Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN1813192 B
Publication typeGrant
Application numberCN 200480018294
PCT numberPCT/US2004/012901
Publication date10 Nov 2010
Filing date27 Apr 2004
Priority date28 Apr 2003
Also published asCN1813192A, CN101701967A, CN101701967B, EP1618391A2, EP1618391A4, US6848304, US20040211258, WO2004097431A2, WO2004097431A3, WO2004097431B1
Publication number200480018294.5, CN 1813192 B, CN 1813192B, CN 200480018294, CN-B-1813192, CN1813192 B, CN1813192B, CN200480018294, CN200480018294.5, PCT/2004/12901, PCT/US/2004/012901, PCT/US/2004/12901, PCT/US/4/012901, PCT/US/4/12901, PCT/US2004/012901, PCT/US2004/12901, PCT/US2004012901, PCT/US200412901, PCT/US4/012901, PCT/US4/12901, PCT/US4012901, PCT/US412901
Inventors约翰A吉恩
Applicant模拟器件公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Six degree-of-freedom micro-machined multi-sensor
CN 1813192 B
Abstract
The present invention provides a six degree-of-freedom micro-machined multi-sensor that provides 3-axes of acceleration sensing, and 3-axes of angular rate sensing, in a single multi-sensor device. The six degree-of-freedom multi-sensor device includes a first multi-sensor substructure providing 2-axes of acceleration sensing and 1-axis of angular rate sensing, and a second multi-sensor substructure providing a third axis of acceleration sensing, and second and third axes of angular rate sensing. The first and second multi-sensor substructures are implemented on respective substrates within the six degree-of-freedom multi-sensor device.
Claims(15)  translated from Chinese
  1. 一种六自由度多传感器,包括:第一衬底;第二衬底;在所述第一衬底上制造的第一多传感器子结构,所述第一多传感器子结构用于提供第一多个感测信号,所述第一多个感测信号指示相对于在所述第一衬底的平面中的相互正交的第一和第二轴的加速度感测,以及指示相对于与所述第一和第二轴垂直的第三轴的角速度感测,以及在所述第二衬底上制造的第二多传感器子结构,所述第二多传感器子结构用于提供第二多个感测信号,所述第二多个感测信号指示相对于在所述第二衬底的平面中的相互正交的第四和第五轴的角速度感测,以及指示相对于与所述第四和第五轴垂直的第六轴的加速度感测,其中所述第一多传感器子结构包括:基本上平坦的加速计框;耦合到该框的第一检验块;耦合到该框的第二检验块;第一对完全相对的加速度感测电极结构,其耦合到该框并且沿所述第一轴安置;以及第二对完全相对的加速度感测电极结构,其耦合到该框并且沿所述第二轴安置;其中,所述第一和第二检验块被配置为沿振动轴反相地振动,所述振动轴处于由所述第一和第二轴定义的平面中,以及其中,每个加速度感测电极结构被配置来产生所述第一多个感测信号中的相应的一个,每个感测信号在电性上独立于其余感测信号。 A six degree of freedom sensor, comprising: a first substrate; a second substrate; on the first substrate manufacturing first multi-sensor substructure, the first multi-sensor substructure for providing a first a plurality of sensing signals, said first plurality of sensing signals indicative of acceleration with respect to each other in the sense of the plane of the first substrate in the first and second orthogonal axes, and an indication with respect to the said first and second angular velocity sensing a third axis perpendicular to the axis, and a second multi-sensor substructure on the second substrate manufacturing, the second multi-sensor for providing a second plurality of sub-structures sensing signal, said second plurality of sensing signal indicating the plane of the second substrate with respect to the angular velocity sensing in a mutually orthogonal axis of the fourth and fifth, and instructions with respect to the first fourth and fifth acceleration sensing axis perpendicular to the axis of the sixth, wherein said first multi-sensor sub-structure comprising: a substantially planar accelerometer frame; a first inspection block coupled to the frame; the frame is coupled to the first Two inspection block; a first pair of diametrically opposed sensing acceleration electrode structure coupled to the frame and disposed along said first axis; and a second pair of diametrically opposed sensing acceleration electrode structure coupled to the frame and along said second shaft disposed; wherein, said first and second inspection block is configured to vibrate along a vibration axis inverted, the vibration from the shaft in the first and second axes define a plane, and wherein , each of the acceleration sensing electrode structure is configured to generate said first plurality of sensing signals corresponding to one of each sensed signal electrically independent of the rest of the sensed signal.
  2. 2.根据权利要求1的六自由度多传感器,还包括信号处理单元,该信号处理单元被配置来提取与沿所述第一和第二轴的加速度感测有关的信息,以及提取与相对于所述第三轴的角速度感测有关的信息。 According to claim 1, six degrees of freedom sensor, further comprising a signal processing unit, the signal processing unit is configured to extract information about the direction of the acceleration sensing a first and a second shaft, as well as extraction and relative The third axis angular velocity being measured related information.
  3. 3.根据权利要求1的六自由度多传感器,还包括弹性部件,用于弹性地耦合所述第一检验块和所述第二检验块。 According to claim more than six degrees of freedom sensor 1, further comprising an elastic member for elastically coupling the first and the second inspection block inspection block.
  4. 4.根据权利要求1的六自由度多传感器,还包括:第一放大器,其被配置为从所述第一对加速度感测电极结构中的一个接收差分感测信号,并且产生第一感测信号;以及第二放大器,其被配置为从所述第一对加速度感测电极结构中的另一个接收差分感测信号,并且产生第二感测信号。 According to claim 1, six multi-DOF sensor, further comprising: a first amplifier configured as a differential sense signal received from said first acceleration sensing electrode structure, and generates first sensing signal; and a second amplifier configured to receive another differential sense the acceleration signal from the first sensing electrode structures, and generating a second sensing signal.
  5. 5.根据权利要求4的六自由度多传感器,还包括第三放大器,其被配置为接收所述第一和第二感测信号,并且产生包括所述第一和第二感测信号之和的第三感测信号,所述第三感测信号指示沿所述第一轴的加速度感测。 According to claim 4, six degrees of freedom sensor, further comprising a third amplifier is configured to receive the first and second sensing signal, and generates comprising the first and second sensing signals and sensing a third signal, said third sensing signal indicating the sensed acceleration along the first axis.
  6. 6.根据权利要求1的六自由度多传感器,还包括:第一放大器,其被配置为从所述第二对加速度感测电极结构中的一个接收差分感测信号,并且产生第一感测信号;以及第二放大器,其被配置为从所述第二对加速度感测电极结构中的另一个接收差分感测信号,并且产生第二感测信号。 According to claim 1, six multi-DOF sensor, further comprising: a first amplifier configured as a differential sense signal received from said second acceleration sensing electrode structure, and generates first sensing signal; and a second amplifier configured to receive the differential sense signal further from the second acceleration sensing electrode structures, and generating a second sensing signal.
  7. 7.根据权利要求6的六自由度多传感器,还包括第三放大器,其被配置为接收所述第一和第二感测信号,并且产生包括所述第一和第二感测信号之和的第三感测信号,所述第三感测信号指示沿所述第二轴的加速度感测。 According to claim 6, six degrees of freedom sensor, further comprising a third amplifier is configured to receive the first and second sensing signal, and generates comprising the first and second sensing signals and sensing a third signal, said third sensing signal indicating the sensed acceleration along the second axis.
  8. 8.根据权利要求1的六自由度多传感器,还包括:第一放大器,其被配置为从所述第一对加速度感测电极结构中的一个接收差分感测信号,并且产生第一感测信号;第二放大器, 其被配置为从所述第一对加速度感测电极结构中的另一个接收差分感测信号,并且产生第二感测信号;第三放大器,其被配置为从所述第二对加速度感测电极结构中的一个接收差分感测信号,并且产生第三感测信号;以及第四放大器,其被配置为从所述第二对加速度感测电极结构中的另一个接收差分感测信号,并且产生第四感测信号。 According to claim 1, six degrees of freedom sensor, further comprising: a first amplifier configured as a differential sense signal received from said first acceleration sensing electrode structure, and generates first sensing signal; a second amplifier configured to receive the differential sense signal further from said first acceleration sensing electrode structures, and generating a second sensing signal; a third amplifier configured from the second acceleration sensing electrode structure of a differential sense signal received, and generates a third sensing signal; and a fourth amplifier is configured to receive from said another second acceleration sensing electrode structures differential sense signal, and generates a fourth sensing signal.
  9. 9.根据权利要求8的六自由度多传感器,还包括:第五放大器,其被配置为接收所述第一和第二感测信号,并且产生包括所述第一和第二感测信号之差的第五感测信号;以及第六放大器,其被配置为接收所述第三和第四感测信号,并且产生包括所述第三和第四感测信号之差的第六感测信号。 Six degrees of freedom according to claim 8 multi-sensor, further comprising: a fifth amplifier, which is configured to receive the first and second sensing signal, and generating comprises sensing the first and second signals poor fifth sensing signal; and a sixth amplifier is configured to receive the third and fourth sensed signal, and generating comprises the third and the sixth sense the difference between the measured signal detection signal of the fourth sense .
  10. 10.根据权利要求9的六自由度多传感器,还包括第七放大器,其被配置为接收所述第五和第六感测信号,并且产生包括所述第五和第六感测信号之和的第七感测信号,所述第七感测信号指示相对于所述第三轴的角速度感测。 According to claim more than six degrees of freedom sensor 9, further comprising a seventh amplifier is configured to receive the fifth and sixth sense measurement signal, and generates including the fifth and sixth sense and measure signals seventh sense signal, said seventh sense signal indicative of the sensed angular velocity with respect to the third axis.
  11. 11.根据权利要求10的六自由度多传感器,还包括速度感测电极结构,其被配置为产生速度感测信号,所述速度感测信号与所述第一和第二检验块的振动速度同相,并且与所述第一和第二检验块的线性加速度异步。 According to claim 10, six degrees of freedom sensor, also includes a speed sensing electrode structure, which is configured to generate velocity sensing signal, the speed sensing signal and the first and second inspection block vibration velocity in phase, and the first and second linear acceleration asynchronous with said inspection block.
  12. 12.根据权利要求11的六自由度多传感器,还包括相位解调器,其被配置为接收所述第七感测信号和所述速度感测信号,并且产生第八感测信号,所述第八感测信号指示相对于所述第三轴的角速度感测。 According to claim more than six degrees of freedom sensor 11, further comprising a phase demodulator, which is configured to receive the seventh sensed signal and said speed sensing signal, and generates a sensing signal eighth, the eighth sensed signal indicative of said third axis with respect to the angular velocity sensing.
  13. 13.根据权利要求1的六自由度多传感器,其中所述第一和第二衬底被合并以使在所述第一衬底上制造的第一多传感器子结构和在所述第二衬底上制造的第二多传感器子结构具有四边形对称结构。 According to claim 1, six degrees of freedom sensor, wherein the first and second substrates are combined to make on the first substrate manufacturing the first multi-sensor substructure and in the second liner on the bottom produced a second multi-sensor substructure having a quadrilateral symmetrical structure.
  14. 14. 一种操作六自由度多传感器的方法,包括步骤:利用第一多传感器子结构,提供第一多个感测信号,所述第一多个感测信号指示相对于在第一衬底的平面中的相互正交的第一和第二轴的加速度感测,以及指示相对于与所述第一和第二轴垂直的第三轴的角速度感测,所述第一多传感器子结构在所述第一衬底上实现;以及利用第二多传感器子结构,提供第二多个感测信号,所述第二多个感测信号指示相对于在第二衬底的平面中的相互正交的第四和第五轴的角速度感测,以及指示相对于与所述第四和第五轴垂直的第六轴的加速度感测,所述第二多传感器子结构在所述第二衬底上实现;利用驱动电极结构,沿振动轴反相地振动第一检验块和第二检验块,所述第一检验块耦合到加速计框,并且所述第二检验块耦合到该加速计框;在第一产生步骤中,由耦合到所述框并且沿所述第一轴安置的第一对完全相对的加速度感测电极结构产生各自的第一加速度计感测信号;以及在第二产生步骤中,由耦合到所述框并且沿所述第二轴安置的第二对完全相对的加速度感测电极结构产生各自的第二加速度计感测信号,所述第一和第二检验块、所述驱动电极结构、以及所述第一和第二对加速度感测电极结构被包括在所述第一多传感器子结构中,其中,在所述第一和第二产生步骤中产生的每个感测信号在电性上独立于其余感测信号。 14. A method for six degrees of freedom multi-sensor operation, comprising the steps of: using a first multi-sensor substructure providing a first plurality of sensing signal, said first plurality of sensing signals indicative with respect to the first substrate The plane acceleration sensing mutually orthogonal first and second axes, and instructions with respect to the first and second angular velocity sensing a third axis perpendicular to the axis, the first multi-sensor substructure implemented on the first substrate; and the use of a second multi-sensor substructure, providing a second plurality of sensing signals, the plurality of second sensing signal indicating the plane of the second substrate with respect to each other in angular velocity sensing and indicating orthogonal axes for the fourth and fifth and the fourth and fifth acceleration sensing axis perpendicular to the axis of the sixth, the second multi-sensor substructure in the second Implementation on a substrate; using a drive electrode structure, along the axis of vibration vibrates the first inverter and a second inspection block inspection block, the first inspection block is coupled to the accelerometer frame, and the second inspection block is coupled to the acceleration gauge block; generating in a first step, a first pair of diametrically opposed acceleration sense electrode structure by a block and coupled to said first axis disposed along the generating respective first accelerometer sensing signal; and first Second generation step, a second pair of diametrically opposed acceleration sense electrode structure by a block and coupled to said second shaft disposed along said second generating respective sensed accelerometer signal, said first and second test block, the drive electrode structure, and said first and second acceleration sensing electrode structure is included in the first multi-sensor sub-structure, wherein said first and second generating step of generating Each sensed signal electrically independent of the rest of the sensed signal.
  15. 15.根据权利要求14的方法,还包括步骤:利用信号处理单元,提取与沿所述第一和第二轴的加速度感测有关的信息,以及提取与相对于所述第三轴的角速度感测有关的信息。 15. The method according to claim 14, further comprising the step of: using a signal processing unit, extracts the information related to the acceleration along the sensing of the first and second shafts, and extracting the angular velocity with respect to said third axis being measure related information.
Description  translated from Chinese

六自由度微机械多传感器 Six degrees of freedom micro-machined multi-sensor

[0001] 相关申请的交错引用 [0001] The application of the relevant cross references

[0002] 本申请要求2003年4月28日提交的、题目为“SIXDEGREE-OF-FRREEDOM MICRO-MACHINED MULT I-SENSOR (六自由度微机械多传感器)”的美国临时专利申请No. 60/466,083 的优先权。 [0002] This application claims the April 28, 2003 submission, entitled "SIXDEGREE-OF-FRREEDOM MICRO-MACHINED MULT I-SENSOR (six degrees of freedom micro-machined multi-sensor)," the US Provisional Patent Application No. 60/466 , 083 priority.

[0003] 关于联邦资助研究或者开发的声明 [0003] Statement Regarding Federally Sponsored Research or Development

[0004] N/A [0004] N / A

技术领域 Technical Field

[0005] 本发明一般涉及集成的角速度和加速度传感器(“多传感器”),以及更具体地涉及六自由度的微机械多传感器设备,它能够提供三个加速度感测轴和三个角速度感测轴。 [0005] The present invention relates generally to integrated angular velocity and acceleration sensors ("multi-sensor"), and more particularly to micromechanical six degrees of freedom multi-sensor device, which provides three accelerometers and three angular sensing axis sensing axis.

