CN1988933A - 用于放射疗法波束形态的可编程粒子扩散器 - Google Patents

用于放射疗法波束形态的可编程粒子扩散器 Download PDF

Info

Publication number
CN1988933A
CN1988933A CN200580024563.3A CN200580024563A CN1988933A CN 1988933 A CN1988933 A CN 1988933A CN 200580024563 A CN200580024563 A CN 200580024563A CN 1988933 A CN1988933 A CN 1988933A
Authority
CN
China
Prior art keywords
path
low
particle beam
fluid reservoir
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200580024563.3A
Other languages
English (en)
Other versions
CN1988933B (zh
Inventor
阿兰·斯利斯基
肯尼斯·加尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Still River Systems Inc
Original Assignee
Still River Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Still River Systems Inc filed Critical Still River Systems Inc
Publication of CN1988933A publication Critical patent/CN1988933A/zh
Application granted granted Critical
Publication of CN1988933B publication Critical patent/CN1988933B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

将可编程路径长度的一个或多个物质插入粒子束以预先确定的方式调整分散角度和波束范围,以便在预先确定的范围内产生预先确定的Bragg顶点分布。物质可以是包括流体的“低Z”和“高Z”物质。带电粒子束扩散器/范围调整器可以包括在粒子束路径中具有相对壁的储液室和驱动器,该驱动器用以在可编程控制器的控制下调整储液室相对壁之间的距离。串行排列的"高Z"以及,独立地,"低Z"储液室可以被使用。当用于放射治疗时,可以通过测量波束强度监控波束,并且可编程控制器可以根据与总剂量预先确定的关系调整"高Z"储液室的相对壁之间的距离以及,独立地,"低Z"储液室的相对壁之间的距离。在治疗期间,波束扩散和调整可以是持续进行的,用以以预先确定的三维分配形式在目标体积中沉积剂量。

