. This has cutouts in the areas to be metallized. Through this, the metal layers become analogous to the lift-off process sputtered.

Strukturierung flächiger metallischer Schichten: Auf einem selektiv zu metallisierenden Kunststoffteil wird zunächst ganzflächig eine Metallschicht in Analogie zum bereits beschriebenen Sputterprozeß aufgebracht. Diese wird in nachfolgenden Prozeßschritten, entweder durch selektiven Abtrag mittels z.B. Laserablation (Gold und Platin) oder z.B. durch selektives naßchemisches Ätzen, strukturiert. Zur Strukturierung mittels naßchemischem Ätzen wird auf die Metallschicht zunächst ein Photolack (Hoechst AG, Deutschland; AZ 5214) aufgebracht, belichtet und entwickelt. Gold wird dann in Cyanid-Lösung in den belichteten Bereichen abgelöst.Structuring flat metallic layers: On a plastic part to be selectively metallized, one is first applied over the entire surface Metal layer applied in analogy to the sputtering process already described. This is done in subsequent process steps, either by selective removal using e.g. Laser ablation (gold and platinum) or e.g. structured by selective wet chemical etching. to Structuring by means of wet chemical etching on the metal layer first a photoresist (Hoechst AG, Germany; AZ 5214) applied, exposed and developed. Gold then appears in cyanide solution in the exposed areas replaced.

Die Haftfestigkeit von mit Chrom als auch mit Chromoxid als Haftschicht mittels Sputtertechnik hergestellten Elektroden wurde mit Hilfe von Abreißtests überprüft. Die Haftfestigkeit der Chromoxidschichten ist deutlich größer. Auch bei Ultraschallbehandlung in alkalischer Lösung sind die Metallschichten, welche mit Chromoxid als Haftschicht hergestellt wurden, verglichen mit Metallschichten, die mit Chrom als Haftschicht hergestellten wurden, deutlich beständiger.The adhesive strength of with chrome as well as with chromium oxide as an adhesive layer using sputtering technology Electrodes were checked using tear tests. The adhesive strength of the Chromium oxide layers are significantly larger. Even with ultrasound treatment in alkaline solution are the metal layers, which are made with chromium oxide as an adhesive layer were compared to metal layers using chrome as the adhesive layer were manufactured, much more stable.

Nach Produktion und Vorbereitung der einzelnen Bauteile werden diese nach dem endungsgemäßen Verfahren zusammengefügt. Bevorzugterweise ist ein Bauteil, das Substrat, mikrostrukturiert und mit rückseitigen Bohrungen zum Befüllen der Kanäle und/oder Kontaktieren der Elektroden versehen. Desweiteren hat sich auch die Verwendung einer sogenannten Dichtlippe, d.h. einer die Kanalstrukturen vollständig umschließenden Erhebung auf den Substraten mit Höhen zwischen typischerweise 0,5 bis 5 μm, hinsichtlich des Verklebeprozesses als sehr vorteilhaft erwiesen. Das andere Bauteil, der Deckel, dient zur Abdeckung und ist z.B. bei elektrophoretischen Analysensystemen mit den Elektroden versehen. In diesem Fall wird der Deckel endungsgemäß als Elektrodendeckel bezeichnet. Da sich das erfindungsgemäße Verfahren nicht nur auf die Herstellung der Meß- und Steuervorrichtung der Analysensysteme bezieht, können bestimmte Anwendungen der Systeme eine von dieser bevorzugten Anordnung abweichende Funktionalisierung der Bauteile erfordern. In diesem Fall können beispielsweise mehr als zwei Bauteile, z.B. zwei Deckel und ein Substrat etc, zusammengefügt werden, um übereinander liegende Kanalstrukturen zu erzeugen, oder weitere Funktionalitäten, wie Detektionssysteme, Reaktionskammern etc., in die Bauteile integriert werden. Erfindungsgemäß werden alle Teile der Analysensysteme, die mittels eines Bondingverfahrens zusammengefügt werden als Bauteile bezeichnet. Sie können mikrostrukturiert sein, mit Elektroden versehen sein oder andere Funktionalitäten aufweisen. Eine Unterteilung der Bauteile in Substrate und Deckel oder auch Elektrodendeckel, falls das entsprechende Bauteil mit Elektroden versehen ist, dient lediglich der näheren Beschreibung der Ausführungsform der speziellen Bauteile und stellt keine Einschränkung bezüglich weiterer Eigenschaften der Bauteile, wie Mikrostrukturierung etc., oder deren Kombination untereinander dar.After production and preparation of the individual components, they are assembled using the process according to the invention. A component, the substrate, is preferably microstructured and provided with bores on the back for filling the channels and / or contacting the electrodes. Furthermore, there is also the use of a so-called sealing lip, ie one of the channel structures completely enclosing survey on the substrates with heights between typically 0.5 to 5 μm, has proven to be very advantageous with regard to the bonding process. The other component, the cover, is used for covering and is provided with the electrodes, for example in electrophoretic analysis systems. In this case, the cover is referred to as an electrode cover. Since the method according to the invention does not only relate to the manufacture of the measuring and control device of the analysis systems, certain applications of the systems may require a functionalization of the components which differs from this preferred arrangement. In this case, for example, more than two components, for example two lids and a substrate etc., can be joined together in order to produce channel structures lying one above the other, or further functionalities such as detection systems, reaction chambers etc. can be integrated into the components. According to the invention, all parts of the analysis systems that are joined together by means of a bonding method are referred to as components. They can be microstructured, provided with electrodes or have other functionalities. A subdivision of the components into substrates and covers or also electrode covers, if the corresponding component is provided with electrodes, only serves to provide a more detailed description of the embodiment of the special components and does not restrict the further properties of the components, such as microstructuring etc., or their combination with one another represents.

