CN1823223A - 基于轴的径向位移进行风力涡轮机转子载荷控制的方法和设备 - Google Patents

基于轴的径向位移进行风力涡轮机转子载荷控制的方法和设备 Download PDF

Info

Publication number
CN1823223A
CN1823223A CNA2004800203725A CN200480020372A CN1823223A CN 1823223 A CN1823223 A CN 1823223A CN A2004800203725 A CNA2004800203725 A CN A2004800203725A CN 200480020372 A CN200480020372 A CN 200480020372A CN 1823223 A CN1823223 A CN 1823223A
Authority
CN
China
Prior art keywords
sensors
wind turbine
described axle
load
axle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800203725A
Other languages
English (en)
Other versions
CN100473825C (zh
Inventor
柯克·G·皮尔斯
戴维·L·勒米厄
拉尔夫·W·布莱克莫尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Renovables Espana SL
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1823223A publication Critical patent/CN1823223A/zh
Application granted granted Critical
Publication of CN100473825C publication Critical patent/CN100473825C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/331Mechanical loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/821Displacement measuring means, e.g. inductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

垂直的和水平的风切变、横偏和/或湍流共同作用产生穿过风力涡轮机转子的不对称载荷。合成载荷在叶片中产生弯矩,该弯矩作用到毂并随后作用在主轴上。结果是,主轴可从其静止位置径向位移。利用两个或多个传感器可测量径向位移量。来自传感器的输出信号被用来确定合成转子载荷的大小和/或方向。该信息被用来使得叶片节距发生变化或进行具有相似系统效果的其他动作,以减小不对称载荷并从而减小了各种涡轮部件上的疲劳和载荷。