背景技术 Background

[0006] 已经熟知的是,微机械多传感器包括至少一个加速度计,用于在单个多传感器设备中提供加速度感测和角速度感测的指示。 [0006] it is already well known that micro-mechanical multi-sensor includes at least one accelerometer to provide acceleration sensing and angular velocity sensing in a single multi-sensor device instructions. 在1995年2月28日发布的、题目为"MICRO-MACHINED ACCELER0METERGYR0SC0PE (微机械加速度计陀螺仪)”的美国专利No. 5,392,650中描述了一种传统的微机械多传感器,该微机械多传感器包括一对加速度计,其中每个加速度计包括:固定到衬底上的刚性加速度计框,以及利用多个弯曲部分自刚性框悬挂下来的检验块。 Describes a more conventional micro-mechanical sensors in February 28, 1995 release, entitled "MICRO-MACHINED ACCELER0METERGYR0SC0PE (micromachined accelerometer gyroscope)," U.S. Patent No. 5,392,650, which is slightly machine comprising a pair of multi-sensor accelerometer, wherein each accelerometer comprising: a frame fixed to a rigid accelerometer on the substrate, and the use of a plurality of curved portions suspended from the rigid frame of the inspection block. 微机械多传感器通常具有单加速度感测轴和与其相关联的垂直于加速度轴的单旋转感测轴。 Micromechanical sensors usually have multiple vertical single-axis acceleration sensing and associated with a single sense of rotation axis of the acceleration of the shaft. 此外,微机械多传感器通常被配置为沿振动轴同时反相振动所述检验块,其中该振动轴垂直于加速度轴和旋转轴。 Additionally, the micromechanical sensor is typically configured to multiple vibration along the axis of said vibration while inverting inspection block, wherein the vibration acceleration axis and the axis perpendicular to the rotation axis.

[0007] 在当传统的微机械多传感器经历线性和旋转运动时以反相方式同时振动所述检验块的情况下,产生线性以及科里奥利加速度力,该线性以及科里奥利加速度力相对于衬底偏转所述检验块。 [0007] when the conventional micro-mechanical multi-sensor experience linear and rotary motion when the case of reverse phase simultaneous vibration of the test block, resulting in linear and Coriolis acceleration forces, the linear and Coriolis acceleration forces with respect to the deflection of the substrate inspection block. 多传感器被配置为感测各个检验块的偏转,并且产生相应的加速度感测信号,该相应的加速度感测信号的值与偏转幅度成正比。 Multi-sensor is configured to sense the deflection of each test block, and generates a corresponding acceleration sensing signal, proportional to the value of the deflection amplitude of the corresponding acceleration sensing signal. 因为振动的检验块对线性加速度的响应是同相的,而检验块对科里奥利加速度的响应是反相的,所以可以通过分别将所述信号进行合适的相加或相减以抵消旋转或线性分量,从而分离线性加速度分量(包含加速度感测信息)以及旋转加速度分量(包含角速度感测信息)。 Because the response vibration test block to linear acceleration are in phase, and the response of Coriolis acceleration test block is inverted, so that the signal can be separately added or subtracted suitable to counteract rotation or linear components, thereby separating the linear acceleration components (including acceleration sensing information) and a rotating acceleration component (including the angular velocity sensing information).

[0008] 上述传统的微机械多传感器的一个缺点在于:它通常提供仅仅1个角速度感测轴以及仅仅1个加速度感测轴,然而,通常在单个微机械多传感器设备中提供多于1个加速度感测和/或角速度感测轴是有利的。 [0008] One disadvantage of the above conventional micro-mechanical multi-sensor is: it usually provides only an angular velocity sensing shaft, and only one acceleration sensing axis, however, typically provide more than a single micro-machined multi-sensor device acceleration sensing and / or angular velocity sensing axes is advantageous.

[0009] 1999 年2 月9 日发布的、题目为“MICRO-MACHINED DEVICEffITH TOTATIONALLY VIBRATED MASSES (具有旋转振动块的微机械设备)”的美国专利No. 5,869,760描述了第二种传统的微机械传感器,它能够相对于两个旋转感测轴来测量旋转速度。 U.S. Patent No. [0009] 1999 年 2 on July 1, entitled "MICRO-MACHINED DEVICEffITH TOTATIONALLY VIBRATED MASSES (rotational vibration blocks having micromechanical devices)," the 5,869,760 describes a second conventional micro-mechanical sensor, which can sense of rotation with respect to two axes to measure rotational speed. 该微机械传感器包括一对加速度计,其中每个加速度计包括其形式为通过多个弯曲部分悬挂在衬底上方的圆梁的块,以及相邻的一对加速度感测电极。 The micromechanical sensor comprising a pair of accelerometers, each accelerometer includes a form of a plurality of curved portions by suspended above the substrate block circular beam, and a pair of acceleration sensing electrodes adjacent. 与微机械传感器相关的两个旋转感测轴处于衬底的平面上。 Micromechanical sensors associated with two rotary sensing axis in the plane of the substrate. 此外,微机械传感器被配置为以反相方式可旋转地振动圆梁,也就是,顺时针方向/逆时针方向交替地旋转一个圆梁,而同时在相反的方向上以基本上相同的量旋转另一个横梁。 Moreover, micromechanical sensor is configured to rotatably inverting mode vibrational circular beam, i.e., clockwise / counterclockwise rotation alternately in a circle beam, while in the opposite direction with substantially the same amount of rotation Another beam.

[0010] 在当第二传统微机械传感器经历线性和旋转运动时同时反相地旋转圆梁的情况下,产生线性以及科里奥利加速度力,该线性以及科里奥利加速度力相对于衬底偏转横梁。 [0010] In the case when the second conventional micro-mechanical sensors through linear and rotary motion while rotating circular beam inverted, resulting in linear and Coriolis acceleration forces, the linear acceleration and Coriolis force with respect to the liner bottom beam deflection. 加速度感测电极感测各个横梁的偏转,并且产生相应的加速度感测信号,该相应的加速度感测信号与偏转的大小以及相对于旋转感测轴的旋转速度成正比。 Acceleration sensing electrode sensing the deflection of each beam and generates a corresponding acceleration sensing signal, the signal corresponding to the acceleration sensing the deflection of the size and the rotation speed relative to the rotation sensing axis proportional. 因为感测信号的旋转加速度分量(包含角速度感测信息)的符号对应于圆梁的旋转方向,所以通过合适地将信号相减以抵消线性分量,可以分离感测信号的旋转分量与线性加速度分量。 Because the signal sensed rotational acceleration component (including the angular velocity sensing information) corresponding to the rotational direction of the sign of the circular beam, so by subtracting the signal appropriately to offset the linear component, the component may be rotated with linear acceleration sensing signal component separation . 然而,虽然该微机械传感器能够提供多于1个角速度感测轴,但是它缺点在于:它通常没有提供加速度感测fn息ο However, while the micro-mechanical sensor capable of providing more than an angular velocity sensing axes, but the disadvantage is that it: It usually does not provide the acceleration sensing information ο fn

[0011] 因此,希望有一种微机械多传感器,它在单个多传感设备中提供多于1个加速度感测轴以及多于1个角速度感测轴。 [0011] It is therefore desirable to have a micro-mechanical sensor, which provides a single multi-sensor device than an acceleration sensing axis and angular velocity sensing more than one axis. 这种微机械多传感设备将避免上述传统的微机械传感器设备的缺陷。 Such micro-machined multi-sensor device defect will prevent the above conventional micro-mechanical sensor device.

发明内容 DISCLOSURE

[0012] 根据本发明,公开了一种六自由度的微机械多传感器,该六自由度的微机械多传感器在单个多传感器设备中提供3个加速度感测轴以及3个角速度感测轴。 [0012] The present invention discloses a six degrees of freedom of the micromechanical sensor, the six degrees of freedom more than micro-mechanical sensor provides three acceleration sensing axis and 3-axis angular velocity sensing in a single multi-sensor device. 当前公开的微机械多传感器设备包括两个多传感器子结构,其中每个子结构提供3个加速度感测轴和角速度感测轴。 Current micromachined multi-sensor device disclosed includes two multi-sensor sub-structure where each sub-structures provide three-axis acceleration sensing and angular velocity sensing axes.

[0013] 根据本发明的第一方面,提供了一种六自由度多传感器,包括:第一衬底;第二衬底;在所述第一衬底上制造的第一多传感器子结构,所述第一多传感器子结构用于提供第一多个感测信号,所述第一多个感测信号指示相对于在所述第一衬底的平面中的相互正交的第一和第二轴的加速度感测,以及指示相对于与所述第一和第二轴垂直的第三轴的角速度感测,以及在所述第二衬底上制造的第二多传感器子结构,所述第二多传感器子结构用于提供第二多个感测信号,所述第二多个感测信号指示相对于在所述第二衬底的平面中的相互正交的第四和第五轴的角速度感测,以及指示相对于与所述第四和第五轴垂直的第六轴的加速度感测,其中所述第一多传感器子结构包括:基本上平坦的加速计框;耦合到该框的第一检验块;耦合到该框的第二检验块;第一对完全相对的加速度感测电极结构,其耦合到该框并且沿所述第一轴安置;以及第二对完全相对的加速度感测电极结构,其耦合到该框并且沿所述第二轴安置;其中,所述第一和第二检验块被配置为沿振动轴反相地振动,所述振动轴处于由所述第一和第二轴定义的平面中,以及其中,每个加速度感测电极结构被配置来产生所述第一多个感测信号中的相应的一个,每个感测信号在电性上独立于其余感测信号。 [0013] According to a first aspect of the present invention, there is provided a six degree of freedom sensor, comprising: a first substrate; a second substrate; on the first substrate manufacturing the first multi-sensor substructure, The first multi-mutually orthogonal first and second sensor for providing a first plurality of sub-structures sensed signal, said first plurality of sensing signals indicative with respect to the plane of said first substrate two axes of acceleration sensing, and instructions with respect to the first and second angular velocity sensing a third axis perpendicular to the axis, and a second multi-sensor substructure on the second substrate manufacturing, said a second multi-sensor substructure for providing a second plurality of sensing signals, the plurality of second sensing signal indicating a second substrate relative to the plane of said fourth and fifth orthogonal axes sensing the angular velocity, and directions with respect to the fourth and fifth sixth axis perpendicular to the axis of acceleration sensing, wherein said first multi-sensor sub-structure comprising: a substantially planar accelerometer frame; coupled to the The first inspection block frame; a second inspection block coupled to the frame; a first pair of diametrically opposed sensing acceleration electrode structure coupled to the frame and disposed along said first axis; and a second pair of diametrically opposed acceleration sensing electrode structure coupled to the frame and disposed along said second axis; wherein the first and second inspection block is configured to vibrate along a vibration axis inverted, the vibration of the shaft is in the planar first and second axes defined, and wherein each of the acceleration sensing electrode structure is configured to generate a first plurality of the sensed signal in a respective one of each sensed signal electrically independent sensing signal to the rest of sense.

[0014] 根据本发明的第二方面,提供了一种操作六自由度多传感器的方法,包括步骤:利用第一多传感器子结构,提供第一多个感测信号,所述第一多个感测信号指示相对于在第一衬底的平面中的相互正交的第一和第二轴的加速度感测,以及指示相对于与所述第一和第二轴垂直的第三轴的角速度感测,所述第一多传感器子结构在所述第一衬底上实现;以及利用第二多传感器子结构,提供第二多个感测信号,所述第二多个感测信号指示相对于在第二衬底的平面中的相互正交的第四和第五轴的角速度感测,以及指示相对于与所述第 [0014] According to a second aspect of the present invention, there is provided a method of operating a multi-sensor of six degrees of freedom, comprising the steps of: a first multi-sensor substructure, providing a first plurality of sensing signals, said first plurality sensing signal indicative of acceleration sensing relative to each other in the plane of the first substrate in the first and second orthogonal axes, as well as indicating the angular velocity with respect to the first and second axis perpendicular to the third axis sensing said first multi-sensor substructure implemented on the first substrate; and the use of a second multi-sensor substructure, providing a second plurality of sensing signals, the plurality of second sensing signal indicating a relative in mutual angular velocity sensing in a second plane perpendicular to the substrate in the fourth and fifth axes, as well as instructions with respect to the first

6四和第五轴垂直的第六轴的加速度感测,所述第二多传感器子结构在所述第二衬底上实现;利用驱动电极结构,沿振动轴反相地振动第一检验块和第二检验块,所述第一检验块耦合到加速计框,并且所述第二检验块耦合到该加速计框;在第一产生步骤中,由耦合到所述框并且沿所述第一轴安置的第一对完全相对的加速度感测电极结构产生各自的第一加速度计感测信号;以及在第二产生步骤中,由耦合到所述框并且沿所述第二轴安置的第二对完全相对的加速度感测电极结构产生各自的第二加速度计感测信号,所述第一和第二检验块、所述驱动电极结构、以及所述第一和第二对加速度感测电极结构被包括在所述第一多传感器子结构中,其中,在所述第一和第二产生步骤中产生的每个感测信号在电性上独立于其余感测信号。 6 acceleration sensing fourth and fifth axis perpendicular to the axis of the sixth, the second multi-sensor substructure realized on the second substrate; using a drive electrode structure vibrates along the vibration axis inverted first test block and a second inspection block, the first inspection block is coupled to the accelerometer frame, and the second inspection block coupled to the accelerometer frame; a first step of generating, from the said first direction and coupled to the frame The first and second generating step, by the coupling to the frame and placed along the second axis; a first pair of diametrically opposed axis acceleration sensing electrode structures placed generate respective first accelerometer sensing signal two pairs of diametrically opposed electrode structures acceleration sensing accelerometer generates a respective second sensing signal, said first and second inspection block, the driving electrode structure, and said first and second acceleration sensing electrode the structure is included in the first multi-sensor substructure, wherein each sensing signal generated in the first and second generation step in electrically independent of the rest of the sensed signal.

[0015] 在一个实施例中,所述六自由度的微机械多传感器设备包括第一多传感器子结构以及第二多传感器子结构。 [0015] In one embodiment, the six degrees of freedom micromachined multi-sensor device comprises a first multi-sensor substructure and a second multi-sensor substructure. 所述第一多传感器子结构包括刚性加速度计框、第一检验块、以及第二检验块,每个都形成在第一硅衬底上。 The first multi-sensor sub-structure comprising a rigid accelerometer frame, a first inspection block, and a second inspection block, each formed on the first silicon substrate. 所述第一子结构具有所述第一衬底的平面中的相互正交的第一和第二加速度感测轴,以及与所述第一和第二加速度轴垂直的相关联的第一旋转感测轴。 The first sub-structure having a plane of said first substrate in mutually orthogonal first and second acceleration sensing axis, and said first and second acceleration perpendicular to the axis of rotation associated with the first sensing axis. 第一和第二检验块沿振动轴具有公共对称轴,其与第一旋转轴垂直。 The first and second inspection block having a common axis of symmetry along the axis of vibration, which is perpendicular to the first axis of rotation. 此外,所述第一和第二检验块都沿振动轴相互弹性地耦合。 Further, the first and second inspection block are resiliently coupled to each other along the axis of vibration. 所述第一和第二检验块通过各自的多个弯曲部分自刚性框悬挂下来,所述刚性框由多个弯曲部分固定到所述第一衬底上。 Said first and second curved part from the inspection block rigid frame suspended by a respective plurality of said rigid frame by a plurality of curved portions fixed to said first substrate. 所述多个弯曲部分都配置为将所述第一和第二检验块限制为使其更容易在振动轴的线性方向上相对于所述刚性框移动,以及将刚性框限制为使其基本上仅仅以旋转的方式相对于所述第一衬底移动。 Said plurality of curved portions are configured to block the first and second test is limited to make it easier in the direction of vibration of the linear axes move relative to the rigid frame and the rigid frame such that it substantially limits only in rotatably moving relative to the first substrate.

