Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN1813192 A
Publication typeApplication
Application numberCN 200480018294
PCT numberPCT/US2004/012901
Publication date2 Aug 2006
Filing date27 Apr 2004
Priority date28 Apr 2003
Also published asCN1813192B, CN101701967A, CN101701967B, EP1618391A2, EP1618391A4, US6848304, US20040211258, WO2004097431A2, WO2004097431A3, WO2004097431B1
Publication number200480018294.5, CN 1813192 A, CN 1813192A, CN 200480018294, CN-A-1813192, CN1813192 A, CN1813192A, CN200480018294, CN200480018294.5, PCT/2004/12901, PCT/US/2004/012901, PCT/US/2004/12901, PCT/US/4/012901, PCT/US/4/12901, PCT/US2004/012901, PCT/US2004/12901, PCT/US2004012901, PCT/US200412901, PCT/US4/012901, PCT/US4/12901, PCT/US4012901, PCT/US412901
Inventors约翰A吉恩
Applicant模拟器件公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Six degree-of-freedom micro-machined multi-sensor
CN 1813192 A
Abstract  translated from Chinese
一种六自由度微机械多传感器(100),其在单个多传感器设备中提供3个加速度感测轴和3个角速度感测轴。 A six degrees of freedom micro-machined multi-sensor (100), which provides three-axis acceleration sensing and 3-axis angular velocity sensing in a single multi-sensor device. 该六自由度微机械多传感器设备包括:提供2个加速度感测轴和1个角速度感测轴的第一多传感器子结构(103);以及提供第三加速度感测轴以及第二和第三角速度感测轴的第二多传感器子结构(105)。 The six degrees of freedom micro-mechanical multi-sensor apparatus comprising: providing a first multi-sensor substructure two acceleration sensing axis and an angular velocity sensing axis (103); and providing a third acceleration sensing axis and the second and third corner speed sensing axis of the second multi-sensor substructure (105). 该第一和第二多传感器子结构在六自由度的多传感器设备内的不同衬底上实现。 The first and second multi-sensor substructure implemented on different substrates six degrees of freedom within the multi-sensor devices.
Claims(35)  translated from Chinese
1.一种六自由度多传感器,包括:第一衬底;第二衬底;在所述第一衬底上制造的第一多传感器子结构,所述第一多传感器子结构用于提供第一多个感测信号,所述第一多个感测信号指示相对于在所述第一衬底的平面中的相互正交的第一和第二轴的加速度感测,以及指示相对于与所述第一和第二轴垂直的第三轴的角速度感测,以及在所述第二衬底上制造的第二多传感器子结构,所述第二多传感器子结构用于提供第二多个感测信号,所述第二多个感测信号指示相对于在所述第二衬底的平面中的相互正交的第四和第五轴的角速度感测,以及指示相对于与所述第四和第五轴垂直的第六轴的加速度感测。 1. A multi-DOF sensor, comprising: a first substrate; a second substrate; fabricated on said first substrate a first multi-sensor sub-structure, the first sub-structure for providing a multi-sensor a first plurality of sensing signals, the plurality of sensing a first signal indicative of the sensed acceleration with respect to each other in the plane of the first substrate in said first and second orthogonal axes, and an indication with respect to said first and second angular velocity sensing axis perpendicular to the third axis, and a second multi-sensor sub-structure on said second substrate manufacturing, the second multi-sensor for providing a second substructure a plurality of sensing signals, said second plurality of sensing signals indicative with respect to the angular velocity sensing, as well as in mutually orthogonal directions relative to the plane of said second substrate in the fourth and fifth axes with respect to the described acceleration sensing axis perpendicular to the fourth and fifth sixth axis.
2.根据权利要求1的六自由度多传感器,其中,所述第一和第二衬底是共平面的。 Six degrees of freedom according to claim 1, multi-sensor, wherein said first and second substrates are coplanar.
3.根据权利要求1的六自由度多传感器,其中,所述第一和第二多传感器子结构分别被微机械加工在所述第一和第二衬底上。 Six degrees of freedom according to claim 1, multi-sensor, wherein said first and second multi-sensor substructures were micromachined in said first and second substrates.
