DE19654806A1 - Optimierung des Kühlwassersystems einer Polyolefinanlage - Google Patents

Optimierung des Kühlwassersystems einer Polyolefinanlage

Info

Publication number
DE19654806A1
DE19654806A1 DE19654806A DE19654806A DE19654806A1 DE 19654806 A1 DE19654806 A1 DE 19654806A1 DE 19654806 A DE19654806 A DE 19654806A DE 19654806 A DE19654806 A DE 19654806A DE 19654806 A1 DE19654806 A1 DE 19654806A1
Authority
DE
Germany
Prior art keywords
reactor
cooling
cooling circuit
circuit
reactors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19654806A
Other languages
English (en)
Other versions
DE19654806C2 (de
Inventor
Juergen Dr Hess
Matthias Dr Stumpf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aventis Research and Technologies GmbH and Co KG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19654806A priority Critical patent/DE19654806C2/de
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to BR9714442A priority patent/BR9714442A/pt
Priority to CN97181106A priority patent/CN1092078C/zh
Priority to DE59703624T priority patent/DE59703624D1/de
Priority to KR1019997005810A priority patent/KR20000062339A/ko
Priority to IL13070897A priority patent/IL130708A0/xx
Priority to PCT/EP1997/005775 priority patent/WO1998029185A1/de
Priority to ES97911232T priority patent/ES2159122T3/es
Priority to CA002276446A priority patent/CA2276446A1/en
Priority to US09/331,816 priority patent/US6235852B1/en
Priority to JP52956498A priority patent/JP2001508095A/ja
Priority to EP97911232A priority patent/EP0949963B1/de
Publication of DE19654806A1 publication Critical patent/DE19654806A1/de
Application granted granted Critical
Publication of DE19654806C2 publication Critical patent/DE19654806C2/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • B01J19/1837Loop-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1862Stationary reactors having moving elements inside placed in series
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/0006Temperature measurement of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00085Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow

Description

Die Erfindung betrifft ein Verfahren zur Kühlung von Polymerisationsreaktoren bei der Herstellung von Polyolefinen, wobei die Polymerisation in einem ersten und mindestens in einem weiteren Reaktor durchgeführt wird, wobei der oder die weiteren Reaktoren dem ersten Reaktor nachgeschaltet sind und über jeweils einen internen Kühlkreislauf, in dem ein Kühlmedium zirkuliert, gekühlt werden.
Verfahren der genannten Art sind bekannt, beispielsweise aus SRI International Report No 128A, Menlo Park, California, USA 1993, in dem das ®Spheripol Verfahren zur Herstellung von Polypropylen beschrieben wird. Danach können Olefine bei Temperaturen zwischen 70 und 85°C (z. B. HDPE) in einer exothermen Reaktion unter Druck und in Gegenwart eines Katalysators zu Polyolefinen umgewandelt werden. Bei den sogenannten Flüssigphasenverfahren dient das Monomere dabei häufig als Suspendiermittel für das Polymere. Als Polymerisationsreaktoren werden in modernen Hochleistungsanlagen aufgrund des günstigen Oberflächen/Volumen- Verhältnisses bevorzugt Schlaufenreaktoren verwendet. Die exotherme Reaktionswärme wird über die Wärmeaustauschflächen der Reaktoren an einen internen Kühlwasserkreislauf abgegeben. Die Abkühlung des internen Kreislaufes erfolgt durch Zugabe von kühlerem Wasser. Entsprechend muß die gleiche Menge Wasser, das dann durch die Reaktionswärme aufgeheizt ist, aus dem internen Kühlkreislauf abgeführt werden. Üblicherweise wird den internen Kühlkreisläufen das Wasser als sogenanntes "Kreiswasser" über einen externen Kühlkreislauf zu- und abgeführt. In diesem externen Kühlkreislauf wird die vom Kreiswasser aufgenommene Reaktionswärme an Wärmeverbraucher im Prozeß und über Wärmetauschflächen an externes Kühlwasser, z. B. das Rückkühlwasser eines Werkes, abgegeben, um die erforderliche tiefe Vorlauftemperatur für die Reaktoren zu erreichen.
Zur breiten Variation der Produkteigenschaften werden häufig zwei oder mehr Reaktoren produktseitig kaskadiert betrieben (hintereinander geschaltet), wasserseitig werden sie parallel betrieben. Wasserseitiger Kaskadenbetrieb ist zwar an sich bekannt, wird aber bei den bekannten Verfahren nicht angewandt, da man erwartet, daß bei gleichen Reaktionen in gleichen Behältern die Kühlwassereintrittstemperaturen gleich sein müssen. Außerdem würde dabei die Gefahr bestehen, daß sich Temperaturschwankungen vom ersten Reaktor auf den zweiten oder die folgenden Reaktoren übertragen.
Es wurde nun überraschend gefunden, daß wahrscheinlich aufgrund eines Alterungsverhalten des Katalysators sich im zweiten und in jedem weiteren Reaktor der Reaktionsumsatz verringert und daß deshalb folgende, bislang unbemerkte Effekte auftreten: Aufgrund dieses Alterungsverhaltens ist in dem ersten Reaktor wesentlich mehr Reaktionswärme abzuführen als in den darauffolgenden Reaktoren. Sind die Wärmeaustauschflächen der Reaktoren etwa gleich groß, dann ist - bei gleicher Vorlauftemperatur ϑ'ext des externen Kühlwassers - wesentlich mehr Kühlwasser in den internen Kreislauf des Reaktors I zu pumpen als in denjenigen des Reaktors II, Reaktor III, usw. Außerdem liegen die Wasserein- ϑ'1, und -austrittstemperaturen ϑ1'' des Reaktors I niedriger als für die darauffolgenden Reaktoren. Mit steigender Produktionsmenge sinken dann die Wasserein- ϑ' und -austrittstemperaturen ϑ'' aller Reaktoren ab, während sich die Zulaufmenge an externen Wasser erhöht - be­ sonders für den Reaktor I.