[0016] 在当前描述的实施例中,所述第一多传感器子结构包括驱动电极结构,该驱动电极结构被配置为使所述第一和第二检验块沿振动轴反相线性地振动。 [0016] In the presently described embodiment, the first multi-sensor substructure includes a drive electrode structure, the electrode structure is configured to drive the first and second inspection block along the vibration axis inverted linearly vibrates. 所述第一子结构还包括第一对加速度感测电极结构和第二对加速度感测电极结构,其中所述第一对加速度感测电极结构耦合到所述刚性框并且沿所述第一加速度轴完全相对地安置,第二对加速度感测电极结构耦合到所述刚性框并且沿所述第二加速度轴完全相对地安置。 The first sub-structure further includes a first pair of acceleration sensing electrode structure and the second acceleration sensing electrode structure, wherein said first acceleration sensing electrode structure is coupled to the rigid frame and along said first acceleration axis disposed diametrically opposite the second acceleration sensing electrode structure coupled to the rigid frame and along the second axis accelerometer disposed diametrically opposed. 所述第一多传感器子结构被配置为:(1)将由第一加速度感测电极对提供的感测信号相加,以提取与沿所述第一加速度轴的加速度感测有关的信息,⑵将由第二加速度感测电极对提供的感测信号相加,以提取与沿所述第二加速度轴的加速度感测有关的信息,以及(3)将由第一加速度感测电极对提供的感测信号之差与由第二加速度感测电极对提供的感测信号之差相加,以提取与相对于六自由度的多传感器设备的第一旋转轴的角速度感测有关的信息。 The first multi-sensor substructure is configured to: (1) the sensed signal by adding the first acceleration sensing electrode, in order to extract the acceleration along the first axis of acceleration sensing information, ⑵ by the second acceleration sensing electrodes for sensing signals are added, to extract and along the second axis acceleration information regarding acceleration sensing, and (3) by the first acceleration sensing electrode for measuring the sense provided difference signal of a difference between the sensed signals to provide summed by the second acceleration sensing electrode, to extract information about the relative angular velocity sensing a first axis of rotation of the six degrees of freedom of the multi-sensor device.

[0017] 第二多传感器子结构包括在第二硅衬底上形成的第三检验块和第四检验块。 [0017] The second multi-sensor inspection block substructure comprising a third and a fourth inspection block in the second silicon substrate. 通过各自的多个弯曲部分将所述第三和第四检验块悬挂在第二衬底上方并且固定到第二衬底上。 By respective curved portions of said plurality of third and fourth in the second inspection block suspended above the substrate and fixed to the second substrate. 所述第二子结构具有所述第二衬底的平面上的相互正交的第二和第三旋转感测轴,以及与所述第二和第三旋转感测轴垂直的相关联的第三加速度感测轴。 The first orthogonal second and third rotation sensing axis of the plane of the second sub-structure on the substrate having the second, and the second and third sense of rotation perpendicular to the axis of the associated three acceleration sensing axis. 此外,第三和第四检验块具有横对称轴和纵对称轴,以及与横轴和纵轴垂直的相关联的驱动旋转轴。 In addition, the third and fourth inspection block having a longitudinal axis and a transverse symmetry axis of symmetry, as well as horizontal and vertical drive associated with the vertical axis of rotation. 沿着相应的第三和第四检验块的横轴以及纵轴安置相应的第三对加速度感测电极结构以及相应的第四对加速度感测电极结构。 Along respective third and fourth transverse axis and the corresponding inspection block third acceleration sensing electrode structure disposed longitudinal axis and the corresponding fourth pair of acceleration sensing electrode structure. 第二子结构还包括叉形部件,该叉形部件被配置来耦合第三和第四检验块,以允许所述块相对反相移动,并且阻止所述块同相移动。 The second sub-structure further comprises a fork, the fork-shaped member being configured to couple the third and fourth test block to allow the block to move relative inverting, and prevent the block with the mobile phase. 将第三和第四检验块固定到第二衬底的多个弯曲部分被配置为将所述块限制为使其基本上仅仅以旋转的方式相对于第二衬底移动。 The third and fourth plurality of bent portions inspection block is fixed to the second substrate is configured to restrict the block so that substantially only to rotatably move relative to the second substrate. [0018] 在当前公开的实施例中,第二多传感器子结构包括驱动电极结构,该驱动电极结构被配置来反相可旋转地振动第三和第四检验块,也就是,绕着它的旋转轴,以顺时针方向/逆时针方向交替旋转一个块,而同时在相反的方向上绕着另一个块的旋转轴以基本上相同的量旋转该另一个块。 [0018] In the current embodiment of the disclosed embodiment, the second multi-sensor substructure includes a drive electrode structure, the electrode structure is configured to drive rotatably inverting the third and fourth vibration test block, that is, around its rotating shaft, clockwise / counterclockwise rotation alternately one block, while another block around the rotation axis in the opposite direction to the rotation of substantially the same amount of another block. 在具有可旋转地振动的块的第二多传感器子结构经历线性和/或者旋转运动的情况下,第三和第四对加速度感测电极根据施加在第三和第四检验块上的线性和科里奥利加速度力,产生在电性上独立的加速度感测信号。 In the case of having a block rotatably vibrations a second multi-sensor substructure through linear and / or rotary motion, the third and fourth of the linear acceleration sensing electrode is applied to the third and fourth test blocks and Coriolis acceleration forces, resulting in electrically independent acceleration sensing signal. 第二子结构被配置为(1) 将由与第三检验块相关联的第三对加速度感测电极感测的加速度之差与由与第四检验块相关联的第三对加速度感测电极感测的加速度之差相加,以获得与相对于第二旋转轴的角速度感测有关的信息,⑵将由与第三检验块相关联的第四对加速度感测电极感测的加速度之差与由与第四检验块相关联的第四对加速度感测电极感测的加速度之差相加,以获得与相对于第三旋转轴的角速度感测有关的信息,以及(3)将由与第三检验块相关联的第三对加速度感测电极感测的加速度之和、由与第四检验块相关联的第三对加速度感测电极感测的加速度之和、由与第三检验块相关联的第四对加速度感测电极感测的加速度之和、以及由与第四检验块相关联的第四对加速度感测电极感测的加速度之和相加,以获得与相对于六自由度的多传感器设备的第三加速度轴的加速度感测有关的信息。 The second sub-structure is configured to (1) by the acceleration sensing electrode sensing third test block is associated with a third of the difference between the acceleration by the acceleration of the sensing electrodes sense fourth test block associated with the third pair the difference between the measured acceleration summed to obtain information on the relative angular velocity sensing a second axis of rotation, ⑵ the third test will be associated with the block of acceleration sensing electrodes for sensing the difference between the fourth and the acceleration of acceleration sensing electrodes for sensing the acceleration of the difference between the fourth and the fourth inspection block associated summed to obtain the phase information for sensing the angular velocity of the third rotation shaft, and (3) by the third test block associated third acceleration sensing electrodes sensed accelerations and, by the third and fourth test block related to the acceleration sensing electrode sensing the acceleration of the Union and, by the relevant inspection block associated with the third The fourth pair of acceleration sensing electrode sensing acceleration sum, and by the fourth test block is associated with a fourth pair of acceleration sensing electrodes sensed accelerations and summed to obtain more than six degrees of freedom with respect to sense axis acceleration sensor device of the third acceleration measurement-related information.

[0019] 通过提供微机械多传感器,可以在单个多传感器设备中获得3个加速度感测轴和3个角速度感测轴,其中该微机械多传感器包括第一多传感器子结构和第二多传感器子结构,其中第一多传感器子结构提供2个加速度感测轴和1个角速度感测轴,第二多传感器子结构提供第三加速度感测轴以及第二和第三角速度感测轴。 [0019] By providing micromechanical sensor, you can get three acceleration sensing axis and 3-axis angular velocity sensing in a single multi-sensor device, wherein the micro-machined multi-sensor multi-sensor comprises a first and a second multi-sensor substructure sub-structure, wherein the first multi-sensor substructure providing 2 acceleration sensing axis and an angular velocity sensing shaft, the second multi-sensor substructure providing a third acceleration sensing axis and the second and third angular velocity sensing axes.

[0020] 通过以下本发明的详细描述,本发明的其它特征、功能以及方面将变得很清楚。 [0020] The following detailed description of the invention, other features, functions, and aspects of the invention will become apparent. 附图说明 Brief Description

[0021] 通过参考结合附图的以下详细说明,将会更充分地理解本发明,在附图中, [0021] The following detailed description by reference to the drawings, and will be more fully understood from the present invention, in the drawings,

[0022] 图1是根据本发明的硅微机械多传感器设备的示意透视图; [0022] FIG. 1 is a schematic perspective view of a silicon micromachined multi-sensor device of the present invention;

[0023] 图2是在图1的硅微机械多传感器中包括的第一多传感器子结构的平面图; [0023] FIG. 2 is a plan view of the first multi-sensor substructure in silicon micro-machined multi-sensor Fig. 1, included;

[0024] 图3是图2的第一多传感器子结构的示意图; [0024] FIG. 3 is a schematic diagram of the first multi-sensor substructure of Figure 2;

[0025] 图4是图2的第一多传感器子结构的操作方法的流程图; [0025] FIG 2 FIG 4 is a flowchart of a first method of operation of the multi-sensor substructure;

[0026] 图5是在图1的硅微机械多传感器中包括的第二多传感器子结构的方框图; [0026] FIG. 5 is a block diagram of the second multi-sensor substructure in silicon micro-machined multi-sensor Fig. 1, included;

[0027] 图6是图5的第二多传感器子结构的详细平面图; [0027] FIG. 6 is a plan view of a second detail of Figure 5 multi-sensor sub-structure;

[0028] 图7是用于图5的第二多传感器子结构的加速度感测信号处理电路的示意图; [0028] FIG. 7 is a schematic view of an acceleration sensing signal processing circuit in FIG. 5 for a second multi-sensor substructure;

[0029] 图8是图5的第二多传感器子结构的可替换实施例的方框图; [0029] FIG. 8 is a view of a second multi-sensor substructure 5 is a block diagram of an alternative embodiment;

[0030] 图9是图8的第二多传感器子结构的可替换实施例的详细平面图;和 [0030] FIG. 9 is a view of a second multi-sensor sub-structure 8 in detail a plan view of an alternative embodiment; and

[0031] 图10是图5的第二多传感器子结构的操作方法的流程图。 [0031] FIG. 10 is a flowchart showing a second method of operation of the multi-sensor substructure 5.

具体实施方式 DETAILED DESCRIPTION

[0032] 在此将2003年4月28日提交的、题目为“SIXDEGREE-OF-FRREEDOM MICRO-MACHINED MULT I-SENSOR (六自由度的微机械多传感器),,的美国临时专利申请No. 60/466, 083引入,作为参考。 [0032] In this the US Provisional Patent April 28, 2003 submission, entitled "SIXDEGREE-OF-FRREEDOM MICRO-MACHINED MULT I-SENSOR (six degrees of freedom of micro-mechanical multi-sensor) ,, Application No. 60 / 466, 083 incorporated by reference.

[0033] 公开了一种六自由度的微机械多传感器,该六自由度的微机械多传感器在单个多传感器设备中提供3个加速度感测轴和3个角速度感测轴。 [0033] discloses a six degrees of freedom of the micromechanical sensor, the six degrees of freedom more than micro-mechanical sensors provide three-axis acceleration sensing and 3-axis angular velocity sensing in a single multi-sensor device. 当前公开的微机械多传感器包括两个三自由度的多传感器子结构,它们的每一个可以对称地布置在各自的模片上,以提高产量以及整个多传感器设备的性能。 The presently disclosed micro-machined multi-sensor consists of two three degrees of freedom of the multi-sensor substructures, each of them can be arranged symmetrically on the respective die, in order to improve the performance of production as well as the entire multi-sensor device.

[0034] 图1描述了根据本发明的六自由度的微机械多传感器100的示意图。 [0034] Figure 1 depicts a schematic diagram of six degrees of freedom of micro-mechanical multi-sensor 100 according to the present invention. 当前公开的六自由度的多传感器100包含:包括衬底102的第一三自由度的多传感器子结构103、以及包括衬底108的第二三自由度的多传感器子结构105。 Six degrees of freedom of the presently disclosed multi-sensor 100 includes: a first three degrees of freedom of the substrate 102 multi-sensor substructure 103, and includes a substrate 108, second and third degrees of freedom multi-sensor substructure 105. 衬底102和108中的每个可以包括硅衬底,使硅衬底经历任何合适的体微机械处理,以形成微机电系统(MEMS)多传感器设备。 Substrates 102 and 108 each comprise a silicon substrate, the silicon substrate through any suitable bulk micromachining process to form a micro-electromechanical systems (MEMS) multi-sensor device.

[0035] 如图1所示,MEMS子结构103包括传感器101,传感器101具有在衬底102的平面中安置的相互正交的两个相关联的加速度感测轴Xa和\,以及与加速度轴Xa和Ya垂直的一个相关联的旋转感测轴ZK。 [0035] 1, MEMS substructure 103 includes a sensor 101, an acceleration sensor 101 having a sensing axis Xa in two associated plane of the substrate 102 disposed mutually orthogonal and \, and the acceleration of the shaft a rotation sensing axis perpendicular Xa and Ya associated ZK. MEMS子结构103被配置来提供两个沿加速度轴Xa和Ya的加速度感测的指示,以及一个相对于旋转轴Zk的角速度感测的指示。 MEMS substructure 103 is configured to provide acceleration along two axes Xa and Ya indicative of the sensed acceleration, and an angular velocity with respect to the rotating shaft sensed indication of Zk. 而且,MEMS子结构105 包括传感器104,传感器104具有在衬底108的平面中安置的相互正交的两个相关联的旋转感测轴Xk和Υκ,以及与旋转轴Xk和Yk垂直的一个相关联的加速度感测轴ZA。 Sensing the rotational axis Xk and two associated Υκ Furthermore, MEMS substructure 105 includes a sensor 104, a sensor 104 having mutually orthogonal in the plane of the substrate 108 in place, and a rotating shaft associated with the vertical Xk and Yk acceleration sensing axis ZA linked. MEMS子结构105被配置来提供两个相对于旋转轴Xk和Yr的角速度感测的指示,以及一个相对于加速度轴Za的加速度感测的指示。 MEMS substructure 105 is configured to provide two Xk with respect to the axis of rotation and the angular velocity sensing Yr instructions, as well as an indication of acceleration sensing relative to the acceleration axis Za's.

[0036] 应当明白的是,整个六自由度的多传感器设备100有效地具有在设备的平面中的相互正交的两个相关联的X和Y轴(没有示出),以及与X和Y轴垂直的一个相关联的Z轴(没有示出)。 [0036] It should be appreciated that the whole six degrees of freedom multi-sensor device 100 is effective in the plane of the device have mutually orthogonal X and Y-axis (not shown) associated with the two, as well as X and Y Z axis perpendicular to the axis (not shown) of an associated. 例如,衬底102和108可以是共平面的,并且X和Y轴可以在衬底102和108 的平面中。 For example, the substrate 102 and 108 can be co-planar, and X and Y axis 102 and 108 in the substrate plane. 此外,六自由度的多传感器设备100被配置来提供相对于三个轴X、Y和Z中的每个的加速度感测的指示以及角速度感测的指示。 In addition, more than six degrees of freedom sensor device 100 is configured to provide with respect to the three axes X, Y and Z each instruction as well as an indication of the angular velocity sensing acceleration sensing. 为了讨论清楚起见,在多传感器100中包括的MEMS子结构103和105被描述为分别具有两组轴ΧΑ、\、Ze和Χκ、Υκ、ΖΑ。 For discussion of clarity, in a multi-sensor 100 includes a MEMS substructure 103 and 105 are described as having two axes ΧΑ, \, Ze and Χκ, Υκ, ΖΑ.

[0037] 图2描述了在MEMS子结构103(见图1)中包括的传感器101的例示性实施例201。 [0037] Figure 2 depicts the embodiment of the MEMS substructure 103 (see FIG. 1) includes a sensor 101 of an exemplary embodiment 201. 在所述例示的实施例中,传感器201包括在衬底202上形成的刚性加速度计框230以及检验块232. 1-232. 2和234. 1-234. 2。 In the illustrated embodiment, the sensor 201 includes a rigid accelerometer frame 202 is formed on the substrate 230 and the inspection block 232. 1-232. 2 and 234. 1-234. 2. 分别通过谐振器弯曲部分236. 1-236. 2,检验块232. 1-232. 2自刚性框230悬挂下来,以及分别通过谐振器弯曲部分238. 1-238. 2,检验块234. 1-234. 2自刚性框悬挂下来。 Respectively, through the curved portion of the resonator 236. 1-236. 2, the test block 232. 1-232. 2 is suspended from the rigid frame 230, respectively, through the resonator and the curved portion 238. 1-238. 2, test block 234.1 -234 2 suspended from the rigid frame. 而且,利用加速度计弯曲部分244. 1-244. 4,将刚性框230 固定到衬底,其中加速度计弯曲部分244. 1-244. 4被对角地安置在衬底202上。 Moreover, the use of an accelerometer bent portion 244. 1-244. 4, the rigid frame 230 is fixed to the substrate, wherein the curved portion 244. 1-244 accelerometer. 4 are diagonally disposed on the substrate 202.