4.根据权利要求1的六自由度多传感器,其中,所述第一多传感器子结构包括:基本上平坦的加速度计框;耦合到该框的第一检验块;耦合到该框的第二检验块;第一对完全相对的加速度感测电极结构,其耦合到该框并且沿所述第一轴安置;以及第二对完全相对的加速度感测电极结构,其耦合到该框并且沿所述第二轴安置;其中,所述第一和第二检验块被配置为沿振动轴反相地振动,所述振动轴处于由所述第一和第二轴定义的平面中,以及其中,每个加速度感测电极结构被配置来产生所述第一多个感测信号中的相应的一个,每个感测信号在电性上独立于其余感测信号。 Coupled to the second frame; substantially planar accelerometer frame; coupled to the first inspection block the box: according to claim 1, multi-DOF sensor, wherein said first sub-structure comprises a multi-sensor a first pair of diametrically opposed sensing acceleration electrode structure coupled to the frame and disposed along said first axis;; inspection block and a second opposed pair of acceleration sensing electrode structure coupled to the frame and along the said second shaft disposed; wherein, said first and second inspection block is configured to vibrate along a vibration axis inverted, the vibrating shaft in said first and second shafts by the plane defined, and wherein, Each acceleration sensing electrode structure is configured to generate said first plurality of sensing signals corresponding to a, the signal at each sensing electrically independent of the rest of the sensed signal.
5.根据权利要求4的六自由度多传感器,还包括信号处理单元,该信号处理单元被配置来提取与沿所述第一和第二轴的加速度感测有关的信息,以及提取与相对于所述第三轴的角速度感测有关的信息。 According to claim 4 DOF sensor, further comprising a signal processing unit, the signal processing unit is configured to extract information relating to and along said first and second acceleration sensing axis, and extracting with respect sense the angular velocity about the third axis of measurement information.
6.根据权利要求4的六自由度多传感器,还包括弹性部件,用于弹性地耦合所述第一检验块和所述第二检验块。 Six degrees of freedom according to claim 4, multi-sensor, further comprising an elastic member for elastically coupling said first and said second inspection block inspection block.
7.根据权利要求4的六自由度多传感器,其中,所述第一检验块包括第一多个检验块,所述第二检验块包括第二多个检验块,以及其中,所述第一多个检验块和所述第二多个检验块被配置为沿所述振动轴反相地振动。 According to claim 4, six multi-DOF sensor, wherein the first inspection block includes a first plurality of test blocks, the second inspection block includes a second plurality of test blocks, and wherein said first a plurality of blocks and said second plurality of test inspection block is arranged along the axis of vibration in opposite phase to the vibration.
8.根据权利要求4的六自由度多传感器,还包括:第一放大器,其被配置为从所述第一对加速度感测电极结构中的一个接收差分感测信号,并且产生第一感测信号;以及第二放大器,其被配置为从所述第一对加速度感测电极结构中的另一个接收差分感测信号,并且产生第二感测信号。 According to claim 4, six degrees of freedom sensor, further comprising: a first amplifier configured to receive a differential sense signal from said first pair of acceleration sensing electrode structure, and generates a first sensing signal; and a second amplifier configured to receive another differential sense signal from said first pair of acceleration sensing electrode structures, and generate a second sensing signal.
9.根据权利要求8的六自由度多传感器,还包括第三放大器,其被配置为接收所述第一和第二感测信号,并且产生包括所述第一和第二感测信号之和的第三感测信号,所述第三感测信号指示沿所述第一轴的加速度感测。 Six degrees of freedom according to claim multi-sensor 8, further comprising a third amplifier configured to receive said first and second sensing signal, and generating comprises the first and second sensing signals and a third sensing signal, said third sensing signal indicating the sensed acceleration along the first axis.
10.根据权利要求4的六自由度多传感器,还包括:第一放大器,其被配置为从所述第二对加速度感测电极结构中的一个接收差分感测信号,并且产生第一感测信号;以及第二放大器,其被配置为从所述第二对加速度感测电极结构中的另一个接收差分感测信号,并且产生第二感测信号。 According to claim 4 DOF sensor, further comprising: a first amplifier configured to receive a differential sense signal from said second pair of acceleration sensing electrode structure, and generates a first sensing signal; and a second amplifier configured to receive another differential sense signal from said second pair of acceleration sensing electrode structures, and generate a second sensing signal.