Da die Wasserein- und -austrittstemperaturen ϑ', ϑ'' der Reaktoren mit steigenden Anlagendurchsätzen sinken müssen, wenn mehr Wärme zu übertragen ist, muß bei sonst gleichen Bedingungen entweder sowohl die Temperatur ϑ'ext des externen Kühlkreislaufes abgesenkt als auch dessen Wasserdurchfluß Fext erhöht werden oder/und die dem einzelnen Reaktor zufließende Kühlwassermenge aus dem externen Kühlkreislauf muß erhöht werden. Die Rücklauftemperatur ϑ''ext des externen Kühlwassers sinkt mit steigenden Anlagendurchsätzen ebenfalls ab.
Das Einstellen einer Vorlauftemperatur ϑ'ext ist von der prozeßinternen Wärmenutzung und der Temperatur des externen Kühlwassers abhängig. Das bedeutet: In den Sommermonaten, wenn die Temperaturen des externen Kühlwassers (z. B. Flußwasser oder Rückkühlwasser) ansteigt, muß die Anlagenkapazität zurückgefahren werden. Das Temperaturniveau des Rücklaufs des externen Kühlkreislaufs wird mit steigenden Anlagendurchsätzen für prozeßinterne Wärmeverbraucher zu niedrig. Eine Erhöhung der externen Wassermenge ist limitiert, beispielsweise durch die maximalen Umpumpmengen der beiden internen Kreisläufe.
Durch diese Nachteile kann die Kapazität einer Polyolefinanlage nicht vollständig genutzt werden.
Der Erfindung lag daher die Aufgabe zugrunde, das eingangs genannte Verfahren so zu verbessern, daß diese Nachteile entfallen.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren der eingangs genannten Art gelöst, das dadurch gekennzeichnet ist, daß Kühlmedium aus dem Kühlkreislauf des ersten Reaktors in den Kühlkreislauf mindestens eines weiteren Reaktors eingespeist wird und die gleiche Menge Kühlmedium aus dem Kühlkreislauf dieses Reaktors abgezogen, abgekühlt und in den Kühlkreislauf des ersten Reaktors zurückgeführt wird.
Gegenstand der Erfindung ist somit ein Verfahren zur Kühlung von Polymerisationsreaktoren bei der Herstellung von Polyolefinen, wobei die Polymerisation in einem ersten und mindestens in einem weiteren Reaktor durchgeführt wird, wobei der oder die weiteren Reaktoren dem ersten Reaktor nachgeschaltet sind und über jeweils einen internen Kühlkreislauf, in dem ein Kühlmedium zirkuliert, gekühlt werden, dadurch gekennzeichnet, daß Kühlmedium aus dem Kühlkreislauf des ersten Reaktors in den Kühlkreislauf mindestens eines weiteren Reaktors eingespeist wird und die gleiche Menge Kühlmedium aus dem Kühlkreislauf dieses Reaktors abgezogen, abgekühlt und in den Kühlkreislauf des ersten Reaktors zurückgeführt wird.
In einer bevorzugten Ausführungsform erfolgt die Einspeisung temperatur- oder durchflußgesteuert, wobei der Sollwert aufgrund einer Temperatur oder einer gewünschten Durchflußmenge vorgegeben wird. Als Kühlmedium findet vorzugsweise Wasser Verwendung. Die Kühlung des Kühlmediums kann in einem externen Kühlkreislauf stattfinden, der seinerseits mit Kühlwasser direkt oder indirekt abgekühlt werden kann. Die Temperaturen der Kühlmedien in den einzelnen Kühlkreisläufen liegen vorzugsweise in den Bereichen von 30 bis 80°C (Kühlkreislauf des ersten Reaktors), von 30 bis 80°C (Kühlkreisläufe der weiteren Reaktoren) und von 20 bis 40°C (externer Kühlkreislauf).
Gegenstand der Erfindung ist weiter eine Vorrichtung zur Durchführung dieses Verfahrens sowie ein Verfahren zur Herstellung von Polyolefinen, insbesondere von Polypropylen.
Im folgenden wird das erfindungsgemäße Verfahren anhand einer möglichen Ausführungsform, die in der Zeichnung als Verfahrensfließbild dargestellt ist, näher erläutert.