Description

用于放射疗法波束形态的可编程粒子扩散器
相关申请
本申请是2004年9月24日提交的申请号为10/949,734美国申请的后继申请,其要求2004年7月21日提交的申请号为60/590,088的美国临时申请的利益。上述申请的全部教导通过引证并入本文。
背景技术
带电粒子在用于治疗癌症的放射疗法领域中已经被应用了超过50年。为了产生符合患者体内目标体积的形状的临床上有益的剂量分配,在粒子加速器和患者之间插入大量的波束整型和调节物质。相比于传统的在组织内按指数率衰减的高能量的x射线束,质子束具有显著的临床优势。相比高能量的x射线(光子),能量吸收的物理过程对于质子来讲是有利的并且是不同的。
质子束释放很小的引入剂量,随后当质子在组织中停止时释放大量的剂量。在物理学家Bragg发现这一现象之后,将在质子的组织渗透范围的末端上的剂量的大量吸收称为Bragg顶点。附图1显示的是来自没有被调整的波束中的Bragg顶点,以及Bragg顶点的分布和个别的Bragg顶点曲线族加在一起形成的Bragg顶点分布。
从粒子加速器中形成的波束,通过将设备和材料插入波束中被整型。波束整型的一个目的在于在遍及目标的体积上(例如,患者体内的瘤)释放均匀的放射剂量。范围(即,波束渗透到组织内的深度)需要被调整以确保均匀的或者预先确定的放射剂量被释放到目标表面的近端和末梢之间(在此所使用的术语“近端”和“末梢”与波束路径结合使用。术语“近端”特定的涉及波束进入目标的入口区域)。此外,为了治疗较大的瘤,波束需要横向地展开(在此所使用的术语“横向地”是涉及实质上与波束路径成直角的任何方向)。波束通过一系的扩散器和孔径被操作并被整型。
在波束整型系统中,波束被首先被引入第一扩散器/范围调整器,该扩散器/范围调整器使波束分散足够宽的角度用以治疗大约20-30cm的治疗区域。接着由第一扩散器的分散和范围调整,波束被引入补偿的第二扩散器。这个器件的目的在于使从第一扩散器出来的波束的横截面变平。这样就允许Bragg顶点在等角点距离上的强度是平坦的和均匀的。附图2示出由高Z和低Z物质所组成的补偿的第二扩散器,所述的高Z和低Z物质具有能够使高Z物质的分散性质与低Z物质的吸收性质相匹配的形状,用以提供平坦的、均匀的宽的波束。
波束整型系统的第三器件是范围协调块。其典型的是一个厚圆柱的丙稀酸塑料,目标体积的末梢表面的三维的反面已经被机械加工。该器件也包括从波束方向对患者的外部表面外形的补偿,以及对不同种类(例如,路径中的骨头和空气)的补偿。大多数的组织实质上相当于水,但是对于这些不同物质的补偿值能够从CT图像数据组中被计算出来。作为结果的三维结构被置于波束路径中以确保Bragg顶点符合目标的未梢表面,从而导致被用在目标体积之外的重要的结构上的剂量最小。
波束成型系统的第四器件对波束横向地整型以使其与目标体积的形状相匹配,所述目标体积的形状正如同通过专用于治疗而制作的孔径所形成的波束源的方向中看到的那样。通常,这是通过将在黄铜或其它高Z物质的厚块中机械加工成型的孔并将该孔置于紧靠近患者的位置来完成的。波束在横向延伸上被该器件限定,因此符合目标体积的形状。
发明内容
向粒子束中插入一个或多个扩散和/或吸收物质的可编程路径长度可以被用来以预期的方式调整扩散角度和波束范围。带电粒子束扩散器/范围调整器可以包括高Z物质,其在粒子波束路径中具有可调路径长度;可以包括低Z物质,其在粒子波束路径中具有可调路径长度;还包括在将目标暴露给波束期间独立地调整高Z和低Z路径长度的可编程控制器。所述的高Z和低Z物质可以是液体。低Z物质的路径长度以及高Z物质的路径长度可以是独立地持续可调的。
带电粒子束扩散器/范围调整器在粒子波束路径中可以包括具有相对壁的储液室;调整储液室的两壁之间的距离的驱动器;还包括用于驱动器的可编程控制器,用于在目标暴露给波束的期间调整储液室的两壁之间的距离。储液室的两壁之间的距离可以是持续可调的。第一和第二储液室可以被串联地安置在粒子束路径中。第一和第二储液室可以单独地包含高Z和低Z物质。第一储液室的相对壁之间的距离以及第二储液室的相对壁之间的距离可以是独立地持续可调的。
提供带电粒子束的带电粒子源和带电粒子束扩散器/范围调整器可以被应用于放射治疗仪器中。波束监控器可以被用于测量波束强度并将波束强度传递给可编程控制器。可编程控制器可以根据预先确定的波束强度的时间积分与低Z和高Z物质的期待路径长度之间的预定关系独立地调整低Z以及高Z路径长度。可编程控制器可以持续地和动态地独立调整低Z以及高Z路径长度。
带电粒子源可以是回旋加速器。该回旋加速器可以是同步回旋加速器。任何带电粒子都可以被使用,举例来说,所述的带电粒子可以是质子。
带电粒子束扩散器/范围调整器的高Z物质和低Z物质可以被安置在同步回旋加速器的提取通道中。其中带电粒子束扩散器/范围调整器包括在粒子波束路径中具有相对壁的储液室,该储液室可以同样地被放置在同步回旋加速器的提取通道中。
本发明的实施方案具有很多的优点。通过独立地和持续地改变高Z和低Z物质的厚度,粒子路径在整个治疗的过程中可以持续地变化。这样可以有效地产生Bragg顶点分布独特的、实质上不定的外形,借此将等角的和不均匀两种放射剂量两者递送给目标。本发明的第一扩散器/范围调整器使由波束吸收的剂量与三维治疗体积相匹配,从而得到高度一致的剂量分配。这样就为患者带来最佳的临床效果。癌症治疗的局部控制速率随着对瘤的剂量的增加而提高,而并发症的比率(由于对重要结构使用不必要的用量)随着给周围正常组织上的剂量而增加。通过使用准确整型的质子束,与使用光子(x-射线)束相比,治疗体积上的剂量和给到周围组织上的用量的比例显著增加。