[0038] 传感器201还包括驱动电极结构246. 1-246. 2、248. 1-248. 2以及加速度感测电极结构AD。 [0038] Sensor 201 further includes a drive electrode structure 246. 1-246. 2,248. 1-248. 2 and the acceleration sensing electrode structures AD. 如图2所示,驱动电极结构246. 1-246. 2以及248. 1-248. 2包括各自的多个驱动电极(“指针(finger) ”),它们相互平行并且互相交错。 2, the driving electrode structure 246. 1-246. 2 and 248. 1-248. 2 comprises a respective plurality of driving electrodes ("pointer (finger)"), they are parallel to each other and cross each other. 驱动电极结构246. 1-246. 2被配置为响应于包括交流电压的驱动信号(没有示出)而分别向检验块232. 1 = 232. 2施加静电力,以及驱动电极结构248. 1-248. 2被配置为响应于包括交流电压的驱动信号(没有示出)而分别向检验块234. 1-234. 2施加静电力。 Driving electrode structure 246. 1-246. 2 is configured to include a response to the driving AC voltage signal (not shown) respectively to the inspection block 232.1 = 232.2 applying an electrostatic force, and a driving electrode structure 248. 1- 248.2 is configured in response to a drive signal (not shown) includes AC voltage is applied respectively to the static electricity test block 234. 1-234. 2. 应当理解的是,驱动电极结构246. 1-246. 2 和248. 1-248. 2可以替换地包括电磁驱动结构,该电磁驱动结构被配置为分别响应于交流电流信号而向检验块232. 1-232. 2和234. 1-234. 2施加电磁力。 It should be appreciated that the structure of the driving electrode 246. 1-246. 2 and 248. 1-248. 2 may alternatively comprise an electromagnetic drive structure, the structure is configured to electromagnetically driven respectively in response to the alternating current signal to the test block 232. 1-232. 2 and 234. 1-234. 2 is applied to the electromagnetic force. 还应当理解的是,一些驱动电极可以被替换使用来提供速度信号和科里奥利信号处理的基准,其中速度信号为驱动电子设备提供反馈。 It should also be appreciated that some drive electrodes may be used to provide the replacement reference speed signal and the Coriolis signal processing, wherein the speed signal to drive the electronic device to provide feedback.

[0039] 进一步如图2所示,加速度感测电极结构AD包括各自的多个感测电极(“指针”),它们相互平行并且互相交错。 [0039] Further shown in Figure 2, the acceleration sensing electrode structure comprises a respective plurality of AD sensing electrodes ("pointer"), parallel to each other and cross each other. 具体地,感测电极结构A、B、C和D包括各自的第一组感测指针以及相应的第二组感测指针,其中第一组感测指针整体地耦合到刚性框230,第二组感测指针固定于衬底202上。 Specifically, the sensing electrode structure A, B, C, and D each comprise a first set of sense pointer and corresponding second set of sense pointer, wherein the first set of sense pointer is integrally coupled to the rigid frame 230, a second Group sensing pointer fixed on the substrate 202. 例如,在传感器202经历线形和/或旋转运动的情况下,响应于产生的线形加速度和/或科里奥利力,刚性框230相对于衬底202偏转。 For example, in the case of 202 undergo linear and / or rotational movement sensors, in response to linear accelerations and / or the Coriolis force, the rigid frame 230 with respect to the substrate 202 deflection. 因为当刚性框230偏转时刚性框230和与感测电极结构AD相关联的第一组感测指针(例如,见与感测电极结构B相关联的感测指针250) —起移动,而第二组感测指针(例如,见与感测电极结构B相关联的感测指针252)保持固定于衬底202上,所以感测电极结构AD通过感测第一和第二组感测指针的相对运动来感测框230的偏转,并且产生其大小与偏转的幅度成正比的感测信号A'-D'(见图3)。 Because when the rigid frame 230 deflection rigid frame structure 230 and sense electrodes AD associated with the first set of sense pointer (for example, see pointer sensing and sensing electrode structure associated B 250) - from the movement, and the first Second set of sense pointers (e.g., pointers see sensing electrode and the sensing structure 252 associated B) remains fixed on the substrate 202, so that the sensing electrode structures AD by sensing the first and second sets of sensing pointer Relative motion sensing deflection block 230, and generates its size is proportional to the amplitude of the deflection sensing signals A'-D '(see FIG. 3). 应当明白的是,感测电极结构A、C和D具有与感测电极结构B的指针结构类型类似的感测指针结构。 It should be appreciated that the sensing electrode structure A, C and D have a pointer to a structure type B sensing electrode structure similar to the structure of the sensing pointer.

[0040] 传感器201还包括多个自刚性框230悬挂下来的支杆240. 1-240. 4,以及用于支杆240. 1-240. 4的驱动电极结构240. 5-240. 6。 [0040] sensor 201 also includes a plurality of block 230 is suspended from a rigid struts 240. 1-240. 4, and a drive electrode structure 240. 5-240. 6 to strut 240. 1-240. 4. 具体而言,支杆240. 1弹性地耦合在检验块232. 1和支杆240. 3之间,支杆240. 2弹性地耦合在检验块232. 2和支杆240. 4之间,支杆240. 3弹性地耦合在检验块234. 1和支杆240. 1之间,以及支杆240. 4弹性地耦合在检验块234. 2和支杆240. 2之间。 Specifically, the strut 240.1 elastically coupled between the test block 232.1 and 240.3 strut, strut 240.2 elastically coupled between the test block 232.2 and 240.4 strut, strut 240.3 elastically coupled between the test block 234.1 and 240.1 strut and strut 240.4 elastically coupled between the test block 234.2 and 240.2 strut. 支杆240. 1-240. 4的目的在于耦合检验块的运动,使得它们作为单个谐振振荡。 The purpose strut 240. 1-240. 4 in that movement coupling inspection block, making them as a single resonant oscillation. 此外,驱动电极结构240. 5-240. 6包括各自的多个驱动指针,它们被安置为相互平行并且彼此互相交错。 In addition, the structure of the driving electrode 240. 5-240. 6 comprises a respective plurality of driving the hands, which are arranged parallel to each other and cross each other. 该驱动电极结构240. 5被配置为将静电力施加到支杆240. 1和240. 3上,以及驱动电极结构240. 6被配置为将静电力施加到支杆240. 2和240. 4 上。 The driving electrode structure is configured to 240.5 electrostatic force is applied to the strut 240.1 and 240.3, 240.6 and a driving electrode structure is configured to static electricity is applied to struts 240.2 and 240.4 on. 应当理解的是,驱动电极结构240. 5-240. 6可以替换地包括各自的电磁驱动结构。 It should be appreciated that the structure of the driving electrode 240. 5-240. 6 may alternatively comprise a respective electromagnetic drive structure.

[0041] 应该注意的是,检验块232. 1机械地耦合到检验块232. 2,使得检验块232. 1-232. 2基本上作为单个块一起移动。 [0041] It should be noted that the inspection block is mechanically coupled to 232.1 232.2 inspection block, so that the inspection block 232. 1-232. 2 substantially move together as a single block. 同样,检验块234. 1机械地耦合到检验块234. 2, 使得检验块234. 1-234. 2基本上作为单个块一起移动。 Similarly, the inspection block is mechanically coupled to 234.1 234.2 inspection block, so that the inspection block 234. 1-234. 2 substantially move together as a single block. 此外,将检验块232. 1-232. 2自刚性框230悬挂的弯曲部分236. 1-236. 2被配置为将检验块232. 1-232. 2限制为基本上仅仅在轴Xa方向上相对于框230移动。 In addition, the test substantially only in the axial direction Xa block 232. 1-232. 2 230 from the rigid frame bent portions 236. 1-236 suspended. 2 is configured to test block 232. 1-232. 2 is limited to with respect to the block 230 to move. 同样,将检验块234. 1-234. 2自刚性框230悬挂的弯曲部分238. 1-238. 2被配置为将检验块234. 1-234. 2限制为基本上仅仅在轴Xa方向上相对于框230移动。 Similarly, the test block 234. 1-234 2 230 from the rigid frame bent partial suspension of 238. 1-238. 2 is configured to test block 234. 1-234. 2 is limited to substantially only in the direction of the axis Xa with respect to the block 230 to move. 将刚性框230固定到衬底202上的弯曲部分244. 1-244. 2被配置为将刚性框230限制为允许框230相对于衬底202旋转运动,以用于科里奥利感测。 The rigid frame 230 is fixed to the substrate 202 bent portion 244. 1-244. 2 is configured to block 230 is limited to rigid frame 230 allows rotational movement relative to the substrate 202, for Coriolis sensing.

[0042] 对角弯曲部分244. 1-244. 4形成折叠对,使得它们允许一些平移运动,不像被安排为对角辐条的单个弯曲部分。 [0042] diagonal curved section 244. 1-244. 4 fold right, so that they allow some of the translational movement, like the spokes are arranged diagonally single curved portion. 这减少了用于表面微机械的淀积膜中的应力,并且允许沿Xa和Ya轴的线性加速度感测。 This reduces the deposited film for surface micromachining of stress and allows along axes Xa and Ya linear acceleration sensing. 科里奥利加速度通常远小于将要感测的线性加速度,于是希望使弯曲部分244. 1-244. 2对于旋转运动比沿着Xa和Ya轴更具柔性。 Coriolis acceleration is typically much less than would be the sense of linear acceleration, and then hope to make curved section 244. 1-244. 2 more than the rotational motion along the axis Xa and Ya flexible. 通过使用合适的弯曲长度与折叠间隔的比率来产生期望的柔性比率。 Flexible rate expected to generate by using the appropriate bending length and fold ratio interval.

[0043] 还应当注意的是,在传感器201的横对称轴的每一侧上和垂直对称轴的每一侧上,以镜像的方式安置刚性框230、检验块232. 1-232. 2和234. 1-234. 2、驱动电极结构246. 1-246. 2,248. 1-248. 2 和240. 5-240. 6、加速度感测电极结构AD、支杆240. 1-240. 4 以及弯曲部分236. 1-236. 2,238. 1-238. 2以及244. 1-244.4。 [0043] It should also be noted that on each side on each side of the transverse axis of symmetry of the sensor 201 and the vertical axis of symmetry, to mirror the way the resettlement rigid frame 230, test block 232. 1-232. 2 and 234. 1-234. 2, the drive electrode structure 246. 1-246. 2,248. 1-248. 2 and 240. 5-240. 6, the acceleration sensing electrode structures AD, strut 240. 1-240. 4 and curved section 236. 1-236. 2,238. 1-238. 2 and 244. 1-244.4. 因而,传感器201具有两个正交的镜面对称,并且可以对称地将中心定位于模片(没有示出)上,以减少模片表面区域变形和梯度对传感器性能的不利影响。 Thus, sensor 201 has two orthogonal mirror symmetry, and may be symmetrically positioned in the center of the die (not shown), to reduce the adverse effects of deformation of the surface area of the die and the gradient of the sensor performance.

[0044] 图3描述了图1的MEMS子结构103的例示性实施例的示意图。 [0044] Figure 3 depicts a MEMS substructure example of Figure 1 shows a schematic diagram of an embodiment 103. 在该例示性实施例中,MEMS子结构303包括:传感器301、跨阻放大器304、多个差分放大器306、308、310、 312、316和320、多个求和放大器314、318和322、以及相位解调器324。 In this exemplary embodiment, MEMS substructure 303 includes: a sensor 301, transimpedance amplifier 304, a plurality of differential amplifiers 306, 308, 312, 316 and 320, a plurality of summing amplifiers 314, 318 and 322, as well as phase demodulator 324. 如上所述,检验块232. 1-232. 2(见图2)被耦合在一起作为单个块来运动,以及检验块234. 1-234. 2(见图2)也类似地被耦合在一起作为单个块来运动。 As described above, the inspection block 232. 1-232. 2 (see FIG. 2) are coupled together as a single block to the motion, and the inspection block 234. 1-234. 2 (see FIG. 2) is similarly coupled together movement as a single block. 因而,传感器301包括:代表刚性框230(见图2)的刚性加速度计框330、代表检验块232. 1-232. 2的第一检验块332、以及代表检验块234. 1-234. 2 的第二检验块334。 Thus, the sensor 301 includes: a rigid frame 230 representatives (see FIG. 2) is a rigid accelerometer frame 330, on behalf of the first inspection block 232. 1-232 2 test block 332, as well as representatives of the inspection block 234. 1-234 2. The second inspection block 334.

[0045] 具体而言,第一检验块332通过谐振器弯曲部分336自刚性框330悬下,其中谐振器弯曲部分336代表弯曲部分236. 1-236. 2 (见图2),以及第二检验块334通过谐振器弯曲部分338自刚性框330悬下,其中谐振器弯曲部分338代表弯曲部分238. 1-238. 2 (见图2)。 [0045] Specifically, the first inspection block 332 through the curved lower portion of the resonator 336 suspended from the rigid frame 330, wherein the resonator is bent portion 236. The bent portion 336 on behalf of 1-236. 2 (see FIG. 2), and a second Block 334 tests the curved portion 338 from the rigid frame 330 is suspended by the resonator, wherein the resonator bent portion 238. The bent portion 338 on behalf of 1-238. 2 (see Figure 2). 此外,刚性框330通过多个加速度计弯曲部分(例如弯曲部分244. 1-224. 4,见图2)固定到衬底(例如,衬底202,见图2)上。 In addition, the rigid frame 330 by a plurality of accelerometers curved portion (e.g. the curved portion 244. 1-224. 4, see FIG. 2) fixed to the substrate (e.g., substrate 202, see FIG. 2).

[0046] 传感器301(见图3)还包括代表支杆的弹性部件340和驱动电极结构240. 1-240. 6 (见图2)。 [0046] sensor 301 (see FIG. 3) further includes a resilient member 340 and struts 240. Representative 1-240. 6 driving electrode structure (see FIG. 2). 弹性部件340弹性地互连第一检验块332和第二检验块334。 Elastic member 340 elastically interconnecting the first test block 332 and the second inspection block 334. 此外,传感器301包括用于振动检验块332和334的驱动电极结构(例如驱动电极结构246. 1-246. 2和248,1-248. 2,见图2),以及代表图2的感测电极结构AD的加速度感测电极结构A、B、C和D。 Furthermore, the sensor 301 includes an electrode structure for driving the vibration test blocks 332 and 334 (for example, a drive electrode structure 246. 1-246. 2 and 248,1-248 2, Figure 2) senses, as well as representatives of Figure 2 AD acceleration electrode structure sensing electrode configuration A, B, C and D.

[0047] 具体而言,驱动电极结构被配置为以机械谐振来同时振动相应的第一和第二检验块332和334,并且弹性部件340被配置为沿振动轴反相(也就是,相差180 )移动检验块332和334,其中在当前公开的实施例中振动轴平行于加速度轴XA。 [0047] Specifically, the driving electrode structure is configured to be simultaneously the mechanical resonant vibration respective first and second inspection block 332 and 334, and the elastic member 340 is arranged along the vibration axis inverted (i.e., 180 ) mobile inspection blocks 332 and 334, which in the presently disclosed embodiments vibration acceleration axis parallel to the axis of the implementation of XA. 完全相对的加速度感测电极结构AB沿加速度轴Ya安置并且耦合到刚性框330,完全相对的加速度感测电极结构CD沿加速度轴Xa安置并且耦合到刚性框330。 Acceleration sensing electrode structure is completely opposite to the acceleration along the axis AB Ya arranged and coupled to the rigid frame 330, diametrically opposite sensing acceleration along an acceleration axis electrode structure Xa CD placed and coupled to a rigid frame 330. 相应的感测电极结构AD被配置为分别产生电性上独立的感测信号A'、B'、C'和D'。 Corresponding sensing electrode structures AD are configured to generate electrically independent sensed signal A ', B', C 'and D'. 或者,来自用于将框附着到衬底上的弯曲部分244. 1-244. 4的偏转的弹簧力可以用于平衡科里奥利力和用来感测这些偏转的结构A、B、C 和D。 Alternatively, from the frame for attaching to the curved portion of the spring force of the deflection 244. 1-244. 4 on the substrate it can be used to balance the Coriolis force and means for sensing the deflection structures A, B, C and D. 如果用于表面微机械的结构膜是多晶硅,则弯曲部分的偏转与这些力非常线性相关, 从而使得引入电恢复力的复杂性是不经济的。 If the structure of the membrane surface micromachining of polycrystalline silicon is used, the deflection of the curved portion is linearly related to these forces, so that the introduction of the complexity of the electrical restoring force is not economical.