Zum Zusammenfügen der Bauteile wird erfindungsgemäß bevorzugt zunächst auf das mikrostrukturierte Bauteil an den Stellen, an denen keine Strukturierung vorliegt, ein Klebstoff aufgebracht. Die Schichtdicke beträgt zwischen 0,5 und 10 μm, bevorzugt zwischen 3 und 8 μm. Typischerweise erfolgt die Auftragung mittels einem aus der Drucktechnik bekannten flächigen Walzenautrag. Der verwendete Klebstoff darf die Oberfläche der Bauteile nicht oder nur sehr schwach anlösen, damit die Elektroden beim Verklebungsprozeß nicht vom Klebstoff abgelöst oder unterbrochen werden. Bevorzugterweise wird daher als Klebstoff das Produkt NOA 72, Thiolacrylat der Firma Norland, New Brunswick NJ, USA verwendet. Dieser Kleber wird photochemisch ausgehärtet. Es können jedoch für das Verfahren auch andere Arten von Klebern verwendet werden, die die oben genannten Voraussetzungen erfüllen.According to the invention, preference is given to assembling the components first on the microstructured component at the places where there is no structuring there is an adhesive applied. The layer thickness is between 0.5 and 10 μm, preferably between 3 and 8 μm. Typically, the application is carried out using one from printing technology known flat Walzenautrag. The adhesive used may be the surface of the Do not, or only slightly, dissolve components so that the electrodes do not during the gluing process detached from the adhesive or to be interrupted. It is therefore preferred that the adhesive Product NOA 72, thiol acrylate from Norland, New Brunswick NJ, USA used. This adhesive is cured photochemically. It can however for The process also uses other types of glue meet the above requirements.

Nach dem Aufbringen des Klebstoffs wird das zweite Bauteil mit den Dünnschichtelektroden beispielsweise auf einer Belichtungsmaschine zu dem Substrat geeignet positioniert und aufgepreßt. Bevorzugt ist die Verwendung von starken Glasplatten als Preßfläche, so daß direkt die photochemische Härtung des Klebers durch Bestrahlung mit einer Hg-Lampe (Emissionswellenlänge 366 nm) durchgeführt werden kann.After applying the glue the second component with the thin-film electrodes, for example appropriately positioned on an exposure machine to the substrate and pressed on. Prefers is the use of strong glass plates as a pressing surface, so that directly photochemical curing of the adhesive by irradiation with an Hg lamp (emission wavelength 366 nm) can be.

Die Positionierung des Deckels auf dem Substrat kann für den Klebevorgang typischerweise visuell unter manueller Kontrolle, passiv mechanisch mit Hilfe ein Einrastvorrichtung, optisch mechanisch unter Zuhilfenahme von optischen Justagemarken oder elektrisch mechanisch mit Hilfe von elektrischen Marken (Kontakten) erfolgen.Positioning the lid on the substrate can for the gluing process is typically visually under manual control, passively mechanically with the help of a locking device, optically mechanically under With the help of optical alignment marks or electrically mechanical with the help of electrical brands (contacts).