在一些实施方案中,同步回旋加速器作为带电粒子源的使用使得本发明可以避免依赖不稳定的能量波束。此外,本发明的设备的操作通过调整高Z和低Z物质的运动的时间选择被可编程处理器以持续可变的方式所控制,以产生预先确定的、不均匀的Bragg顶点分布。
除了常规的临床方案,还会有至少一种扩散和范围调整的特殊的情况,在这种情况下需要较高强度的、小的波束,比如在治疗眼瘤或者斑点恶化的情况下。这些特殊的情况需要很浅的渗透深度,非常小的区域尺寸,并且治疗时间也会减少。在这种情况下,由于区域尺寸非常的小,因此第二补偿的扩散器是不需要的。本发明的第一扩散器/范围调整器对于这种特殊情况的应用来说具有特殊的优势。
本发明采用过去所使用的基础的物理原理并将它们与当今的控制系统技术和新的几何学相结合以建立新的波束扩散和范围调整装置,该装置不仅可以有计划地传递如固定的扩散器/调整器部件的相同的性能,也可以传递实时调整的独特可变的外形,以产生与目标体积高度匹配的剂量分配。这种可以持续地并独立地改变穿过“高Z”和“低Z”物质的波束路径长度的能力避免了必须计划并释放有限量的固定Bragg顶点分布的放射治疗剂量的问题。
附图说明
通过下面对如附图中所示出的本发明优选的实施方案更加具体的描述,本发明前面所述的以及其它的目的、特点和优点将会更加的明显。其中在附图中,相同的参考数字在全部附图中是指向相同的部件。附图并不是按照比例所绘制的,其重点在于示出本发明的原理。
附图1A示出由质子束释放的放射沉积剂量作为渗透深度的函数的典型图。在渗透范围的末梢部分上的顶点是Bragg顶点;
附图1B示出Bragg顶点分布图,该分布图是期待的放射的等角剂量的释放;
附图1C是示出由渗透范围被调整的质子束所产生的多个Bragg顶点重叠的结果的图;
附图2示出由高Z和低Z物质所组成的补偿的第二扩散器的横截面,其中所述的高Z和低Z物质具有与物质的扩散和吸收特性相匹配的形状;
附图3是使用本发明的设备和方法的放射治疗系统的方框图;
附图4A是本发明的带电粒子扩散器/范围调整器的优选实施方案的侧视图(局部切割);
附图4B是附图4A的设备的端视图;
附图5A是在本发明带电粒子扩散器/范围调整器的优选实施方案中改变的侧视图(局部切割);
附图5B是附图5A中设备的端视图;
附图6是示出当与粒子加速器相结合时,附图5A所示的实施方案的优势配置的俯视图;
附图7是说明由本发明方法的优选实施方案所使用的反馈操纵系统的方框图。
具体实施方式
尽管本发明可适用于所有的带电粒子束,但是现在所讨论的重点只是用于放射治疗的质子束,作为一种示意性的和有益的实施例。
正如上面所讨论的那样,从粒子加速器中所形成的质子束被波束路径中插入的多个设备和物质所整型和调整。
本发明的一种实施方案是带电的粒子扩散器/范围调整器,该调整器在一些实施方案中可以被用于质子束放射治疗系统的普通实施中,作为第一扩散器。附图3是结合本发明的实施方案的粒子治疗系统100的方框图。它简单地示出适合本发明的系统器件。出于简化的目的,省去了其它的子系统,例如粒子加速器的RF控制系统、真空洗尘器、电源等。
典型的是,输入到系统100中的输入102是将被治疗的目标体积的大小和位置以及患者的外部轮廓。目标体积参量102被治疗规划系统104使用,用来指示三维剂量分配以便等角地将剂量释放给目标体积。治疗规划系统104的输出被传递到质子治疗系统控制器106中,该控制器生成供不同的子系统使用的一系列参数以执行该治疗。这些参数包括Bragg顶点的末梢宽度和Bragg顶点分布的深度108,以及作为总剂量的函数的高和低Z路径长度的计算110,该计算以参数108为基础。对包括可编程的第一扩散器/范围调整器112的子系统重要的参数是被用于插入到质子束中作为由波束监控器114测量的总剂量的函数的高和低Z物质的路径长度。如果加速器116的输出在整个时间内都是已知的常数,那么路径长度可以相对于时间被编程。在这个实施方案中,对直接来自波束监控器114中信息的使用消除了加速器的输出是相对于时间的常数的这种限制。
有用于极测量的总剂量的修正的计算的路径长度,被第一扩散器/范围调整器控制系统118转变成用于线性传动装置122和123的高Z和低Z位置指令120,所述的传动装置122和123分别改变高Z和低Z物质的路径长度124和125。高Z和低Z物质可以是固体、液体和气体。液体物质是优选的。在优选的实施方案中,线性传动装置122和123是线性发动机/编码器。编码器测量系统内的实际位置和伺服环路(如在附图7中更具体的描述),以确保密封控制和误差状况感应用以通过实行低Z和高Z路径长度的密封控制保证治疗安全并防止误差。
由粒子加速器116(其在一个实施方案中是回旋加速器)产生的波束126被波束监控器114所监控并被本发明的第一扩散器/范围调整器112所调整。在通过第一扩散器112后,波束126通过如在附图2中所示出的第二补偿的扩散器128。
在第二扩散器l28上持续的横向扩展和波束调节之后,波束126在进入患者内目标体积134之前被范围补偿块130,以及横向地被最后的等角孔132进一步地整型。
附图3中的第一扩散器/范围调整器112的两个作为替代的实施方案是设备200和200’,如附图4A,4B和5A,5B中所示。
参考附图4A和5A,设备200和200’包括两个密封的系统:系统202和系统204。其中系统202中添满了诸如水的低Z流体,系统204中添满了诸如液体状态水银的高Z流体。流体也可以在溶液中混合其它元素,比如像在低Z流体中的硼,其作为对高Z部分中所产生的中子的屏障。质子束(没有示出)沿着中轴从左运行到右。两个系统202和204并行放置。最靠近质子束源放置的即可以是高Z系统204,也可以是低Z系统202。在此所示的实施方案是将高Z系统204放置在最靠近加速器116的输出端上(参见附图3和附图6)。
