Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN1830110 A
Publication typeApplication
Application numberCN 200480021793
PCT numberPCT/US2004/024502
Publication date6 Sep 2006
Filing date29 Jul 2004
Priority date29 Jul 2003
Also published asCA2532986A1, CA2532986C, CN1830110B, DE112004001344T5, EP1652252A1, EP1652252A4, EP1652252B1, US20050130043, WO2005013397A1
Publication number200480021793.X, CN 1830110 A, CN 1830110A, CN 200480021793, CN-A-1830110, CN1830110 A, CN1830110A, CN200480021793, CN200480021793.X, PCT/2004/24502, PCT/US/2004/024502, PCT/US/2004/24502, PCT/US/4/024502, PCT/US/4/24502, PCT/US2004/024502, PCT/US2004/24502, PCT/US2004024502, PCT/US200424502, PCT/US4/024502, PCT/US4/24502, PCT/US4024502, PCT/US424502
InventorsY高, M亚科夫莱瓦, J恩格尔, C贾维斯, M莱因
ApplicantFmc公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Lithium metal dispersion in electrodes
CN 1830110 A
Abstract  translated from Chinese
电极,如阳极和阴极,可包括预锂化或在引入电解质到电池内时发生锂化的基质材料。 Electrode, as anode and cathode, may comprise a pre-lithiated or lithiated host material occurs when electrolyte is introduced into the battery. 基质材料的锂化可通过以下发生:搅拌锂金属和基质材料,在大于室温的温度下搅拌锂金属粉末和基质材料,施加压力到锂金属和基质材料混合物上,使基质材料与熔融锂金属接触,层压锂箔或锂网到包含基质材料的电极上,或在高温下层压锂金属或网到电极上。 Lithiated host material can be produced by the following occurs: stirring a lithium metal and a matrix material, followed by stirring the lithium metal powder and a matrix material at temperatures greater than room temperature, the pressure is applied to a mixture of lithium metal and a matrix material, the matrix material in contact with the molten lithium metal , laminating lithium foil or a lithium mesh to contain the matrix material of the electrode, or laminated lithium metal at high temperature or mesh to the electrode.
Claims(30)  translated from Chinese
1.一种预锂化基质材料的方法,包括:在锂金属中分散基质材料以形成基质材料和锂金属的混合物;和搅拌该基质材料和锂金属的混合物以促进该基质材料的锂化。 1. A pre-lithiated of the matrix material, comprising: dispersing in a matrix material to form a mixture of lithium metal and lithium metal matrix material; and the mixture was stirred and the lithium metal matrix material to promote lithiation of the host material.
2.权利要求1的方法,其中锂金属为锂金属粉末。 The method of claim 1, wherein the lithium metal is lithium metal powder.
3.权利要求2的方法,其中锂金属粉末包括稳定的锂金属粉末。 The method of claim 2, wherein the lithium metal powder comprises a stabilized lithium metal powder.
4.权利要求2的方法,其中锂金属粉末和基质材料分散在非水溶液中。 The method of claim 2, wherein the lithium metal powder dispersed in the matrix material and a non-aqueous solution.
5.权利要求4的方法,其中非水溶液包括烃溶剂。 The method of claim 4, wherein the non-aqueous solution comprises a hydrocarbon solvent.
6.权利要求2的方法,其中在约180℃或更低的温度下进行搅拌。 The method of claim 2, wherein the stirring at about 180 ℃ or lower.
7.权利要求1的方法,其中锂金属包括熔融锂金属。 The method of claim 1, wherein the molten lithium metal comprises a lithium metal.
8.一种预锂化基质材料的方法,包括:使基质材料与锂金属粉末结合形成混合物;和操作该混合物以促进基质材料的锂化。 A pre-lithiated of the matrix material, comprising: the matrix material and the lithium metal powder to form a mixture; and operation of the mixture to promote lithiation of the host material.
9.权利要求8的方法,其中对该混合物的操作包括搅拌该混合物以促进基质材料的锂化。 The method of claim 8, wherein the mixture and the mixture was stirred for an operation including to promote the lithiation of the matrix material.
10.权利要求9的方法,其中在约180℃或更低的温度下进行搅拌。 10. The method of claim 9, wherein the stirring at about 180 ℃ or lower.
11.权利要求9的方法,其中在40℃和150℃之间的温度下进行搅拌。 11. The method of claim 9, wherein the mixture was stirred at a temperature of 40 ℃ and 150 ℃ between.
12.权利要求8的方法,其中该混合物的操作包括在40℃和150℃之间的温度下加热该混合物。 The method of claim 8, wherein the operation comprises heating the mixture at a temperature of the mixture was 40 ℃ and 150 ℃ between.
13.权利要求8的方法,其中对该混合物的操作包括施加压力到该混合物以锂化基质材料。 13. The method of claim 8, wherein the mixture of operation comprises applying pressure to the mixture to lithiated matrix material.
14.权利要求13的方法,其中施加压力到该混合物发生在180℃或更低的温度下。 14. The method of claim 13, wherein the pressure is applied to the mixture occurs at 180 ℃ or lower.
15.权利要求8的方法,其中对该混合物的操作包括:使用混合物形成电极;和挤压电极以锂化基质材料。 And extrusion lithiated electrode matrix material; forming an electrode using a mixture of: 15. The method of claim 8, wherein the mixture comprises an operation.
16.权利要求15的方法,还包括进行二次挤压电极。 16. The method of claim 15, further comprising a second pressing electrode.
17.一种电极,包括:集电器;和与集电器接触的预锂化的基质材料。 17. An electrode comprising: a current collector; and a current collector in contact with the pre-lithiated host material.
18.权利要求17的电极,其中该预锂化的基质材料包括用锂金属粉末预锂化的基质材料。 18. The electrode of claim 17, wherein the pre-lithiated base material comprising a lithium metal powder with a pre-lithiated host material.
19.一种可再充电锂离子电池,包括:正极;包括预锂化的基质材料的负极;和在正极和负极之间的隔板。 19. A rechargeable lithium-ion battery comprising: a positive electrode; includes pre-lithiated cathode matrix material; and a separator between the positive electrode and the negative electrode.
20.权利要求19的可再充电锂离子电池,其中该预锂化的基质材料包括由基质材料和锂金属粉末形成的预锂化的基质材料。 20. The claim 19 rechargeable lithium ion battery, wherein the pre-lithiated matrix material comprises a host material and lithium metal powder forming a matrix of a pre-lithiated material.
21.一种电池,包括权利要求19的可再充电锂离子电池。 21. A battery comprising claim 19 rechargeable lithium ion battery.
22.权利要求21的电池,其中该电池为用于选自以下设备的电池:便携式电子设备、蜂窝式电话设备、便携式摄像机设备、数字记录设备、膝上型计算机设备、电动车设备和混合机车设备。 The portable electronic device, a cellular phone device, a portable video camera device, a digital recording device, a laptop computer device, electric vehicles and hybrid locomotive equipment: battery 21 wherein the cell is selected for the battery 22. The device of claim equipment.
23.一种形成电极的方法,包括:锂化基质材料;和由该锂化的基质材料形成电极。 23. A method of forming an electrode, comprising: a lithium-based matrix material; and an electrode is formed by the lithiation of the host material.
24.一种形成电池的方法,包括:由基质材料形成电极;锂化该电极;和在形成电池时使用该锂化电极作为负极。 24. A method of forming a battery, comprising: forming an electrode consisting of a matrix material; lithiation of the electrode; and using the lithiated electrode when the battery is formed as a negative electrode.
25.权利要求24的方法,其中锂化该电极包括:施加锂金属到由基质材料形成的电极上;和促进基质材料的锂化。 25. The method of claim 24, wherein the lithiated electrode comprising: applying a lithium metal to the electrode formed by the matrix material; and promote lithiation of the host material.
26.权利要求25的方法,其中施加锂金属到电极上包括施加锂网到电极上。 26. The method of claim 25, wherein the lithium metal is applied to the electrode on the upper electrode comprises applying a lithium mesh to.
27.权利要求26的方法,其中促进基质材料的锂化包括施加力到电极的锂网和基质材料上以引发基质材料的锂化。 27. The method of claim 26, wherein promoting the lithiation of the matrix material comprises applying a force to the matrix material to initiate lithiation of lithium on the electrode mesh and a matrix material.
28.权利要求26的方法,其中促进基质材料的锂化包括施加电解质到电极的锂网和基质材料上以引发基质材料的锂化。 28. The method of claim 26, wherein the matrix material to promote lithiation of the electrolyte to the electrode comprises applying a lithium mesh and a matrix material to initiate lithiation of the host material.
29.权利要求26的方法,其中促进基质材料的锂化包括加热电极的锂网和基质材料以引发基质材料的锂化。 29. The method of claim 26, wherein promoting the lithiation of the matrix material comprises heating the web and a lithium electrode to initiate lithiation of the host material of the matrix material.
30.权利要求25的方法,其中施加锂金属到电极上包括施加锂箔到电极上。 30. The method of claim 25, wherein applying comprises applying a lithium metal to the lithium foil to the electrode on the electrode.
Description  translated from Chinese
电极中的锂金属分散体 Electrode of the lithium metal dispersion

相关申请的交叉参考本申请要求以下美国专利申请的权益并在本文中全文引入作为参考:2004年7月28日提交的题目为“LITHUM METAL DISPERSION INELECTRODES”的美国专利申请;2003年7月29日提交的美国临时申请No.60/490685;和2003年7月31日提交的美国临时申请No.60/491513。 This application claims the following benefits CROSS REFERENCE TO RELATED APPLICATIONS US patent application and is incorporated by reference herein in their entirety: Title July 28, 2004 filed "LITHUM METAL DISPERSION INELECTRODES" US Patent Application; July 29, 2003 filed U.S. Provisional Application No.60 / 490685; and U.S. July 31, 2003 filed Provisional Application No.60 / 491513.

发明领域本发明涉及具有高比容量的二次电池,并尤其涉及包括基质材料和分散在基质材料中的锂金属的电极。 Field of the Invention The present invention relates to a secondary battery having a high specific capacity, and particularly relates to an electrode comprising a matrix material and dispersed in the matrix material of lithium metal.

发明背景锂和锂离子二次或可再充电电池已应用于某些应用如在蜂窝式电话、便携式摄像机和膝上计算机中,甚至在最近,用在大功率应用中如在电动车和混合机车中。 BACKGROUND OF THE INVENTION Lithium and lithium-ion secondary or rechargeable batteries have been used in certain applications such as in cellular phones, camcorders and laptop computers, and even in the recent, with high-power applications such as hybrid electric vehicles and locomotives in. 在这些应用中,优选二次电池具有尽可能高的比容量,但仍能提供安全的操作条件和良好的循环能力,以便在以后的再充电和放电循环中保持高比容量。 In these applications, preferably the secondary battery having a high specific capacity possible but still provide safe operating conditions and good cyclability, so as to maintain a high specific capacity in subsequent recharging and discharging cycles.

尽管存在各种二次电池结构,但每种结构都包括正极(或阴极)、负极(或阳极)、隔开阴极和阳极的隔板,和与阴极和阳极电化学连通的电解质。 Despite the various secondary battery structure, but each structure includes a positive electrode (or cathode), a negative electrode (or anode), a separator separating the cathode and the anode, and in electrochemical communication with the cathode and the anode electrolyte. 对于二次锂电池,当二次电池正放电即用于其特定应用时,锂离子通过电解质从阳极转移到阴极。 For secondary lithium batteries, when the secondary battery is discharged i.e., used for its specific application, the transfer of lithium ions from the anode to the cathode through the electrolyte. 在放电过程中,电子从阳极被收集,并通过外部电路转到阴极。 In the discharge process, electrons are collected from the anode to the cathode through an external circuit. 当二次电池正被充电或再充电时,锂离子通过电解质从阴极转移到阳极。 When the secondary battery is being charged or recharged, the lithium ions transfer through the electrolyte from the cathode to the anode.