In einer anderen bevorzugten Ausführungsform wird das mit den Elektroden versehene Bauteil auf den Bereichen, die beim Zusammensetzen der beiden Bauteile nicht über einem Kanal liegen oder elektrisch kontaktiert werden müssen mit dem Kleber benetzt. Hierfür wird beispielsweise ein in der Drucktechnik bekanntes Verfahren (Tampon-Druck) verwendet. Das Bauteil mit den Kanalstrukturen wird anschließend geeignet zu seinem Gegenstück positioniert und aufgepreßt. Die Aushärtung erfolgt wie oben beschrieben.In another preferred embodiment the component provided with the electrodes on the areas that when assembling the two components is not above one Channel or must be electrically contacted with wetted the glue. Therefor becomes, for example, a method known in printing technology (Pad printing) used. The component with the channel structures is subsequently suitable to its counterpart positioned and pressed on. The curing takes place as described above.

Das erfindungsgemäße Verfahren ermöglicht erstmals die Herstellung von geschlossenen Mikrokanalstrukturen, in denen Elektroden an beliebigen Stellen innerhalb der Kanäle positioniert werden können. Strukturierte Bauteile (Substrate) können flüssigkeits- und gasdicht mit beispielsweise Elektrodendeckeln versehen werden. Durch die Verwendung zumeist kommerziell erhältlicher Kunststoffe und einfacher Verarbeitungsschritte können die efindungsgemäßen Analysensysteme kostengünstig und in großen Zahlen produziert werden. Durch das erfindungsgemäße Verfahren zum Zusammenfügen bzw. Bonden, werden die Bauteile so mit Klebstoff benetzt, daß nach dem Zusammenfügen kein Klebstoff in das Innere des Kanalsystems, d.h. in die Kanäle, die Wände oder in das Kanalsystem ragende Elektroden oder sonstige Vorrichtungen gelangt. Die erfindungsgemäß hergestellten Analysensysteme mit Meß- und Steuervorrichtung für elektrische Leitfähigkeit erfüllen alle Anforderungen, die an ein solches System gestellt werden müssen:The method according to the invention enables for the first time the manufacture of closed microchannel structures in which Electrodes positioned anywhere within the channels can be. Structured components (substrates) can be liquid and gas tight for example, electrode covers are provided. By using it mostly commercially available Plastics and simple processing steps can Analysis systems according to the invention economical and in large Numbers are produced. By the method according to the invention to put together or bonding, the components are wetted with adhesive so that after Put together no glue inside the duct system, i.e. into the channels, the walls or electrodes or other devices protruding into the duct system arrives. The manufactured according to the invention Analysis systems with measuring and control device for electric conductivity fulfill all the requirements that must be placed on such a system:

  • • Sie zeigen hohe Dimensions- und Volumenstabilität der Kanäle.• She show high dimensional and volume stability of the channels.
  • • Durch die Festigkeit der Klebeverbindungen sind sie im Inneren der Kanäle druckstabil.• By the strength of the adhesive connections, they are pressure-resistant inside the channels.
  • • Es besteht eine große Variabilität bezüglich der verwendbaren Kunststoffe.• It there is a big one variability in terms of the usable plastics.
  • • Es können chemisch inerte Materialien für Bauteile und Elektroden verwendet werden.• It can chemically inert materials for Components and electrodes are used.
  • • Alle vier Kanalwände bestehen bevorzugt aus dem gleichen Material.• All four channel walls preferably consist of the same material.
  • • Die Elektroden sind auf ±10 μm genau an beliebigen Stellen der Kanäle positionierbar.• The Electrodes are accurate to within ± 10 μm anywhere in the channels positionable.
  • • Die Kontaktflächen der Elektroden sind frei von Verunreinigungen durch Klebstoff.• The contact surfaces the electrodes are free from contamination by adhesive.
  • • Die Elektroden können leicht angeschlossen werden.• The Electrodes can can be easily connected.
  • • Die Systeme zeigen geringen Innenwiderstand und erlauben potentiell hohe Stromdichten.• The Systems show low internal resistance and potentially allow high current densities.