Description

基于轴的径向位移进行 风力涡轮机转子载荷控制的方法和设备
技术领域
本发明涉及风力涡轮机。更具体地,本发明涉及基于轴的径向位移进行的载荷控制。
背景技术
实用级的风力涡轮机(即设计用来为公共电网提供电力的风力涡轮机)可以具有大的转子(例如,30米或更大的直径)。由于垂直或水平风切变、横偏和湍流,产生横跨这些转子的不对称载荷。这些不对称载荷在转子叶片和其他风力涡轮机部件上产生过度载荷和一定数量的疲劳循环。
已经开发了各种技术来减小由转子的不对称载荷导致的疲劳。例如,在1997年10月P.Caselitz等人在爱尔兰都柏林堡(Dublin Castle,Ireland)举办的欧洲风能会议上发表的“通过先进控制方法减少风能转换器上的疲劳载荷(Reduction of Fatigue Loads on Wind Energy Converters by Advanced ControlMethods)”中公开了塔振动的主动阻尼技术。然而,这里公开的技术基于塔的倾斜和摇摆,其仅提供了关于各个风力涡轮机部件上的载荷的一般信息。
基于专利合作条约(PCT)在2001年5月10日公布的、题为“风力涡轮机运行的控制方法和使用所述方法的风力涡轮机(METHOD OFCONTROLLING THE OPERATION OF A WIND TURBINE AND WINDTURBINE FOR USE IN SAID METHOD)”(公开号WO 10/33075,PCT申请号PCT/DK99/00595)的国际申请中公开了一种另外的技术。该PCT申请公开了一种涡轮控制器,该控制器基于作用在叶片上的机械载荷控制风力涡轮机叶片的节距。然而,所述PCT申请中的控制系统很复杂,因为必须不断地评估多个叶片传感器的输出。
附图说明
本发明通过示例的方式示出,而不是以限制的方式示出,在附图中相同的附图标记指代相似的部件。
图1是风力涡轮机部件的一个实施例;
图2是基于传感器测量值的控制叶片节距系统的一个实施例的框图;
图3是具有第一构型的四个传感器的主轴的端视图;
图4是具有第二构型的四个传感器的主轴的透视图;
图5是具有第三构型的四个传感器的主轴的透视图;
图6是涡轮机一个实施例的框图;
图7是响应部件位移的风力涡轮机叶片节距控制的实施例的流程图。
发明内容
描述基于轴的径向位移的风力涡轮机载荷的控制方法和设备。在以下的描述中,为了解释的目的,阐述了多个特定的细节以彻底理解本发明。然而,对本领域技术人员显而易见的是,没有这些特定细节也可以实施本发明。在其他情形中,结构和装置以框图形式示出以避免模糊本发明。
垂直和水平风切变、横偏和/或湍流共同作用而产生横跨风力涡轮机转子的不对称载荷。所形成的载荷在叶片上产生弯矩,该弯矩作用到毂并随后作用在低速轴上。结果,主轴从其静止位置产生位移。虽然轴的径向位移可利用一个传感器进行测量,但需要两个或多个大致正交定位的传感器将径向位移解析为控制目的所需的形式。然后,来自传感器的输出信号可被用来确定所产生的转子载荷的大小和/或方向,并通过例如控制叶片节距来调节该载荷或载荷的不对称性。
减小载荷并因此减小各涡轮部件上的载荷和疲劳所需的叶片节距改变可根据传感器产生的输出信号确定。派克斯DQ变换(Parks DQtransformation)、偏差估计方法计算和/或其他控制技术可用来计算每个转子叶片的节距增量以减小总的和/或不对称的转子载荷。可以减小转子叶片和其他涡轮机部件的疲劳和过度载荷。
主轴径向位移的确定可利用传感器得到,所述传感器利用基于声、光、磁、电容或感应场效应的传感器技术测量轴的位移或应变。在一个实施例中,使用接近传感器测量主轴径向位移。在一个实施例中,使用最少两个传感器测量主轴径向位移。如下文中更详细描述的那样,也可以使用额外的和/或不同的传感器。
图1是风力涡轮机部件的一个实施例。除了毂110之外,图1的各部件容纳在塔190上的机舱185中。塔190的高度可基于现有技术中公知的因素和条件选择。在一个实施例中,使用了多个微控制器(例如,在控制板195中)对整个系统进行监测和控制,包括节距和速度调节、高速轴和偏航制动施加(yaw brake application)、偏航(yaw)和泵用马达应用以及故障监测。也可以使用其它分散式或集中式控制结构。
在一个实施例中,控制系统将控制信号提供给可变叶片节距控制器120以控制借助风驱动毂110的叶片(图1中未示出)的节距。在一个实施例中,毂110装设有三个叶片;然而,可使用任何数量的叶片。在一个实施例中,各叶片的节距可通过叶片节距控制器120独立控制。毂110和涡轮机叶片结合以形成风力涡轮机转子。
风力涡轮机的传动系统包括连接到毂110和齿轮箱160的转子轴175,在一个实施例中,使用双路构造(dual path geometry)驱动封装在齿轮箱中的高速轴。高速轴用来驱动发电机150。在一个实施例中,转子扭矩通过联轴器165传递。任何类型的发电机,例如线绕感应发电机可用于图1的风力涡轮机中。
偏航驱动器170和偏航平台180为风力涡轮机提供了偏航定向系统。在一个实施例中,该偏航系统基于从安装在机舱上的风向标155接收的信息由控制系统电操作和控制。在一个实施例中,偏航系统安装在设置在塔190顶部的凸缘上。
如下文更详细的描述,设置有一个或多个接近传感器以探测主轴175从预定静止位置的偏移(deflection)。利用来自传感器的数据,涡轮机控制器(图1中未示出)可确定导致由传感器探测的偏移的叶片上的载荷。利用该信息,涡轮机控制器可使叶片节距改变以减小叶片上的载荷或减小载荷的不对称性(即,使得转子上的载荷更对称)。
图2是基于传感器测量值控制叶片节距的系统的一个实施例的框图。(各)接近传感器(proximity sensor)200响应于风力涡轮机部件例如主轴的位移产生信号。涡轮机控制器210连接到(各)传感器200以接收(各)传感器200产生的信号。涡轮机控制器210分析该信号以确定导致偏移的力。