历史上,使用具有高比容量的非锂化化合物如TiS2、MoS2、MnO2和V2O5作为阴极活性材料制造二次锂电池。 Historically, the use of non-lithiated compounds having high specific capacities such as TiS2, MoS2, MnO2 and V2O5, as the cathode active material of lithium secondary battery. 这些阴极活性材料与锂金属阳极结合在一起。 These cathode active materials together with a lithium metal anode. 当二次电池放电时,锂离子通过电解质从锂金属阳极转移到阴极。 When the secondary battery is discharged, lithium ions transfer through the electrolyte from the lithium metal anode to the cathode. 不幸的是,当循环时,锂金属形成最终导致电池中不安全状态的树枝状晶体。 Unfortunately, when the cycle, eventually lead to the formation of lithium metal battery unsafe condition of dendrite. 结果,在支持锂离子电池的20世纪90年代早期停止了这些类型二次电池的生产。 As a result, the support of the lithium-ion battery the early 1990s to stop the production of these types of secondary batteries.

锂离子电池一般使用锂金属氧化物如LiCoO2和LiNiO2作为与碳基阳极结合的阴极活性材料。 Lithium-ion batteries typically use lithium metal oxides such as LiCoO2 and LiNiO2 as the carbon-based cathode active material anodic bonding. 在这些电池中,避免了阳极上锂树枝状晶体形成,从而使电池更安全。 In these batteries, the lithium dendrite formation is avoided on the anode, so that the battery safer. 但是,其量决定电池容量的锂全部从阴极供应。 However, in an amount determined battery capacity of lithium from the cathode supply all. 这限制了阴极活性材料的选择,因为活性材料必须包含可移动的锂。 This limits the choice of cathode active materials because the active materials must contain removable lithium. 另外,在充电和过充电过程中形成的与LiCoO2和LiNiO2对应的脱锂化产物(充电中例如LixCoO2和LixNiO2,其中0.4<x<1.0)(过充电中即LixCoO2和LixNiO2,其中x<0.4)是不稳定的。 Further, in the charge and overcharge formed during LiCoO2 and LiNiO2 with corresponding de-lithiated product (e.g., LixCoO2 charging and LixNiO2, where 0.4 <x <1.0) (i.e., the overcharge of LixCoO2 and LixNiO2, where x <0.4) is unstable. 尤其是这些未锂化产物往往与电解质反应并产生热,这使安全性问题出现。 In particular, these products are often not lithiated reaction with the electrolyte and generate heat, which makes security problems.

此外,新的锂离子单电池或电池组最初处于放电状态。 In addition, the new single battery or a lithium ion battery pack is initially in a discharged state. 在锂离子电池的第一次充电过程中,锂在电极间移动,例如从阴极材料如LiCoO2和LiNiO2到阳极材料如石墨。 In the first lithium ion battery during charging, lithium migrate between electrodes, for example, from materials such as LiCoO2 and LiNiO2 cathode to the anode material such as graphite. 从阴极移动到阳极的锂与电池中的电解质材料反应,导致阳极上钝化薄膜的形成。 Lithium battery electrolyte material from the cathode to the anode and the mobile, resulting in the formation of a passivation film on the anode. 阳极上形成的钝化薄膜为固体电解质界面或SEI。 A passivation film formed on the anode as a Solid Electrolyte Interface or SEI. 在随后放电时,形成SEI消耗的锂不会返回到阴极。 Upon subsequent discharges, formed SEI consumption of lithium does not return to the cathode. 这导致锂离子电池具有与最初充电量相比较小的容量,因为部分锂由于形成SEI被消耗。 This results in a lithium ion battery having a charge amount smaller than the original capacity, since part of the lithium is consumed due to the formation of SEI. 可用锂的消耗减小了锂离子电池的容量。 Available lithium consumption reduces the capacity of the lithium-ion battery. 这种现象被称为不可逆容量,并已知消耗约10%-20%的锂离子电池容量。 This phenomenon is called irreversible capacity, and it is known to consume about 10% -20% of the lithium-ion battery capacity. 因此,在锂离子电池的初次放电后,锂离子电池失去约10%-20%的容量。 Therefore, after the initial lithium-ion battery discharge, lithium-ion batteries lose about 10% -20% of capacity.

发明概述本发明涉及在电化学系统中吸收和解吸锂,并更特别地涉及用于这种系统的电极。 Summary of the Invention The present invention relates to absorption and desorption of lithium in an electrochemical system, and more particularly relates to an electrode for such systems. 本发明还涉及电池或电化学电池,它们包括具有分散在基质材料中的锂金属的电极,其中基质材料能在电化学系统中吸收和解吸锂。 The present invention also relates to a battery or electrochemical cell, which comprises an electrode having dispersed in the matrix material of lithium metal, wherein the matrix material is capable of absorbing and desorbing lithium in an electrochemical system. 使用根据本发明实施方案的电极的电池和/或电化学电池能表现出高比容量、良好的循环能力和提高的运行安全性。 Use The battery electrode of the present embodiment of the invention and / or electrochemical cell can exhibit high specific capacity, good cyclability and improved operational safety.

对本发明来说,应理解术语“电池”可指并包括本领域那些技术人员已知的单个电化学电池、或单电池、和/或串联和/或并联连接的一个或多个电化学电池。 For the present invention, to be understood that the term "battery" may refer to and include those known to those skilled single electrochemical cell, or battery cells, and / or in series and / or one or more electrochemical cells connected in parallel. 此外,术语“电池”包括但不限于可再充电电池和/或二次电池和/或电化学电池。 In addition, the term "battery" includes, but is not limited to, rechargeable batteries and / or secondary batteries and / or electrochemical cells.

根据本发明实施方案的电池可包括包含活性材料的正极(阴极)、包含能在电化学系统中吸收和解吸锂的基质材料以及分散在基质材料中的锂金属的负极(阳极)、隔开阴极和阳极的隔板以及与阴极和阳极连通的电解质。 The battery according to embodiments of the invention may include a positive electrode (cathode) comprising an active material capable of absorbing and desorbing lithium containing matrix material dispersed in the matrix material and a lithium metal negative electrode (anode) in an electrochemical system, spaced from the cathode and an anode separator and the cathode and the anode in communication with an electrolyte. 优选地,阴极活性材料是能在对锂的电化学势为2.0V-5.0V下被锂化的化合物。 Preferably, the cathode active material capable of lithium in the electrochemical potential of 2.0V-5.0V is lithiated compound under. 例如,阴极活性材料可基于锰、钒、钛或钼,如MnO2、V2O5、V6O13、LiV3O8、MnO3、TiS2或MoS2,或它们的混合物。 For example, the cathode active material may be based on manganese, vanadium, titanium or molybdenum, such as MnO2, V2O5, V6O13, LiV3O8, MnO3, TiS2, or MoS2, or mixtures thereof. 阴极活性材料可包括锂金属,如与可被锂化的阴极活性材料如MnO2、V2O5、V6O13、LiV3O8、MnO3、TiS2或MoS2或其混合物结合的锂粉末。 The cathode active material may include lithium metal, such as may be lithiated with a cathode active material such as MnO2, V2O5, V6O13, LiV3O8, MnO3, TiS2 or MoS2 powder mixture or a combination of lithium. 阳极基质材料可包括选自以下的一种或多种材料:碳质材料、Si、含硅材料如分散在碳中的硅、硅氧化物、Sn、锡氧化物、复合锡合金和金属互化物、过渡金属氧化物、锂金属氮化物和锂金属氧化物。 Anode matrix material may comprise one or more materials selected from the following: a carbonaceous material, Si, silicon-containing material such as carbon dispersed in the silicon, silicon oxide, Sn, tin oxides, composite tin alloys and intermetallics , transition metal oxide, lithium metal nitride or lithium metal oxide. 优选地,阳极基质材料包含碳质材料,并更优选包含石墨。 Preferably, the matrix material comprises a carbonaceous anode material, and more preferably graphite. 分散在基质材料中的至少部分锂金属优选为细分散的锂粉末,在其它实施方案中,细分散的锂粉末具有小于约20微米的平均粒度。 Dispersed in the matrix material at least part of the lithium metal is preferably a finely divided lithium powder, in other embodiments, a finely divided lithium powder having less than about 20 microns average particle size. 分散在阳极中的锂金属量优选不超过足以在阳极基质材料中插层、与其合金化和/或被其吸收的最大量。 Dispersed in the amount of metal lithium in the anode is preferably not more than enough to the matrix material in the anode intercalation, its alloys and / or absorbed the maximum amount. 例如,如果基质材料为碳,则分散在基质材料中的锂量优选不超过生成LiC6所需要的量。 For example, if the amount of lithium is a carbon matrix material, is dispersed in the matrix material is preferably not more than an amount required to generate LiC6. 但是,在电极或阳极形成前可在基质材料中分散额外的锂以促进基质材料的预锂化。 However, dispersible additional lithium in the matrix material is formed in the front electrode or anode to facilitate pre-lithiated host material. 电解质和隔板可为单独的材料,如多孔隔板和流体电解质,或可包括单一结构或材料,如既用作隔板又用作电解质的胶质聚合物。 The electrolyte and the separator may be a separate material, such as a porous separator and an electrolyte fluid, or can include a single structure or material, such as is used both as a separator and a polymer electrolyte colloid.

本发明的实施方案还包括制备电池用电极的方法,包括提供能在电化学系统中吸收和解吸锂的基质材料,在基质材料中分散锂金属,和将基质材料和分散在其中的锂金属形成为电极,例如阳极。 Embodiments of the invention further comprises a method for producing a battery electrode, comprising providing capable of absorbing and desorbing lithium in an electrochemical system, the matrix material, lithium metal dispersed in the matrix material, the matrix material is formed and dispersed therein and lithium metal an electrode, e.g., anode. 在一些实施方案中,可通过混合和/或使用热和/或压力使基质材料与锂金属结合以促进基质材料的锂化来预锂化基质材料。 In some embodiments, the matrix material can be combined with lithium metal to promote lithiation of the host material to a pre-lithiated material by mixing the matrix and / or the use of heat and / or pressure. 锂金属和基质材料优选与粘合剂聚合物和至少一种溶剂混合到一起形成浆料。 The matrix material is preferably lithium metal and the binder polymer and at least one solvent are mixed together to form a slurry. 将浆料施加到集电器上并干燥形成电极。 The slurry was applied onto a current collector and dried to form an electrode. 或者,利用化学方式通过将基质材料浸在锂金属在非水液体中的悬浮液中,然后将基质材料形成为电极来形成电极。 Alternatively, the use of chemically by immersion in the matrix material of lithium metal in a non-aqueous liquid suspension, and then the matrix material is formed into an electrode to form an electrode.

在本发明的其它实施方案中,基质材料可在被用于形成电极前在熔融锂金属中被锂化。 In other embodiments of the present invention, the matrix material may be used to form electrode before the molten lithium metal is lithiated. 基质材料被分散到它被锂化的熔融锂金属内。 Is dispersed into the matrix material which is lithiated in molten lithium metal. 固态的锂化基质材料可与熔融锂金属分开,并用于形成根据本发明实施方案的电极。 Lithiated solid matrix material can be separated with the molten lithium metal, and according to embodiments of the present invention for forming an electrode.

根据本发明的其它实施方案,在用于形成电极的基质材料内不必包括锂金属粉末。 According to other embodiments of the invention, in the base material for forming the electrode does not necessarily include lithium metal powder. 可通过层压、退火或以其它方式附着或嵌入锂箔或锂网到预先制造的电极中来形成能锂化和脱锂化的电极。 By laminating, annealing or otherwise attached to or embedded in a lithium foil or a lithium mesh to the electrode fabricated in advance can be formed lithiation and de-lithiation of the electrode. 在附着锂金属箔或网之前,电极可包括或不包括锂金属。 Before attaching a lithium metal foil or mesh, electrodes may or may not include lithium metal.