1 zeigt beispielhaft die beiden funktionalisierten Bauteile eines mikrostrukturierten Analysensystems. Bauteil 1, der Elektrodendeckel, besitzt vier Elektroden (E) zur Generierung eines lonesflusses und drei Elektroden (D) zur elektrischen oder elektrochemischen Detektion. Bauteil 2 ist mikrostrukturiert. Beim Zusammenfügen der beiden Bauteile treffen die Enden der Elektroden des Deckels genau in die Kanäle des Substrats. 1 shows an example of the two functionalized components of a microstructured analysis system. component 1 , the electrode cover four electrodes (E) for generating an ion flow and three electrodes (D) for electrical or electrochemical detection. component 2 is microstructured. When joining the two components, the ends of the electrodes of the cover meet exactly in the channels of the substrate.

2 und 3 zeigen zwei Möglichkeiten für die Kontaktierung der Elektroden. 2 and 3 show two options for contacting the electrodes.

In 2 ragt der Deckel (1) mit der Elektrode (3) über das mikrostrukturierte Bauteil (2) mit der Klebeschicht (4) hinaus. Nach Zusammenfügen der beiden Bauteile kann die Elektrode über ihren außenliegenden Bereich (3b) kontaktiert werden.In 2 the lid protrudes ( 1 ) with the electrode ( 3 ) about the microstructured component ( 2 ) with the adhesive layer ( 4 ) out. After joining the two components, the electrode can be moved over its outer area ( 3b ) can be contacted.

In 3 haben Deckel (1) und Substrat (2) die gleichen Dimensionen. Nach dem Zusammenfügen kann die Elektrode nicht seitlich kontaktiert werden. Statt dessen befindet sich im Substrat eine zusätzliche Bohrung (5), über die die Elektrode (3) beispielsweise mittels eines Federstifts kontaktiert werden kann.In 3 have lids ( 1 ) and substrate ( 2 ) the same dimensions. After joining, the electrode cannot be contacted from the side. Instead, there is an additional hole in the substrate ( 5 ) over which the electrode ( 3 ) can be contacted for example by means of a spring pin.

Auch ohne weitere Ausführungen wird davon ausgegangen, daß ein Fachmann die obige Beschreibung im weitesten Umfang nutzen kann. Die bevorzugten Ausführungsformen und Beispiele sind deswegen lediglich als beschreibende, keineswegs als in irgendeiner Weise limitierende Offenbarung aufzufassen.Even without further versions it is assumed that a Expert can use the above description in the broadest scope. The preferred embodiments and examples are therefore only as descriptive, not as in any way limiting disclosure.

Die vollständige Offenbarung aller vor- und nachstehend aufgeführten Anmeldungen, Patente und Veröffentlichungen sind durch Bezugnahme in diese Anmeldung eingeführt.The complete revelation of all and listed below Applications, patents and publications are incorporated by reference into this application.

Claims (4)