在一个实施例中,涡轮机控制器210包括从(各)传感器200接收输出信号(模拟信号或数字信号)的处理器。该处理器可以例如是执行指令的通用处理器、硬连线控制电路(a hardwired control circuit)或通用处理器和硬连线电路的组合。响应于从(各)传感器200接收的信号,涡轮机控制器产生传送到叶片节距控制器220的控制信号。
叶片节距控制器220连接到一个或多个控制风力涡轮机叶片节距的叶片旋转驱动器(例如230、240、250)。通过改变叶片的节距,作用在涡轮机上的载荷的大小和/或持续时间可被减小,从而改善风力涡轮机的整体性能。
横跨风力涡轮机转子的不对称载荷会由于垂直和水平风切变、横偏、湍流等而产生。横跨转子的不对称载荷呈现为主轴的偏移或应变。因此,诸如径向位移的轴位移的测量值可用来计算不对称载荷的大小。
所计算的大小可被用来确定相应于风力涡轮机每个转子叶片的叶片节距指令以减小作用在转子轴上并传递到其他涡轮机部件的不对称载荷。坐标变换、偏差估计方法和/或其他控制技术可用来计算相应于各转子叶片的倾斜角(pitch angle)以减小总的不对称转子载荷。可以减小转子叶片和其他涡轮机部件的疲劳和过度载荷。
在一个实施例中,轴的径向位移通过分析来自传感器的信号进行确定,所述传感器基于声、光、磁、涡电流、电容或感应场或其他技术利用传感器技术测量轴的位移。在一个实施例中,使用接近传感器测量相对于低偏移参考框架如主框架或低速轴主轴承壳体的位移。
最少两个传感器被用来测量轴的径向位移;然而,为了冗余信息、传感器诊断目的或其他原因,可使用多于两个的传感器。图3示出四个传感器的实施例,每个传感器(310、320、330和340)绕着主轴300表面的圆周以90度间隔设置。图4示出绕着主轴300以90间隔成对设置的四个传感器的实施例。图5示出绕着主轴300以90间隔成对设置的四个传感器的备选实施例。在一个实施例中,传感器尽可能远离齿轮箱设置位。在备选实施例中,传感器大致居中地设置在齿轮箱160和主轴承125之间。
图6是涡轮机控制器的一个实施例的框图。涡轮机控制器680包括总线600或其他交换信息的通信装置,以及连接到总线600以处理信息的处理器610。虽然示出的涡轮机控制器680具有单个处理器,但涡轮机控制器680可包括多个处理器和/或协处理器(co-processor)。涡轮机控制器680还包括连接于总线600以存储由处理器610执行的信息和指令的随机存取存储器(RAM)620或其他动态存储装置640(称为存储器)。存储器620也可用来在由处理器610执行指令期间储存临时变量或其他中间信息。
涡轮机控制器680也可包括连接于总线600、以存储用于处理器610的静态信息和指令的只读存储器(ROM)和/或其他静态存储装置630。数据存储装置640连接到总线600以存储信息和指令。(各)输入/输出装置650可包括本领域公知的任何装置以将输入数据提供给涡轮机控制器680和/或接收来自涡轮机控制器680的输出数据。
指令经由远程连接从存储装置如磁盘、只读存储器(ROM)集成电路、CD-ROM、DVD提供给存储器,所述远程连接既可以是有线的也可以是无线的,提供通往一种或多种电子存取介质等的通路。在其他实施例中,硬连线电路可用来代替软件指令或与其结合。因此,指令序列的执行不限于硬件电路和软件指令的任何特定组合。
传感器接口660是一种允许涡轮机控制器680与风力涡轮机内的一个或多个传感器通信的接口。例如,传感器接口660可进行连接以接收来自如上所述探测风力涡轮机部件的偏移的一个或多个传感器的输出信号。传感器接口660可以是例如模拟一数字转换器,该转换器将传感器产生的模拟电压信号转换为可被(各)处理器610使用的多位数字信号。
然后,(各)处理器610可分析这些数据并通过(各)输入/输出装置650将数据传输到叶片节距控制器,以使叶片节距控制器改变风力涡轮机的一个或多个叶片的节距。(各)处理器610也可以响应来自传感器的信号采取其他行动。例如,(各)处理器610可施加经由叶片节距实现的机械或气动制动以停止或减慢毂或旋转轴的旋转。
图7是响应于轴的径向位移控制风力涡轮机叶片节距的一个实施例的流程图。在710处,接收来自一个或多个传感器的信号。接收信号的部件(例如处理器、模拟-数字转换器)与传感器连接并在需要时将信号转换为可用的格式。
在720处,响应来自传感器的信号,控制电路(例如处理器、硬连线控制电路)利用来自传感器的信号确定一个或多个风力涡轮机部件上的载荷。控制电路可利用本领域公知的任何数学方程在输入数据(例如位移的大小)和相关的载荷数据(例如施加在风力涡轮机叶片上的力)之间进行转换。转子叶片上的、产生所述位移的载荷和载荷的任何不对称性也可以通过控制电路进行确定。
在730处,控制电路确定对于载荷条件的响应。例如,响应于涡轮机叶片上增加的载荷,控制电路可确定所述响应应该是改变风力涡轮机的一个或多个叶片的节距。作为另一实例,控制电路可确定所述响应应该是施加制动以停止或减慢毂的旋转。作为另一实例,控制电路可确定所述响应应该是施加某一其他动作,例如诱发补偿性的偏航调节。
在740处,控制电路产生启动选定响应的信号。例如,控制电路可产生形式例如为经由各个控制线路传输的数据包或一组控制信号的信号,以使叶片节距控制器改变一个或多个叶片的节距。在750处,如果选定的响应未能使得风力涡轮机在可接受的操作范围内操作,该处理过程可按需要重复或甚至停止,致使节距控制没有得到所述的低速轴反馈节距控制算法的好处。
说明书中提及的“一个实施例”或“实施例”意指结合该实施例描述的特定的特征、结构或特性被包括在本发明的至少一个实施例中。在说明书各处出现的词组“在一个实施例中”不一定总是指相同的实施例。
在上述说明书中,已经参考其特定实施例描述了本发明。然而,显而易见的是可以在不脱离本发明更广泛的实质和范围的情况下对其进行各种修改和改变。因此,本说明书和附图被认为是示例性的而不是限制性的。