[0048] 本领域的普通技术人员应该明白,由于检验块332和334沿振动轴振动,同时刚性框330围绕旋转轴Zk旋转,所以检验块332和334的每一个在由加速度轴Xa和Ya定义的平面内经历科里奥利加速度。 [0048] ordinary skill in the art should understand that, since the inspection blocks 332 and 334 along the vibration axis vibration, while the rigid frame 330 around the rotational axis Zk rotation, so inspection block is defined by the acceleration in each axis Xa and Ya 332 and 334 Coriolis acceleration within the plane of experience. 此外,因为检验块332和334反相振动,所以相应的检验块332 和334在相反的方向上经历科里奥利加速度。 In addition, since the test block 332 and 334 inverted vibration, so the corresponding test blocks 332 and 334 in opposite directions experience Coriolis acceleration. 因此,视在的科里奥利力被施加到检验块332 和334,在加速度轴Xa和Ya的平面内,在相反的方向上偏转检验块332和334。 Thus, depending on the Coriolis force is applied to the test block 332 and 334, the acceleration in the plane of the axis Xa and Ya, in the opposite direction of deflection test blocks 332 and 334.

[0049] 因而,检验块332和334对相对于旋转轴Zk的科里奥利加速度的响应是反相的,而检验块332和334对相对于加速度轴Xa和Ya的线形加速度的响应是同相的。 [0049] Thus, in response to Coriolis acceleration relative to the rotation axis Zk 332 and 334 pairs of test block is inverted, and the test block 332 and 334 pairs of linear acceleration relative to the acceleration axis Xa and Ya of the response is the same phase a. 因此,合适地相加和/相减电性上独立的加速度感测信号A'、B'、C'和D',以提取与线性加速度对应的信息(例如加速度感测信息),以及提取与科里奥利加速度对应的信息(例如角速度感测信息)。 Thus, suitably adding and / subtraction separate acceleration sensing the electrical signal A ', B', C 'and D', in order to extract information corresponding linear acceleration (such as acceleration sensing information), as well as extraction and Coriolis acceleration corresponding information (such as angular velocity sensing information). 例如,第一组电恢复力(没有示出)可以被采用来平衡线性加速度力,以及第二组电恢复力(没有示出)可以被用来平衡科里奥利加速度力。 For example, the first group of electrical restoring force (not shown) may be employed to balance the linear acceleration forces, and a second group of electrical restoring force (not shown) can be used to balance the Coriolis acceleration forces. 此外,相应的感测电极结构A、B、 C和D可以被配置来根据电恢复力的大小产生电性上独立的加速度感测信号A'、B'、C'和D,。 In addition, the respective sensing electrode structure A, B, C and D can be configured to generate a separate acceleration sensing signal A according to the size of the electrical power resilience ', B', C 'and D ,.

[0050] 具体而言,差分放大器306被配置来从感测电极结构B接收差分感测信号B',并 [0050] Specifically, the differential amplifier 306 is configured to the sensing electrode configuration from B receives the differential sense signal B ', and

11且将相应的感测信号b提供给求和放大器314和差分放大器316。 11 and the corresponding sensed signal b supplied to the summing amplifier 314 and differential amplifier 316. 类似地,差分放大器308 被配置为从感测电极结构A接收差分感测信号A',并且将相应的感测信号a提供给求和放大器314和差分放大器316。 Similarly, the differential amplifier 308 is configured as a sensing electrode structure A receives the differential sense signal A ', and from the corresponding sensed signal is supplied to a summing amplifier 314 and a differential amplifier 316. 此外,差分放大器310被配置为从感测电极结构D接收差分感测信号D',并且将相应的感测信号d提供给求和放大器318和差分放大器320,以及差分放大器312被配置为从感测电极结构C接收差分感测信号C',并且将相应的感测信号c提供给求和放大器318和差分放大器320。 In addition, the differential amplifier 310 is configured to receive a differential sense signal from the sense electrode structure D D ', and the corresponding sensed signal d is supplied to summing amplifier 318 and a differential amplifier 320, and a differential amplifier 312 is configured to sense from C measuring electrode structure receiving differential sense signal C ', and the corresponding sensed signal c is supplied to summing amplifier 318 and a differential amplifier 320.

[0051] 求和放大器314被配置为将感测信号a和b相加,并且产生感测信号和a+b,该感测信号和a+b包含与沿加速度轴Xa的加速度感测有关的信息(“X-加速度”)。 [0051] summing amplifier 314 is configured to sense the signals a and b are added, and generates a sensing signal and a + b, the sensing signal and a + b contains acceleration sensing along the acceleration axis Xa related information ("X- Acceleration"). 同样,求和放大器318被配置为将感测信号c和d相加,并且产生感测信号和c+d,该感测信号和c+d 包含与沿加速度轴Ya的加速度感测有关的信息(“Y-加速度”)。 Similarly, summing amplifier 318 is configured to sense the signal c and d are added, and generates a sensing signal and c + d, the sensing signal and c + d comprises an acceleration sensing along the acceleration axis Ya-related information ("Y- Acceleration"). 本领域技术人员应该理解的是,可以要求附加的锁相载波来提取加速度感测信息。 The skilled artisan will appreciate that the carrier can require additional phase-locked to extract the acceleration sensing information.

[0052] 差分放大器316被配置为将感测信号a和b相减,并且将感测信号差a_b提供给求和放大器322。 [0052] The differential amplifier 316 is configured to sense the signals a and b are subtracted, and the difference between the sensed signal is supplied to the summing amplifier 322 a_b. 同样,差分放大器320被配置为将感测信号c和d相减,并且将感测信号差cd提供给求和放大器322。 Similarly, the differential amplifier 320 is configured to sense the signal c and d subtraction, and the difference between the sensed signal to the summing amplifier 322 cd. 此外,求和放大器322被配置为将感测信号a_b和c_d相加,并且将和a+cbd提供给相位解调器324。 In addition, summing amplifier 322 is configured to sense the signal a_b and c_d added and will provide a + cbd to phase demodulator 324. 感测信号a+cbd包括与相对于旋转轴Zk 的角速度感测有关的信息(“Z-角速度”)。 Sensed signal with a + cbd comprises sensing the angular velocity about the rotational axis Zk information ("Z- angular velocity"). 但是,应该注意的是,感测信号a+cbd也可以包括至少一些与沿着加速度轴Xa和Ya的中一个或者两者的加速度感测有关的信息。 However, it should be noted that the sense signal a + cbd may also comprise at least one or some of the information relating to the acceleration along both axes Xa and Ya of acceleration sensing. 因而, 相位解调器324被配置为抑制陀螺感测信号a+cbd中的加速度信息。 Thus, the phase demodulator 324 is configured to suppress gyro sensing signal a + cbd the acceleration information.

[0053] 具体而言,相位解调器324针对速度感测信号V来解调陀螺感测信号a+cbd,其中速度感测信号V与检验块332和334的振动速度同相,而与检验块加速度异步。 [0053] Specifically, the phase demodulator 324 V for speed sensing signal is demodulated gyro sensing signal a + cbd, wherein the velocity sensing signal V and test blocks 332 and 334 of the vibration velocity in phase with the inspection block acceleration asynchronously. 如图3 所示,传感器301包括速度感测电极结构342,被配置为将速度感测信号V (电流信号)提供给跨阻放大器304,该跨阻放大器304将电流信号转化为相应的电压信号ν。 3, the sensor 301 includes a speed sensing electrode structures 342, configured to sense the velocity signal V (current signal) supplied to the transimpedance amplifier 304, the transimpedance amplifier 304 to a current signal into a corresponding voltage signal ν. 通过感测耦合到检验块332和334的电极与固定到衬底上的电极的相对运动,速度感测电极结构342感测检验块332和334的振动速度,并且产生速度感测信号V,该速度感测信号V与振动速度同相。 By sensing electrodes coupled to the test block 332 and 334 fixed to the relative movement of the electrode on the substrate, the speed of the sensing electrode structures 342 sensing vibration velocity test blocks 332 and 334, and generates a sensing signal velocity V, the speed sensing signal V and the vibration velocity in phase. 接着,跨阻放大器304将电压信号ν作为相位基准提供给相位解调器324。 Then, transimpedance amplifier 304 as the phase voltage signal ν Jizhun Ti phase demodulator 324 is supplied. 因为速度感测信号V与加速度信号a+b和c+d异步,所以通过相位解调器324抑制了在求和放大器322的输出处的加速度信息,由此在相位解调器的输出处增加了陀螺的信噪比(SNR)。 Since the speed sensing signal and the acceleration signal V a + b and c + d asynchronously, so the phase demodulator 324 suppresses acceleration information at the output of the summing amplifier 322, thereby increasing the output of the phase demodulator the gyroscope signal to noise ratio (SNR).

[0054] 可以明白的是,为了利用差分电容器感测加速度计电极A、B、C和D的静态偏转,必须向框330提供交流电压,并且针对该电压同步地解调信号。 [0054] can be understood that, in order to take advantage of the differential accelerometer sensing capacitor electrodes A, B, C and D of the static deflection, must provide AC voltage to the block 330, and the voltage of the demodulated signal for synchronization. 可以在差分放大器306、308、 310和312或者求和放大器314、316、318和322中执行该种解调。 You can perform this kind of demodulation of the differential amplifier 306, 308, 310 and 312 or summing amplifier 314,316, 318 and 322. 为了提高灵敏度,交流电压的频率应该如实际中一样高。 To improve sensitivity, the frequency of the AC voltage should be as high as practical. 为了阻止来自相对频率漂移的误差,应当使用锁相环使交流电压与速度信号相关,锁相环是本领域技术人员公知的。 In order to prevent the error from the relative frequency drift should use a phase locked loop of the AC voltage signal associated with the speed, phase-locked loop is known to those skilled in the art. 还应当注意的是:在此为了容易解释而分开示出的各种放大器可以组合为一个集成电路中的晶体管的更有效配置,以及然后可以不遵守精确的操作顺序,但保留整个功能。 It should also be noted that: in this for ease of interpretation and shown separately in the various amplifiers can be combined into an integrated circuit transistor more efficient configuration, and then can not abide the exact sequence of operations, but retain the entire function. 特别地,如果选择连续时间(例如基于放大器)实现,则通过维持直到相位解调器的差分信号路径,来最佳地保留过程的完整性。 In particular, if the continuous time selection (e.g., based on an amplifier) to achieve, by maintaining the path phase until the differential signal demodulator, to best preserve the integrity of the process. 如果使用离散时间(例如数字化的)实现,则合并加法、减法、解调和/或过滤操作常常是有效的。 If using a discrete time (eg digital) realized, the combined addition, subtraction, demodulation and / or filtering operations is often effective.

[0055] 参考图4描述当前公开的多传感器子结构303 (见图3)的操作方法。 [0055] See Figure 4 depicts the current multi-sensor substructure 303 open (see Figure 3) methods of operation. 如步骤402 中所述,在多传感器子结构303中包括的两个检验块沿振动轴反相地振动,同时多传感器围绕旋转轴Zk旋转。 As described in step 402, the two test blocks in a multi-sensor substructure 303 includes vibration along the axis inverted vibrates, simultaneous multi-sensor rotating about a rotation axis Zk. 应该理解的是,振动轴在多传感器的衬底平面上(例如,平行于加速度轴Xa),以及旋转Zk与振动轴和多传感器的衬底垂直。 It should be understood (for example, parallel to the acceleration axis Xa), as well as vibration axis perpendicular to the substrate on the substrate plane rotation Zk multi-sensor and multi-axis vibration sensor. 接着,如步骤404中所述,将多传感器的加速度感测电极结构A和B产生的差分感测信号A'和B'分别转化为感测信号a和b。 Then, as described in step 404, differential sense signal A multi-sensor acceleration sensing electrode structures A and B produced 'and B' are converted to the sensed signal a and b. 同样,如步骤406中所述,将加速度感测电极结构C和D产生的差分感测信号C'和D' 分别转化为感测信号c和d。 Also, as described in step, the acceleration sensing electrode structure C and D generated by differential sense signal C 'and D' 406 are converted to the sensed signal c and d. 加速度感测电极结构A和B沿加速度轴Xa安置。 Acceleration sensing electrode structures A and B along the acceleration axis Xa placement. 此外,加速度电极结构C和D沿加速度轴Ya安置,其中加速度轴Ya处于衬底的平面上并且垂直于加速度轴XA。 In addition, the acceleration electrode structure C and D arranged along the acceleration axis Ya, Ya in which the acceleration on the axis and perpendicular to the plane of the substrate acceleration axis XA. 然后,如步骤408中所述,将感测信号a和b相加,以产生感测信号之和a+b,该感测信号之和a+b包含与沿加速度轴Xa的加速度感测有关的信息(X-加速度)。 Then, as the step 408, the sensing signals a and b are summed to generate the sensing signal and a + b, and the sensing signal of a + b comprises sensing acceleration along an acceleration axis about the Xa information (X- acceleration). 同样,如步骤410中所述,将感测信号c和d相加,以产生感测信号之和c+d,该感测信号之和c+d包含与沿加速度轴Ya的加速度感测有关的信息(Y-加速度)。 Also, as described in step, the sensed signal 410 c and d are added to produce sensing signals and c + d, the sensing signals and c + d included with the acceleration sensing acceleration along the axis Ya Information (Y- acceleration). 接着,如步骤412中所述,将感测信号a和b相减,以产生感测信号之差a_b。 Then, as described in step 412, the sensed signals a and b are subtracted to produce a difference a_b sensing signals. 同样,如步骤414中所述,将感测信号c和d 相减,以产生感测信号之差cd。 Also, as described in step 414, the sensed signal c and d subtracted to produce a difference cd sensed signals. 然后,如步骤416中所述,将感测信号a_b和cd相加,以产生感测信号之和(ab) + (c_d),该感测信号之和(ab) + (cd)包含与相对于旋转轴Zk的角速度感测有关的信息(Z-角速度)。 Then, as the step 416, and the sensing signal a_b cd summed to generate the sensing signal, and (ab) + (c_d), and the sensing signals (ab) + (cd) comprising opposing Information (Z- angular velocity) to sense the angular velocity of the rotating shaft Zk measure related. 最后,如步骤418中所述,最优化地抑制在陀螺感测信号a+cbd中可能包括的加速度信息,以增加陀螺的SNR。 Finally, as described in step 418, optimally suppress acceleration information in gyro sensing signal a + cbd may be included to increase the gyro SNR. 信号处理领域的技术人员应该理解,图4的示意性算法不是仅有的产生期望最终结果的算法,其它离散时间实现在功能上是等效的。 Signal processing skilled in the art will appreciate, FIG. 4 is a schematic of the algorithm is not only to produce the desired final result of the algorithm, the discrete-time realization of other functionally equivalent. 例如,可以合适地互换或者合并加法、减法和解调的顺序。 For example, can be suitably interchanged or merge order of addition, subtraction and demodulation.