为了提供在很长的时间内都是可靠的流体密封,系统202和204分别包括焊接的金属伸缩管212和214。伸缩管212和214作为可展开的侧壁,其与相对壁216、218(系统202)和220、222(系统204)一起形成置于粒子束路径中的储液室。参考附图4A中的设备200,在每个储液室内,有凹的管状延伸224和226。参考附图5A中的设备200’,管状延伸224’和226’是同轴的,其中管状延伸226’被置于管状延伸224’内。参考附图5A中的设备200’,相对壁216和222是管状延伸226’的相同部分的不同面。侧壁220装有入口窗口228。侧壁218装有出口窗口230。所述的入口和出口窗口228和230是由薄的抵抗放射的箔片制备,举例来说,不锈钢或钛。箔片足够的薄以致实质上不影响波束。
参考附图4A中的设备200,一种薄的,抵抗放射性的隔膜232(由类似于窗口228和230的材料所制备)被置于穿过中心板234内的孔。参考附图5A中的设备200’,隔膜232’被置于穿过管状延伸226’的部分中的孔,以限定壁216和222。隔膜232将系统中202和204中的两种流体分开。用于隔膜232和窗口228、230的小的修正将会被考虑在系统的模型中。
参考附图4A中的设备200,在伸缩管212和214的操作期间,入口和出口窗口228和230可以接触到划分隔膜232。同样地,参考附图5A中所示的设备200’,入口和出口窗口228和230可以接触到划分隔膜232’。这样就允许高Z路径长度或者低Z路径长度可以被独立地选择实质上为零。允许伸缩管212和214的进一步的压缩允许入口和出口窗口228和230在伸缩管212和214在被完全压缩之前接触到划分隔膜232或232’。
直线方向轨道240迫使伸缩管212和214和延伸226,226’和224,224’的运动与粒子束中轴208实质上一起呈直线。
一对线性电动机/编码器,例如图3中所示的传动装置122和124,被用于改变低Z和高Z的路径长度。参考附图4A和5A,线性电动机/编码器包括与波束中轴208实质上平行的定于242和244,包括沿着定子242和244移动的电动机/编码器滑架246和248。附着到电动机/编码器滑架246和低Z伸缩管上的是具有滑架250的球,其通过使用滚珠252沿着直线轨道240移动。类似地,滚珠滑架254被附着到电动机/编码器滑架248和高Z伸缩管214上。滚珠滑架254通过使用滚珠256沿着直线轨道240移动。电动机/编码器滑架246和248的移动展开或压缩伸缩管212和214,从而改变填充到各自伸缩管中的高Z和低Z流体的总量并借此改变高Z和低Z路径长度。
在伸缩管中的流体实质上是不能压缩的。因此,供应最适宜的是扩展池组,也是由在这个实施方案中焊接的金属伸缩管所构成。参考附图4B和5B,扩展池270和272接近伸缩管212和214。扩展池270和272以中心板中的内部路径274的方式被连接起来。由于任一流体的路径长度被控制系统118的装置所改变,被置换的流体被盛放在相应的扩展池中。受驱动的伸缩管212和214以及扩展池270和272包括具有不是易变的和消耗性的封铅的密封系统,其在整个时间和接近分散的放射时趋向恶化和泄漏。密封系统的可靠性可以通过被选择用于伸缩管的材料的疲劳特性被预测,并且如果设计的压力没有超过材料的疲劳极限,那么所述的可靠性可以具有无限的有效性。这一点在当医院环境中使用诸如水银的材料时是非常重要的。
参考附图6,通过如附图5A中所示的使设备200’中的管状延伸224’和226’相互嵌套,分散的流体可以比用于设备200的其它的可能更靠近的粒子束源(诸如加速器116)而放置。如附图6中所示,管状延伸224’和226’可以被插入到提取通道701中,以使整个系统更加的紧凑。应该注意到管状延伸224’和226’优选地有磁力地被屏蔽。操作的原理和单元个别器件的功能与附图4A和4B中所示的实施方案相同。
参考附图3,控制系统118驱动电动机122和123并接收来自电动机/编码器滑架(附图4A和5A中的246和248)的信号,用以准确地控制入口和出口窗口228和230关于隔膜232(参见附图4A和5A)位置和速度。这样就转化为对粒子束路径中高Z和低Z物质总量的控制,借此控制粒子束的分散角度和范围处于预先确定的方式。高Z和低Z物质124和125的路径长度,以及因此电动机/编码器滑架(附图4A和5A中的246和248)的位置也都是由波束监控器114所测量的,整体的剂量和放射的函数。据此,本发明的一个实施方案包括反馈控制环300,如附图7所示。
参考附图7,被传递的放射的整体剂量在步骤302根据波束监控器114的测量值而被计算。根据该整体的剂量,第一扩散器/范围调整器控制系统118分别在步骤120a和120b生成高Z和低Z位置指令。这些指令被传送到线性加载器/电动机(附图3中的122和123),其改变了高Z和低Z电动机滑架/编码器(附图4A和5A中的246和248)的位置。在步骤304a和304b,编码器测量滑架的实际位置并将数据传递给第一扩散器/范围调整器控制118。因此,响应波束强度输出的反馈控制环300被用于持续地、动态地(即,实时)并且独立地调整在入口窗口230和高Z系统中的隔膜232以及隔膜232和低Z系统202中的出口窗口230(参见附图4A和5A)之间的距离。据此,低Z和高Z路径长度根据波束强度被持续地、动态地、以及独立地被调整。
虽然结合本发明优选的安施方案具体地显示并描述了本发明,但是本领域计数人员可以理解的是,在形式上以及细节中各种变化都不会超出本发明所附权利要求所要求保护的范围。