Verfahren zur Herstellung einer Einheit mit Mikrokanalstruktur für Analysensysteme, dadurch gekennzeichnet, daß a) mindestens zwei Bauteile aus Kunststoff bereitgestellt werden, wobei mindestens ein Bauteil mikrostrukturiert ist, d.h. ein Kanalssystem aufweist; b) mindestens ein Bauteil durch Verfahren wie Walzenauftrag oder Tampondruck so mit Klebstoff benetzt wird, daß nach dem Zusammenfügen das Innere des Kanalsystems nicht mit Klebstoff belegt ist; c) die Bauteile justiert werden; d) die Bauteile zusammengepresst werden; e) der Kleber gehärtet wird.Method for producing a unit with a microchannel structure for analysis systems, characterized in that a) at least two components made of plastic are provided, at least one component being microstructured, ie having a channel system; b) at least one component is wetted with adhesive by methods such as roller application or pad printing in such a way that the interior of the duct system is not coated with adhesive after assembly; c) the components are adjusted; d) the components are pressed together; e) the adhesive is cured. Verfahren zur Herstellung einer Einheit mit Mikrokanalstruktur für Analysensysteme nach Anspruch 1, dadurch gekennzeichnet, daß zumindest ein Bauteil für Schritt a) zuvor mit auf seiner Oberfläche haftenden Elektroden versehen wird.Method of manufacturing a unit with a microchannel structure for analysis systems according to claim 1, characterized in that at least one component for step a) previously on its surface adhering electrodes is provided. Einheit mit Mikrokanalstruktur für Analysensysteme hergestellt nach einem Verfahren entsprechend Anspruch 1 oder 2.Unit with micro-channel structure for analysis systems manufactured according to a method according to claim 1 or 2. Einheit mit Mikrokanalstruktur für Analysensysteme entsprechend Anspruch 3, dadurch gekennzeichnet , daß die Elektroden eine Haftschicht aus Chromoxid und eine Schicht aus Edelmetall aufweisen.Unit with micro-channel structure for analysis systems accordingly Claim 3, characterized in that the electrodes have an adhesive layer made of chromium oxide and a layer of precious metal.
DE19927533A 1999-06-16 1999-06-16 Miniaturized analysis system Expired - Fee Related DE19927533B4 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE19927533A DE19927533B4 (en) 1999-06-16 1999-06-16 Miniaturized analysis system
JP2001503517A JP4317340B2 (en) 1999-06-16 2000-06-06 Small analysis system
EP00938768A EP1188047A1 (en) 1999-06-16 2000-06-06 Miniaturized analytical system
AU54032/00A AU5403200A (en) 1999-06-16 2000-06-06 Miniaturized analytical system
PCT/EP2000/005206 WO2000077509A1 (en) 1999-06-16 2000-06-06 Miniaturized analytical system
JP2001503518A JP4387624B2 (en) 1999-06-16 2000-06-15 Sample preparation device
PCT/EP2000/005518 WO2000077511A1 (en) 1999-06-16 2000-06-15 Device for preparing samples
AU54051/00A AU5405100A (en) 1999-06-16 2000-06-15 Device for preparing samples
EP00938793A EP1194769A1 (en) 1999-06-16 2000-06-15 Device for preparing samples
US11/000,419 US20050077175A1 (en) 1999-06-16 2004-12-01 Miniaturized analytical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19927533A DE19927533B4 (en) 1999-06-16 1999-06-16 Miniaturized analysis system

Publications (2)

Publication Number Publication Date
DE19927533A1 DE19927533A1 (en) 2001-01-18
DE19927533B4 true DE19927533B4 (en) 2004-03-04

Family

ID=7911465

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19927533A Expired - Fee Related DE19927533B4 (en) 1999-06-16 1999-06-16 Miniaturized analysis system

Country Status (5)

Country Link
EP (1) EP1188047A1 (en)
JP (1) JP4317340B2 (en)
AU (1) AU5403200A (en)
DE (1) DE19927533B4 (en)
WO (1) WO2000077509A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2248588A1 (en) 2009-05-08 2010-11-10 Institut für Bioprozess- und Analysenmesstechnik e.V. Mountable and dismountable microfluid system and method for flooding the system