本发明还包括操作电池的方法。 The present invention also includes a method of operating a battery. 提供充电状态的根据本发明部分实施方案的电池。 Providing the state of charge of the battery portion of an embodiment of the present invention. 该电池优选处于完全充电状态,该电池中存在的全部可移动锂都在电池阳极中。 The battery is preferably in the fully charged state, the battery may be present in all the movement of the lithium in the battery anode. 通过电解质或电解质/隔板组合将锂离子从阳极输送到阴极来使电池放电。 Through the electrolyte or electrolyte / separator combination lithium ions transported from the anode to the cathode to discharge the battery. 通过电解质将锂离子从阴极转移到阳极使电池充电或再充电,然后再通过将锂离子从阳极输送到阴极来放电。 The lithium ion transfer through the electrolyte from the cathode to the anode of the battery charging or recharging, and then through the lithium ions transported from the anode to the cathode is discharged. 充电和放电步骤可进行多次循环,同时保持阴极活性材料的高比容量和保持安全操作条件。 Charging and discharging steps can be repeated cycles, the cathode active material while maintaining high specific capacity and maintaining safe operating conditions.

在其它实施方案中,可提供如常规锂离子电池已知的未充电状态的电池。 In other embodiments, may be provided as a conventional lithium-ion batteries known in the uncharged state of the battery. 锂金属可提供在阳极和阴极中。 Lithium metal can be provided in the anode and cathode. 例如,传统锂离子电池的阳极可被根据本发明实施方案的包括锂和/或部分或完全锂化基质材料的阳极代替。 For example, conventional lithium-ion batteries include lithium anode may be and / or partially or fully lithiated anode instead of the matrix material according to embodiments of the present invention. 引入电解质到电池内促进了电解质和阳极中锂金属之间的反应,在阳极处形成固体电解质界面(SEI)。 Introducing electrolyte into the battery electrolyte and the anode to promote the reaction between the lithium metal to form a solid electrolyte interface (SEI) at the anode. 第一次为电池充电可加速SEI的形成。 Charging the battery for the first time can accelerate the formation of the SEI. 由阳极中的锂金属形成SEI可减少和/或消除因阴极锂的SEI消耗造成的不可逆容量损失产生的电池容量损失。 Formed of a lithium metal anode SEI can reduce and / or eliminate the loss of battery capacity due to irreversible capacity losses caused by consumption of a cathode of lithium SEI generated.

当考虑下面的详细描述和附图时,本领域的那些技术人员将更容易看出本发明的这些和其它特征,详细描述和附图描述了本发明的优选实施方案和可选实施方案。 When the consideration of the following detailed description and the accompanying drawings, those skilled in the art will be readily apparent These and other features of the present invention, the detailed description and drawings described preferred embodiments and alternative embodiments of the present invention.

附图简述当结合附图阅读时,从本发明的以下描述中可更容易地确定本发明,其中:图1图示了根据本发明的包括阴极、阳极、隔板和电解质的简化二次电池结构;图2图示了环己烷、锂和乙烯丙烯二烯三元共聚物的反应系统筛选工具(Reactive System Screening Tool)试验结果;图3图示了具有锂粉末的二甲基丙烯脲的反应系统筛选工具试验结果;图4图示了根据本发明实施方案的电极;和图5图示了根据本发明实施方案的电极。 BRIEF DESCRIPTION OF THE DRAWINGS time when reading, from the following description of the present invention may be more readily determine the present invention, in which: Figure 1 illustrates a simplified comprising a cathode, an anode, a separator and an electrolyte secondary according to the invention cell structure; FIG. 2 illustrates a cyclohexane, lithium and ethylene propylene diene terpolymer reaction system screening tool (Reactive System Screening Tool) test results; Figure 3 illustrates a dimethyl propylene urea with lithium powder The test results of the reaction system screening tool; FIG. 4 illustrates an embodiment of the present invention is an electrode; and Figure 5 illustrates an embodiment of the present invention is an electrode.

发明详述在附图和下细描述中,详细描述本发明的实施方案以能实施本发明。 DETAILED DESCRIPTION In the drawings and the description under the fine, embodiments of the present invention in order to practice the invention is described in detail. 尽管参考这些具体的实施方案描述本发明,但应认识到本发明不限制于这些实施方案。 While reference to these specific embodiments described in the present invention, it is to be appreciated that the present invention is not limited to these embodiments. 本发明包括大量可选方案、变更和等价物,这在考虑下面的详细描述和附图时将变得明显。 The present invention encompasses a large number of alternatives, modifications and equivalents, which will become apparent when considering the following detailed description and accompanying drawings.

如图1所示,本发明的实施方案涉及包括正极或阴极12、负极或阳极14和材料16的电池10。 As shown in Figure 1, embodiments of the present invention relates includes a positive electrode or cathode 12, the battery 14 and the negative electrode or anode material 16 10. 材料16可包括用于分开阴极12和阳极14的隔板。 Material 16 may include a separate cathode 12 and anode separator 14. 材料16还可包括与阴极12和阳极14电化学连通的电解质。 Material 16 may also include a cathode 12 and anode 14 of the electrolyte in electrochemical communication. 电池10还包括与阴极12电接触的集电器20和与阳极14电接触的集电器22。 Battery 10 also includes electrical contact with the cathode current collector 20 and 12 in contact with the anode current collector 14 22. 集电器20和22可通过外部电路(未示出)彼此电接触。 Collectors 20 and 22 by an external circuit (not shown) electrical contact with each other. 电池10可具有本领域中已知的任何构造,如“果冻卷”、堆叠构造等。 Battery 10 may have any configuration known in the art, such as the "jelly roll", stack structure and the like. 尽管结合阳极和阴极说明本发明的各种实施方案,但应认识到本发明的实施方案通常适用于电极,并不限制于阳极或阴极。 Although the combination of the anode and cathode illustrate various embodiments of the present invention, it is to be recognized that embodiments of the present invention is generally applicable to the electrodes, is not limited to the anode or cathode.

阴极12由活性材料形成,活性材料一般结合有碳质材料和粘合剂聚合物。 The cathode 12 is formed of an active material, the active material generally incorporates a carbonaceous material and a binder polymer. 阴极12的活性材料优选为能在有效电压(例如对锂2.0V-5.0V)下被锂化和/或脱锂化的材料。 The cathode active material 12 is preferably capable of effective voltage (e.g. lithium 2.0V-5.0V) was lithiated at and / or de-lithiated materials. 优选地,可使用基于锰、钒、钛或钼的非锂化材料如MnO2、V2O5、V6O13、MnO3、TiS2或MoS2或它们的混合物作为活性材料。 Preferably, manganese, non-lithiated materials vanadium, titanium or molybdenum, such as MnO2, V2O5, V6O13, MnO3, TiS2 or MoS2 or mixtures thereof as an active material based. 更优选地,使用MnO2作为阴极活性材料。 More preferably, MnO2 as the cathode active material. 但是,锂化材料也可用于形成阴极12。 However, lithiated materials can also be used to form a cathode 12. 例如可使用LiMn2O4或LiV3O8。 For example, using LiMn2O4 or LiV3O8. 另外,活性材料可为与锂混合的材料。 Further, the active material may be mixed with the lithium material. 例如,活性材料可与锂粉末混合。 For example, the active material may be mixed with lithium powder.

非锂化活性材料优选作为阴极12活性材料,因为它们通常具有比锂化活性材料高的比容量,并能提供比包括锂化活性材料的电池高的功率。 Non-lithiated active materials are preferred as the cathode active material 12, as they typically have a high ratio of lithiated specific capacity of the active material, and can provide a high ratio of active material comprising a lithium battery power. 此外,因为阳极14包括锂,所以阴极12不需要包括锂化材料用于运作电池10。 In addition, since the anode 14 include lithium, so the cathode 12 need not include a lithiated material for the operation of the battery 10. 阴极12中提供的活性材料量优选足以接受阳极14中存在的可移动锂。 12 provided in the cathode active material is preferably sufficient to accept the removable lithium present in the anode 14. 例如,如果MnO2为阴极12活性材料,则对于阳极14中每摩尔锂,阴极12中优选存在1摩尔MnO2,以在放电时在阴极12中产生LiMnO2。 For example, if the MnO2 cathode active material 12, then for each mole of lithium in the anode 14, the cathode 12 is preferably present in a molar MnO2, LiMnO2 at a time as the discharge generated in the cathode 12.

电池中循环的可移动锂可由阳极14提供,并可在完全充电状态下装配或制备电池。 Removable lithium battery cycle provided by the anode 14, and can be assembled in a fully charged state or a battery was fabricated. 在完全充电状态下制备电池允许使用能被锂化形成阴极12的非锂化活性材料。 In the fully charged state of the lithium battery was fabricated be allowed to form a non-lithiated cathode active material 12. 在其它实施方案中,锂粉末可与能被锂化形成阴极12的非锂化活性材料混合以在电池中提供放电阴极。 In other embodiments, the lithium powder may be lithiated with non-lithiated cathode active material 12 is formed to provide a mixed cathode discharge in the battery. 尽管如此,阴极12还可包括少量在2.0V和5.0V之间的电压下不会再吸收锂的一种或多种锂化活性材料(如LiCoO2和LiNiO2),还可提供处于初始充电状态的电池。 Nevertheless, the cathode 12 may also include a small amount of lithium is not resorbable or more lithiated active materials (such as LiCoO2 and LiNiO2) at a voltage of between 2.0V and 5.0V, but also provide in an initial state of charge battery. 阴极12还可包括锂金属(如锂粉末)。 Cathode 12 may also include a lithium metal (such as lithium powder). 阴极优选具有小于50%(摩尔)和更优选小于10%(摩尔)的锂化材料(如LiCoO2、LiNiO2或锂粉末)作为活性材料。 Cathode preferably has less than 50% (molar) and more preferably less than 10% (mol) of lithium material (e.g. LiCoO2, LiNiO2 or lithium powder) as the active material. 由于LiCoO2和LiNiO2在超过2.0V时不再进一步吸收锂,因此阴极12中这些材料的存在不会减少接受阳极14的可移动锂需要的阴极活性材料量。 Since LiCoO2 and LiNiO2 than 2.0V when no further absorption of lithium, so these materials are present in the cathode 12 does not accept the anode 14 to reduce the amount of cathode active material of lithium movable desired.

阳极14可由能在电化学系统中吸收和解吸锂的基质材料24和分散在基质材料中的锂金属26形成。 Anode 14 may be capable of absorbing and desorbing lithium in an electrochemical system, the matrix material 24 and dispersed in the matrix material of the lithium metal 26 is formed. 例如,当电池(尤其是阳极14)被再充电时,阳极14中存在的锂可在基质材料24中插层、与其形成合金或被其吸收。 For example, when the battery (especially the anode 14) is recharged, the lithium present in the anode 14 can be inserted layer 24 in a matrix material, forming an alloy therewith or absorbed. 基质材料24包括能在电化学系统中吸收和解吸锂的材料,如碳质材料;含硅材料,Sn,锡氧化物或复合锡合金和金属互化物;过渡金属氧化物如CoO;锂金属氮化物如Li3-xCoxN,其中0<x<0.5,和锂金属氧化物如Li4Ti5O12。 The matrix material 24 comprises a system capable of absorbing and desorbing lithium electrochemical materials, such as carbonaceous materials; silicon-containing material, Sn, tin oxide or composite tin alloys and intermetallics; transition metal oxides such as CoO; lithium metal nitride compounds such as Li3-xCoxN, where 0 <x <0.5, and lithium metal oxides such as Li4Ti5O12. 优选地,基质材料24包括石墨。 Preferably, the matrix material 24 comprises graphite. 另外,基质材料24可包括少量碳黑(例如小于5wt%)作为导电剂。 In addition, the matrix material 24 may include a small amount of carbon black (e.g., less than 5wt%) as a conductive agent. 锂金属26优选作为细分散的锂粉末提供在阳极14中。 As the lithium metal 26 is preferably a finely divided lithium powder is provided in the anode 14. 更优选地,锂金属26具有小于约20微米的平均粒度,甚至更优选小于约10微米,但也可使用较大的粒度。 More preferably, the lithium metal 26 having less than about 20 microns average particle size, and even more preferably less than about 10 microns, but larger particle size may also be used. 锂金属可作为引火粉末或作为稳定低引火粉末,例如,通过用CO2处理锂金属粉末提供。 Lithium metal can be used as a powder or as a stable low fire ignition powder, for example, by treatment with lithium metal powder CO2 available.