Claims (69)

1.一种带电粒子束扩散器/范围调整器,包括:在粒子束路径中具有可调路径长度的高Z物质;在粒子束路径中具有可调路径长度的低Z物质;以及可编程控制器,用于在目标暴露给波束期间独立地调整高Z和低Z路径长度。
2.根据权利要求1的扩散器/调整器,其中高Z和低Z物质是液体。
3.根据权利要求1的扩散器/调整器,其中低Z物质的路径长度,和高Z物质路径长度是独立持续可调的。
4.根据权利要求1的扩散器/调整器,其中带电粒子是质子。
5.一种放射治疗装置,包括:
提供带电粒子束的带电粒子源;以及
带电粒子束扩散器/范围调整器,其包括:
在粒子束路径中具有可调路径长度的高Z物质;
在粒子束路径中具有可调路径长度的低Z物质;以及
可编程控制器,用于在目标暴露给波束期间独立地调整高Z和低Z路径长度。
6.根据权利要求5的装置,其中高Z和低Z物质是液体。
7.根据权利要求5的装置,其中低Z物质的路径长度以及高Z物质的路径长度是独立地持续可调的。
8.根据权利要求5的装置,其中带电粒子是质子。
9.根据权利要求5的装置,其中源是回旋加速器。
10.根据权利要求9的装置,其中回旋加速器是同步回旋加速器。
11.根据权利要求5的装置,进一步包括:
用于测量粒子束强度的波束监控器,该波束监控器将波束强度传递给可编程控制器,所述的可编程控制器根据整体的波束强度独立地调整低Z以及高Z路径长度。
12.根据权利要求11的装置,其中可编程控制器持续地并动态地独立地调整低Z以及高Z路径长度。
13.一种扩散及/或调整带电粒子束范围的方法,该方法包括:
将带电粒子束引入穿过具有在粒子束路径中可调路径长度的高Z物质;
将带电粒子束引入穿过具有在粒子束路径中可调路径长度的低Z物质;以及
在可编程控制器的控制下,在目标暴露给波束期间独立地调整高Z和低Z路径长度。
14.根据权利要求13的方法,其中高Z和低Z物质是液体。
15.根据权利要求13的方法,其中低Z物质的路径长度以及高Z物质路径长度是独立持续可调的。
16.根据权利要求13的方法,其中带电粒子是质子。
17.根据权利要求13的方法,进一步包括:
测量粒子束强度;以及
根据波束强度通过可编程控制器独立地调整低Z以及高Z路径长度。
18.根据权利要求17的方法,其中可编程控制器持续地并且动态地独立调整低Z以及高Z路径长度。
19.一种通过将带电粒子束引向患者体内的目标的治疗患者的方法,该方法包括:
生成带电粒子束;
将带电粒子束引向穿过高Z物质,所述的高Z物质在粒子束路径中具有可调路径长度;
将带电粒子束引向穿过低Z物质,所述的低Z物质在粒子束路径中具有可调路径长度;以及
在可编程控制器的控制下,在目标暴露给波束期间独立地调整高Z和低Z路径长度。
20.根据权利要求19的方法,其中高Z和低Z物质是液体。
21.根据权利要求13的方法,其中低Z物质以及高Z物质是独立持续可调的。
22.根据权利要求19的方法,其中带电粒子是质子。
23.根据权利要求19的方法,其中带电粒子由回旋加速器所生成。
24.根据权利要求23的方法,其中回旋加速器是同步回旋加速器。
25.根据权利要求19的方法,进一步包括:
测量波束强度;以及
根据波束强度通过可编程控制器独立调整低Z以及高Z路径长度。
26.一种带电粒子束扩散器/范围调整器,包括:
在粒子束路径中具有相对壁的储液室;
调整储液室的壁之间距离的驱动器;以及
在目标暴露给波束期间,用于驱动器调整储液室壁之间距离的可编程控制器。
27.根据权利要求26的扩散器/调整器,其中在储液室的相对壁之间的距离是持续可调的。
28.根据权利要求27的扩散器/调整器,包括串行排列在粒子束路径中第一和第二储液室。
29.根据权利要求28的扩散器/调整器,其中在第一储液室相对壁之间的距离以及在第二储液室相对壁之间的距离是独立持续可调的。
30.根据权利要求29的扩散器/调整器,进一步包括在第一储液室内的高Z物质以及在第二储液室内的低Z物质。
31.根据权利要求26的扩散器/调整器,其中带电粒子是质子。
32.一种放射治疗装置,包括:
提供带电粒子束的带电粒子源;以及
带电粒子束扩散器/范围调整器,包括:
在粒子束路径中具有相对壁的储液室;
调整储液室相对壁之间距离的驱动器;以及
在目标暴露给波束期间,用于驱动器调整储液室的壁之间距离的可编程控制器。
33.根据权利要求32的扩散器/调整器,其中储液室的相对壁之间的距离是持续可调的。
34.根据权利要求3 3的扩散器/调整器,包括串行排列在粒子束路径中的第一和第二储液室。
35.根据权利要求34的扩散器/调整器,其中第一储液室的相对壁之间的距离以及第二储液室相对壁之间的距离是独立持续可调的。
36.根据权利要求35的装置,进一步包括在第一储液室内的高Z物质和在第二储液室内的低Z物质。
37.根据权利要求35的装置,其中带电粒子是质子。
38.根据权利要求37的装置,其中源是回旋加速器。
39.根据权利要求38的装置,其中回旋加速器是同步回旋加速器。
40.根据权利要求35的装置,进一步包括:
用于测量粒子束强度的波束监控器;
可编程控制器,该可编程控制器根据波束强度独立地调整第一储液室的相对壁之间的距离以及第二储液室的相对壁之间的距离。
41.根据权利要求35的装置,其中可编程控制器持续地并且动态地独立调整第一储液室的相对壁之间的距离以及第二储液室的相对壁之间的距离。
42.一种通过将带电粒子束引向患者内的目标上的治疗患者的方法,包括:
生成带电粒子;
将带电粒子束引向穿过在粒子束路径中具有相对壁的储液室;
在可编程控制器的控制下,在目标暴露给波束期间,调整储液室相对壁之间的距离。
43.根据权利要求42的方法,其中带电粒子被指引穿过串行排列在粒子束路径中的第一和第二储液室。
44.根据权利要求42的方法,进一步包括:
持续独立地调整第一储液室的相对壁之间的距离以及第二储液室的相对壁之间的距离。
45.根据权利要求44的方法,进一步包括:
测量波束强度;以及
将波束强度传递给可编程控制器,其中该可编程控制器根据波束强度独立地调整第一储液室的相对壁之间的距离以及第二储液室的相对壁之间的距离。
46.根据权利要求45的方法,其中第一储液室含有在内部的高Z物质,以及第二储液室含有低Z物质。
47.根据权利要求42的方法,其中带电粒子是质子。
48.根据权利要求42的方法,其中带电粒子由回旋加速器所生成。
49.根据权利要求48的方法,其中回旋加速器是同步回旋加速器。
50.一种放射治疗装置,包括:
提供带电粒子束的同步回旋加速器;以及
带电粒子束扩散器/范围调整器,其包括:
在同步回旋加速器的提取通道中的高Z物质,该高Z物质在粒子束路径中具有可调路径长度;
在同步回旋加速器的提取通道中的低Z物质,该低Z物质在粒子束路径中具有可调路径长度;以及
可编程控制器,该可编程控制器在目标暴露在波束期间独立地调整高Z和低Z路径长度。
51.根据权利要求50的装置,其中高Z和低Z物质是液体。
52.根据权利要求50的装置,其中低Z物质的路径长度以及低Z物质的路径长度是独立地持续可调的。
53.根据权利要求50的装置,其中带电粒子是质子。
54.根据权利要求50的装置,进一步包括:
用于测量粒子束强度的波束监控器,该波束监控器将波束强度传递给可编程控制器,该可编程控制器根据总的波束强度独立地调整低Z以及高Z路径长度。
55.根据权利要求54的装置,其中可编程控制器持续地并且动态地独立调整低Z以及高Z路径长度。
56.一种分散及/或调整带电粒子束的范围的方法,包括:
在同步回旋加速器生成粒子束;
将带电粒子束引向穿过高Z物质,该高Z物质在粒子束路径中具有可调路径长度并被置于同步回旋加速器的提取通道中;
将带电粒子束引向穿过低Z物质,该低Z物质在粒子束路径中具有可调路径长度并被置于同步回旋加速器的提取通道中;以及
在可编程控制器的控制下,在目标暴露给波束期间,独立地调整高Z和低Z路径长度。
57.根据权利要求56的方法,其中高Z和低Z物质是液体。
58.根据权利要求56的方法,其中低Z物质的路径长度以及高Z物质的路径长度是独立地持续可调的。
59.根据权利要求56的装置,其中带电粒子是质子。
60.根据权利要求56的方法,进一步包括:
测量粒子束强度;以及
根据波束强度通过可编程控制器独立调整低Z以及高Z路径长度。
61.根据权利要求60的方法,其中可编程控制器持续地和动态地独立调整低Z以及高Z路径长度。
62.一种放射治疗装置,包括:
提供带电粒子束的同步回旋加速器;以及
带电粒子束扩散器/范围调整器,其包括:
储液室,该储液室被置于同步回旋加速器的提取通道中并且在粒子束路径中具有相对壁;
驱动器,该驱动器调整储液室的壁之间的距离;以及
可编程控制器,该可编程控制器在目标暴露给波束期间用于驱动器调整储液室相对壁之间的距离。
63.根据权利要求62的装置,其中储液室的相对壁之间的距离是持续可调的。
64.根据权利要求63的装置,包括串行排列在粒子束路径中的第一和第二储液室。
65.根据权利要求64的装置,其中第一储液室的相对壁之间的距离以及第二储液室的相对壁之间的距离是独立地持续可调的。
66.根据权利要求65的装置,进一步包括在第一储液室内的高Z物质以及在第二储液室内的低Z物质。
67.根据权利要求65的装置,其中带电粒子是质子。
68.根据权利要求65的装置,进一步包括:
用于测量粒子束强度的波束监控器;
可编程控制器,该可编程控制器根据波束强度独立地调整第一储液室的相对壁之间的距离以及第二储液室的相对壁之间的距离。
69.根据权利要求68的装置,其中可编程控制器持续地以及动态地独立调整第一储液室的相对壁之间的距离以及第二储液室的相对壁之间的距离。
CN200580024563.3A 2004-07-21 2005-07-21 用于放射疗法波束形态的可编程粒子扩散器 Expired - Fee Related CN1988933B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US59008804P 2004-07-21 2004-07-21
US60/590,088 2004-07-21
US10/949,734 US7208748B2 (en) 2004-07-21 2004-09-24 Programmable particle scatterer for radiation therapy beam formation
US10/949,734 2004-09-24
PCT/US2005/025942 WO2006012452A1 (en) 2004-07-21 2005-07-21 A programmable particle scatterer for radiation therapy beam formation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2010105641263A Division CN102139141A (zh) 2004-07-21 2005-07-21 用于放射疗法波束形态的可编程粒子扩散器