Zwei Polymerisationsreaktoren, Reaktor I 1 und Reaktor II 2, sind über eine Rohrleitung 3 miteinander verbunden. Das Monomer, andere Zuschlagstoffe und der Katalysator gelangen über Zuführungen 4, 5 in den Reaktor I 1, in dem die Polymerisation gestartet wird, von dort zusammen mit dem gebildeten Polymer über die Rohrleitung 3 in den Reaktor II 2, in dem die Polymerisation weiter fortschreitet und von dem Reaktor II 2 durch einen Ausgang 6 zu einem weiteren Reaktor oder zur Weiterverarbeitung. Der Reaktionsstart kann aber auch in einem vorgeschalteten, sogenannten Startreaktor (Babyloop) erfolgen. Die beiden Reaktoren I 1, II 2 sind mit Kühlmänteln 7, 8 versehen, die in internen Kühlkreisläufen I 9, II 10 integriert sind und in denen mittels Pumpen 11, 12 ein Kühlmedium zirkuliert. Die beiden internen Kühlkreisläufe I 9, II 10 sind über Rohrleitungen 13, 14, 15, 16 mit einem externen Kühlkreislauf 17 verbunden, über den mit Hilfe einer Pumpe 18 und ansteuerbaren Ventilen 19, 20 gekühltes Kühlmedium einer Vorlauftemperatur ϑ'ext in die internen Kühlkreisläufe I 9, II 10 eingespeist werden kann. Der externe Kühlkreislauf enthält Wärmeaustauscher 20, 21 über die Reaktionswärme an einen Verbraucher 22 abgegeben oder aus dem System entfernt werden kann. Entsprechend der Erfindung ist der interne Kühlkreislauf 9 über eine Rohrleitung 23 und eine Pumpe 24 mit dem internen Kühlkreislauf II 10 verbunden. Erfindungsgemäß wird mit der Pumpe 24 Kühlmedium aus dem Kreislauf I 9 temperatur- oder durchflußgesteuert in den Kreislauf II 10 eingespeist werden. Die gleiche Menge kann über die Leitung 14 aus dem Kreislauf II 10 abgezogen werden. Sie kann dann im externen Kreislauf 17 gekühlt und über die Leitung 15 dem Kreislauf I 9 wieder zugeführt werden.
Die Rücklauftemperatur ϑ''ext des externen Kühlkreislaufes wird durch die Wassermenge und die erforderliche tiefe Temperatur ϑ''I des internen Kreislaufes I 9 bestimmt. Ist die Austrittstemperatur des internen Kreislaufes I 9 ϑ''I kleiner als die Eintrittstemperatur ϑ'II des internen Kreislaufes II 10 in den Doppelmantel des Reaktors II, so kann das Wasser aus dem Kreislauf I 9 zur Abführung der kompletten Reaktionswärme aus dem Reaktor II 2 verwendet werden.
Das aus dem internen Kühlkreislauf I 9 des Reaktors I 2 austretende erwärmte Wasser wird entsprechend dem Kühlbedarf in den internen Kühlkreislauf 10 des Reaktors II 2 überführt. Dadurch erhöht sich die Menge des aus dem internen Kreislauf 10 des Reaktors II 2 austretenden Wassers, das aufgrund der geringeren Produktionsrate im Reaktor II 2 eine höhere Temperatur ϑ''II besitzt. Die Austrittstemperatur ϑ''II bleibt auch bei der höheren Austrittsmenge unverändert.
Das erfindungsgemäße Verfahren bietet im wesentlichen folgende Vorteile: Hält man die Umpumpmenge Fext des externen Kühlkreislaufes konstant, dann kann bei gleicher Vorlauftemperatur ϑ'ext eine größere Produktionsmenge gefahren werden. Bei gleicher Produktionsmenge kann die Umpumpmenge Fext im externen Kreislauf gesenkt werden. Bei gleicher Produktionsmenge kann bei Beibehaltung der Umpumpmenge Fext die Vorlauftemperatur des externen Kreiswassers ϑ'ext erhöht werden, beispielsweise von 30°C auf etwas weniger als 35°C. Damit steigt auch die Rücklauftemperatur ϑ''ext des externen Kreiswassers. Das höhere Temperaturniveau des externen Kühlkreislaufes vereinfacht die Wärmenutzung für prozeßinterne Verbraucher beziehungsweise ermöglicht eine größere prozeßinterne Nutzung der Reaktionswärme. Außerdem erleichtert das höhere Temperaturniveau den Wärmeaustausch mit externem Kühlwasser.
Das erfindungsgemäße Kühlverfahren ist nicht auf die Herstellung von Polyolefinen, vorzugsweise Polyethylen oder Polypropylen, beschränkt, sondern eignet sich grundsätzlich zur Kühlung von Wärmequellen, die in ihren Kühlkreisläufen für das Kühlmedium unterschiedliche Eintrittstemperaturen erfordern.