阳极14能在相对于锂金属从大于0.0V到小于或等于1.5V的电化学势下可逆地锂化和脱锂化。 Anode 14 is capable of reversibly lithiating and de-lithiated with respect to lithium metal of from greater than 0.0V at less than or equal to 1.5V electrochemical potentials. 如果对锂的电化学势为0.0V或更低,则锂金属在充电过程中将不能再进入阳极14。 If the electrochemical potential of lithium is 0.0V or less, the lithium metal in the charging process can not re-enter the anode 14. 或者,如果对锂的电化学势大于1.5V,则电池电压将不合需要的低。 Alternatively, if the electrochemical potential of lithium is greater than 1.5V, the battery voltage will be undesirably low. 优选地,阳极14中存在的锂金属26量不超过足以在电池被再充电时在阳极14基质材料24中插层、与其合金化或被其吸收的最大量。 Preferably, the anode 14 present in the amount of lithium metal is not more than 26 is sufficient when the battery is recharged in the matrix material 24 in the anode 14 intercalation, alloyed thereto or absorbed the maximum amount. 例如,如果基质材料24为石墨,则锂26的量优选不超过足够生成LiC6的量。 For example, if the matrix material 24 is graphite, the amount of lithium is preferably not more than 26 to generate a sufficient amount of LiC6. 换句话说,阳极中锂与碳的摩尔比优选不超过1∶6。 In other words, the lithium anode to carbon molar ratio is preferably not more than 1/6. 但是,在其它实施方案中,阳极14中的基质材料24可被预锂化,从而锂与碳或基质材料24的总比例大于1∶6。 However, in other embodiments, the matrix material 24 of the anode 14 may be pre-lithiated, whereby lithium and carbon or the matrix material 24 is greater than the total proportion of 1/6.

根据本发明的实施方案,阳极14可通过以下来制备:提供能在电化学系统中吸收和解吸锂的基质材料24,在基质材料24中分散锂金属26,和将基质材料24和分散在其中的锂金属26形成阳极14。 According to embodiments of the present invention, the anode 14 can be prepared by the following: providing capable of absorbing and desorbing lithium in an electrochemical system, the matrix material 24, the lithium metal 26 dispersed in the matrix material 24, and the matrix material 24 and dispersed therein 26 is formed of lithium metal anode 14. 基质材料24还可在阳极14形成前被预锂化。 Matrix material 24 may also be in front of the anode 14 is formed by a pre-lithiated. 优选地,锂金属26和基质材料24与非水液体和粘合剂混合,并形成浆料。 Preferably, the lithium metal 26 and the matrix material 24 is mixed with a non-aqueous liquid and a binder, and form a slurry. 然后使用浆料形成阳极14,例如,通过用浆料涂覆集电器22,然后干燥浆料。 Then the slurry forming the anode 14, for example, by coating a current collector 22 with the slurry, and then drying the slurry.

通过结合锂金属粉末、细颗粒基质材料、粘合剂聚合物和溶剂形成浆料来形成根据本发明实施方案的阳极14或其它类型电极。 By combining a lithium metal powder, fine particles of the matrix material, a binder polymer and a solvent to form a slurry 14 or other type of anode electrode according to an embodiment of the present invention. 浆料可被涂覆在集电器上并干燥形成阳极14。 Slurry may be coated on a current collector and dried to form the anode 14. 例如,锂金属粉末可与细颗粒基质材料如中碳微珠(MCMB)、石墨、碳黑或其它锂离子阳极材料结合形成混合物。 For example, lithium metal powder with fine particles in the matrix material such as carbon microbeads (MCMB), graphite, carbon black or other material to form a lithium ion anode mixture. 粘合剂聚合物和溶剂可与该混合物结合形成所需的浆料。 Binder polymer and a solvent may be combined with the mixture to form the desired slurry. 为了形成阳极14,浆料可被涂覆在集电器如铜箔或网上,并使其干燥。 To form the anode 14, the slurry may be coated on a current collector such as a copper foil or the Internet, and allowed to dry. 集电器上干燥的浆料(它们共同形成电极)被挤压以形成阳极14。 The dried slurry on the electrical set (which together form the electrodes) is pressed to form an anode 14. 干燥后电极的挤压使电极致密化,从而活性材料可适应阳极14的容积。 After drying pressing the electrode to the electrode densification, can be adapted so that the volume of the anode active material 14. 电极的挤压一般涉及使电极通过一对或一系列成对的在两辊间具有预定间隙的抛光辊,或通过使用另外的挤压技术。 Extrusion electrode generally involves a series of electrodes through a pair or pairs of polishing rolls having a predetermined gap between the two rollers, extrusion or by using another technique. 还可用预定压力进行挤压。 May also be extruded by a predetermined pressure. 干燥的浆料和集电器组合提供阳极14。 Dried slurry and collector combination provide the anode 14.

在本发明的一些实施方案中,可能需要预锂化基质材料24。 In some embodiments of the present invention, may require pre-lithiated host material 24. 对于本发明,术语“预锂化”在结合基质材料24一起使用时是指基质材料与电解质接触之前基质材料24的锂化。 For the present invention, the term "pre-lithiated" binding matrix material 24 when used with means contact with the electrolyte matrix material before the matrix material 24 is lithiated. 基质材料的预锂化可减少由电极中锂金属粉末颗粒与电解质之间的不可逆反应引起的电池不可逆容量损失,该不可逆反应与基质材料的锂化同时进行。 Pre-lithiated host material can be reduced by an irreversible reaction cell lithium metal powder particles and the electrolyte between the electrodes caused by the irreversible capacity loss, the irreversible reaction with lithiated host material simultaneously.

根据本发明实施方案的基质材料24的预锂化优选通过使基质材料24与锂金属接触发生。 By the matrix material 24 and lithium metal contact occurs according to a pre-lithiated host material embodiment of the present invention is preferably 24. 例如,可使基质材料24与干锂金属粉末或悬浮在流体或溶液中的锂金属粉末接触。 For example, make the matrix material 24 in contact with the dry lithium metal powder or suspended in a fluid or a solution of lithium metal powder. 锂金属粉末和基质材料24之间的接触使基质材料锂化,借此预锂化基质材料24。 24 contact between the lithium metal powder and a matrix material of the matrix material, lithium, thereby pre-lithiated matrix material 24.

在一些实施方案中,基质材料24和干锂金属粉末被混合到一起,从而至少部分基质材料24与至少部分锂金属粉末接触。 In some embodiments, the matrix material 24 and a dry lithium metal powder are mixed together, so that at least part of the matrix material 24 in contact with at least part of the lithium metal powder. 可利用强烈搅拌或其它搅动促进基质材料24和锂金属粉末之间的接触。 Can be used with vigorous stirring or other agitation and promote contact with the matrix material 24 between the lithium metal powder. 锂金属粉末和基质材料24之间的接触导致基质材料24的部分锂化,形成预锂化的基质材料24。 24 the contact between the lithium metal powder and host material 24 is part of the matrix material leads to lithiation, form a pre-lithiated host material 24.

基质材料24的预锂化可在室温下进行。 Pre-lithiated host material 24 can be carried out at room temperature. 但是,在本发明的各种实施方案中,基质材料24的预锂化在约40℃以上的温度下进行。 However, in various embodiments of the present invention, the matrix material 24 is pre-lithiated at a temperature above about 40 ℃ performed. 在室温以上或约40℃以上的温度下进行的预锂化增加了锂金属粉末和基质材料24之间的相互作用和/或扩散,增加了在给定时段内可被锂化的基质材料24的量。 Pre-lithiated at above room temperature or above about 40 ℃ temperature increases and the interaction between the lithium metal powder 24 matrix material and / or diffusion, increases in a given period of time can be lithiated host material 24 amount.

当暴露于室温以上的温度时,锂金属粉末变得更软和/或更有延展性。 When exposed to above room temperature lithium metal powder becomes softer and / or more malleable. 当与其它物质混合时,较软的锂金属粉末与和它混合的物质接触更多。 When mixed with other substances, the softer lithium metal powder and mixing it with more contact material. 例如,正被搅动的锂金属粉末和基质材料24的混合物之间的相互作用和/或扩散与如果混合物的温度被提高到室温以上相比时,在室温下较小。 For example, the interaction being agitated mixture of lithium metal powder and host material 24 between and / or diffusion and if the temperature of the mixture is raised above room temperature, when compared to smaller at room temperature. 增加锂金属粉末和活性物质如基质材料24之间的接触增加了活性物质的锂化量。 Increasing the lithium metal powder and active material such as a contact between the matrix material 24 increases the lithiation amount of active substance. 因此,通过提高锂金属粉末和基质材料24的混合物的温度,两种物质之间的相互作用和/或扩散增加,这又增加了基质材料24的锂化。 Therefore, by increasing the temperature of the mixture of lithium metal powder and host material 24, the interaction and / or diffusion between the two substances increases, which in turn increases the lithiation of the host material 24.

在本发明的某些实施方案中,提高锂金属粉末和基质材料24的混合物的温度以促进基质材料24的锂化。 In certain embodiments of the present invention, to improve the temperature of the mixture of lithium metal powder and host material 24 to promote lithiation of the host material 24. 该混合物的温度优选保持在或低于锂的熔点。 The temperature of the mixture is preferably maintained at or below the melting point of lithium. 尽管提高的温度促进了锂化,但粉末形式的锂金属优选用于这类锂化反应。 Although increased temperature promotes lithiation, but the form of lithium metal powder is preferably used in such lithiation. 例如,锂金属粉末和基质材料24的混合物的温度可提高到约180℃或以下以促进基质材料24的锂化。 For example, the temperature of the mixture of lithium metal powder and host material 24 can be increased to about 180 ℃ or less to promote lithiation of the host material 24. 更优选地,锂金属粉末和基质材料24的混合物的温度可提高到约40℃和约150℃之间以促进基质材料24的锂化。 More preferably, the temperature of the mixture of lithium metal powder and host material 24 can be increased to between about 40 ℃ and about 150 ℃ to promote lithiation of the host material 24. 以这种方式锂化的基质材料24产生预锂化的基质材料24。 In this manner the lithiated host material 24 to produce a pre-lithiated host material 24.

在其它实施方案中,基质材料24被引入到含锂金属粉末的溶液中。 In other embodiments, the matrix material 24 is introduced into a solution containing lithium metal powder in. 该溶液可包括例如矿物油和/或其它溶剂或液体,它们在溶液中优选对锂金属粉末为惰性的或非反应性的。 The solution may comprise, for example mineral oil and / or other solvent or liquid, which in the solution of the lithium metal powder is preferably an inert or non-reactive. 当与该溶液混合时,优选以一定方式搅动该溶液以促进基质材料24和锂金属粉末之间的接触。 When mixed with the solution, it is preferable that the solution is agitated in a manner to promote contact with the matrix material 24 and between the lithium metal powder. 基质材料24和锂金属粉末之间的接触促进了基质材料24的锂化,产生可用于形成电极的预锂化基质材料24。 Contacting the matrix material 24 and between the lithium metal powder promotes the lithiation of the host material 24, can be used to produce pre-formed lithiated electrode matrix material 24.