[0056] 图5描述了在MEMS子结构105(见图1)中包括的传感器104的例示性实施例504。 [0056] Figure 5 depicts an example of the MEMS substructure 105 (see FIG. 1) includes a sensor 104 of an exemplary embodiment 504. 在该例示性实施例中,传感器504包括一对加速度计505-506。 In this exemplary embodiment, the sensor 504 includes a pair of accelerometers 505-506. 加速度计505-506分别包括块509和507,块509和507的每一个基本上是圆形的。 Accelerometer 509 and 505-506, respectively, includes a block 507, block 509 and 507 each substantially circular. 应当理解的是,可替换地,块507 和509可以基本上为正方形、六边形、八边形或者任何其他合适的几何形状。 It should be appreciated that, alternatively, blocks 507 and 509 may be substantially square, hexagonal, octagonal or any other suitable geometry. 通过多个弯曲部分(没有示出)将圆形块507和509固定到衬底508并且悬挂于衬底508的上方。 By a plurality of curved portions (not shown) to the circular blocks 507 and 509 fixed to the substrate 508 and suspended above the substrate 508. 传感器504还包括叉形部件510,该叉形部件510被配置为耦合圆形块507和508,以允许所述块相对反相移动,并且阻止所述块同相移动。 Sensor 504 further comprises a fork-shaped member 510, the fork-shaped member 510 is configured to couple a circular blocks 507 and 508, to allow the block to move relative inverting, and prevent the block with the mobile phase. 固定圆形块507和509并将它们悬挂在衬底508上方的多个弯曲部分被配置为将所述块限制为在平行于衬底的平面上基本上仅仅以旋转方式移动,以及在与衬底508垂直的平面上基本上仅仅以倾斜或者平移方式移动。 507 and 509 and 508 are suspended above the substrate a plurality of curved portions fixed circular block is configured to restrict the block is substantially only rotationally movable in a plane parallel to the substrate, and in the liner substantially only way to move to tilt or pan on a plane perpendicular to the bottom 508.

[0057] 例如,衬底508可以包括硅衬底,或者任何其它合适类型的衬底。 [0057] For example, the substrate may comprise a silicon substrate 508, or any other suitable type of substrate. 此外,可以使衬底508经历任何合适的体微机械加工处理,以形成微机电系统(MEMS)多传感器设备。 In addition, the substrate 508 may undergo any suitable bulk micromachining process to form a micro-electromechanical systems (MEMS) multi-sensor device. 可以经由现有技术中任何合适的处理来形成传感器504的圆形块507和509以及耦合叉形部件510。 The prior art may be via any suitable process to form the sensor 504 of circular blocks 507 and 509 and a coupling fork 510.

[0058] 如图5所示,传感器504具有在衬底508平面内的相互正交的两个相关联的旋转感测轴Xk和Υκ,以及与旋转感测轴Xk和Yk垂直(例如垂直于衬底508)的一个相关联的加速度感测轴ΖΑ。 [0058] FIG. 5, the sensor 504 within the substrate 508 having a plane orthogonal rotation sensing axis Xk and Υκ two associated, as well as Xk and Yk sensitive axis perpendicular to the rotation sense (for example, perpendicular to the acceleration sensing axis of the substrate 508) of an associated ΖΑ. 传感器504被配置为提供两个相对于旋转轴Xk和Yr的角速度感测的指示以及一个相对于加速度轴Za的加速度感测的指示。 Sensor 504 is configured to provide two directions with respect to the rotation axis of the angular velocity sensing Xk and Yr and an acceleration of the shaft relative to the sensed acceleration Za indication. 此外,圆形块507和509的每一个具有横向和纵向对称轴(没有标出),以及与其相关联的垂直于横轴和纵轴的旋转轴(例如分别为旋转轴582和584)。 In addition, each of the circular blocks 507 and 509 of the lateral and longitudinal vertical axis of symmetry (not shown), as well as having associated therewith in the horizontal and vertical axis of rotation (e.g., the rotary shaft 582, respectively, and 584).

[0059] 传感器504还包括沿各个圆形块507和509的纵轴和横轴安置的加速感测电极结构512-519。 [0059] sensor 504 also includes acceleration sensing electrode structure of each circular block along vertical and horizontal axes 507 and 509 of the resettlement of 512-519. 具体而言,加速度感测电极结构512-513和516-517分别沿着圆形块507的纵轴和横轴彼此完全相对,以及加速度感测电极结构514-515和518-519分别沿着圆形块509的纵轴和横轴彼此完全相对。 Specifically, the acceleration sensing electrode structures 512-513 and 516-517, respectively, circular block along the longitudinal axis 507 and the horizontal axis are completely opposite, and the acceleration sensing electrode structures 514-515 and 518-519, respectively, along the circle totally opposite-block 509 vertical and horizontal axes with each other. 加速度感测电极结构512-519的每一个包括在相应的圆形块的表面上安置的第一电极和在与第一电极相对的衬底508的表面上安置的第二电极,形成差分电容器,该差分电容器的电容值基于第一和第二电极之间的距离而增加/减小。 Acceleration sense of each of the first electrode comprises the corresponding surface of the circular block placement test electrode structures 512-519 and a second electrode on a substrate opposite the first electrode placement surface 508, forming a differential capacitor, The differential capacitance value of the capacitor between the distance between the first and second electrodes based on increases / decreases. 传感器504包括电路,该电路被配置来感测电容值的变化,并且提供电性上独立的加速度感测信号,这些加速度感测信号包括与分别相对于旋转轴XK、Ye和加速度轴Za的角速度感测和加速度感测有关的信息。 Sensor 504 includes a circuit, the circuit is configured to sense changes in the measured capacitance values, and to provide an independent acceleration signal sensed electrically, these acceleration signals comprises sensing with respect to the rotation axis, respectively, XK, Ye Za axis angular velocity and acceleration sense of acceleration sensing and measurement related information. 例如,加速度感测电极结构512-519的第一和第二电极的每一个可以由多晶硅(“多晶硅”)、扩散区域、金属或者任何其它合适的材料制成。 For example, the acceleration sensing electrode configuration of each of the first and second electrodes 512-519 may be made of polycrystalline silicon ("polysilicon"), the diffusion region, made of metal or any other suitable material.

[0060] 图6描述了传感器104(见图1)的详细平面图604。 [0060] Figure 6 depicts a sensor 104 (see FIG. 1) is a plan view of detail 604. 如图6所示,微机械多传感器604包括一对加速度计605-606。 As shown in Figure 6, the micro-mechanical sensor 604 includes a pair of multiple accelerometers 605-606. 加速度计605-606分别包括基本上为圆形的块609和607,其中圆形块609和607通过多个弯曲结构固定到衬底608并且悬挂在衬底608的上方, 衬底608例如为硅衬底。 Accelerometer 605-606 each include a substantially circular blocks 609 and 607, wherein the circular blocks 609 and 607 secured to the structure by a plurality of curved suspended above the substrate 608 and the substrate 608, a silicon substrate 608, for example, substrate. 具体而言,固定和悬挂圆形块607的弯曲结构的每一个包括固定部分670和应力释放部件660,以及固定和悬挂圆形块609的每个弯曲结构包括固定部分672和应力释放部件662。 Specifically, each of the 660, as well as fixed and hung round the block 609 of each of the curved structure comprises a fixed portion 670 and a stress relief member is fixed and hanging round the block a bent structure 607 includes a fixed part 672 and part 662 stress relief. 在所述例示性的实施例中,应力释放部件660和662在中心自由对折,以释放应力。 In the exemplary embodiment, the stress relief parts 660 and 662 in the center of free-to-fold, to release stress. 因为这种结构可以引起恢复力和力矩的一些局部不对称,所以折叠部件660和662成对地安置,以维持平衡(见图6)。 Because this structure may cause some localized asymmetric restoring forces and moments, so that the folded parts 660 and 662 arranged in pairs, to maintain the balance (see FIG. 6).

[0061] 传感器604还包括叉形部件610,以及加速度感测电极结构612-619。 [0061] Sensor 604 further comprises a fork-shaped member 610, and the acceleration sense electrode structures 612-619. 叉形部件610被配置为耦合两个圆形块607和609,以允许所述块相对反相旋转移动,并且阻止所述块同相旋转移动,如现有技术中所知。 Fork member 610 is configured to couple two circular blocks 607 and 609, to permit rotational movement of the block relative to the inverting and noninverting preventing rotational movement of said block, as known in the art. 加速度感测电极结构612-619沿着各个圆形块607 和609的纵轴和横轴安置。 Acceleration sensing electrode structures 612-619 along each circular block vertical and horizontal axes 607 and 609 of resettlement.

[0062] 应该注意的是,圆形块607和609、叉形部件610以及加速度感测电极结构612-619基本上分别等效于传感器504 (见图5)的圆形块507和509、叉形部件510和加速度感测电极结构512-519。 [0062] It should be noted that the circular blocks 607 and 609, the fork member 610 and a circular block acceleration sensing electrode structures 612-619 are substantially equivalent to sensor 504 (see FIG. 5) 507 and 509, fork shaped member 510 and the acceleration sensing electrode structure 512-519. 此外,如图6所述的旋转感测轴Xk和Yk和加速度感测轴Za对应于参考图5描述的旋转感测轴Xk和Yr和加速度感测轴ΖΑ。 Further, the rotation sensing axis Xk and Yk and acceleration sensing axis Za 6 corresponds to the sense of rotation axis Xk and Yr and acceleration sensing axis ΖΑ described with reference to FIG.

[0063] 如图6所示,传感器604包括多个驱动电极结构640和642,它们固定于衬底608 上,并且被配置来反相可旋转地振动圆形块607和609,也就是,围绕其旋转轴以顺时针方向/逆时针方向交替地旋转一个块,而同时在相反的方向上围绕另一个块的旋转轴以基本上相同的量旋转该另一块。 [0063] shown in Figure 6, the sensor 604 includes a plurality of driving electrode structures 640 and 642, are fixed on the substrate 608, and is configured to rotatably vibration inverted circular blocks 607 and 609, i.e., around its axis of rotation clockwise / counterclockwise rotation alternately in one block, while another block around the rotational axis in the opposite direction with substantially the same amount of rotation of the other one. 具体而言,驱动电极结构640被用来围绕旋转轴682可旋转地振动圆形块607,以及驱动电极结构642被用来围绕旋转轴684可旋转地振动圆形块609。 Specifically, the electrode structure 640 is used to drive around the rotation shaft 682 is rotatably vibration circular blocks 607, 642 and a driving electrode structure is used around the rotation shaft 684 is rotatably circular vibration block 609. 在当前公开的实施例中,驱动电极结构640和642分别沿着圆形块607和609的径向轴安置。 In the embodiment disclosed in the present embodiment, the drive electrode structures 640 and 642 are arranged along a circular block radial axis 607 and 609. 此外,每个驱动电极结构640和642包括多个电极(“指针”),它们分别与从圆形块607和609的至少一个径向边缘延伸的相应的多个指针互相交错。 In addition, each drive electrode structures 640 and 642 includes a plurality of electrodes ("pointer"), respectively with a corresponding plurality of blocks of the at least one pointer from a circular radially extending edges 607 and 609 interleaved with each other. 驱动电极结构640和642被耦合到用于产生驱动信号的信号源(没有示出),该驱动信号用于以振动的方式反相可旋转地振动块607和609,如方向箭头680所示。 Driving electrode structures 640 and 642 are coupled to a signal generating source (not shown) of the drive signal, the drive signal in a vibrating manner for rotatably inverting vibration block 607 and 609, as indicated by directional arrow 680 in FIG.

[0064] 应该注意的是,圆形几何形状的主要目的在于提供枢轴和支杆,以将完全相对的块分段的非平行线性运动转换为适合与叉形部件耦合的运动。 [0064] It should be noted that the main purpose is to provide a circular geometry and pivot strut, to diametrically opposed non-parallel converting linear motion block segmentation means suitable for coupling with a fork-shaped movement. 因而,在产生科里奥利力时的块分段的有用运动是主要的线性分量,而不是旋转分量。 Thus, when the movement of useful Coriolis force generated block segmentation is a major component linear rather than rotational component.

[0065] 所述传感器604还包括多个速度感测电极结构650和652,该多个速度感测电极结构650和652固定于所述衬底608上且被配置来分别感测圆形块607和609的振动速度。 [0065] The sensor 604 further comprises a plurality of velocity sensing electrode structures 650 and 652, the plurality of velocity sensing electrode structures 650 and 652 fixed to the substrate 608 and is configured to sense block 607 were measured round and vibration velocity 609. 在当前公开的实施例中,所述速度感测电极结构650和652分别沿着圆形块607和609的 In the embodiment disclosed in the present example, the speed of the sensing electrode structures 650 and 652, respectively, along a circular blocks 607 and 609

14径向轴安置。 14 radial axis placement. 此外,所述速度感测电极结构650和652中的每个包括多个指针,该电极与分别从圆形块607和609的径向边缘延伸出去的相应的多个指针互相交错在一起。 Furthermore, the speed sensing electrode structures 650 and 652 each include a plurality of pointers, the pointers electrodes and a corresponding plurality of radially extend from the circular edge of the blocks 607 and 609 out of intertwined with each other. 所述速度感测电极结构650和652的所述互相交错的指针形成差分电容器,该电容器的电容值基于所述圆形块607和609是否沿顺时针或逆时针旋转而增加/减少。 Sensing the speed of said electrode structures 650 and 652 are formed of interwoven pointer differential capacitor, the capacitance value of the capacitor based on the circular blocks 607 and 609 whether the rotation clockwise or counterclockwise to increase / decrease. 所述传感器604包括电路(未示出),该电路被配置来感测电容值中的变化,以及基于所述改变的电容值提供指示圆形块607和609的振动速度的速度感测。 The sensor 604 includes a circuit (not shown), the circuit is configured to sense a change in capacitance value, and providing an indication of the circular velocity sensing vibration velocity block 607 and 609 based on the change in capacitance value.

[0066] 本领域中的普通技术人员应该明白的是,由于圆形块607和609分别绕着所述旋转轴682和684振动,而所述传感器604绕着圆形块607和609的径向轴(未标识)旋转, 所以所述圆形块607和609经历了科里奥利加速度。 [0066] The skilled in the art would understand that, due to the circular blocks 607 and 609, respectively, about 682 and 684 of the rotating shaft vibration, while the sensor 604 around the circular radial block 607 and 609 axis (not identified) is rotated, so the circular blocks 607 and 609 through the Coriolis acceleration. 此外,由于所述圆形块607和609反相振动,所以所述科里奥利加速度被按照相反的方向施加到各个圆形块上。 Further, since the blocks 607 and 609 inverted circular vibration, so the Coriolis acceleration is applied in the opposite direction to the respective circular blocks. 结果是,视在的科里奥利力被施加到圆形块607和609上,并且相对于所述衬底608,按照相反的方向偏转所述圆形块607和609。 As a result, depending on the Coriolis force is applied to the circular blocks 607 and 609, and with respect to the substrate 608, a deflection in the opposite direction of the circular blocks 607 and 609.

[0067] 例如,在图6中使用符号“ + ”和“_”来表示由于所施加的科里奥利力造成的圆形块607和609的偏转的相对方向。 [0067] For example, the use of symbols in Figure 6 "+" and "_" to indicate the relative direction of the deflection due to the Coriolis force caused by the applied circular blocks 607 and 609. 如图6中所示,圆形块607的加速度感测电极结构612_613和616-617分别被标识为-,+,_和+ ;圆形块609的加速度感测电极结构614-615和618-619 分别被标识为+,_,+和_ ;以指示所述施加的科里奥利力相对于所述衬底608按照相反的方向偏转所述圆形块607和609的这些相应区域。 As shown in the circular block 612_613 acceleration sensing electrode structure 607 of FIG. 6 and 616-617 were identified as -, +, _ and +; acceleration sensing electrode structure circular blocks 609 and 618 614-615 619 were identified as +, _, and _ +; to indicate that the Coriolis force and applied to the substrate 608 in the opposite direction of the deflection of the respective block regions 607 and 609 are circular.

[0068] 应该注意的是,分别利用相反的符号-和+来标识圆形块607的沿着纵轴的加速度感测电极结构612-613以及沿着横轴的加速度感测电极结构616-617。 [0068] It should be noted that the use of the opposite sign, respectively - and + round block to identify the sensing acceleration along the longitudinal axis of the electrode structures 612-613 and 607 along the horizontal axis of the acceleration sensing electrode structures 616-617 . 同样,分别利用相反的符号+和-来标识圆形块609的沿着纵轴的加速度感测电极结构614-615以及沿着横轴的加速度感测电极结构618-619。 Similarly, the use of an opposite sign respectively + and - to identify the block 609 along the circular acceleration sensing electrodes 614-615 and the longitudinal axis of the structure along the horizontal acceleration of the sensing electrode structures 618-619. 这是因为,在所述公开的实施例中,所述圆形块607和609是刚性结构,其被配置来响应于所述施加的科里奥利力来相对于所述衬底608倾斜。 This is because, in the disclosed embodiment, the circular blocks 607 and 609 is a rigid structure, which is configured to respond to the Coriolis force is applied to the substrate 608 is inclined with respect to the.