Claims (10)

1.一种风力涡轮机,包括:
一个或多个传感器(200、310、320、330、340),用以探测轴(300)从预定位置的径向位移;和
控制电路(210、220、680),所述控制电路与所述一个或多个传感器连接,以响应来自所述一个或多个传感器的信号减轻所述一个或多个部件上的导致偏移的载荷。
2.如权利要求1所述的风力涡轮机,其中所述控制电路(210、220、680)通过控制一个或多个风力涡轮机叶片的节距减轻所述轴(300)上的弯曲载荷。
3.如权利要求1所述的风力涡轮机,其中所述一个或多个部件包括所述风力涡轮机的主轴(300)。
4.如权利要求1所述的风力涡轮机,其中所述一个或多个传感器(200、310、320、330、340)包括一组面向所述轴(300)的接近传感器,以探测所述轴相对于相对不偏移部件的位移。
5.如权利要求4所述的风力涡轮机,其中所述组传感器(200、310、320、330、340)包括下列之一:两个面向所述轴的接近传感器,其中所述两个传感器相对于所述轴的轴线以大约90度间隔开;四个面向所述轴的接近传感器,所述四个传感器相对于所述轴的轴线以大约90度间隔开;两对面向所述轴的接近传感器,所述两对传感器相对于所述轴的轴线以大约90度间隔开。
6.一种方法,包括:
从一个或多个传感器(200、310、320、330、340)接收(710)指示风力涡轮机的轴(300)的径向位移的信号;
基于来自所述一个或多个传感器的所述信号确定作用在所述风力涡轮机上的载荷(720);和
基于所述确定的载荷使所述风力涡轮机的一个和多个叶片(740)改变节距。
7.如权利要求6所述的方法,其中所述轴(300)包括主轴。
8.如权利要求6所述的方法,其中所述一个或多个传感器(200、310、320、330、340)探测所述轴(300)从静止位置的径向位移。
9.如权利要求6所述的方法,其中所述一个或多个传感器(200、310、320、330、340)包括一组面向所述轴(300)以探测所述轴的位移的接近传感器。
10.如权利要求9所述的方法,其中所述组传感器(200、310、320、330、340)包括下列之一:两个面向所述轴(300)的接近传感器,其中所述两个传感器相对于所述轴的轴线以大约90度间隔开;四个面向所述轴的接近传感器,所述四个传感器相对于所述轴的轴线以大约90度间隔开;两对面向所述轴的接近传感器,所述两对传感器相对于所述轴的轴线以大约90度间隔开。
CNB2004800203725A 2003-07-15 2004-07-14 基于轴的径向位移进行风力涡轮机转子载荷控制的方法和设备 Active CN100473825C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/620,485 US7004724B2 (en) 2003-02-03 2003-07-15 Method and apparatus for wind turbine rotor load control based on shaft radial displacement
US10/620,485 2003-07-15

Publications (2)

Publication Number Publication Date
CN1823223A true CN1823223A (zh) 2006-08-23
CN100473825C CN100473825C (zh) 2009-04-01

Family

ID=34103166

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800203725A Active CN100473825C (zh) 2003-07-15 2004-07-14 基于轴的径向位移进行风力涡轮机转子载荷控制的方法和设备

Country Status (8)

Country Link
US (1) US7004724B2 (zh)
EP (1) EP1646786B1 (zh)
CN (1) CN100473825C (zh)
AU (1) AU2004259426B2 (zh)
BR (1) BRPI0411953B1 (zh)
DK (1) DK1646786T3 (zh)
ES (1) ES2578277T3 (zh)
WO (1) WO2005010358A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852174A (zh) * 2010-05-20 2010-10-06 国电联合动力技术有限公司 一种控制风速垂向变化对风力发电机组影响的方法
CN101922412A (zh) * 2009-06-10 2010-12-22 威力克有限公司 风力发电系统及其控制方法
CN101217244B (zh) * 2007-01-05 2012-04-18 通用电气公司 控制旋转机械的方法和设备
CN101868620B (zh) * 2007-11-26 2012-07-25 温可有限责任公司 用于测量风能设备的中空部件从基准位置偏移的方法和系统
CN102713268A (zh) * 2009-10-29 2012-10-03 默文图公司 风力发电站
CN101835974B (zh) * 2007-10-24 2012-10-17 埃科泰克尼亚可再生能源有限公司 用于确定风力涡轮机的动力系中的疲劳损伤的方法
CN107850051A (zh) * 2015-07-21 2018-03-27 Ntn株式会社 用于风力涡轮发电机的状态监视系统
CN111306012A (zh) * 2020-03-05 2020-06-19 山东中车风电有限公司 风力发电机组风轮系统与传动主轴连接面偏移纠正的方法
CN112284455A (zh) * 2020-10-29 2021-01-29 陕西中科启航科技有限公司 一种高精度叶根载荷及频率测量方法