在本发明的其它实施方案中,锂从锂金属粉末以外的源引入到电极中。 In other embodiments of the present invention, lithium is introduced from a source other than a lithium metal powder into the electrode. 基质材料24可在熔融锂金属中被锂化。 Matrix material 24 may be in the molten lithium metal, lithium based. 加入粉状基质材料24或基质材料24的颗粒到熔融锂金属中促进了基质材料24和锂金属之间的接触,导致基质材料24的锂化。 Add powdered matrix material particles 24 or the matrix material 24 into the molten lithium metal promotes contact with the matrix material 24 and between the lithium metal, leading to a matrix material lithiated 24. 基质材料24和熔融锂金属混合物的搅动进一步促进了基质材料24的锂化。 The matrix material 24 and the molten lithium metal promotes the mixture stirred for a further 24 lithiation of the host material. 得到的锂化基质材料24为可与熔融锂金属分开的固体,用于利用类似于本文所述那些的方法制造电极。 The resulting lithiated host material 24 to be separated from the molten lithium metal solids, for use herein is similar to those of the manufacturing method of the electrode.

例如,粉状石墨可与熔融锂金属混合,使得熔融锂金属基本润湿粉状石墨。 For example, powdered graphite may be mixed with the molten lithium metal, so that the molten lithium metal is substantially wetted powdered graphite. 粉状石墨和熔融锂金属之间的接触导致粉状石墨的部分锂化。 Contact powdered graphite and molten lithium metal between the lead part of the powdered graphite lithium. 粉状石墨和熔融锂金属的混合物的进一步搅动促进了粉状石墨和熔融锂金属之间的接触,导致粉状石墨的锂化。 Powdered graphite, and further stirring the mixture of molten lithium metal promotes contact powdered graphite and molten lithium metal between lead lithiated graphite powder. 可使用从液体中除去固体的已知方法如通过过滤、旋液分离等从熔融锂金属中除去固态的锂化石墨颗粒。 Known methods may be used to remove solids from liquids, such as by filtration, hydrocyclone separation lithiated graphite particles is removed from the molten lithium metal in solid. 得到的产物为可用于制造电极如阳极和阴极的锂化粉状石墨材料。 The product obtained can be used for the anode and cathode electrode such as lithiated powdered graphite material.

在基质材料锂化发生于熔融锂金属的那些实施方案中,可使用本发明的电极形成方法将锂化的粉状基质材料24形成为电极。 Lithiation occurs in the matrix material in the molten lithium metal of those embodiments, an electrode can be formed using the method of the present invention will be lithiated powdered matrix material 24 is formed as an electrode. 在使用锂化的粉状基质材料24时,可能电极中不再需要额外锂粉末,除非根据电解质的选择,在锂化的基质材料和电解质之间发生最初的钝化反应外。 24 when using the lithiated powdered matrix material, the electrode may no longer require additional lithium powder, except in accordance with the choice of the electrolyte, between the lithiated host material and the electrolyte occurs outside the initial passivation reaction. 因此,可使用锂化的粉状基质材料24代替本发明各种实施方案中的基质材料24和锂金属粉末。 Therefore, use lithiated powdered matrix material 24 instead various embodiments of the invention the matrix material 24 and lithium metal powder. 尽管当由锂化的粉状基质材料24形成电极时可能不需要额外的锂金属粉末,但如果需要也可加入锂金属粉末,例如,以补偿在锂化基质材料和电解质之间的最初钝化反应中损失的任何锂。 Although when formed from powdered matrix material lithiated electrode 24 may not need additional lithium metal powder, but may also be added if desired lithium metal powder, for example, to compensate between the lithiated host material and the electrolyte of the first passivation Any loss of lithium in the reaction.

根据本发明的实施方案,电极可由预锂化的基质材料24形成。 According to embodiments of the present invention, may be pre-lithiated electrode matrix material 24 is formed. 从本文描述的混合物或溶液中回收的预锂化基质材料24可被分离并用于形成电极。 Recovered from the mixture or solution described herein, pre-lithiated host material 24 can be isolated and used to form an electrode. 或者,可使用包含部分预锂化基质材料24的混合物或溶液形成电极,而不分离预锂化基质材料24。 Alternatively, a partially pre-lithiated containing matrix material of the mixture or solution to form an electrode 24, without isolating the pre-lithiated host material 24.

对于要使用基质材料24的特定应用,可调整基质材料24内的预锂化量。 To use the matrix material for a particular application 24, the amount of pre-lithiated 24 adjustable within the matrix material. 预锂化基质材料24可包括在0%-100%之间的预锂化百分率。 Pre-lithiated matrix material 24 may comprise between 0% and 100% of pre-lithiated percentage. 换句话说,基质材料24可被完全锂化或只有部分被锂化。 In other words, the matrix material 24 may be fully or only partially lithiated lithiated. 根据本发明实施方案形成的电极优选包括预锂化基质材料24。 Electrode is preferably formed in accordance with embodiments of the present invention comprises a pre-lithiated host material 24.

使用根据本发明实施方案的预锂化基质材料24形成电极需要的锂量可随基质材料24中出现的预锂化量变化。 Use may vary with the amount of pre-lithiated host material 24 according to the amount of lithium in the pre-emergence lithiated host material 24 of the present embodiment of the invention required to form an electrode. 基质材料24中的预锂化量越大,电极中需要的锂越少。 The matrix material 24 of the pre-lithiated greater the amount the less the lithium electrode needs. 例如,如果阳极的基质材料24被预锂化使得要锂化的基质材料24的90%已被锂化,则形成阳极只需要较少量的锂。 For example, if the matrix material of the anode 24 is such that for a pre-lithiated lithiated 90% of the matrix material 24 has been lithiated, the anode requires only a relatively small amount of lithium is formed.

还可利用压力完成基质材料24的预锂化。 The matrix material may also be completed by the pressure pre-lithiated 24. 施加压力到锂金属粉末和基质材料24的混合物增加了锂金属粉末和基质材料24之间的接触,借此促进了基质材料24的锂化。 To a mixture of lithium metal powder and host material 24 is increased and the contact 24 between the lithium metal powder matrix material, thereby promoting the lithiation of the host material 24 to apply pressure.

根据本发明的实施方案,挤压锂金属粉末和基质材料24的混合物以促进锂金属粉末和基质材料24之间的接触。 According to an embodiment of the invention, the lithium metal powder and the mixture was extruded matrix material 24 is 24 to facilitate contact between the lithium metal powder and host material. 可使用施加压力到物质或化合物的各种方法挤压混合物。 Extrudable mixture pressure is applied to a variety of substances or compounds. 由于压力而增加的接触促进了基质材料24的锂化。 Because of increased contact pressure of the matrix material 24 to promote lithiation.

在本发明的其它实施方案中,施加压力到锂金属粉末和基质材料24的混合物以促进基质材料24的锂化。 In other embodiments of the invention, pressure is applied to a mixture of lithium metal powder and host material 24 to promote lithiation of the host material 24. 压力可通过例如压延和/或使用结合有预制能力的冲模或任何其它方法来施加,其选择在本领域技术人员的技能范围内。 Pressure by calendering and / or in combination for example, the ability to pre-die or any other method to be applied, which is selected within the skill of the skilled person.

根据本发明的实施方案,混合锂金属粉末和石墨(基质材料)并挤压以确定混合物是否经历任何变化。 According to embodiments of the present invention, the mixed lithium metal powder and graphite (matrix material) and extruding the mixture to determine whether undergo any change. 在这些试验中,混合物在挤压后表现出颜色变化。 In these tests, the mixture after extrusion exhibits a color change. 颜色变化预示着石墨或基质材料24经历了锂化。 Graphite or color change indicates that the matrix material 24 experienced lithiation. 例如,锂金属粉末和石墨混合物的颜色从黑色变化到青铜色。 For example, the color of the lithium metal powder and graphite mixture changes from black to bronze. 挤压材料的青铜色表现出与锂化石墨相同的颜色。 Bronze extruded material exhibits lithiated graphite same color.

在挤压或施加压力前,其它物质也可与锂金属粉末和基质材料24混合。 Or prior to extrusion pressure, other materials may also be mixed with lithium metal powder 24 and a matrix material. 由挤压或施加压力引起的基质材料24的锂化可能受或不受这种材料存在的影响。 Matrix material by pressing or pressure-induced lithiated 24 may be affected or unaffected by the presence of such materials. 例如,在挤压或施加压力前,锂金属26和基质材料24可与粘合剂聚合物和/或导电剂混合。 For example, prior to extrusion or pressure, lithium metal matrix material 26 and 24 may be mixed with the binder polymer and / or a conductive agent. 施加压力到混合物使基质材料24锂化。 Applying pressure to the mixture of the matrix material 24 lithiated. 但是,优选地,在加入任何浆料溶剂添加物或形成锂金属粉末、基质材料24和其它成分的浆料前进行挤压或压力施加。 However, preferably, the slurry prior to the addition of any solvent or additive lithium metal powder is formed, the matrix material 24 and other components of the slurry by extrusion or pressure is applied.

还发现基质材料24的锂化可由于电极形成过程中的挤压过程发生。 Also found that lithiated host material 24 can be formed due to the electrode occurs during the extrusion process. 干燥浆料和集电器组合的挤压引发了干燥浆料中基质材料24的锂化。 Drying the slurry and collector combination of dry pulp squeeze triggered a matrix material lithiated 24. 挤压产生的压力促进了干燥浆料中锂金属粉末和基质材料之间的接触,导致基质材料24的锂化。 Extrusion pressure generated by contact drying the slurry to promote the lithium metal powder and the matrix material between the resulting lithiated host material 24. 还发现由挤压引起的基质材料24的锂化导致在干燥涂层内存在空隙空间。 Also found that the matrix material caused by the extrusion lithiated 24 resulted in a dry coating memory in the void space. 该空隙空间似乎是锂化反应的副产物,例如,当与基质材料24锂化时由锂留下的空间。 The void space appears to be a by-product of the lithiation reaction, for example, when the matrix material 24 with lithiated lithium space left. 但是,电极中过多空隙空间的存在是不合需要的,因为它降低了电极密度并因此降低电池能量密度。 However, the presence of too much of the void space of electrodes is undesirable because it reduces the electrode density and thus reduces the energy density of the battery.

由干燥浆料挤压过程中发生的锂化引起的空隙空间可通过对挤压的干燥浆料进行二次挤压过程来减少或消除。 Lithiated void space caused by the occurrence of the compression process of drying the slurry may be dried by squeezing the slurry secondary extrusion process to reduce or eliminate. 根据本发明的各种实施方案,在二次挤压过程中再挤压已挤压的干燥浆料和集电器组合来消除或减少由第一次挤压产生的空隙空间。 According to various embodiments of the present invention, in the secondary extrusion process and then drying the extruded paste extrusion and collector combination to eliminate or reduce the generation by the first time pressing of the void space. 另外,二次挤压压实了干燥浆料,提高了挤压的干燥浆料的密度。 In addition, the secondary extrusion compacted dry slurry, drying the slurry to improve the density of the extrusion. 干燥浆料密度的提高增加了由干燥浆料和集电器组合形成的电极和/或电池的体积能量密度。 Drying the slurry density is increased by increasing the electrode current collector and drying the slurry formed by combining and volume energy density / or battery. 体积和重量能量密度对电池都是重要的。 Volume and weight energy density of the battery is important. 尽管重量能量密度对大电池更重要,如在汽车中,但体积能量密度对小电池更重要,如在蜂窝式电话中。 Although the weight energy density is more important for large batteries, such as in the automobile, but the volume energy density is more important for small battery, such as a cellular telephone.

例如,包括石墨基质材料和锂金属粉末的浆料可被施加到集电器上。 For example, a slurry including a graphite matrix material and a lithium metal powder can be applied to the current collector. 干燥后,对干燥的浆料进行挤压过程。 After drying, the dried paste extrusion process. 挤压过程促进了干燥浆料中石墨的锂化。 Extrusion process facilitates the drying slurry lithiated graphite. 石墨的锂化导致干燥浆料内空隙的形成。 Lithiated graphite results in the formation of voids within the dried slurry. 干燥浆料和集电器组合的二次挤压减少了挤压的干燥浆料中的空隙体积,并提高了干燥浆料的密度。 Drying the slurry and the set of secondary electrical composition extruded dry extrusion reduces the void volume of the slurry, drying the slurry and improve the density. 得到的干燥浆料和集电器组合可用于形成具有锂化基质材料24的电极。 Drying the slurry and current collector combination can be obtained for forming electrode 24 having a lithiated host material.