[0069] 而且,由于所述施加的科里奥利力按照相反的方向偏转所述圆形块607和609,所述圆形块607和609对相对于旋转轴Xk和Yr的科里奥利加速度的响应是反相的,而所述圆形块607和609对相对于加速度轴Za的线形加速度的响应是同相的。 [0069] Moreover, since the Coriolis force applied in the opposite direction of the deflection of the circular blocks 607 and 609, the blocks 607 and 609 pairs of round with respect to the rotating shaft and Yr Coriolis Xk acceleration response is inverted, and the circular blocks 607 and 609 pairs of acceleration with respect to the axis Za response is linear acceleration phase. 因此,经由所述加速度感测电极结构612-619提供的电性上独立的感测信号可以被相加和/或相减来从所述感测信号提取与所述线性加速度对应的信息(也就是,加速度感测信息),以及从所述感测信号中提取与所述科里奥利加速度对应的信息(也就是,所述角速度感测信息)。 Therefore, a separate sensing signal provided via the acceleration sensing electrode structures 612-619 may be summed on electrical and / or subtracted to extract the sense signal corresponding to the linear acceleration information (also That is, the acceleration sensing information), and extract the Coriolis acceleration corresponding information (that is, from the sense signal, the angular velocity sensing information).

[0070] 图7描述了加速度感测信号处理电路700的例示实施例,该信号处理电路被配置来从加速度感测电极结构612-619(见图6)提供的加速度感测信号中提取所述加速度感测信息和所述角速度感测信息。 [0070] Figure 7 depicts the acceleration sensed signal processing circuit 700 of the exemplary embodiment, the signal processing circuit is configured to sense an acceleration signal from the acceleration sensing electrode structures 612-619 (see FIG. 6) provided in the extraction acceleration sensing information and the angular velocity sensing information. 例如,所述信号处理电路700可以在与传感器604相同的一个衬底上实现。 For example, the signal processing circuit 700 may be implemented on the same one substrate sensor 604. 在所述例示的实施例中,所述感测信号处理电路700包括多个求和放大器702-706以及多个差分放大器708-709,其用于相加/相减所述加速度感测电极结构612-619感测的加速度,以提取所述加速度感测信息和所述角速度感测信息。 In the illustrated embodiment, the sensed signal processing circuit 700 includes a plurality of summing amplifiers 702-706 and a plurality of differential amplifiers 708-709, for adding / subtracting the acceleration sensing electrode structure 612-619 sensed acceleration to extract the acceleration sensing information and the angular velocity sensing information.

[0071] 具体而言,所述加速度感测电极结构612-613感测的加速度包括相对于加速度轴Za的线形分量Az和相对于所述旋转轴Yr的时变旋转分量ay (w),而所述加速度感测电极结构614-615感测的加速度包括相对于加速度轴Za的线形分量Bz和相对于所述旋转轴Yr的时变旋转分量by (W)。 [0071] Specifically, the acceleration sensing electrode structures 612-613 sensed acceleration comprises a linear component with respect to the acceleration Az Za axis and relative to the rotating shaft rotational component Yr variant ay (w), and The acceleration sense electrode structures 614-615 sensing acceleration measured with respect to the acceleration axis Za include linear component Bz and when the rotation axis with respect to the change Yr rotational component by (W). 应该注意的是,所述旋转分量ay (w)和by(w)按照角速度振动频率w 改变,并且与绕着与所述振动速度矢量垂直的径向轴旋转的速度成正比。 It should be noted that the rotational component ay (w) and by (w) in accordance with the change in the angular velocity of the vibration frequency w, and is about proportional to the vibration velocity vector perpendicular to the radial axis of the speed of rotation. 由于圆形块607和609的振动速度相反,并且加速度感测电极结构612-613感测的加速度分别为Az+ay (w) 和Az-ay (w),而加速度感测电极结构614-615感测的加速度分别为Bz+by (w)和Bz_by (w)。 Since the circular blocks 607 and 609 of the vibration velocity contrast, and the sensing electrode structures 612-613 acceleration sensed accelerations were Az + ay (w) and Az-ay (w), and the acceleration sensing electrode structures 614-615 acceleration sensed were Bz + by (w) and Bz_by (w). 同样,加速度感测电极结构616-617感测的加速度分别为Az+aX(w)和Az-ax(w);而加速度感测电极结构618-619感测的加速度分别为Bz+bx(w)和BZ-bx(w)。 Similarly, the acceleration sensing electrode structures 616-617 are sensed acceleration Az + aX (w) and Az-ax (w); and the acceleration sensing electrode structures 618-619 are sensed accelerations Bz + bx (w ) and BZ-bx (w).

[0072] 如上所述,所述圆形块607和609 (见图6)对相对于旋转轴Xk和Yk的科里奥利加速度的响应是反相的,而所述圆形块607和609对相对于加速度轴Za的线性加速度的响应是同相的。 [0072] As described above, the circular blocks 607 and 609 (see FIG. 6) with respect to the rotation axis Xk and Yk of Coriolis acceleration response is inverted, and the circular blocks 607 and 609 with respect to the response to the acceleration axis linear acceleration Za is the same phase. 因此,所述圆形块607和609(见图6)对由加速度ay(w)和-ay(w),by(w) 和-by (w),ax (w)和-ax (w),bx (w)和-bx (w)表示的相对于旋转轴Xe和Ye的科里奥利加速度的响应是反相的,而所述圆形块607和609对由加速度Az和Bz表示的相对于加速度轴Za的线性加速度的响应是同相的。 Thus, the circular blocks 607 and 609 (see FIG. 6) by the acceleration ay (w) and -ay (w), by (w) and -by (w), ax (w) and -ax (w) , bx (w) and -bx (w) expressed with respect to the axis of rotation in response to Coriolis acceleration Xe and Ye is inverted, and the circular blocks 607 and 609 pairs of the acceleration Az and Bz represented Za response acceleration with respect to the axis of linear acceleration are in phase.

[0073] 如图7中所示,表示由电极结构616和618感测的加速度Az+ax(w)和Bz+bx(w) 的信号被分别施加于所述求和放大器702,该求和放大器702被配置为相加这些加速度。 [0073] As shown in Figure 7, is represented by the electrode structure 616 and 618 sensed acceleration Az + ax (w) and Bz + bx (w) signals are respectively applied to the summing amplifier 702, the sum Amplifier 702 is configured as a sum of these accelerations. 同样,表示由电极结构617和619感测的加速度Az-ax (w)和BZ-bx(w)的信号被分别施加于所述求和放大器703,该求和放大器703被配置为相加这些加速度。 Similarly, the electrode structure 617 and 619 represents the sensed acceleration Az-ax (w) and BZ-bx (w) are respectively the signals applied to the summing amplifier 703, the summing amplifier 703 is configured as a summing these acceleration. 接着,所述求和放大器702-703将所述在其各自的输出端得到的信号施加给差分放大器708,所述放大器708将向其提供的各个信号和相减,并且产生指示相对于旋转轴Xk的角速度感测的信号2ax(w)+2bx(w) ( “X-角速度”)。 Next, the summing amplifier 702-703 the applied signal at their respective outputs to a differential amplifier 708 obtained, the amplifier 708 provides the respective signals thereto and subtraction, and with respect to the rotation axis indicative the angular velocity sensing signal Xk of 2ax (w) + 2bx (w) ("X- angular velocity").

[0074] 此外,表示电极结构612和614感测的加速度Az+ay(W)和Bz+by (w)的信号被分别施加给求和放大器704,该求和放大器704被配置为相加这些加速度。 [0074] In addition, electrode structures 612 and 614 represent the sensed acceleration Az + ay (W) and Bz + by (w) signals are respectively applied to the summing amplifier 704, the summing amplifier 704 is configured as a sum of these acceleration. 表示由电极结构613和615感测的加速度Az-ay (w)和Bz_by (w)的信号被分别施加于所述求和放大器705, 该求和放大器705被配置为相加这些加速度。 Represented by the electrode structure 613 and 615 sensed acceleration Az-ay (w) and Bz_by (w) signals are respectively applied to the summing amplifier 705, the summing amplifier 705 is configured as a sum of the acceleration. 接着,所述求和放大器704-705将所述在其各自的输出端得到的信号施加给差分放大器709所述放大器709将向其提供的各个信号和相减,并且产生指示相对于旋转轴Yk的角速度感测的信号2ay (w) +2by (w) ( “Y-角速度”)。 Next, the summing amplifier 704-705 in the output of its respective signal obtained by the differential amplifier 709 is applied to the amplifier 709 and its respective subtraction signal, and with respect to the rotation axis indicative Yk The angular velocity sensing signal 2ay (w) + 2by (w) ("Y- angular velocity").

[0075] 而且,所述求和放大器702-705将其各自的信号输出上得到的信号提供给所述求和放大器706,该求和放大器706被配置来相加这些信号来抵消所述旋转分量\ (w)、bx(w)、 ay(w)和by(w),留下指示相对于加速度轴Z的加速度感测的线形分量4Αζ+4Βζ( “Ζ-加速度”)。 [0075] Also, the summing amplifier 702-705 signal obtained on their respective signal output is supplied to the summing amplifier 706, the summing amplifier 706 is configured to sum these signals to offset the rotational component \ (w), bx (w), ay (w) and by (w), left instructions with respect to the linear acceleration component of the acceleration sensing axis Z 4Αζ + 4Βζ ("Ζ- Acceleration").

[0076] 图8描述了根据本发明的传感器104(见图1)的第二例示实施例804。 [0076] Figure 8 depicts a sensor 104 according to the present invention (see FIG. 1) of a second exemplary embodiment 804. 在所述例示的实施例中,所述传感器804包括加速度计801、802、891和892,其被安置为形成一个方阵。 In the illustrated embodiment, the sensor 804 includes accelerometers 801,802,891 and 892, which are arranged to form a square. 所述加速度计801、802、891和892分别包括块803、805、807和809,每个块基本上为正方形。 The accelerometer 801,802,891 and 803,805,807 and 892 respectively include block 809, each block is substantially square. 然而,应该理解的是,可选择地,所述块803、805、807和809可以是基本上为圆形、六边形、八边形或任何其他合适的几何形状。 However, it should be understood that, alternatively, the blocks 803,805,807 and 809 may be substantially circular, hexagonal, octagonal or any other suitable geometry.

[0077] 利用多个弯曲部分(未示出)将所述正方形块803、805、807和809悬挂在衬底808上方且固定在所述衬底808上。 [0077] The use of a plurality of curved portions (not shown) to the square blocks 803,805,807 and 809 and is suspended over the substrate 808 is fixed on the substrate 808. 所述传感器804还包括耦合邻近块803和805的叉形部件810、耦合邻近块803和807的叉形部件812,耦合邻近块807和809的叉形部件814, 以及耦合邻近块805和809的叉形部件816。 The sensor 804 also includes a fork member coupling adjacent blocks 803 and 805 of 810 coupling fork neighboring blocks 803 and 807 of 812 coupling fork neighboring blocks 807 and 809 814, and the coupling of adjacent blocks 805 and 809 fork member 816. 所述叉形部件810、812、814和816被配置来耦合所述块803、805、807和809,以允许所述邻近块绕旋转轴852、854、856和858相对反相地旋转移动,并且阻止所述邻近块绕旋转轴852、854、856和858同相旋转移动。 The fork-shaped member 810, 812 and 816 are configured to couple the blocks 803,805,807 and 809, to allow the neighboring block around a rotational axis 852,854,856 and 858 inverted relative to the rotational movement, and preventing the neighboring blocks 852,854,856 and 858 about a rotation axis relative to the rotational movement of the same.

[0078] 类似于所述传感器604的衬底608 (见图6),所述传感器804的所述衬底808 (见图8)包括硅衬底,或任何其他合适类型的衬底。 [0078] 608 similar to the sensor substrate 604 (see FIG. 6), the sensor 804 of the substrate 808 (see FIG. 8) includes a silicon substrate, or any other suitable type of substrate. 此外,使衬底808经受任何合适的体微机械处理来形成微机电系统(MEMS)多传感器设备。 In addition, the substrate 808 is subjected to any suitable bulk micromachining process to form a micro-electromechanical systems (MEMS) multi-sensor device.

[0079] 如图8中所示,传感器804在衬底808的平面上具有两个关联的相互正交的旋转感测轴Xk和Υκ,以及与所述旋转轴Xk和Yk垂直的一个关联的加速度感测轴ΖΑ。 Orthogonal rotation sensing axis Xk and Υκ [0079] As shown in FIG. 8, the sensor 804 has two associated in the plane of the substrate 808, and the rotation axis Xk and Yk of an associated vertical acceleration sensing axis ΖΑ. 类似于所述传感器604 (见图6),所述传感器804提供两个相对于旋转轴Xk和Yr的角速度感测的指示,以及一个相对于所述加速度轴Za的加速度感测的指示。 Similar to the sensor 604 (see FIG. 6), the sensor 804 provides two with respect to the rotation axis Xk and Yr indication sensed angular velocity, and an acceleration of the shaft relative to the sensed acceleration Za indication.

[0080] 所述传感器804还包括加速度感测电极结构818-821、826-829和822-825、 830-833,所述加速度感测电极结构818-821、826-829和822-825、830-833沿着所述块803、 805、807和809的所述纵轴和横轴彼此完全相对地安置。 [0080] The sensor 804 also includes an acceleration sensing electrode structure 818-821,826-829 and 822-825, 830-833, the acceleration sensing electrode structure 818-821,826-829 and 822-825,830 -833 along the longitudinal axis of the block 803, 805,807 and 809 and horizontal disposed diametrically opposite each other. 所述加速度感测电极结构818-833 中的每个包括安置在各个块的表面上的第一电极,以及安置在与第一电极相对的衬底808 的表面上的第二电极,由此形成其电容值基于第一和第二电极之间的距离而增加/减少的差分电容器。 The acceleration sensing electrodes 818-833 each include structure disposed on a surface of a first electrode of each block, and a second electrode disposed on a surface of the substrate opposite the first electrode 808, thereby forming the capacitance value of the distance between the first and second electrodes based on the increase / decrease of the differential capacitor. 该电容值被用来提供电性上独立的加速度感测信号,该加速度感测信号包括与分别相对于旋转轴XK、Yk和加速度轴Za的角速度感测和加速度感测有关的信息。 The capacitance value is used to provide an independent electrical acceleration sensing signal on the acceleration sensing signal comprises separately with respect to the rotation axis XK, the angular velocity sensing and sense of acceleration and acceleration axis Za Yk measurement related information.