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBZ20010043A1 (it) * 2001-09-13 2003-03-13 High Technology Invest Bv Generatore elettrico azionato da energia eolica.
US7322794B2 (en) * 2003-02-03 2008-01-29 General Electric Company Method and apparatus for condition-based monitoring of wind turbine components
WO2005015011A1 (ja) * 2003-08-12 2005-02-17 Nabtesco Corporation 風力発電装置のヨー駆動装置に用いる減速機、該減速機を用いた風力発電装置のヨー駆動方法および装置
KR20070026362A (ko) 2004-02-27 2007-03-08 미츠비시 쥬고교 가부시키가이샤 풍력 발전 장치 및 그 액티브 제진 방법 그리고 풍차 타워
ITBZ20040047A1 (it) 2004-09-20 2004-12-20 High Technology Invest Bv Generatore/motore elettrico, in particolare per l'impiego in impianti eolici, impianti a fune o idraulici.
US8535008B2 (en) * 2004-10-18 2013-09-17 Whale-Power Corporation Turbine and compressor employing tubercle leading edge rotor design
US8585363B2 (en) * 2004-12-30 2013-11-19 Vestas Wind Systems A/S Wind turbine comprising a multiplied redundancy control system and method of controlling a wind turbine
US7740448B2 (en) * 2005-09-09 2010-06-22 General Electric Company Pitch control battery backup methods and system
ITBZ20050063A1 (it) * 2005-11-29 2007-05-30 High Technology Invest Bv Pacco di lamierini per generatori e motori elettrici e procedimento per la sua attuazione
ITBZ20050062A1 (it) * 2005-11-29 2007-05-30 High Technology Invest Bv Rotore a magneti permanenti per generatori e motori elettrici
DK1934474T3 (da) * 2005-09-21 2010-06-21 Wilic S A R L Lejepakningsanordning med labyrintpaknings- og skruepakningskombination
DK2461058T3 (en) * 2006-03-10 2015-07-13 Ntn Toyo Bearing Co Ltd Roller bearing, cage segment and main shaft support structure for wind powered generator
US7437264B2 (en) * 2006-06-19 2008-10-14 General Electric Company Methods and apparatus for balancing a rotor
US7581921B2 (en) * 2006-06-19 2009-09-01 General Electric Company Methods and apparatus for controlling rotary machines
EP2044326B1 (en) * 2006-07-06 2018-08-22 Acciona Windpower, S.A. Systems, methods and apparatuses for a wind turbine controller
US7914250B2 (en) * 2006-12-08 2011-03-29 General Electric Company Method and system for estimating life of a gearbox
US7857599B2 (en) * 2007-01-10 2010-12-28 General Electric Company Method and apparatus for forming wind turbine machines
US7621843B2 (en) * 2007-01-17 2009-11-24 General Electric Company Apparatus for restraining axial movement of a ring gear in a gearbox for a wind turbine
EP1947329A1 (en) * 2007-01-18 2008-07-23 Ecotecnia Energias Renovables S.L. Wind turbine and method for mitigating the asymmetric loads endured by the rotor or the wind turbine
US7918646B2 (en) * 2007-01-22 2011-04-05 Lonestar Inventions LLP High efficiency turbine with variable attack angle foils
ES2303480B1 (es) * 2007-01-26 2009-06-09 GAMESA INNOVATION & TECHNOLOGY, S.L. Multiplicadora sensorizada.
EP1978246A1 (en) * 2007-04-04 2008-10-08 Siemens Aktiengesellschaft Method of reducing an unbalance in a wind turbine rotor and device for performing the method
ES2656542T3 (es) * 2007-08-31 2018-02-27 Vestas Wind Systems A/S Método para el control de al menos un mecanismo de regulación de una turbina eólica, una turbina eólica y un parque eólico
ES2337645B1 (es) 2007-09-14 2011-03-11 GAMESA INNOVATION & TECHNOLOGY, S.L. Union de pala sensorizada.
DK2060785T3 (en) * 2007-11-15 2019-04-15 Siemens Gamesa Renewable Energy Innovation & Technology SL Sensor control method and system
US8215905B2 (en) * 2007-12-31 2012-07-10 General Electric Corporation Methods and apparatus for error reduction in rotor loading measurements
WO2009109655A1 (en) * 2008-03-07 2009-09-11 Vestas Wind Systems A/S A control system and a method for controlling a wind turbine
WO2009144061A2 (de) * 2008-04-15 2009-12-03 Alstom Technology Ltd Verfahren zur überwachung einer elektrodynamischen maschine
US8020455B2 (en) * 2008-06-06 2011-09-20 General Electric Company Magnetostrictive sensing systems and methods for encoding
ITMI20081122A1 (it) 2008-06-19 2009-12-20 Rolic Invest Sarl Generatore eolico provvisto di un impianto di raffreddamento
IT1390758B1 (it) 2008-07-23 2011-09-23 Rolic Invest Sarl Generatore eolico
US20100054941A1 (en) * 2008-08-27 2010-03-04 Till Hoffmann Wind tracking system of a wind turbine
US8262354B2 (en) * 2008-08-27 2012-09-11 General Electric Company Method and apparatus for load measurement in a wind turbine
US8353667B2 (en) * 2008-08-27 2013-01-15 General Electric Company Method and apparatus for adjusting a yaw angle of a wind turbine
IT1391939B1 (it) * 2008-11-12 2012-02-02 Rolic Invest Sarl Generatore eolico
IT1391770B1 (it) 2008-11-13 2012-01-27 Rolic Invest Sarl Generatore eolico per la generazione di energia elettrica
US8573937B2 (en) 2008-11-21 2013-11-05 Xzeres Corp. System for providing dynamic pitch control in a wind turbine
WO2010018590A1 (en) * 2008-11-24 2010-02-18 Yogesh Sonar Horizontal axis wind turbine
US7837442B2 (en) * 2008-12-03 2010-11-23 General Electric Company Root sleeve for wind turbine blade
US8823241B2 (en) 2009-01-16 2014-09-02 Boulder Wind Power, Inc. Segmented stator for an axial field device