在本发明的其它实施方案中,可对施加到集电器的干燥浆料进行多次挤压以促进干燥浆料中基质材料24的锂化,并减小由这种锂化产生的空隙空间的体积。 In other embodiments of the present invention, can be applied for drying the slurry to the current collector was repeatedly pressed to facilitate drying the slurry lithiated host material 24, and reduce the void space generated by such a lithiated volume. 多次挤压还增加了干燥浆料和集电器组合的密度,这提高了由干燥浆料和集电器组合形成的电极的体积能量密度。 Repeatedly pressing further increased the density of the dried slurry and current collector combination, which increases the volumetric energy density of the electrode current collector and by drying the slurry formed by combining.

在本发明的其它实施方案中,通过提高挤压过程的温度促进正被挤压的干燥浆料中基质材料的锂化。 In other embodiments of the invention, to promote lithiation dried slurry being pressed in the matrix material by increasing the temperature of the extrusion process. 由干燥浆料的挤压或施加压力到干燥浆料造成的干燥浆料中基质材料的锂化在室温下较慢。 Drying the slurry by drying the slurry to squeeze or pressure caused by drying the slurry in the lithiated host material slowly at room temperature. 为了在挤压过程中加速干燥浆料中基质材料的锂化,可提高挤压过程的温度。 In order to accelerate drying during the extrusion process slurry lithiated host material can raise the temperature of the extrusion process.

据信在挤压过程中提高温度软化了干燥浆料中的锂金属粉末,从而增加了锂金属粉末与基质材料24的接触。 It is believed that the temperature increase during the extrusion process to soften the dried slurry of lithium metal powder, so the contact surface of lithium metal powder and host material 24. 锂金属粉末和基质材料24之间增加的接触促进了基质材料24的锂化。 Lithium metal powder and increased contact between the matrix material 24 to promote lithiation matrix material 24. 由于挤压过程的温度升高,促进了基质材料24的锂化。 Because elevated temperature extrusion process, promoting the matrix material lithiated 24.

另外,由挤压过程温度提高引起的锂化加速有助于降低被挤压的干燥浆料中的空隙体积。 In addition, by raising the temperature during extrusion due to acceleration lithiated help reduce slurry was squeezed dry void volume. 当干燥浆料中发生锂化时,空隙出现。 Lithiation occurs when drying the slurry, voids appear. 由挤压过程温度提高引起的锂化加速增加了挤压过程中干燥浆料内在给定时间段内形成的空隙量或体积。 Lithiation temperature increase caused by the extrusion process to accelerate the increase of the void volume or volume extrusion process inherent in a given period of time drying the slurry form. 但是,当锂化发生时,施加到干燥浆料的压力减少或消除了空隙。 However, when the lithiation occurs, the pressure applied to the slurry was dried to reduce or eliminate the gap. 空隙空间的减少提高了干燥浆料的密度。 Reduce void space increases the drying of the slurry density.

与在室温下被挤压相同时间的干燥浆料相比,在高温下挤压的干燥浆料表现出更多的干燥浆料中基质材料的锂化。 Compared with room temperature, is extruded at the same time, the slurry was dried, extruded at a high temperature drying the slurry to show more dried slurry lithiated host material. 此外,在高温下挤压的干燥浆料表现出较高的密度,因为由较快速锂化产生的空隙增加,和由挤压过程的压力引起的空隙减少。 Furthermore, at high temperature extrusion drying the slurry exhibited a higher density, because the increase in the gap by more rapid lithiated generated, and voids caused by the pressure extrusion process is reduced.

在本发明的其它实施方案中,可通过层压锂金属箔、网或其它片到具有基质材料的电极形成具有锂化基质材料的电极,而不用加入锂金属粉末。 In other embodiments of the present invention, by laminating a lithium metal foil, mesh or other sheet material to a substrate having an electrode to form an electrode having a lithiated host material, instead of lithium metal powder was added. 层压锂金属到电极上形成锂金属和电极中基质材料之间的接触。 Laminating lithium metal to the electrode contact between the matrix material and a lithium metal electrode is formed. 这种接触导致基质材料锂化,尤其当用于电池中电解质接触材料时。 This contact leads to the lithiated host material, especially when the battery is in contact with the electrolyte material used.

例如,包括基质材料如石墨的电极410示于图4。 For example, comprises a matrix material such as a graphite electrode 410 is shown in Fig. 将锂金属箔420层压到电极410上,在电极410的至少一部分上形成锂金属箔420层。 The lithium metal foil 420 is laminated to the electrode 410, the lithium metal foil is formed on at least a portion of the electrode layer 410 of 420. 锂金属箔420和基质材料之间的接触导致至少部分基质材料锂化,尤其在引入电解质时。 Contacting the lithium metal foil 420 and a matrix material results in at least partially between the lithiated host material, especially when the electrolyte is introduced.

可通过挤压锂金属箔420到电极410内实现锂金属箔420到电极410的层压。 Lithium metal foil can be realized by pressing the lithium metal foil 420 is laminated to the electrode 410 to the electrode 410 from 420. 由于锂金属箔相当软,因此层压过程可在室温或在较高温下进行。 Since the lithium metal foil is quite soft, so the lamination process can be carried out at higher temperatures or at room temperature. 在层压温度超过室温的那些情况下,电极410中基质材料的锂化可发生在层压过程本身中,甚至可被加速。 In those cases where the lamination temperature exceeds room temperature, the electrode 410 in the lithiated host material can occur during the lamination process itself, may even be accelerated. 认为较高的温度使锂金属箔420软化,这增加了锂金属箔420和基质材料之间的接触量。 Believed that the higher the temperature of the lithium metal foil 420 to soften, which increases the amount of contact the lithium metal foil 420 and the matrix material. 锂在较高温度下增加的接触和较高的扩散速度增加了基质材料的锂化。 Lithium at higher temperatures increased contact and higher diffusion rate increases the lithiation of the matrix material. 锂金属箔420可被层压到电极410的温度在约10℃和约150℃之间,优选在约30℃和约120℃之间。 Lithium metal foil 420 may be laminated to the electrode 410 at a temperature between about 10 ℃ and about 150 ℃, preferably between about 30 ℃ and about 120 ℃.

锂金属箔420被层压至的电极410可包括或不包括预锂化的基质材料。 Lithium metal foil 420 is laminated to the electrode 410 may or may not include a pre-lithiated host material. 具有未锂化基质材料的电极410中的基质材料可通过层压过程被锂化。 The matrix material having a matrix electrode non-lithiated material 410 may be lithiated by lamination process. 类似地,包括至少一些锂化基质材料的电极410中的基质材料可使用本文描述的层压过程进一步锂化。 Similarly, the matrix comprising at least some of the lithiated electrode material 410 in the lamination process the substrate material may be used as described herein further lithiated.

在本发明的其它实施方案中,锂网430可被加入到预制的电极410中,如图5所示。 In other embodiments of the present invention, the lithium mesh 430 can be added to preformed electrode 410, as shown in FIG. 加入锂网430类似于层压锂金属箔420到电极410内。 Was added lithium network 430 is similar to the lithium metal foil 420 laminated to the electrode 410. 锂网430可被挤压到电极410上或以其它方式层压到电极410上。 Lithium network 430 may be extruded onto electrode 410 or otherwise laminated to the electrode 410. 锂金属网430中的锂金属和电极410的基质材料之间的接触引发了基质材料在锂网接触基质材料处锂化。 Contacting the lithium metal mesh 430 and the lithium metal electrode 410 of matrix material between the initiation of the matrix material in contact with the matrix material at a lithiated lithium network. 锂网430到电极410的层压或附着可在室温下或较高温度下发生,如在约10℃和约150℃之间。 Lithium network 430 to the electrode 410 may be laminated or adhered at room temperature or higher temperatures occur, such as between about 10 ℃ and about 150 ℃.

尽管锂金属网430和电极410的基质材料之间的接触可引发基质材料的锂化,但锂化不是必需的。 Although the lithium metal mesh 430 and the contact electrode 410 of the matrix material between the lithiated host material can cause, but lithiated not required. 在使用锂金属网430附着其上的电极410形成电池的过程中,电解质接触锂金属网430并经过锂金属网430到电极410内。 Using lithium metal electrodes 430 on which the attachment 410 is formed in the process of the battery, the electrolyte contacting the lithium metal mesh 430 and through the lithium metal mesh 430 to the electrode 410. 既与电极中的基质材料又与锂网接触的电解质构成锂离子在锂金属网430和基质材料之间的传递路径,这有助于电极410中基质材料的锂化。 And both electrodes in contact with the matrix material and a lithium electrolyte lithium ion transport network path between the lithium metal mesh 430 and the matrix material, which helps lithiated electrode 410 in the matrix material.

本发明中对锂网430的形状和尺寸没有限制。 Lithium network 430 shape and size not limit the present invention. 此外,应认识到可使用其它锂金属片作为替代物,取代本发明的锂金属箔420或锂网430或与其联用。 Additionally, it should be recognized that the use of other lithium metal sheet as a substitute, replace the lithium metal foil 420 or lithium mesh 430 of the invention or its combined. 根据本发明的实施方案,可利用锂金属片到电极410的层压引入锂离子到包含基质材料的预制电极内。 According to embodiments of the present invention, can be used in the laminated sheet of lithium metal electrode 410 of the lithium ions is introduced into the matrix material comprises prefabricated electrode. 引入锂导致的基质材料锂化可在层压过程中或过程后如在电解质引入过程中发生。 The introduction of lithium resulting lithiated host material can be introduced into the electrolyte as occur during or after the process during the lamination process.

在本发明的另外一些实施方案中,可使用标准薄膜技术如热蒸发、电子束蒸发、溅射和激光烧蚀在预制电极的表面上沉积薄锂层。 In other embodiments of the invention, using standard thin film techniques such as thermal evaporation, electron beam evaporation, sputtering and laser ablation deposition of a thin layer on the surface of the preformed lithium electrode. 在沉积过程中使用真空以避免原子锂和锂反应性物质如水、氧和氮的分子之间的反应性。 Using a vacuum deposition process in order to avoid the reactive atoms and lithium reactive substances such as water, oxygen and nitrogen molecules. 优选地,需要大于1毫托(10E-03托)的真空。 Preferably, the need is greater than 1 mTorr (10E-03 torr) vacuum. 当使用电子束沉积时,需要10E-04托的真空,优选10E-06托的真空,以避免电子束和任何残余空气分子之间的相互作用。 When using an electron beam deposition, need 10E-04 Torr, preferably 10E-06 Torr, in order to avoid any interaction between the electron beam and the residual air molecules.

根据本发明实施方案的蒸发沉积技术包括加热锂金属产生锂蒸汽。 According to evaporation deposition techniques embodiment of the invention comprises heating the lithium metal in the lithium vapor. 锂金属可通过电子束或通过在锂金属上或环绕其的电流电阻来加热。 Lithium metal can be heated by electron beam or by the lithium metal or around its current resistance. 锂蒸汽沉积锂到衬底如预制电极上。 Lithium lithium vapor deposition onto a substrate such as prefabricated electrodes. 为了促进锂金属的沉积,衬底可被冷却或保持在低于锂蒸汽温度的温度下。 In order to facilitate the deposition of lithium metal, the substrate may be cooled or maintained at a temperature lower than the temperature of the lithium vapor. 可在衬底附近放置厚度监测器如石英晶体型监测器来监测沉积的膜厚度。 Can be placed, such as quartz crystal thickness monitor size monitor to monitor the thickness of the deposited film in the vicinity of the substrate. 监测器可为无源或有源的,其中它可被连接到反馈回路上,以在达到需要的沉积厚度时通过控制锂蒸汽形成来控制锂的沉积速度。 Monitor can be passive or active, wherein the steam formed by controlling the lithium to control the deposition rate of lithium when it may be connected to the feedback loop, in order to achieve the desired deposited thickness.