Publications (2)

Publication Number Publication Date
CN1988933A true CN1988933A (zh) 2007-06-27
CN1988933B CN1988933B (zh) 2011-01-19

Family

ID=35276447

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200580024563.3A Expired - Fee Related CN1988933B (zh) 2004-07-21 2005-07-21 用于放射疗法波束形态的可编程粒子扩散器
CN2010105641263A Pending CN102139141A (zh) 2004-07-21 2005-07-21 用于放射疗法波束形态的可编程粒子扩散器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2010105641263A Pending CN102139141A (zh) 2004-07-21 2005-07-21 用于放射疗法波束形态的可编程粒子扩散器

Country Status (10)

Country Link
US (4) US7208748B2 (zh)
EP (2) EP1796792B1 (zh)
JP (1) JP4900610B2 (zh)
CN (2) CN1988933B (zh)
AT (1) ATE488272T1 (zh)
AU (2) AU2005267063B2 (zh)
CA (1) CA2574440A1 (zh)
DE (1) DE602005024837D1 (zh)
ES (1) ES2356842T3 (zh)
WO (1) WO2006012452A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553089A (zh) * 2010-11-15 2012-07-11 美国西门子医疗解决公司 用于动态频闪弧形疗法的系统和方法
CN104812443A (zh) * 2012-09-28 2015-07-29 梅维昂医疗系统股份有限公司 控制粒子治疗
CN107946159A (zh) * 2017-11-24 2018-04-20 新奥科技发展有限公司 一种可调式离子源及静电约束聚变反应器