IT1392804B1 (it) * 2009-01-30 2012-03-23 Rolic Invest Sarl Imballo e metodo di imballo per pale di generatori eolici
IT1393937B1 (it) * 2009-04-09 2012-05-17 Rolic Invest Sarl Aerogeneratore
IT1393707B1 (it) 2009-04-29 2012-05-08 Rolic Invest Sarl Impianto eolico per la generazione di energia elettrica
US8222757B2 (en) * 2009-06-05 2012-07-17 General Electric Company Load identification system and method of assembling the same
DE102009036517A1 (de) * 2009-08-07 2011-02-17 Aerodyn Engineering Gmbh Windenergieanlage mit Einrichtung zur Lastminimierung
IT1395148B1 (it) 2009-08-07 2012-09-05 Rolic Invest Sarl Metodo e apparecchiatura di attivazione di una macchina elettrica e macchina elettrica
US20110044811A1 (en) * 2009-08-20 2011-02-24 Bertolotti Fabio P Wind turbine as wind-direction sensor
US8562300B2 (en) * 2009-09-14 2013-10-22 Hamilton Sundstrand Corporation Wind turbine with high solidity rotor
US8092171B2 (en) * 2009-09-30 2012-01-10 General Electric Company Systems and methods for assembling a pitch assembly for use in a wind turbine
IT1397081B1 (it) 2009-11-23 2012-12-28 Rolic Invest Sarl Impianto eolico per la generazione di energia elettrica
KR20120101664A (ko) * 2009-11-30 2012-09-14 제랄드 엘. 바버 조정 가능한 발전기를 구비한 풍력 터빈
EP2752577B1 (en) 2010-01-14 2020-04-01 Senvion GmbH Wind turbine rotor blade components and methods of making same
EP2556244B1 (en) 2010-01-14 2014-05-21 Daniel P. Coffey Wind energy conversion device
US10137542B2 (en) 2010-01-14 2018-11-27 Senvion Gmbh Wind turbine rotor blade components and machine for making same
IT1398060B1 (it) 2010-02-04 2013-02-07 Wilic Sarl Impianto e metodo di raffreddamento di un generatore elettrico di un aerogeneratore, e aerogeneratore comprendente tale impianto di raffreddamento
IT1399201B1 (it) 2010-03-30 2013-04-11 Wilic Sarl Aerogeneratore e metodo di rimozione di un cuscinetto da un aerogeneratore
IT1399511B1 (it) 2010-04-22 2013-04-19 Wilic Sarl Generatore elettrico per un aerogeneratore e aerogeneratore equipaggiato con tale generatore elettrico
US9154024B2 (en) 2010-06-02 2015-10-06 Boulder Wind Power, Inc. Systems and methods for improved direct drive generators
US8025485B2 (en) * 2010-06-17 2011-09-27 General Electric Company Wind turbine blade attachment configuration with flattened bolts
US8222760B2 (en) * 2010-06-29 2012-07-17 General Electric Company Method for controlling a proximity sensor of a wind turbine
US8035242B2 (en) 2010-11-09 2011-10-11 General Electric Company Wind turbine farm and method of controlling at least one wind turbine
WO2012118549A1 (en) 2010-12-09 2012-09-07 Northern Power Systems, Inc. Systems for load reduction in a tower of an idled wind-power unit and methods thereof
US20110243730A1 (en) * 2010-12-14 2011-10-06 Eric David Eggleston Systems and methods for determining deflection of a wind turbine shaft
US8099255B2 (en) 2010-12-16 2012-01-17 General Electric Company System and method for measuring shaft deflection in a wind turbine
ITMI20110377A1 (it) 2011-03-10 2012-09-11 Wilic Sarl Macchina elettrica rotante per aerogeneratore
ITMI20110375A1 (it) 2011-03-10 2012-09-11 Wilic Sarl Turbina eolica
ITMI20110378A1 (it) 2011-03-10 2012-09-11 Wilic Sarl Macchina elettrica rotante per aerogeneratore
BR112013026393A2 (pt) 2011-04-12 2016-12-27 Boulder Wind Power Inc sistemas e métodos de controle de vão de ar
US8240991B2 (en) 2011-06-23 2012-08-14 General Electric Company Method and system for operating a wind turbine
CN102900600B (zh) * 2011-07-29 2015-09-09 西门子公司 风力发电机状态监测方法
US8227930B2 (en) 2011-08-25 2012-07-24 General Electric Company System and method for adjusting a bending moment of a shaft in a wind turbine
CN102392784A (zh) * 2011-09-22 2012-03-28 苏州能健电气有限公司 变桨系统的plc控制系统
DK2597302T3 (da) * 2011-11-23 2014-05-19 Siemens Ag Bestemmelse af en samlet belastning af en vindmølle i vinkelafsnit
US8317471B2 (en) 2011-11-29 2012-11-27 General Electric Company Method for preventing rotor overspeed of a wind turbine
US8434996B2 (en) 2011-12-06 2013-05-07 General Electric Company System and method for detecting and/or controlling loads in a wind turbine
EP2844870B1 (en) * 2012-05-02 2020-07-01 General Electric Company System and method for stopping the operation of a wind turbine
US8339019B1 (en) 2012-07-30 2012-12-25 Boulder Wind Power, Inc. Structure for an electromagnetic machine having compression and tension members
US9551320B2 (en) 2012-09-27 2017-01-24 General Electric Company Asymmetric load control for torsion fatigue reduction in a wind turbine tower
US8987929B2 (en) 2012-11-01 2015-03-24 General Electric Company System and method for operating wind farm
US8736133B1 (en) 2013-03-14 2014-05-27 Boulder Wind Power, Inc. Methods and apparatus for overlapping windings
US9261077B2 (en) 2013-03-19 2016-02-16 General Electric Company System and method for real-time load control of a wind turbine
DK2806161T3 (en) 2013-05-24 2018-07-23 Alstom Renovables Espana Sl Structural element for a wind turbine