可使用激光烧蚀和溅射技术促进预制电极上的薄锂膜生长。 You can use laser ablation and sputtering technology for thin film lithium prefabricated electrodes growth. 例如,可在溅射过程中使用氩离子轰击固体锂金属靶。 For example, using argon ion bombardment of solid lithium metal target during the sputtering process. 轰击将锂从靶上敲落并将其沉积到衬底的表面上。 Bombardment of lithium from the target to knock off and deposited on the substrate surface. 可使用激光烧蚀过程从锂靶上敲落锂。 You can use the laser ablation process lithium from lithium target knockouts. 分离的锂然后被沉积到衬底如预制电极上。 Separation of lithium as the substrate is then deposited onto the preformed electrode.

在使用沉积过程形成锂膜后,可使合适的气体如二氧化碳与锂成层的电极接触以在锂层上形成钝化层,这有利于在真空环境外部处理成层的电极。 After the deposition process is formed using a lithium film, allows a suitable gas such as carbon dioxide and the lithium electrode contact layer to a passivation layer is formed on the lithium layer, in a vacuum environment which is conducive to the external processing layered electrode.

在其它实施方案中,可在锂沉积过程中为预制电极形成掩膜,使得沉积在预制电极上的锂金属以所需的图案沉积。 In other embodiments, the deposition process can be formed in the lithium electrode for pre-mask, so that the electrodes deposited on the preformed lithium metal is deposited in the desired pattern. 或者,连续形成的膜可在沉积后压出洞或开孔以允许电解质进入电极,这有利于电极中基质材料的锂化。 Alternatively, the film may be formed continuously after deposition pressure hole or opening to permit the electrolyte into the electrode, which is conducive to the lithiated electrode matrix material.

本发明实施方案使用的粘合剂聚合物包括与阳极14中的锂完全不反应的粘合剂聚合物。 The binder polymer used in embodiments of the present invention comprises a binder polymer and lithium in the anode 14 is not completely reacted. 能保持阳极14形成过程中锂稳定性并能提供稳定阳极14的粘合剂聚合物是优选的。 Anode 14 can be maintained during the formation of lithium stability and can provide a stable anode binder polymer 14 are preferred. 另外,粘合剂聚合物优选在阳极14生产过程使用的温度下溶于选择的溶剂或助溶剂。 Further, the binder polymer preferably at a temperature of the anode 14 production process using the selected solvent or dissolved in cosolvents. 本发明实施方案可使用的优选粘合剂聚合物的一些例子包括聚偏二氟乙烯、乙烯丙烯二烯三元共聚物、乙烯丙烯二烯单体、乙烯丙烯酸、乙烯醋酸乙烯酯和丁苯橡胶。 Some examples of preferred embodiments of the binder polymer of the present invention may be used include polyvinylidene fluoride, ethylene propylene diene terpolymer, ethylene propylene diene monomer, ethylene acrylic acid, ethylene vinyl acetate and styrene butadiene rubber .

本发明实施方案使用的溶剂在阳极14生产过程使用的温度下必须也不与锂金属和粘合剂聚合物反应。 The solvent used in embodiments of the present invention at a temperature of the anode 14 production process used must not react with the lithium metal and the binder polymer. 优选地,溶剂或助溶剂具有充分的挥发性以从浆料中容易地蒸发来促进施加到集电器上的浆料的干燥。 Preferably, the solvent or co-solvents having a sufficient volatility to readily evaporate from a slurry to promote the drying of the slurry applied to a current collector on. 例如,溶剂可包括脂肪烃、环烃、芳烃、对称醚、不对称醚和环醚。 For example, the solvent may include aliphatic hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, symmetrical ethers, asymmetrical ethers and cyclic ethers.

本发明的各种实施方案使用的锂金属可作为锂粉末提供。 Various embodiments of the lithium metal used in the present invention may be provided as lithium powder. 为了运输过程中的稳定性,锂粉末可被处理或以其它方式调节。 For stability during transportation, a lithium powder may be treated or otherwise adjusted. 例如,按照惯例可在二氧化碳存在下形成干锂粉末。 For example, according to the practice of dry lithium powder can be formed in the presence of carbon dioxide. 本发明的各种实施方案可使用干锂粉末。 Various embodiments of the present invention may use a dry lithium powder. 或者,锂粉末可在悬浮液中形成,如在矿物油溶液或其它溶剂的悬浮液中。 Alternatively, the lithium powder may be formed in the suspension, such as a mineral oil solution or other solvents suspension. 在溶剂悬浮液中形成锂粉末可有利于产生较小的锂金属颗粒。 Formation of lithium powder in a solvent suspension may facilitate the generation of smaller lithium metal particles. 在本发明的一些实施方案中,锂粉末可在本发明各种实施方案使用的溶剂中形成。 In some embodiments of the present invention, a lithium powder may be formed in various embodiments of the invention the solvent used in the. 在溶剂中形成的锂金属粉末可在溶剂中运输。 Lithium metal powder formed in the solvent can be transported in a solvent. 此外,本发明的实施方案可使用锂金属粉末和溶剂混合物,这可从电极生产过程中去掉混合步骤,因为溶剂和锂金属粉末作为单一组分都可得到。 In addition, embodiments of the present invention may use a mixture of lithium metal powder and solvent, which may remove a mixing step from an electrode production process because the solvent and lithium metal powder can be obtained as a single component. 这可降低生产成本,并允许本发明的实施方案使用更小或更细的锂金属粉末颗粒。 This can reduce production costs, and embodiments of the present invention allows the use of smaller or finer lithium metal powder particles.

本发明的实施方案试验了各种粘合剂聚合物和溶剂组合,以确定相容和稳定的粘合剂聚合物-溶剂对。 Embodiments of the present invention are tested for a variety of binder polymer and solvent combination, to determine the compatibility and stability of the binder polymer - solvent pair. 此外,试验了由粘合剂聚合物-溶剂对形成的阳极14以确保相容性。 In addition, tests by the binder polymer - solvent on the anode 14 is formed to ensure compatibility. 根据本发明的一些实施方案,适用于生产阳极14的优选粘合剂聚合物-溶剂对列在表I中。 According to some embodiments of the invention, suitable for the production of the anode 14 is preferably a binder polymer - solvent listed in Table I below.

表I Table I

应认识到,还可使用或组合其它粘合剂聚合物-溶剂对以形成根据本发明实施方案的浆料和阳极14。 It should be recognized, or may also be used in combination with other binder polymer - solvent to form according to an embodiment of the present invention is a slurry and the anode 14. 为确定本发明各种实施方案使用不同粘合剂聚合物、溶剂和粘合剂聚合物-溶剂对的可行性而进行的试验的典型实施例描述在实施例1至3中。 In order to determine the various embodiments of the present invention is the use of different binder polymer, solvent and binder polymer - a typical test the feasibility of the solvent carried out in the embodiment described in Example 1 to 3.

实施例1-乙烯丙烯二烯三元共聚物和环己烷试验包含环已烷、锂粉末和乙烯丙烯二烯三元共聚物(NordelIP4570)的涂层溶液在所关心的温度范围内的热稳定性。 Example 1 - ethylene propylene diene terpolymer containing cyclohexane and cyclohexane test, the lithium powder and an ethylene propylene diene terpolymer (NordelIP4570) of the coating solution in the temperature range of interest thermal stability. 该溶液由8.8ml环己烷、0.24g锂粉末和0.127g乙烯丙烯二烯三元共聚物组成。 The solution consisted of 8.8ml cyclohexane, 0.24g and 0.127g of lithium powder ethylene propylene diene terpolymer. 使用反应系统筛选工具作为选择的热量计。 Use of the reaction system as a screening tool to select the calorimeter. 在试验中,室内部的压力使用氩气设定在200psig,以使系统的试验超出环己烷的沸点。 In the test, the pressure inside the chamber using an argon gas set at 200psig, so that the test system is beyond the boiling point of cyclohexane. 在19℃-94℃的温度范围内没有检测到自加热。 In the temperature range of 19 ℃ -94 ℃ to self-heating is not detected. 试验的图绘制在图2中。 FIG test are plotted in Figure 2. 环己烷在1atm下的沸点为80.7℃,因而超过该温度检测没有必要,并在94℃下停止试验。 Cyclohexane boiling point under 1atm of 80.7 ℃, thus exceeding the temperature detection is not necessary, and the test was stopped at 94 ℃. 如图2所示,在匀变过程中,仪器保持在0.5℃/分钟的稳态加热速度。 2, in the ramp process, as shown in the instrument to maintain steady heating rate 0.5 ℃ / min. 如果检测到自加热,则加热速度将超过这个水平。 If detected, the self-heating, the heating rate will exceed this level. 在加热期间,温度趋势是线性的,这预示着没有材料的自加热发生。 During heating, the temperature trend is linear, which indicates that there is no material self-heating occurs. 没有自加热意味着乙烯丙烯二烯三元共聚物、环己烷和锂粉末的组合是稳定的混合物。 No self-heating means that the ethylene propylene diene terpolymer, a combination of cyclohexane and lithium powder is stable mixture.

实施例2-锂粉末和对二甲苯量为0.531g的锂粉末与8ml对二甲苯混合,并使用实施例1描述的反应系统筛选工具进行热稳定性试验。 Example 2 To 0.531g of lithium powder and lithium powder with 8ml of xylene were mixed amount of p-xylene, and the reaction system using a screening tool described in Example 1 of the thermal stability test. 在室温和180℃之间进行试验。 Between room temperature and 180 ℃ tested. 在这个温度范围内没有检测到自加热,意味着锂粉末在室温和180℃之间在对二甲苯中是稳定的。 In this temperature range does not detect the self-heating, which means lithium powder at between room temperature and 180 ℃ in p-xylene is stable.

实施例3-二甲基丙烯脲和锂粉末使用与实施例1中所述装置和步骤相同的反应系统筛选工具技术试验包含二甲基丙烯脲和锂粉末的溶液的热稳定性。 Example 3 - dimethyl propylene urea and lithium powder used in Example 1 in the apparatus and the same procedure as a screening tool for a reaction system including the heat stability of the solution of technical tests dimethyl propylene urea and lithium powder. 加入二甲基丙烯脲到锂粉末中在25℃的温度下在3秒内检测到自加热。 Was added to the lithium dimethyl propylene urea powder at a temperature of 25 ℃ within three seconds is detected self-heating. 自加热以超过1000℃/分钟的速度增加。 In self-heating rate exceeds 1000 ℃ / min increases. 图3图示了试验的热失控。 Figure 3 illustrates a test of thermal runaway. 系统中自加热的存在表明二甲基丙烯脲不是形成本发明的阳极的合适溶剂,因为它与锂粉末反应。 System indicates that the presence of self-heating dimethyl propylene urea is not formed in a suitable solvent anode of the present invention because it reacts with lithium powder.

在另一阳极14生产过程中,可通过在非水液体如烃溶剂(例如己烷)中包含锂金属的悬浮液中浸渍基质材料24来在阳极14中提供锂金属。 In another anode 14 production process, can be obtained by non-aqueous liquid such as a hydrocarbon solvent (e.g. hexane) in a suspension comprising lithium metal immersed in the matrix material 24 to provide a lithium metal anode 14. 悬浮液中使用的锂金属26优选为细分散的锂粉末。 Suspension using lithium metal 26 is preferably a finely divided lithium powder. 基质材料24可被形成为阳极形状,然后浸入到锂金属悬浮液中,或它可与锂金属悬浮液结合形成浆料,然后施加到集电器上并干燥形成阳极14。 The matrix material 24 may be formed in the shape of an anode, and then dipped into a suspension of lithium metal, or it may be combined with a suspension of lithium metal to form a slurry, and then applied to the current collector and dried to form an anode 14. 基质材料24可被预锂化。 The matrix material 24 may be pre-lithiated. 可通过干燥阳极14(例如在高温下)除去用于形成悬浮液的非水液体。 Anode 14 by drying (e.g. at elevated temperature) is removed for forming a non-aqueous liquid suspension. 不管使用何种方法,锂金属优选尽可能地分布到基质材料内。 Regardless of the method, a lithium metal as possible preferably distributed within the matrix material.