Claims (6)

1. Verfahren zur Kühlung von Polymerisationsreaktoren bei der Herstellung von Polyolefinen, wobei die Polymerisation in einem ersten und mindestens in einem weiteren Reaktor durchgeführt wird, wobei der oder die weiteren Reaktoren dem ersten Reaktor nachgeschaltet sind und über jeweils einen internen Kühlkreislauf, in dem ein Kühlmedium zirkuliert, gekühlt werden, dadurch gekennzeichnet, daß Kühlmedium aus dem Kühlkreislauf (9) des ersten Reaktors (1) in den Kühlkreislauf (10) mindestens eines weiteren Reaktors (2) eingespeist wird und die gleiche Menge Kühlmedium aus dem Kühlkreislauf (10) dieses Reaktors (2) abgezogen, abgekühlt und in den Kühlkreislauf (9) des ersten Reaktors (1) zurückgeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Einspeisung temperaturgesteuert oder durchflußgesteuert erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Kühlmedium Wasser ist.
4. Verfahren zur Herstellung von Polyolefinen bei dem die Polymerisation in einem ersten und mindestens in einem weiteren Reaktor durchgeführt wird, wobei der oder die weiteren Reaktoren dem ersten Reaktor nachgeschaltet sind und über jeweils einen internen Kühlkreislauf, in dem ein Kühlmedium zirkuliert, gekühlt werden, dadurch gekennzeichnet, daß das Kühlmedium aus dem Kühlkreislauf (9) des ersten Reaktors (1) in den Kühlkreislauf (10) mindestens eines weiteren Reaktors (2) eingespeist wird und die gleiche Menge Kühlmedium aus dem Kühlkreislauf (10) dieses Reaktors (2) abgezogen, abgekühlt und in den Kühlkreislauf (9) des ersten Reaktors (1) zurückgeführt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Polyolefin Polypropylen ist.
6. Vorrichtung zur Durchführung des Verfahrens nach mindestens einem der Ansprüche 1 bis 5, die einen ersten Reaktor (1) und mindestens einen weiteren Reaktor (2) aufweist, wobei der oder die weiteren Reaktoren (2) dem ersten Reaktor (1) nachgeschaltet sind und jeweils Kühlelemente (7, 8) aufweisen, die jeweils in Kühlkreisläufe (9, 10) integriert sind, dadurch gekennzeichnet, daß der Kühlkreislauf (9) des ersten Reaktors (1) mit dem Kühlkreislauf (10) mindestens eines weiteren Reaktors (2) über eine Rohrleitung (23) verbunden ist.
DE19654806A 1996-12-31 1996-12-31 Optimierung des Kühlwassersystems einer Polyolefinanlage Expired - Fee Related DE19654806C2 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE19654806A DE19654806C2 (de) 1996-12-31 1996-12-31 Optimierung des Kühlwassersystems einer Polyolefinanlage
CA002276446A CA2276446A1 (en) 1996-12-31 1997-10-20 Optimization of a cooling water system of a polyolefin production unit
DE59703624T DE59703624D1 (de) 1996-12-31 1997-10-20 Optimierung des kühlwassersystems einer polyolefinanlage
KR1019997005810A KR20000062339A (ko) 1996-12-31 1997-10-20 폴리올레핀 조제중에 중합 반응기 냉각 방법 및 그 방법을 수행하기 위한 장치
IL13070897A IL130708A0 (en) 1996-12-31 1997-10-20 Optimization of a cooling water system of a polyolefin production unit
PCT/EP1997/005775 WO1998029185A1 (de) 1996-12-31 1997-10-20 Optimierung des kühlwassersystems einer polyolefinanlage
BR9714442A BR9714442A (pt) 1996-12-31 1997-10-20 ma planta de produção de poliolefina
CN97181106A CN1092078C (zh) 1996-12-31 1997-10-20 聚烯烃生产设备水冷系统的优化
US09/331,816 US6235852B1 (en) 1996-12-31 1997-10-20 Optimization of a cooling water system of a polyolefin production unit
JP52956498A JP2001508095A (ja) 1996-12-31 1997-10-20 ポリオレフィン製造ユニットの冷却水系の最適化
EP97911232A EP0949963B1 (de) 1996-12-31 1997-10-20 Optimierung des kühlwassersystems einer polyolefinanlage
ES97911232T ES2159122T3 (es) 1996-12-31 1997-10-20 Optimizacion del sistema de agua de refrigeracion de una instalacion de poliolefina.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19654806A DE19654806C2 (de) 1996-12-31 1996-12-31 Optimierung des Kühlwassersystems einer Polyolefinanlage

Publications (2)

Publication Number Publication Date
DE19654806A1 true DE19654806A1 (de) 1998-09-03
DE19654806C2 DE19654806C2 (de) 2001-06-13

Family

ID=7816452

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19654806A Expired - Fee Related DE19654806C2 (de) 1996-12-31 1996-12-31 Optimierung des Kühlwassersystems einer Polyolefinanlage
DE59703624T Expired - Lifetime DE59703624D1 (de) 1996-12-31 1997-10-20 Optimierung des kühlwassersystems einer polyolefinanlage