11.根据权利要求10的六自由度多传感器,还包括第三放大器,其被配置为接收所述第一和第二感测信号,并且产生包括所述第一和第二感测信号之和的第三感测信号,所述第三感测信号指示沿所述第二轴的加速度感测。 According to claim 10, six multi-DOF sensor, further comprising a third amplifier, which is configured to receive the first and second sensing signal, and generating comprises the first and second sensing signals and a third sensing signal, said third sensing signal indicating the sensed acceleration along the second axis.
12.根据权利要求4的六自由度多传感器,还包括:第一放大器,其被配置为从所述第一对加速度感测电极结构中的一个接收差分感测信号,并且产生第一感测信号;第二放大器,其被配置为从所述第一对加速度感测电极结构中的另一个接收差分感测信号,并且产生第二感测信号;第三放大器,其被配置为从所述第二对加速度感测电极结构中的一个接收差分感测信号,并且产生第三感测信号;以及第四放大器,其被配置为从所述第二对加速度感测电极结构中的另一个接收差分感测信号,并且产生第四感测信号。 According to claim 4, six degrees of freedom sensor, further comprising: a first amplifier configured to receive a differential sense signal from said first pair of acceleration sensing electrode structure, and generates a first sensing signal; a second amplifier configured to receive another differential sense signal from said first pair of acceleration sensing electrode structures, and generate a second sensing signal; a third amplifier, which is configured from the second acceleration sensing electrode structure of a differential sense signal received, and generates third sensing signal; and a fourth amplifier, configured to receive from the other of said second pair of acceleration sensing electrode structures differential sense signal, and generates a fourth sensing signal.
13.根据权利要求12的六自由度多传感器,还包括:第五放大器,其被配置为接收所述第一和第二感测信号,并且产生包括所述第一和第二感测信号之差的第五感测信号;以及第六放大器,其被配置为接收所述第三和第四感测信号,并且产生包括所述第三和第四感测信号之差的第六感测信号。 13. A multi-DOF sensor according to claim 12, further comprising: a fifth amplifier, which is configured to receive the first and second sensing signal, and generating comprises the first and second sensing signals fifth difference sensing signal; and a sixth amplifier, configured to receive said third and fourth sensed signal and generates the third and sixth sense including difference detection signal of the fourth sense measurement signal .
14.根据权利要求13的六自由度多传感器,还包括第七放大器,其被配置为接收所述第五和第六感测信号,并且产生包括所述第五和第六感测信号之和的第七感测信号,所述第七感测信号指示相对于所述第三轴的角速度感测。 According to claim 13 in six degrees of freedom sensor, further comprising a seventh amplifier, which is configured to receive the fifth and sixth sense measurement signal, and generating and including the fifth and the sixth sense of the measured signal seventh sense signal, said seventh signal indicative of the sensed relative angular velocity sensing said third axis.
15.根据权利要求14的六自由度多传感器,还包括速度感测电极结构,其被配置为产生速度感测信号,所述速度感测信号与所述第一和第二检验块的振动速度同相,并且与所述第一和第二检验块的线性加速度异步。 15. A multi-DOF sensor according to claim 14, further comprising speed sensing electrode structure, which is configured to generate a speed sensing signal, said velocity sensing signal and said first and second inspection block vibration velocity in phase, and the first and second linear acceleration asynchronous with said inspection block.
16.根据权利要求15的六自由度多传感器,还包括相位解调器,其被配置为接收所述第七感测信号和所述速度感测信号,并且产生第八感测信号,所述第八感测信号指示相对于所述第三轴的角速度感测。 16. The multi-DOF sensor according to claim 15, further comprising a phase demodulator, configured to receive said seventh signal and said sensed velocity sensing signal, and generates a sensing signal of the eighth, the Eighth sensed signal indicative of said third axis with respect to the angular velocity sensing.