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10056908A1 (en) * 2000-11-16 2002-05-23 Merck Patent Gmbh Method for joining plastic components involves application of an adhesive to a carrier foil, preliminary hardening of this adhesive, and transfer of the adhesive to at least one of the components
AU2003219733A1 (en) 2002-02-08 2003-09-02 University Of Louisville Research Foundation, Inc.Belknap Campus A capillary electrophoresis-electrochemical detection microchip device and supporting circuits
WO2004009231A1 (en) * 2002-07-18 2004-01-29 National Institute Of Advanced Industrial Science And Technology Method of manufacturing microwave reaction device and microwave reaction device
CN1741853A (en) * 2002-12-11 2006-03-01 因弗内斯医疗瑞士公司 Micro-fluidic structure, method and apparatus for its production, and use thereof
JP4014500B2 (en) * 2002-12-20 2007-11-28 住友ベークライト株式会社 Microchip substrate bonding method and microchip
FR2856047B1 (en) 2003-06-16 2005-07-15 Commissariat Energie Atomique METHOD FOR BONDING MICRO-STRUCTURED SUBSTRATES
DE102004033440A1 (en) * 2004-07-08 2006-02-02 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Microstructured device and method for its production
JP2006258508A (en) * 2005-03-15 2006-09-28 Sumitomo Bakelite Co Ltd Bonding method of plastic member, and biochip and micro analysis chip manufactured using method
FR2884437B1 (en) 2005-04-19 2007-07-20 Commissariat Energie Atomique MICROFLUIDIC DEVICE AND METHOD FOR THE TRANSFER OF MATERIAL BETWEEN TWO IMMISCIBLE PHASES.
JP2008546542A (en) * 2005-05-18 2008-12-25 プレジデント・アンド・フエローズ・オブ・ハーバード・カレツジ Production of conduction paths, microcircuits and microstructures in microfluidic networks
US7988839B2 (en) 2005-09-20 2011-08-02 University Of Louisville Research Foundation, Inc. Capillary electrophoresis systems and methods
JP4749867B2 (en) * 2006-01-13 2011-08-17 パナソニック株式会社 Electrophoresis device
FR2905690B1 (en) * 2006-09-12 2008-10-17 Saint Gobain METHOD FOR MANUFACTURING MICROFLUIDIC DEVICE
EP2468403A1 (en) * 2010-12-21 2012-06-27 Koninklijke Philips Electronics N.V. A method for manufacturing a microfluidic device
JP5797926B2 (en) * 2011-04-21 2015-10-21 株式会社エンプラス Fluid handling apparatus, manufacturing method thereof, and fluid handling system
EP2814610B1 (en) 2012-02-17 2020-08-19 Stratec Consumables GmbH Microstructured polymer devices
DE102013002667B4 (en) 2013-02-15 2022-02-10 Microfluidic Chipshop Gmbh Microfluidic system with externally sealed cavities
CN104476453B (en) * 2014-12-23 2016-05-25 洛阳双瑞风电叶片有限公司 A kind of wind electricity blade web perpendicularity is adjusted frock and method of adjustment
EP3750628A1 (en) * 2019-06-14 2020-12-16 Imt Ag Fluid conduit part for a microfluidic device, microfluidic device and method for manufacturing a microfluidic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590115A (en) * 1981-12-14 1986-05-20 Rhone-Poulenc Specialites Chimiques Metallizing of plastic substrata
EP0414097A2 (en) * 1989-08-24 1991-02-27 Schering Aktiengesellschaft Method of direct metallization of a non-conductive substrate
EP0417037A2 (en) * 1989-09-01 1991-03-13 Ciba-Geigy Ag Process for coating plastic articles
EP0738306A1 (en) * 1993-06-15 1996-10-23 Pharmacia Biotech Ab Method of producing microchannel/microcavity structures
US5571410A (en) * 1994-10-19 1996-11-05 Hewlett Packard Company Fully integrated miniaturized planar liquid sample handling and analysis device
EP0767257A2 (en) * 1995-10-04 1997-04-09 MICROPARTS GESELLSCHAFT FÜR MIKROSTRUKTURTECHNIK mbH Process for manufacturing integrated electrodes in plastic moulds, plastic moulds with integrated electrodes and its use
DE19602659A1 (en) * 1996-01-26 1997-07-31 Hoechst Ag Metallization of thermoplastics

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176962B1 (en) * 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
US5858188A (en) * 1990-02-28 1999-01-12 Aclara Biosciences, Inc. Acrylic microchannels and their use in electrophoretic applications
SE470347B (en) * 1990-05-10 1994-01-31 Pharmacia Lkb Biotech Microstructure for fluid flow systems and process for manufacturing such a system
US5658413A (en) * 1994-10-19 1997-08-19 Hewlett-Packard Company Miniaturized planar columns in novel support media for liquid phase analysis
US6045676A (en) * 1996-08-26 2000-04-04 The Board Of Regents Of The University Of California Electrochemical detector integrated on microfabricated capilliary electrophoresis chips
SE9700205D0 (en) * 1997-01-24 1997-01-24 Peter Lindberg Integrated microfluidic element
US5882465A (en) * 1997-06-18 1999-03-16 Caliper Technologies Corp. Method of manufacturing microfluidic devices
JP2001520377A (en) * 1997-10-15 2001-10-30 アクレイラ バイオサイエンシズ,インコーポレイティド Laminated micro structural device and method of manufacturing laminated micro structural device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590115A (en) * 1981-12-14 1986-05-20 Rhone-Poulenc Specialites Chimiques Metallizing of plastic substrata
EP0414097A2 (en) * 1989-08-24 1991-02-27 Schering Aktiengesellschaft Method of direct metallization of a non-conductive substrate
EP0417037A2 (en) * 1989-09-01 1991-03-13 Ciba-Geigy Ag Process for coating plastic articles
EP0738306A1 (en) * 1993-06-15 1996-10-23 Pharmacia Biotech Ab Method of producing microchannel/microcavity structures
US5571410A (en) * 1994-10-19 1996-11-05 Hewlett Packard Company Fully integrated miniaturized planar liquid sample handling and analysis device
EP0767257A2 (en) * 1995-10-04 1997-04-09 MICROPARTS GESELLSCHAFT FÜR MIKROSTRUKTURTECHNIK mbH Process for manufacturing integrated electrodes in plastic moulds, plastic moulds with integrated electrodes and its use
DE19602659A1 (en) * 1996-01-26 1997-07-31 Hoechst Ag Metallization of thermoplastics