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59703624T Expired - Lifetime DE59703624D1 (de) 1996-12-31 1997-10-20 Optimierung des kühlwassersystems einer polyolefinanlage

Country Status (11)

Country Link
US (1) US6235852B1 (de)
EP (1) EP0949963B1 (de)
JP (1) JP2001508095A (de)
KR (1) KR20000062339A (de)
CN (1) CN1092078C (de)
BR (1) BR9714442A (de)
CA (1) CA2276446A1 (de)
DE (2) DE19654806C2 (de)
ES (1) ES2159122T3 (de)
IL (1) IL130708A0 (de)
WO (1) WO1998029185A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10037153C2 (de) * 2000-07-31 2003-04-10 Franz Willeke Vorrichtung zur Polymerisation in einem Schlaufenreaktor
US20050091021A1 (en) * 2003-10-27 2005-04-28 Anurag Gupta Method and apparatus for controlling polyolefin reactor temperature
US7678341B2 (en) * 2005-07-29 2010-03-16 Exxonmobil Chemical Patents Inc. Loop reactor heat removal
BRPI0717152B1 (pt) * 2006-10-03 2018-07-03 Univation Technologies, Llc. Método para polimerização de olefina e sistema de reação para polimerização de olefina
DE102007052325A1 (de) * 2007-03-29 2009-05-07 Erk Eckrohrkessel Gmbh Verfahren zum gleitenden Temperieren chemischer Substanzen mit definierten Ein- und Ausgangstemperaturen in einem Erhitzer und Einrichtung zur Durchführung des Verfahrens
US7723446B2 (en) * 2007-07-19 2010-05-25 Exxonmobil Chemical Patents Inc. Polypropylene series reactor
EP2090360A1 (de) * 2008-02-12 2009-08-19 INEOS Manufacturing Belgium NV Reaktorkühlsystem
US20110252700A1 (en) * 2010-04-19 2011-10-20 General Electric Company Heat integrated chemical coal treating
CN102052564A (zh) * 2010-10-27 2011-05-11 杨宝良 一种循环冷却水输送系统优化方法
CN102620143B (zh) * 2012-04-13 2013-09-18 长沙海川节能技术有限公司 一种工业循环水系统的优化方法
ES2652669T3 (es) 2013-02-27 2018-02-05 Uhde Inventa-Fischer Gmbh Dispositivo de polimerización y procedimiento para la producción de polímeros termoplásticos
US9310137B2 (en) 2013-04-29 2016-04-12 Chevron Phillips Chemical Company, Lp Unified cooling in multiple polyolefin polymerization reactors
US9822193B2 (en) 2013-04-29 2017-11-21 Chevron Phillips Chemical Company Lp Unified cooling for multiple polyolefin polymerization reactors
US10646845B2 (en) * 2013-07-03 2020-05-12 Chevron Phillips Chemical Company Lp Cooling between multiple polyolefin polymerization reactors
US10274907B2 (en) 2013-10-28 2019-04-30 Wpt Llc System and method for preventing total plant shutdown due to low temperature excursion
US11486409B2 (en) 2013-10-28 2022-11-01 Wpt Llc System and method for preventing total plant shutdown due to low temperature excursion
BR112019000022B1 (pt) * 2016-07-06 2023-04-25 Ineos Europe Ag Processo de polimerização
CN108745242A (zh) * 2018-06-13 2018-11-06 山东恒正新材料有限公司 胶水生产的冷却装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1149006B (de) 1959-10-02 1963-05-22 Basf Ag Verfahren zur Durchfuehrung schwach exotherm oder endotherm verlaufender organisch-chemischer Reaktionen unter Rueckgewinnen von Waerme
FR1503642A (fr) 1966-09-22 1967-12-01 S I C E R Soc Ind & Commercial Réacteur continu pour fluides liquides et éventuellement gazeux
US4744408A (en) * 1984-11-30 1988-05-17 Herzog-Hart Corporation Temperature control method and apparatus
DE3711314A1 (de) * 1987-04-03 1988-10-13 Babcock Werke Ag Vorrichtung zum kuehlen eines synthesegases in einem quenchkuehler
CN2067601U (zh) * 1989-11-25 1990-12-19 河北师范大学 夹套间歇式反应器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP 08169904 zit. als CH-Abstr. AN:1996:577497 *