17.根据权利要求1的六自由度多传感器,其中,所述第二多传感器子结构包括:至少一个第一块,其耦合到所述第二衬底并且悬挂在所述第二衬底上方,所述第一块具有相关联的纵轴和横轴,以及垂直于所述纵轴和横轴的相关联的旋转轴;至少一个第二块,其耦合到所述第二衬底并且悬挂在所述第二衬底上方,所述第二块具有相关联的纵轴和横轴,以及垂直于所述纵轴和横轴的相关联的旋转轴;所述第二块与所述第一块相邻;至少一个驱动结构,可操作地耦合到所述第一和第二块,所述驱动结构被配置为绕着所述各自的旋转轴反相地振动所述第一和第二块;第一和第二对完全相对的加速度感测结构,可操作地耦合到所述第一块,所述第一和第二对加速度感测结构分别沿所述第一块的所述纵轴和横轴安置;以及第三和第四对完全相对的加速度感测结构,可操作地耦合到所述第二块,所述第三和第四对加速度感测结构分别沿所述第二块的所述纵轴和横轴安置;其中,所述各个纵轴平行于所述第四轴,并且所述各个横轴平行于所述第五轴,以及其中,每个加速度感测结构被配置为产生各自的感测信号,所述各自的感测信号指示相对于所述第四轴和第五轴的角速度感测,并且还指示相对于所述第六轴的加速度感测。 According to claim 1, six degrees of freedom sensor, wherein said second multi-sensor sub-structure comprising: at least one first block, coupled to said second substrate and suspended above a substrate of said second , the first block having a vertical and horizontal axes are associated, and the vertical and horizontal axes perpendicular to the rotation axis of the associated at; least one second block, coupled to said second substrate and suspension In the second over the substrate, said second block having an associated longitudinal axis and a horizontal axis, and a horizontal axis perpendicular to said longitudinal axis and associated to the rotation shaft; wherein the first and second blocks an adjacent; at least one drive structure, operatively coupled to said first and second blocks, the structure is configured to drive around the respective rotational axes in opposite phase to the vibration of the first and second block; first and second opposed pair of acceleration sensing structure, operatively coupled to said first block, said first and second acceleration sensing structure along the respective first block of the longitudinal axis and horizontal placement; and third and fourth opposed pair of acceleration sensing structure, operatively coupled to said second block, said third and fourth pair of acceleration sensing structure along the second, respectively The vertical and horizontal axes arranged blocks; wherein, the respective longitudinal axis parallel to said fourth axis, and the respective horizontal axis parallel to the fifth axis, and wherein each of the acceleration sensing structure is configured to produce a respective sensing signal, said respective sense signal indicative of the sensed angular velocity with respect to the fourth and fifth axes, and also indicates the relative acceleration sensed sixth axis.
18.根据权利要求17的六自由度多传感器,其中,由所述第一和第三对加速度感测结构所产生的所述各自的感测信号的每一个包括相对于所述第六轴的线性分量和相对于所述第四轴的旋转分量,以及其中,由所述第二和第四对加速度感测结构所产生的所述相应的感测信号的每一个包括相对于所述第六轴的线性分量和相对于所述第五轴的旋转分量。 18. The multi-sensor 17 of the six degrees of freedom as claimed in claim wherein each of said first and by said third acceleration sensing structure generated respective sense signal comprises a shaft with respect to the sixth linear component and a rotational component relative to said fourth axis, and wherein each of said second and fourth by the acceleration generated by the sensing structure corresponding to the sensing signal comprises with respect to the sixth linear component with respect to the shaft and the rotational components of the fifth axis.
19.根据权利要求18的六自由度多传感器,还包括信号处理单元,该信号处理单元被配置为合并由所述第一、第二、第三和第四对加速度感测结构所产生的所述各自的线性感测信号分量,以产生输出信号,该输出信号包括与相对于所述第六轴的加速度感测有关的信息。 19. The multi-DOF sensor according to claim 18, further comprising a signal processing unit, the signal processing unit is configured to merge is generated by said first, second, third and fourth pair of acceleration sensing structures each of said line sensing signal component to generate an output signal, the output signal comprises the phase information related to the acceleration sensed sixth axis.
20.根据权利要求18的六自由度多传感器,还包括信号处理单元,该信号处理单元被配置为合并由所述第一和第三对加速度感测结构所产生的所述各自的旋转感测信号分量,以产生输出信号,该输出信号包括与相对于所述第四轴的角速度感测有关的信息。 20. A multi-DOF sensor according to claim 18, further comprising a signal processing unit, the signal processing unit is configured to the respective sense of rotation by the merger of the first and third acceleration sensing structure generated signal components, to produce an output signal, the output signal includes information with respect to the fourth axis angular velocity sensing related.