如图1所示,阴极12可通过材料16与阳极14分开。 1, the cathode 12 and anode 14 can be separated by material 16. 典型地,材料16为电绝缘材料,如聚乙烯、聚丙烯或聚偏二氟乙烯(PVDF)。 Typically, material 16 is an electrically insulating material, such as polyethylene, polypropylene or polyvinylidene fluoride (PVDF).

二次电池10还包括与阴极12和阳极14电化学连通的电解质。 10 further comprises a secondary battery with the cathode 12 and anode 14 of the electrolyte in electrochemical communication. 该电解质可为非水液体、凝胶、或固体,并优选包括锂盐如LiPF6。 The electrolyte may be a non-aqueous liquid, gel, or solid, and preferably comprises a lithium salt such as LiPF6. 该电解质提供在整个电池10中,并尤其在阴极12、阳极14和材料16内。 The electrolyte is provided throughout the cell 10, and in particular in the cathode 12, anode 14 and material 16. 典型地,该电解质为液体,阴极12、阳极14和材料16为在电解质中浸渍以在这些部件之间提供电化学连通的多孔材料。 Typically, the electrolyte is a liquid, the cathode 12, anode 14 and material 16 is impregnated to provide an electrochemical communication between these components in the porous material in the electrolyte. 或者,材料16和电解质可为单一组成。 Alternatively, the material 16 and the electrolyte may be a single composition. 例如,可使用胶质聚合物作为电池中的电解质和隔板。 For example, the gum polymer may be used as a battery electrolyte and a separator.

本发明一种实施方案的电池10包括集电器20和22,它们用于传输电子到外部电路。 Battery 10 of one embodiment of the present invention includes a current collector 20 and 22, are used to transport electrons to an external circuit. 优选地,集电器20由铝箔制成,集电器22由铜箔制成。 Preferably, the current collector 20 made of aluminum foil, the current collector 22 is made of a copper foil.

可通过本领域中已知的方法制备电池10,并优选具有在以下范围内的层厚度:层 厚度集电器(20) 10-40μm阴极(12) 70-200μm材料(16) 10-35μm阳极(14) 50-150μm集电器(22) 10-40μm电池10可包括分散在整个阴极12、阳极14和隔板16中的电解质,和壳(未示出)。 Layer thickness by methods known in the art for preparing cell 10, and preferably has the following range: layer thickness collector (20) 10-40μm cathode (12) 70-200μm material (16) 10-35μm anode ( 14) 50-150μm collector (22) 10-40μm cell 10 may include a dispersed throughout cathode 12, anode 14 and separator 16 in the electrolyte, and the housing (not shown). 电解质可与材料16是一个整体。 Electrolyte material 16 may be a whole.

在一些实施方案中,电池10最初处于充电状态,并更优选完全充电状态。 In some embodiments, the battery 10 in the charged state initially, and more preferably a fully charged state. 电池10可通过电解质将锂离子从阳极14输送到阴极12来放电。 The battery 10 may be supplied to the lithium ions from the anode 12 to the cathode 14 through the electrolyte discharge. 同时,电子通过集电器22、外部电路和集电器20从阳极14输送到阴极12。 Meanwhile, the electron collector 22 through the external circuit and the collector 20 is conveyed from the anode 14 to the cathode 12. 通过电解质将锂离子从阴极12输送到阳极14使电池10充电或再充电。 The lithium ion transport through the electrolyte from the cathode 12 to the anode 14 of the battery 10 is charged or recharged. 充电和放电步骤可进行多次循环,同时保持阴极活性材料的高比容量和保持安全操作条件。 Charging and discharging steps can be repeated cycles, the cathode active material while maintaining high specific capacity and maintaining safe operating conditions.

在其它实施方案中,可提供如常规锂离子电池已知的未充电状态的电池。 In other embodiments, may be provided as a conventional lithium-ion batteries known in the uncharged state of the battery. 锂金属可提供在阳极和/或阴极中。 Lithium metal can be provided in the anode and / or cathode. 例如,锂离子电池的阳极可被根据本发明实施方案的包括锂的阳极代替。 For example, lithium-ion battery anodes can be included in place of lithium anode according to embodiments of the present invention. 该阳极可包括预锂化基质材料。 The anode may comprise pre-lithiated host material. 电池中电解质的引入可促进电解质和阳极中锂金属之间的反应,引发阳极处固体电解质界面(SEI)的形成。 Battery electrolyte can be introduced in the electrolyte and promoting the reaction between the lithium metal anode, a solid electrolyte interface lead (SEI) is formed at the anode. 第一次为电池充电可加速SEI的形成。 Charging the battery for the first time can accelerate the formation of the SEI. 由阳极中的锂金属形成SEI可减少和/或消除因阴极锂的SEI消耗造成的不可逆容量损失产生的电池容量损失。 Formed of a lithium metal anode SEI can reduce and / or eliminate the loss of battery capacity due to irreversible capacity losses caused by consumption of a cathode of lithium SEI generated.

例如,当具有含锂阴极材料和仅仅不含锂的阳极材料的锂离子电池首次充电时,含锂阴极材料的锂与电池中的电解质反应,在阳极处形成固体电解质界面(SEI)。 For example, when a cathode material containing lithium and lithium-free only anode materials for lithium-ion rechargeable battery for the first time, a lithium electrolyte reaction with the lithium-containing cathode material in the battery, at the anode to form a solid electrolyte interface (SEI). SEI消耗来自阴极的部分锂,导致电池不可逆容量损失。 SEI consumption of lithium from the cathode section, causing the battery to the irreversible capacity loss. 电池不可逆容量损失可达到容量损失的10%-20%。 Battery irreversible capacity loss can reach 10% -20% capacity loss. 但是,如果根据本发明的实施方案用锂形成锂离子电池的阳极,则阳极中的锂在电池首次充电过程中可与电解质反应在阳极处形成SEI。 However, if the formation of the lithium anode with a lithium ion battery according to embodiments of the present invention, the lithium in the anode during the first charge in the battery may react with the electrolyte is formed at the anode SEI. 由阳极中包含的锂形成SEI保护了阴极或电池中的锂,导致因不可逆容量造成的容量损失减小。 An anode formed of lithium contained in the cathode or the SEI protects the lithium battery, resulting in loss of capacity due to irreversible capacity caused by the decrease. 因此,本发明的实施方案可减少和/或消除因称为不可逆容量的现象造成的电池容量损失。 Thus, embodiments of the present invention may reduce and / or eliminate loss due to battery capacity called irreversible capacity caused by the phenomenon.

根据本发明实施方案的电池可用于各种应用。 The battery according to an embodiment of the present invention can be used for various applications. 例如,该电池可用在便携式电子设备中,如蜂窝式电话、便携式摄像机、数字记录设备和膝上型计算机,和用在大功率应用中,如用于电动车和混合机车。 For example, the battery can be used in portable electronic devices, such as cellular phones, camcorders, digital recording devices and laptop computers, and used in high power applications, such as for an electric vehicle and hybrid vehicle. 使用含锂阳极的电池可对阴极材料的选择提供更大的选择-这能扩大电池的用途和/或安全性。 Lithium-containing battery anode cathode material may choose to provide greater choice - which can expand the use of the battery and / or safety. 另外,使用含锂阳极的电池可减小不可逆容量对电池的影响。 Further, the use of an anode comprising lithium batteries can be reduced irreversibly affect the capacity of the battery.

本发明能提供具有高比容量、安全操作条件和良好循环能力的电池。 The present invention can provide a high specific capacity, safe operating conditions and good cyclability of the battery. 特别地,在电池的一些实施方案中可使用非锂化材料作为阴极活性材料,因为锂金属提供在阳极中。 In particular, in some embodiments, the battery of the non-lithiated materials can be used as a cathode active material, a lithium metal as provided in the anode. 非锂化材料可具有比锂离子电池中目前使用的锂化材料高的比容量。 Non-lithiated materials can have higher than lithium-ion batteries, lithium-based materials currently used in specific capacity. 不像具有非锂化阴极活性材料和金属锂阳极的传统锂电池,发现使用非锂化阴极活性材料与本发明实施方案的阳极结合生产的电池能安全运行,并且在循环时不会产生锂树枝状晶体。 Unlike conventional lithium battery having a non-lithiated cathode active material and metallic lithium anode, found that the use of non-lithiated cathode active material and the anode of the present invention, an embodiment of the battery can be combined with production of safe operation, and does not produce the lithium branches when the cycle like crystals. 此外,本发明实施方案的电池能比锂离子电池更安全地运行,锂离子电池在充电过程中从阴极移出锂时变得不稳定。 Furthermore, an embodiment of the present invention the battery can run more than lithium ion batteries safely, a lithium ion battery becomes unstable when lithium is removed from the cathode during charging. 特别地,由于根据本发明实施方案的电池中的阴极活性材料一般在电池最初制备时处于完全充电状态,因此它变得比锂离子电池中使用的阴极材料更稳定。 In particular, since generally prepared initially in the battery in a fully charged state battery according to an embodiment of the present invention, the cathode active material, so that it becomes a cathode material than lithium-ion batteries are more stable in use. 此外,本发明的电池可被充电和放电多次,同时保持安全操作条件和阴极活性材料的高比容量。 In addition, the battery of the invention can be charged and discharged several times, while maintaining safe operating conditions and the cathode active material of high specific capacity. 另外,阳极材料中锂的存在可有助于减少电池的不可逆容量损失,因为阳极中的锂而不是阴极的锂可用于形成SEI。 In addition, the presence of lithium in the anode material can help to reduce the irreversible capacity loss of the battery, since lithium in the anode instead of the cathode may be used to form a lithium SEI.

至此已描述了本发明的一些实施方案,应认识到由附加权利要求限定的本发明不受上面说明书中所述的具体细节限制,只要不脱离下面所要求的精神或范围,它的多种明显变化都是可能的。 Thus described some embodiments of the present invention, it is recognized by the appended claims of the present invention is not limited to the above description of the specific details limit, without departing from the spirit or scope of the following claims, which are more apparent variations are possible.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN102122709A *25 Jan 201113 Jul 2011天津中能锂业有限公司Lithium ion battery electrode added with lithium powder, preparation method thereof and lithium ion battery
CN102642024A *6 Mar 201222 Aug 2012东莞新能源科技有限公司Lithium ion battery and anode strip thereof and stabilization lithium metal powder
CN103199217A *2 Apr 201310 Jul 2013东莞新能源科技有限公司Lithium-rich pole piece of lithium ion battery and preparation method thereof
CN104733783A *1 Apr 201524 Jun 2015广东烛光新能源科技有限公司Preparation method of lithium ion battery
CN104733783B *1 Apr 201529 Mar 2017广东烛光新能源科技有限公司一种锂离子电池的制备方法
CN105190958A *11 Jun 201423 Dec 2015株式会社Lg化学Method for pre-lithiating anode electrode
CN105322230A *29 May 201410 Feb 2016福建省辉锐材料科技有限公司Graphene-combining rechargeable lithium-ion battery and manufacturing method thereof
US97288161 Apr 20148 Aug 2017Dongguan Amperex Technology LimitedLithium-rich electrode sheet of lithium-ion battery and preparation method thereof
Classifications
International ClassificationH01M4/1393, H01M10/36, H01M4/58, H01M4/139, H01M4/587, H01M10/0525, H01M4/133, H01M4/134, H01M4/13, H01M4/40, H01M4/1395, H01M6/00
Cooperative ClassificationH01M4/1393, H01M4/0435, H01M4/587, H01M4/043, H01M4/134, H01M4/0471, H01M4/133, H01M4/1395, H01M10/0525
European ClassificationH01M10/0525, H01M4/587, H01M4/04C4, H01M4/1393, H01M4/139
Legal Events
DateCodeEventDescription
6 Sep 2006C06Publication
25 Oct 2006C10Entry into substantive examination
4 May 2011C14Grant of patent or utility model