Also Published As

Publication number Publication date
DE59703624D1 (de) 2001-06-28
BR9714442A (pt) 2000-03-21
US6235852B1 (en) 2001-05-22
EP0949963B1 (de) 2001-05-23
CN1092078C (zh) 2002-10-09
DE19654806C2 (de) 2001-06-13
CA2276446A1 (en) 1998-07-09
WO1998029185A1 (de) 1998-07-09
KR20000062339A (ko) 2000-10-25
ES2159122T3 (es) 2001-09-16
EP0949963A1 (de) 1999-10-20
JP2001508095A (ja) 2001-06-19
CN1241954A (zh) 2000-01-19
IL130708A0 (en) 2000-06-01

Similar Documents

Publication Publication Date Title
DE19654806C2 (de) Optimierung des Kühlwassersystems einer Polyolefinanlage
EP0143894B1 (de) Verfahren zur Durchführung von chemischen Reaktionen, insbesondere zur Herstellung von Kunststoffen mit Hilfe von Extrudern und Anlage hierzu
EP1144725B1 (de) Verfahren zur beschichtung von reaktoren für die hochdruckpolymerisation von 1-olefinen
DE69814701T2 (de) Polymerisationsverfahren in der Gasphase
DE60118812T2 (de) Verfahren zur Herstellung eines Polyolefinharzes
DE602005000036T2 (de) Katalysatoreinsatz bei der herstellung von bimodalem polyolefin
DE2736477C2 (de)
DE2800907A1 (de) Verfahren zur polymerisation von aethylen in gasphase
DE2341318C3 (de) Verfahren zur Herstellung von formbaren Methylmethacrylat-Polymerisaten
WO1999011432A1 (de) Vorrichtung und verfahren zum beheizen eines flüssigen oder zähflüssigen poliermittels sowie vorrichtung zum polieren von wafern
DE2651637C2 (de) Verfahren zur Herstellung von Oligomerengemischen aus α-Olefinen
DE2131145B2 (de) Verfahren zur hochdruckpolymerisation von aethylen
DE2131184C3 (de) Verfahren zur Herstellung pulverförmiger Homo- oder Mischpolymerisate von Äthylen
DE1667187A1 (de) Synthese-Reaktor mit Katalysatorschichten fuer exotherme Reaktionen unter hohem Druck
DE69932843T2 (de) Präpolymerisationsreaktor
DE1046886B (de) Verfahren und Vorrichtung zur Polymerisation von Olefinen nach dem Niederdruckverfahren von Ziegler
DE2453622A1 (de) Verfahren und vorrichtung zum abwechselnden heizen und kuehlen eines waermetauschers einer heiz-kuehl-anlage
EP2281467B1 (de) Verfahren und Vorrichtung zur Erhitzung, insbesondere von hochviskosen Produkten
DE2937720A1 (de) Verfahren und vorrichtung fuer die aethylenpolymerisation
DE602005001133T2 (de) Polyolefinproduktion mit hoher olefin-konzentration
EP2064250B1 (de) Verfahren zur herstellung von polymerpulvern
DE1960737C3 (de) Verfahren zur Herstellung von Polyäthylen
DE2320188A1 (de) Verfahren und vorrichtung zur herstellung von polymerfasern
DE1937237A1 (de) Verfahren zur Herstellung von Vinylchlorid-Vinylacetat-Mischpolymeren
DE1645481A1 (de) Verfahren und Vorrichtung zum Polymerisieren von AEthylen

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: AVENTIS RESEARCH & TECHNOLOGIES GMBH & CO KG, 6592

8127 New person/name/address of the applicant

Owner name: AXIVA GMBH, 65929 FRANKFURT, DE

D2 Grant after examination
8327 Change in the person/name/address of the patent owner

Owner name: SIEMENS AXIVA GMBH & CO. KG, 65929 FRANKFURT, DE

8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20140701