21.根据权利要求18的六自由度多传感器,还包括信号处理单元,该信号处理单元被配置为合并由所述第二和第四对加速度感测结构所产生的所述各自的旋转感测信号分量,以产生输出信号,该输出信号包括与相对于所述第五轴的角速度感测有关的信息。 21. A multi-DOF sensor according to claim 18, further comprising a signal processing unit, the signal processing unit is configured to the respective sense of rotation of said second and fourth combined by the acceleration generated by the sensing structure signal components, to produce an output signal, the output signal includes information with respect to the fifth axis angular velocity sensing related.
22.根据权利要求17的六自由度多传感器,还包括耦合所述第一块和所述第二块的弹性部件,所述弹性部件被配置为允许所述各个块反相地振动移动,以及阻止所述各个块同相地振动移动。 According to claim 17, six multi-DOF sensor, further comprising coupling the first block and the second block of the elastic member, the elastic member is configured to allow the movement of vibration in opposite phase to each block, and preventing the respective blocks in phase with vibration of the mobile.
23.根据权利要求17的六自由度多传感器,还包括:第一放大器,其被配置为从所述第一对加速度感测结构接收一对第一感测信号;以及第三放大器,其被配置为从所述第三对加速度感测结构接收一对第三感测信号,所述第一和第三放大器还被配置为产生分别包括所述第一感测信号对之差和所述第三感测信号对之差的第一和第三输出信号,所述第一和第三输出信号指示相对于所述第四轴的角速度感测。 23. The six degrees of freedom of claim 17, multi-sensor, further comprising: a first amplifier configured to receive a pair of first sensing signal from the first pair of acceleration sensing structure; and a third amplifier, which is configured to receive a pair of third sensing signal from the third pair of acceleration sensing structure, said first and third amplifier is further configured to generate, respectively, comprising the difference between a first sensed signal for the first and The first and third output signal c of the sensing signal the difference between said first and third output signal indicative of said fourth axis with respect to the angular velocity sensing.
24.根据权利要求17的六自由度多传感器,还包括:第二放大器,其被配置为从所述第二对加速度感测结构接收一对第二感测信号;以及第四放大器,其被配置为从所述第四对加速度感测结构接收一对第四感测信号,所述第二和第四放大器还被配置为产生分别包括所述第二感测信号对之差和所述第四感测信号对之差的第二和第四输出信号,所述第二和第四输出信号指示相对于所述第五轴的角速度感测。 24. The six degrees of freedom of claim 17, multi-sensor, further comprising: a second amplifier configured to receive a pair of second sensing signal from the second pair of acceleration sensing structure; and a fourth amplifier having configured to receive a pair of fourth sensing signal from the fourth pair of acceleration sensing structure, said second and fourth amplifier is further configured to generate, respectively, comprising the difference between the second sensing signal to the sum of the first Four sensing signal of the difference between the second and fourth output signal, said second and fourth output signal indicative of the sensed angular velocity with respect to the fifth axis.
25.根据权利要求17的六自由度多传感器,还包括:第一放大器,其被配置为从所述第一对加速度感测结构接收一对第一感测信号;第二放大器,其被配置为从所述第二对加速度感测结构接收一对第二感测信号;第三放大器,其被配置为从所述第三对加速度感测结构接收一对第三感测信号,以及第四放大器,其被配置为从所述第四对加速度感测结构接收一对第四感测信号,所述第一、第二、第三和第四放大器还被配置为产生分别包括所述第一感测信号对之和、所述第二感测信号对之和、所述第三感测信号对之和以及所述第四感测信号对之和的第一、第二、第三和第四输出信号,所述第一、第二、第三和第四输出信号指示相对于所述第六轴的加速度感测。 25. The six degrees of freedom of claim 17, multi-sensor, further comprising: a first amplifier configured to receive a pair of first sensing signal from the first pair of acceleration sensing structure; a second amplifier configured to receive a pair of second sensing signal from the second pair of acceleration sensing structure; third amplifier, which is configured to receive a pair of third sensing signal from the third pair of acceleration sensing structure, and a fourth an amplifier configured to receive a pair of fourth sensing signal from the fourth pair of acceleration sensing structure, said first, second, third and fourth amplifier is further configured to generate, respectively, comprising the first the sum of the sensed signal, said second sensing signal for the sum of said third sensing signal of the sum and the fourth the sum of the sensed signal of the first, second, third and four output signals, said first, second, third and fourth output acceleration sensing signal indicating with respect to said sixth shaft.