[0081] 例如,所述加速度感测电极结构818-819、820-821、826-827和828-829分别被使用来提供加速度Az+ay (w)和Az_ay (w)、Bz+by (w)和Bz-by (w),Cz+cy (w)和Cz_cy (w),以及Dz+dy (w)和Dz-dy (w)的指示,其中,Az、Bz、Cz和Dz是相对于加速度轴Za的线性加速度分量,而ay (w)、by (w)、cy (w)和dy (w)是相对于所述旋转轴Yr的时变旋转加速度分量。 [0081] For example, the acceleration sensing electrode structure 818-819,820-821,826-827 and 828-829, respectively, are used to provide acceleration Az + ay (w) and Az_ay (w), Bz + by (w ) and Bz-by (w), Cz + cy (w) and Cz_cy (w), and Dz + dy (w) and Dz-dy (w) of instruction, which, Az, Bz, Cz and Dz is relative Za axis linear acceleration component of the acceleration, and ay (w), by (w), cy (w) and dy (w) is the rotating shaft Yr with respect to the rotational acceleration change component. 此外,所述加速度感测电极结构822-823、830-831、824-825和832-833分别被使用来提供加速度Az+ax (w)禾口Az-ax (w)、Bz+bx (w)禾口Bz_bx (w), Cz+cx (w)禾口Cz_cx (w),以及Dz+dx (w) 和Dz-dx (w),其中,ax (w)、bx (w)、cx (w)和dx (w)是相对于所述旋转轴Xk的时变旋转加速度分量。 In addition, measuring the acceleration sense electrode structures 822-823,830-831,824-825 and 832-833 were used to provide acceleration Az + ax (w) Hekou Az-ax (w), Bz + bx (w ) Hekou Bz_bx (w), Cz + cx (w) Hekou Cz_cx (w), and Dz + dx (w) and Dz-dx (w), which, ax (w), bx (w), cx ( w) and dx (w) is the rotation axis Xk with respect to change the rotational acceleration components. 通过合适地相减各个加速度,所述线形分量抵消,留下包括与相对于所述旋转轴Xk 和Yk的角速度感测有关的信息的旋转分量。 By appropriately subtracting each acceleration, the linear components cancel out, leaving the relative rotational components including with respect to the rotation axis of the angular velocity sensing information on Xk and Yk of. 而且,通过合适地相加各个加速度,所述旋转分量抵消,留下包括与相对于所述加速度轴Za的加速度感测有关的信息的线形分量。 Further, by appropriately adding respective acceleration, the rotational component offset, leaving a linear component includes sensing acceleration relative to the acceleration axis Za related information.

[0082] 图9描述了微机械多传感器804 (见图8)的详细平面视图904。 [0082] Figure 9 depicts multiple micromechanical sensor 804 (see FIG. 8) is a detailed plan view 904. 如图9所示,传感器904包括加速度计901、902、991和992。 As shown in Figure 9, the sensor 904 includes accelerometers 901,902,991 and 992. 加速度计901、902、991和992分别包括基本上为正方形的块903、905、907和909,利用多个弯曲部分将该正方形块903、905、907和909固定于衬底908上,并且悬挂在所述衬底908上方。 Accelerometers 901,902,991 and 992 respectively include substantially square blocks 903,905,907 and 909, with a plurality of curved portions 903,905,907 and the square block 909 fixed on the substrate 908, and suspension 908 over the substrate. 具体而言,固定所述块903并且悬挂所述块903的多个弯曲部分中的每个包括固定部分(比如固定部分970)和应力释放部件(比如应力释放部件960),固定所述块905并且悬挂所述块905的多个弯曲部分中的每个包括固定部分(比如固定部分972)和应力释放部件(比如应力释放部件962)。 Specifically, the fixed block 903 and the suspension of the curved portion 903 of the plurality of blocks each comprising a fixed portion (fixed portion such as 970) and a strain relief member (such as stress release member 960), the fixed block 905 and a plurality of suspension blocks of said curved portions 905 each comprises a fixed portion (fixed portion such as 972) and a strain relief member (such as stress release member 962). 固定所述块907 并且悬挂所述块907的多个弯曲部分中的每个包括固定部分(比如固定部分974)和应力释放部件(比如应力释放部件964)。 The fixed block 907 and suspended the curved portion 907 of the plurality of blocks each comprising a fixed portion (fixed portion such as 974) and a strain relief member (such as stress release member 964). 固定所述块909并且悬挂所述块909的多个弯曲部分中的每个包括固定部分(比如固定部分976)和应力释放部件(比如应力释放部件966)。 The fixed block 909 and suspended the curved portion 909 of the plurality of blocks each comprising a fixed portion (fixed portion such as 976) and a strain relief member (such as stress release member 966). 应该注意的是,所述固定/压力释放部件对沿着各个块903、905、907和909的纵轴和横轴安置。 It should be noted that the fixed / pressure release member along the longitudinal axis and the horizontal placement of the individual blocks 903,905,907 and 909. 所述传感器904还包括叉形部件910、912、914和916。 The sensor 904 also includes a fork member 910,912,914 and 916. 该叉形部件910、912、914和916被配置来耦合所述邻近块,以允许所述块相对地反相旋转移动,并且阻止所述块同相旋转移动,如同现有技术中所述。 The fork member 910,912,914 and 916 are configured to couple the adjacent block to allow the blocks inverted relative rotational movement, and prevent rotational movement of the block in phase, as in the prior art.

[0083] 应该注意的是,所述块903、905、907和909以及叉形部件910、912、914和916分别基本上等同于传感器804 (见图8)的块803、805、807和809以及叉形部件810、812、814和816。 [0083] It should be noted that the blocks 903,905,907 and 909 as well as fork 910,912,914 and 916, respectively, substantially identical to the sensor 804 (see Figure 8) blocks 803,805,807 and 809 and a fork-shaped part 810, 812 and 816. 此外,如图9所述的旋转感测轴Xk和Yk以及加速度轴Za对应于参考图8在上面描述的旋转感测轴Xk和Yk以及加速度感测轴ZA。 Furthermore, as the sense of rotation axis 9 Xk and Yk and the acceleration Za axis corresponds to the sense of rotation axis with reference to FIG Xk and Yk and the acceleration sensing axis ZA 8 described above.

[0084] 所述传感器904(见图9)包括多个驱动电极结构940、942、944和946,该多个驱动电极结构940、942、944和946固定于衬底908上,且被配置为分别可旋转地振动所述块903、905、907和909,使得邻近块反相振动。 [0084] The sensor 904 (see FIG. 9) includes a plurality of driving electrode structures 940,942,944 and 946, the plurality of driving electrode structures 940,942,944 and 946 fixed on the substrate 908, and is configured to respectively rotatably vibration of the blocks 903,905,907 and 909, so that the neighboring block inverted vibration. 驱动电极结构940、942、944和946中的每个包括多个指针,该指针沿着所述块的径向安置,且与从所述块的至少一个径向边缘延伸出去的相应多个指针互相交错在一起。 Driving electrode structure 940,942,944 and 946 each include a plurality of pointer that radially disposed along the block, and the block with at least one radially extending away from the edge of a corresponding plurality of pointers interleaved with each other. 在优选实施例中,所述驱动电极结构940、942、944和946 分别被对角地安置在所述块903、905、907和909上。 In a preferred embodiment, the drive electrode structure 940,942,944 and 946 respectively diagonally positioned on the block 903,905,907 and 909.

[0085] 所述传感器904还包括多个速度感测电极结构950、952、954和956,该多个速度感测电极结构950、952、954和956固定于所述衬底908上且被配置来分别感测块903、905、 907和909的振动速度。 [0085] The sensor 904 further comprises a plurality of velocity sensing electrode structures 950, 952 and 956, the plurality of velocity sensing electrode structures 950, 952 and 956 fixed to the substrate 908 and is configured to sense blocks were measured 903,905, 907 and 909 of the vibration velocity. 类似于驱动电极结构940、942、944和946,速度感测电极结构950、 952,954和956中的每个包括沿着所述块的径向轴安置的多个指针,该指针与从所述块的至少一个径向边缘延伸出去的相应多个指针互相交错在一起。 Like driving electrode structure 940,942,944 and 946, speed sensing electrode structure 950, 952, 954 and 956 each include a radial axis positioned along the block of multiple pointers, the pointer from the block at least one radial edge extending out of the corresponding plurality of pointers intertwined with each other. 在所述例示的实施例中,所述速度感测电极结构950、952、954和956分别沿着块903、905、907和909的横轴安置。 In the illustrated embodiment, the speed sensing electrode structures 950, 952 and 956, respectively, positioned along the horizontal blocks 903,905,907 and 909. 应该注意的是,在所述传感器904绕所述块的径向轴(未标识)旋转时,在图9中使用符号“ + ”和“-”来指示由于给其施加的科里奥利力造成的振动块903、905、907和909的偏转的相对方向。 It should be noted that the (unidentified) rotates, using the symbol in Figure 9 the radial axis of the sensor 904 in the blocks around the "+" and "-" to indicate that due to the Coriolis force is applied to it deflected in opposite directions 903,905,907 and 909 blocks caused by vibration.

[0086] 应该明白的是,所述加速度计901、902、991和992以及叉形部件910、912、914和 [0086] It should be understood that the accelerometer 901,902,991 and 910,912,914 and 992 and fork

916被按照镜像方式安置在所述传感器904的对称的横轴的每侧上以及对称的纵轴的每侧上。 916 is mirrored manner in accordance with the sensor symmetrically arranged on each side of the transverse axis and 904 on each side of the longitudinal axis of symmetry. 因此,所述传感器904可以对称地将中心定位于所述模片(未示出)上,以减少模片表面区域变形以及梯度对所述传感器的性能造成的不利影响。 Thus, the sensor 904 may be symmetrically positioned in the center of the die (not shown), to reduce the adverse effects of deformation of the surface area of the die and the gradient of the performance of the sensor caused.

[0087] 参考图10来描述当前公开的包括传感器604 (见图6)的多传感器子结构105 (见图1)的操作方法。 [0087] will be described with reference to FIG. 10 includes a sensor 604 of the presently disclosed (see Figure 6) multi-sensor sub-structure 105 (see FIG. 1) method of operation. 如步骤1002中所述,所述块607和609分别绕着所述转动轴682、684反相可旋转地振动,而所述传感器604经历线性/旋转运动。 As described in step 1002, the blocks 607 and 609 are inverted about the axis of rotation 682, 684 rotatably vibration, while the sensor 604 undergo linear / rotary motion. 应该理解的是,所述旋转轴Xk和Yk处于所述传感器衬底608的平面中,并且线性加速度轴Za垂直于所述旋转轴。 It should be understood that the rotation axis Xk and Yk is in the plane of the sensor substrate 608, and the linear acceleration Za axis perpendicular to the axis of rotation. 接着,如步骤1004中所述,将分别由加速度感测电极结构612-613产生的加速度感测信号Az+ay (w) 和Az-ay(W)相减,以产生所述感测信号之差2ay(w),同样,如步骤1004中所述,将分别由加速度感测电极结构614-615产生的加速度感测信号Bz+by(w)和Bz-by(w)相减,以产生所述感测信号之差2by(w)。 Then, the acceleration sensing signal Az as described in step 1004, will be led by an acceleration sensing electrode structure produced 612-613 + ay (w) and Az-ay (W) is subtracted to produce the sensing signals poor 2ay (w), the same as described in step 1004, will be led by an acceleration sensing electrode structure produces 614-615 acceleration sensing signal Bz + by (w) and Bz-by (w) subtracted to produce The sense of difference between measured signals 2by (w). 随后,如步骤1006中所示,将信号2ay(w)和2by(w)相加,以产生信号和2ay (w)+2by (w),该信号和包括与相对于旋转轴Yr的角速度感测有关的信息(Y-角速度)。 Subsequently, as shown in step 1006, the signal 2ay (w) and 2by (w) are added, and to generate a signal 2ay (w) + 2by (w), the angular velocity signal and comprises the phase sense of the rotation axis Yr For measurement information (Y- angular velocity). 接着,如步骤1008中所述,将分别由加速度感测电极结构616-617产生的加速度感测信号Az+ax (w)和Az-ax (w)相减,以产生所述感测信号之差2ax (w),同样,如步骤1008中所述,将分别由加速度感测电极结构618-619产生的加速度感测信号Bz+bx(w)和Bz-bx (w)相减,以产生所述感测信号之差2bx (w)。 Then, the acceleration sensing signal as described in step 1008, will be led by an acceleration sensing electrode structure produced 616-617 Az + ax (w) and Az-ax (w) subtracted to produce the sensing signals acceleration sensing signal Bz + bx (w) and Bz-bx (w) subtract the difference 2ax (w), the same as described in step 1008, will be led by an acceleration sensing electrode structures 618-619 produce to produce The sense of difference between measured signals 2bx (w). 随后,如步骤1010中所示,将信号2ax (w) 和2bx(w)相加,以产生信号和2aX(W)+2bX(W),该信号和包括与相对于旋转轴χ的角速度感测有关的信息(Χ-角速度)。 Subsequently, as shown in step 1010, the signal 2ax (w) and 2bx (w) are added, and to generate a signal 2aX (W) + 2bX (W), which comprises a relative angular velocity signal and the sense of the rotation axis χ measure related information (Χ- angular velocity). 最后,如步骤1012中所述,将信号Az+ay (w)、Az-ay (W)、 Bz+by (w)、Bz_by(w) > Az+ax (w)、Az_ax(w)、Bz+bx(w)、Bz_bx(w)相力口,以产生禾口4Az+4Bz,该和包括与相对于加速度轴Z的加速度感测有关的信息(Z-加速度)。 Finally, as described in step 1012, the signal Az + ay (w), Az-ay (W), Bz + by (w), Bz_by (w)> Az + ax (w), Az_ax (w), Bz + bx (w), Bz_bx (w) relative to the force the mouth to produce Wo mouth 4Az + 4Bz, including with respect to the acceleration and the sensed information related to the acceleration axis Z (Z- acceleration).

[0088] 如上所述,传感器201 (见图2)和传感器904 (见图9)可以对称地将中心定位于不同模片(未示出)上,以减小模片表面变形和梯度对传感器性能的不利影响。 [0088] As described above, the sensor 201 (see FIG. 2) and the sensor 904 (see FIG. 9) can be symmetrically located in the center of a different die (not shown), to reduce the die surface deformation and gradient sensor adversely affect performance. 应该明白的是,由于传感器201和传感器904可以在六自由度的微机械多传感器设备100 (见图)内的不同衬底上实现,所以可以增加产量,并且减少传感器之间的陀螺干扰。 It should be understood that, since the sensor 201 and sensor 904 may be on different substrates six degrees of freedom micromachined multi-sensor device 100 (see photo) in the implementation, it is possible to increase production and reduce interference gyro sensors. [0089] 本领域普通技术人员还应该明白的是,可以对六自由度的微机械多传感器进行修改和变化。 [0089] The skilled in the art should also be understood that it is possible for more than six degrees of freedom of micro-mechanical sensors that modifications and variations. 例如,参考图1描述,衬底102和108可以是共平面的,且X和Y轴位于衬底102 和108的平面内。 For example, described with reference to FIG. 1, the substrate 102 and 108 may be coplanar, and X and Y axes 102 and 108 located within the substrate plane. 还可以合并衬底102和108,使得与此对应的各个传感器具有对称四边形。 You can also merge substrate 102 and 108, so that each sensor and this corresponds to a symmetrical quadrilateral. 更为具体地,传感器201 (见图2)和传感器904(见图9)可以位于截开模片的轴上,使得表面应力效应消除,即使没有以传感器结构为中心。 More specifically, the sensor 201 (see FIG. 2) and the sensor 904 (see FIG. 9) may be located in the axis of the die cut opening, so that the surface to eliminate stress effect, even if there is no structure to the center of the sensor. 而且,应力隔离器(未示出)可以被合适地配置来减弱对称性要求。 Moreover, the stress isolator (not shown) may be suitably configured to weaken the symmetry requirements. 在不背离这里公开的本发明的原理的情况下,可以对上述多传感器进行进一步的修改和变化。 Without departing from the principles of the invention disclosed herein may be made to the multi-sensor for further modification and change. 因此,本发明应该被认为仅由所附权利要求的范围和精神所限定。 Accordingly, the present invention should be considered only by the scope and spirit of the appended claims are limited.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
CN1294303A27 Oct 20009 May 2001森桑诺尔有限公司Miniature mechanical appts.
US474424825 Jun 198717 May 1988Litton Systems, Inc.Vibrating accelerometer-multisensor
US58697602 Jun 19979 Feb 1999Analog Devices, Inc.Micromachined device with rotationally vibrated masses
US589409113 May 199713 Apr 1999Texas Instruments IncorporatedComposite sensor
US599223331 May 199630 Nov 1999The Regents Of The University Of CaliforniaMicromachined Z-axis vibratory rate gyroscope
Non-Patent Citations
Reference
1US 5377544 A,全文.
Classifications
International ClassificationG01C19/5719, G01P15/00, G01P15/125, G01P15/18, G01P15/08
Cooperative ClassificationG01P15/125, G01C19/5719, G01P15/18, G01P2015/082
European ClassificationG01P15/125, G01P15/18, G01C19/5719
Legal Events
DateCodeEventDescription
2 Aug 2006C06Publication
27 Sep 2006C10Entry into substantive examination
10 Nov 2010C14Grant of patent or utility model