US9518560B2 (en) * 2013-05-28 2016-12-13 Siemens Aktiengesellschaft Method to individually optimize respective pitch angles of a plurality of blades in a wind turbine
US9551321B2 (en) 2013-06-26 2017-01-24 General Electric Company System and method for controlling a wind turbine
US9683553B2 (en) 2013-09-06 2017-06-20 General Electric Company System and method for monitoring wind turbine loading
US9593668B2 (en) 2013-09-10 2017-03-14 General Electric Company Methods and systems for reducing amplitude modulation in wind turbines
US9624905B2 (en) 2013-09-20 2017-04-18 General Electric Company System and method for preventing excessive loading on a wind turbine
US9631606B2 (en) 2014-04-14 2017-04-25 General Electric Company System and method for thrust-speed control of a wind turbine
US10177620B2 (en) 2014-05-05 2019-01-08 Boulder Wind Power, Inc. Methods and apparatus for segmenting a machine
US9970415B2 (en) 2014-06-12 2018-05-15 General Electric Company Method and system for managing loads on a wind turbine
US10100812B2 (en) 2014-06-30 2018-10-16 General Electric Company Methods and systems to operate a wind turbine system
CN105332856A (zh) * 2015-11-02 2016-02-17 浙江运达风电股份有限公司 一种基于测量固定坐标系下主轴载荷的风电机组独立变桨控制方法
US11022100B2 (en) * 2015-12-17 2021-06-01 General Electric Company System and method for controlling wind turbines
US10519929B2 (en) * 2016-11-09 2019-12-31 General Electric Company System and method for minimizing energy loss due to yaw untwist of a wind turbine
EP3343025A1 (en) * 2016-12-30 2018-07-04 Acciona Windpower, S.A. Method of reducing loads acting on a wind turbine yaw system
EP3412908B1 (de) * 2017-06-09 2024-01-24 Nordex Energy SE & Co. KG Windenergieanlage mit system sowie verfahren zur montage und zum betreiben einer windenergieanlage
US10634121B2 (en) 2017-06-15 2020-04-28 General Electric Company Variable rated speed control in partial load operation of a wind turbine
US10539119B2 (en) 2017-07-10 2020-01-21 WindESCo, Inc. System and method for augmenting control of a wind turbine assembly
WO2020216424A1 (en) * 2019-04-26 2020-10-29 Vestas Wind Systems A/S Controller and method for a wind turbine
US11060504B1 (en) 2020-02-07 2021-07-13 General Electric Company Systems and methods for continuous machine learning based control of wind turbines
CN113494418A (zh) * 2020-04-08 2021-10-12 通用电气可再生能源西班牙有限公司 用于减轻作用于风力涡轮的转子叶片的负载的系统和方法
US11441541B2 (en) * 2020-08-24 2022-09-13 General Electric Renovables Espana, S.L. Main shaft assembly of a wind turbine
EP3961177B1 (en) 2020-08-25 2022-06-15 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A measurement apparatus for determining a bending moment
US11231012B1 (en) 2020-09-22 2022-01-25 General Electric Renovables Espana, S.L. Systems and methods for controlling a wind turbine
US11649804B2 (en) 2021-06-07 2023-05-16 General Electric Renovables Espana, S.L. Systems and methods for controlling a wind turbine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298313A (en) 1979-06-18 1981-11-03 Hohenemser Kurt H Horizontal axis wind generator having adaptive cyclic pitch control
US4495423A (en) 1981-09-10 1985-01-22 Felt Products Mfg. Co. Wind energy conversion system
US4420692A (en) 1982-04-02 1983-12-13 United Technologies Corporation Motion responsive wind turbine tower damping
US4435647A (en) 1982-04-02 1984-03-06 United Technologies Corporation Predicted motion wind turbine tower damping
US4613762A (en) 1984-12-11 1986-09-23 The United States Of America As Represented By The Secretary Of Agriculture Output responsive field control for wind-driven alternators and generators
US5140856A (en) * 1990-12-03 1992-08-25 Dynamic Rotor Balancing, Inc. In situ balancing of wind turbines
US5083039B1 (en) 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
DE19731918B4 (de) * 1997-07-25 2005-12-22 Wobben, Aloys, Dipl.-Ing. Windenergieanlage
EP0995904A3 (de) * 1998-10-20 2002-02-06 Tacke Windenergie GmbH Windkraftanlage
US6619918B1 (en) 1999-11-03 2003-09-16 Vestas Wind Systems A/S Method of controlling the operation of a wind turbine and wind turbine for use in said method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217244B (zh) * 2007-01-05 2012-04-18 通用电气公司 控制旋转机械的方法和设备
CN101835974B (zh) * 2007-10-24 2012-10-17 埃科泰克尼亚可再生能源有限公司 用于确定风力涡轮机的动力系中的疲劳损伤的方法
CN101868620B (zh) * 2007-11-26 2012-07-25 温可有限责任公司 用于测量风能设备的中空部件从基准位置偏移的方法和系统
CN101922412A (zh) * 2009-06-10 2010-12-22 威力克有限公司 风力发电系统及其控制方法
CN102713268A (zh) * 2009-10-29 2012-10-03 默文图公司 风力发电站
CN102713268B (zh) * 2009-10-29 2015-11-25 默文图公司 风力发电站
CN101852174B (zh) * 2010-05-20 2012-01-04 国电联合动力技术有限公司 一种控制风速垂向变化对风力发电机组影响的方法
CN101852174A (zh) * 2010-05-20 2010-10-06 国电联合动力技术有限公司 一种控制风速垂向变化对风力发电机组影响的方法
CN107850051A (zh) * 2015-07-21 2018-03-27 Ntn株式会社 用于风力涡轮发电机的状态监视系统
US10590915B2 (en) 2015-07-21 2020-03-17 Ntn Corporation Condition monitoring system for wind turbine
CN111306012A (zh) * 2020-03-05 2020-06-19 山东中车风电有限公司 风力发电机组风轮系统与传动主轴连接面偏移纠正的方法
CN111306012B (zh) * 2020-03-05 2021-03-19 山东中车风电有限公司 风力发电机组传动主轴连接面偏移纠正的方法
CN112284455A (zh) * 2020-10-29 2021-01-29 陕西中科启航科技有限公司 一种高精度叶根载荷及频率测量方法