Families Citing this family (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0507690A (pt) * 2004-02-12 2007-07-24 Neovista Inc métodos e aparelho para a braquiterapia intra-ocular
US7208748B2 (en) * 2004-07-21 2007-04-24 Still River Systems, Inc. Programmable particle scatterer for radiation therapy beam formation
EP1790203B1 (en) * 2004-07-21 2015-12-30 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
US9077022B2 (en) * 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
JP2006280457A (ja) * 2005-03-31 2006-10-19 Hitachi Ltd 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
WO2007059208A2 (en) * 2005-11-15 2007-05-24 Neovista Inc. Methods and apparatus for intraocular brachytherapy
EP2389978B1 (en) 2005-11-18 2019-03-13 Mevion Medical Systems, Inc. Charged particle radiation therapy
WO2007106815A2 (en) * 2006-03-14 2007-09-20 University Of Notre Dame Du Lac Methods and apparatus for hardware based radiation dose calculation
JP2007267904A (ja) * 2006-03-31 2007-10-18 Hitachi Ltd 粒子線治療装置
JP4206414B2 (ja) 2006-07-07 2009-01-14 株式会社日立製作所 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8933650B2 (en) * 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) * 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
DE102008014406A1 (de) * 2008-03-14 2009-09-24 Siemens Aktiengesellschaft Partikeltherapieanlage und Verfahren zur Modulation eines in einem Beschleuniger erzeugten Partikelstrahls
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US8093564B2 (en) * 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8896239B2 (en) * 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US9058910B2 (en) * 2008-05-22 2015-06-16 Vladimir Yegorovich Balakin Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system
US8368038B2 (en) * 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US8569717B2 (en) * 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US9044600B2 (en) * 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8436327B2 (en) * 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US8309941B2 (en) * 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US8378321B2 (en) * 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US7943913B2 (en) 2008-05-22 2011-05-17 Vladimir Balakin Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US8519365B2 (en) * 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US8624528B2 (en) * 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US8144832B2 (en) * 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8957396B2 (en) * 2008-05-22 2015-02-17 Vladimir Yegorovich Balakin Charged particle cancer therapy beam path control method and apparatus
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
EP2283713B1 (en) * 2008-05-22 2018-03-28 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy apparatus
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US7953205B2 (en) * 2008-05-22 2011-05-31 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US8373145B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US8487278B2 (en) * 2008-05-22 2013-07-16 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8288742B2 (en) * 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8373146B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8373143B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
WO2009142550A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8129694B2 (en) * 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US20090314960A1 (en) * 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
WO2009142545A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle cancer therapy patient positioning method and apparatus
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US8188688B2 (en) * 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US8710462B2 (en) * 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
EP2283710B1 (en) * 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy apparatus
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US7940894B2 (en) * 2008-05-22 2011-05-10 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8642978B2 (en) * 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US8598543B2 (en) 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US8198607B2 (en) * 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8045679B2 (en) * 2008-05-22 2011-10-25 Vladimir Balakin Charged particle cancer therapy X-ray method and apparatus
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8229072B2 (en) 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8627822B2 (en) * 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
JP2012519532A (ja) 2009-03-04 2012-08-30 ザクリトエ アクツィアニェールナエ オーブシチェストヴォ プロトム 多方向荷電粒子線癌治療方法及び装置
JP5646312B2 (ja) * 2010-04-02 2014-12-24 三菱電機株式会社 粒子線照射装置及び粒子線治療装置
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US11266119B2 (en) 2012-05-07 2022-03-08 Advanced Comfort Technology, Inc. Animal bed having dual independent support chambers
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
EP2901820B1 (en) 2012-09-28 2021-02-17 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
WO2014052718A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Focusing a particle beam
JP6523957B2 (ja) 2012-09-28 2019-06-05 メビオン・メディカル・システムズ・インコーポレーテッド 磁場を変更するための磁性シム
TW201424466A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 磁場再生器
WO2014052721A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Control system for a particle accelerator
TW201424467A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 一粒子束之強度控制
EP3581242B1 (en) 2012-09-28 2022-04-06 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
EP2939708A4 (en) * 2012-12-26 2016-08-10 Mitsubishi Electric Corp DEVICE FOR MEASURING DOSING DISTRIBUTION
US20140264065A1 (en) * 2013-03-15 2014-09-18 Varian Medical Systems, Inc. Energy degrader for radiation therapy system
EP2978495B1 (en) * 2013-03-26 2018-05-09 Ion Beam Applications S.A. Accessory holder for particle beam apparatus
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
WO2015048468A1 (en) 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
JP2016176948A (ja) * 2016-04-08 2016-10-06 三菱電機株式会社 線量分布測定装置
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US9999787B1 (en) * 2017-03-08 2018-06-19 Varian Medical Systems International Ag. Beam limiting device for intensity modulated proton therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
WO2019217752A1 (en) * 2018-05-09 2019-11-14 University Of Florida Research Foundation Systems and methods for monitoring a charged particle beam used in particle therapy
WO2020185543A1 (en) 2019-03-08 2020-09-17 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
US20230249003A1 (en) * 2020-07-03 2023-08-10 Ion Beam Applications Sa Conformal particle therapy system
CN116981150B (zh) * 2023-08-01 2024-01-23 迈胜医疗设备有限公司 射程移位器、控制方法和放射治疗设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3679899A (en) * 1971-04-16 1972-07-25 Nasa Nondispersive gas analyzing method and apparatus wherein radiation is serially passed through a reference and unknown gas
DE3844716C2 (de) * 1987-08-24 2001-02-22 Mitsubishi Electric Corp Partikelstrahlmonitorvorrichtung
US4896206A (en) * 1987-12-14 1990-01-23 Electro Science Industries, Inc. Video detection system
US5191706A (en) * 1991-07-15 1993-03-09 Delmarva Sash & Door Company Of Maryland, Inc. Machine and method for attaching casing to a structural frame assembly
US5440133A (en) * 1993-07-02 1995-08-08 Loma Linda University Medical Center Charged particle beam scattering system
US5668371A (en) * 1995-06-06 1997-09-16 Wisconsin Alumni Research Foundation Method and apparatus for proton therapy
JP3472657B2 (ja) * 1996-01-18 2003-12-02 三菱電機株式会社 粒子線照射装置
JP3121265B2 (ja) * 1996-05-07 2000-12-25 株式会社日立製作所 放射線遮蔽体
DE69729151T2 (de) * 1996-08-30 2005-05-04 Hitachi, Ltd. Vorrichtung für einen geladenen Teilchenstrahl
US5851182A (en) * 1996-09-11 1998-12-22 Sahadevan; Velayudhan Megavoltage radiation therapy machine combined to diagnostic imaging devices for cost efficient conventional and 3D conformal radiation therapy with on-line Isodose port and diagnostic radiology
EP0943148A1 (en) * 1997-10-06 1999-09-22 Koninklijke Philips Electronics N.V. X-ray examination apparatus including adjustable x-ray filter and collimator
DE19907098A1 (de) * 1999-02-19 2000-08-24 Schwerionenforsch Gmbh Ionenstrahl-Abtastsystem und Verfahren zum Betrieb des Systems
AU8002500A (en) * 1999-10-08 2001-04-23 Advanced Research And Technology Institute, Inc. Apparatus and method for non-invasive myocardial revascularization
JP2001269416A (ja) * 2000-03-27 2001-10-02 Toin Gakuen 可変コンペンセータ
DE10031074A1 (de) * 2000-06-30 2002-01-31 Schwerionenforsch Gmbh Vorrichtung zur Bestrahlung eines Tumorgewebes
US6777700B2 (en) * 2002-06-12 2004-08-17 Hitachi, Ltd. Particle beam irradiation system and method of adjusting irradiation apparatus
DE10233481A1 (de) * 2002-07-24 2004-02-12 Hydraulik-Ring Gmbh Speicher für ein flüssiges Medium
US7208748B2 (en) * 2004-07-21 2007-04-24 Still River Systems, Inc. Programmable particle scatterer for radiation therapy beam formation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553089A (zh) * 2010-11-15 2012-07-11 美国西门子医疗解决公司 用于动态频闪弧形疗法的系统和方法
CN102553089B (zh) * 2010-11-15 2017-07-18 美国西门子医疗解决公司 用于动态频闪弧形疗法的系统和方法
CN104812443A (zh) * 2012-09-28 2015-07-29 梅维昂医疗系统股份有限公司 控制粒子治疗
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
CN104812443B (zh) * 2012-09-28 2018-02-02 梅维昂医疗系统股份有限公司 粒子治疗系统
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
CN107946159A (zh) * 2017-11-24 2018-04-20 新奥科技发展有限公司 一种可调式离子源及静电约束聚变反应器
CN107946159B (zh) * 2017-11-24 2019-07-23 新奥科技发展有限公司 一种可调式离子源及静电约束聚变反应器