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
G.D. Wolf, H. Gieseke, Galvanotechnik 84, 2218-2226, 1993 *
H. Becker, W. Dietz, P. Dannberg, Proceedings Micro Total Analysis Systems 1998, 253-256, Banff, Canada *
J. Friedrich, "Plasmabehandlung von Polymeren", kleben & dichten 41, 28-33, 1997 *
P.R.-Fielden, S.J. Baldock, N.J. Goddard, L.W. Pickering, J.E. Prest, R.D. Snook, B.J.T. Brown, D.I. Vaireanu, Proceedings Micro Total Analysis Systems '98, 323-326, Banff, Canada *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2248588A1 (en) 2009-05-08 2010-11-10 Institut für Bioprozess- und Analysenmesstechnik e.V. Mountable and dismountable microfluid system and method for flooding the system

Also Published As

Publication number Publication date
EP1188047A1 (en) 2002-03-20
AU5403200A (en) 2001-01-02
DE19927533A1 (en) 2001-01-18
JP2003502637A (en) 2003-01-21
JP4317340B2 (en) 2009-08-19
WO2000077509A1 (en) 2000-12-21

Similar Documents

Publication Publication Date Title
DE19927533B4 (en) Miniaturized analysis system
DE19822123C2 (en) Method and device for the detection of analytes
EP2394156B1 (en) Arrangement and method for electrochemically measuring biochemical reactions and method for producing the arrangement
DE60105979T2 (en) METHOD FOR PRODUCING MICROSTRUCTURES WITH DIFFERENT SURFACE PROPERTIES IN A MULTILAYER BODY BY PLASMA SETS
DE112014000923B4 (en) Microfluidic chip with dielectrophoretic electrodes extending in a hydrophilic flow path
DE19947496C2 (en) Microfluidic microchip
EP0461449B1 (en) Indicator electrode for an electrochemical gas measuring cell
US20070057179A1 (en) Electrospray Apparatus with an Integrated Electrode
DE19952764A1 (en) Micro-analyzer, used e.g. for capillary zone electrophoresis, comprises substrate and number of parallel sample processing compartments
DE19712309A1 (en) Microelement arrangement, method for contacting cells in a liquid environment and method for producing a microelement arrangement
DE102010002915A1 (en) Microfluidic sensor
DE102012216497A1 (en) Electronic sensor device for detecting chemical or biological species, microfluidic device with such a sensor device and method for producing the sensor device and method for producing the microfluidic device
EP1333937B1 (en) Method for the connection of plastic pieces
WO1999059810A2 (en) Microstructured films
DE102016110856A1 (en) Electrochemical sensor with replaceable electrode assembly
DE19927535B4 (en) Miniaturized analysis system with device for discharging substances
EP2303551B1 (en) Method for joining two components
WO2000077511A1 (en) Device for preparing samples
EP3199240A1 (en) Microfluidic flow cell with integrated electrode and method for producing the same
EP2745656B1 (en) Method for metallizing polymer layer systems, and polymer layer systems
WO2002021115A1 (en) Method for producing a 3-d micro flow cell and a 3-d micro flow cell
DE112007002029B4 (en) Method for manufacturing a fuel cell separator
DE19851644B4 (en) Method for joining microstructured workpieces made of plastic and use of the method for the production of components
EP1422194A1 (en) Process to fabricate a Tool Insert for Injection Moulding a microstructured Piece
US20050077175A1 (en) Miniaturized analytical system

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: IP VERWERTUNGS GMBH, 82031 GRUENWALD, DE

8339 Ceased/non-payment of the annual fee