Also Published As

Publication number Publication date
BRPI0411953B1 (pt) 2023-05-16
AU2004259426B2 (en) 2010-05-13
US20040151575A1 (en) 2004-08-05
DK1646786T3 (en) 2016-07-18
US7004724B2 (en) 2006-02-28
EP1646786A1 (en) 2006-04-19
CN100473825C (zh) 2009-04-01
WO2005010358A1 (en) 2005-02-03
AU2004259426A1 (en) 2005-02-03
EP1646786B1 (en) 2016-05-11
ES2578277T3 (es) 2016-07-22
BRPI0411953A (pt) 2006-08-29

Similar Documents

Publication Publication Date Title
CN1823223A (zh) 基于轴的径向位移进行风力涡轮机转子载荷控制的方法和设备
US7160083B2 (en) Method and apparatus for wind turbine rotor load control
CN101092931B (zh) 用于平衡转子的方法和装置
CN101042111B (zh) 控制转子转速的方法和装置
EP1760311B1 (en) Method and apparatus for condition-based monitoring of wind turbine components
CN102022265B (zh) 用于确定风力涡轮机的监测设定点极限的系统和方法
CN101169103B (zh) 用于运行风力涡轮机的方法和设备
JP5101689B2 (ja) 風力発電装置及び風力発電装置のヨー旋回制御方法
EP2306004A2 (en) Method and apparatus for controlling acoustic emissions of a wind turbine
US8013460B2 (en) Method and apparatus for controlling noise levels of a turbine with minimal loss in energy yield
EP2108825B1 (en) System and method for reducing rotor loads in a wind turbine upon detection of blade-pitch failure and loss of counter-torque
CN1966973B (zh) 用于风力涡轮制动的方法和设备
CN101476541B (zh) 用于风力发电机组的独立变桨控制系统及控制方法
US6888262B2 (en) Method and apparatus for wind turbine rotor load control
CN101713375A (zh) 在电网电力失效和变化风况时控制风轮机的系统和方法
CN102312778A (zh) 用于监视风力涡轮机的操作的方法和系统
US20120027589A1 (en) Method and apparatus for control of asymmetric loading of a wind turbine
CN101639039B (zh) 风力涡轮机倾斜系统的脉冲转矩控制
CN206246158U (zh) 一种透平膨胀发电装置及系统
CN116906268A (zh) 一种变桨抗涡效果检测风力发电机
WO2023078654A1 (en) Yawing a wind turbine during idling

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240116

Address after: Barcelona, Spain

Patentee after: Ge renewable energy Spain Ltd.

Address before: New York, United States

Patentee before: General Electric Co.