Also Published As

Publication number Publication date
JP4900610B2 (ja) 2012-03-21
DE602005024837D1 (de) 2010-12-30
US20060017015A1 (en) 2006-01-26
CA2574440A1 (en) 2006-02-02
AU2009201299A1 (en) 2009-04-23
US20100308235A1 (en) 2010-12-09
EP2305349A1 (en) 2011-04-06
JP2008507358A (ja) 2008-03-13
US7208748B2 (en) 2007-04-24
CN1988933B (zh) 2011-01-19
WO2006012452A1 (en) 2006-02-02
AU2005267063A1 (en) 2006-02-02
US20070235664A1 (en) 2007-10-11
AU2005267063B2 (en) 2009-04-23
EP1796792A1 (en) 2007-06-20
ATE488272T1 (de) 2010-12-15
US20130131424A1 (en) 2013-05-23
US7718982B2 (en) 2010-05-18
CN102139141A (zh) 2011-08-03
EP2305349B1 (en) 2013-04-03
AU2009201299B2 (en) 2011-03-24
EP1796792B1 (en) 2010-11-17
WO2006012452A8 (en) 2007-03-08
ES2356842T3 (es) 2011-04-13

Similar Documents

Publication Publication Date Title
CN1988933B (zh) 用于放射疗法波束形态的可编程粒子扩散器
US9770604B2 (en) Particle beam irradiation apparatus and particle beam therapy system
CN105288871B (zh) 一种粒子照射装置和粒子治疗系统
JP5619462B2 (ja) 治療計画装置及び治療計画装置の治療計画を用いた粒子線治療装置
US20230249003A1 (en) Conformal particle therapy system
JP5784808B2 (ja) 粒子線治療装置
KR20170029348A (ko) 다엽 콜리메이터
JP6184544B2 (ja) 治療計画装置及び粒子線治療装置
Frankel et al. Charged particle method: protons and heavy charged particles
Mazal et al. Proton and Other Heavy Charged-Particle Beams
Rodrigues Dynamic Electron Arc Radiotherapy (DEAR): A New Conformal Electron Therapy Technique
McMahon Dosimetric analysis of multi-field intensity modulated radiation therapy
Phillips CHARGED PARTICLE METHOD
Gibbons Jr Application and Dosimetric Aspects of Independent Collimators

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: MEIWEISHEN MEDICAL SYSTEM CO., LTD.

Free format text: FORMER NAME: STILL RIVER SYSTEMS INC.

CP01 Change in the name or title of a patent holder

Address after: Massachusetts, USA

Patentee after: Still River Systems, Inc.

Address before: Massachusetts, USA

Patentee before: Still River Systems, Inc.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110119

Termination date: 20140721

EXPY Termination of patent right or utility model