26.根据权利要求17的六自由度多传感器,包括悬挂在所述衬底上方的两个第一块和两个第二块,所述四个块被安置为使得每个块与两个其它块相邻,以及其中所述驱动结构被配置为围绕所述各个旋转轴反相地振动所述四个块,以便每个块相对于相邻的块以相同和相反的方式移动。 Claim 26. The multi-sensor 17 of the six degrees of freedom, comprising two suspended above the substrate and two second blocks of the first block, the four blocks are arranged such that each block with two other adjacent blocks, and wherein said drive mechanism is configured to rotate about the respective rotation shaft in opposite phase to the vibration of the four blocks, so that each block with respect to the adjacent blocks in the same way and opposite movement.
27.根据权利要求1的六自由度多传感器,其中,合并所述第一衬底和所述第二衬底,使得在所述第一衬底上制造的所述第一多传感器子结构和在所述第二衬底上制造的所述第二多传感器子结构具有四边形对称结构。 27. The multi-DOF sensor 1 claim, wherein combining the first substrate and the second substrate such that said first substrate on said multi-sensor producing a first sub-structure and said second substrate on said multi-sensor producing a second sub-structure having a quadrilateral symmetrical structure.
28.一种操作六自由度多传感器的方法,包括步骤:利用第一多传感器子结构,提供第一多个感测信号,所述第一多个感测信号指示相对于在第一衬底的平面中的相互正交的第一和第二轴的加速度感测,以及指示相对于与所述第一和第二轴垂直的第三轴的角速度感测,所述第一多传感器子结构在所述第一衬底上实现;以及利用第二多传感器子结构,提供第二多个感测信号,所述第二多个感测信号指示相对于在第二衬底的平面中的相互正交的第四和第五轴的角速度感测,以及指示相对于与所述第四和第五轴垂直的第六轴的加速度感测,所述第二多传感器子结构在所述第二衬底上实现。 28. A method of operating a multi-sensor of six degrees of freedom, comprising the steps of: using a first multi-sensor sub-structure, providing a first plurality of sensing signals, said first plurality of sensing signals indicative with respect to the first substrate plane acceleration sensing mutually orthogonal first and second axes, and an indication with respect to the first and second angular velocity sensing axis perpendicular to the third axis, the first multi-sensor substructure implemented on the first substrate; and a multi-sensor using the second sub-structure, providing a second plurality of sensing signals, said second plurality of sensing signals indicative with respect to the plane of the second substrate in mutually sensing the angular velocity, and directions orthogonal to the fourth and fifth axes with respect to the fourth and fifth acceleration sensing axis perpendicular to the axis of the sixth, the second multi-sensor sub-structure in the second realized on the substrate.
29.根据权利要求28的方法,还包括步骤:利用驱动电极结构,沿振动轴反相地振动第一检验块和第二检验块,所述第一检验块耦合到加速度计框,以及所述第二检验块耦合到该加速度计框;由耦合到所述框并且沿所述第一轴安置的第一对完全相对的加速度感测电极结构产生各自的第一加速度计感测信号;以及由耦合到所述框并且沿所述第二轴安置的第二对完全相对的加速度感测电极结构产生各自的第二加速度计感测信号,所述第一和第二检验块、所述驱动电极结构、以及所述第一和第二对加速度感测电极结构被包括在所述第一多传感器子结构中,其中,在所述第一和第二产生步骤中产生的每个感测信号在电性上独立于其余感测信号。 29. The method of claim 28, further comprising the steps of: using a drive electrode structure, vibration along the axis of vibration in opposite phase to the first inspection block and a second inspection block, the first inspection block is coupled to the accelerometer frame, and the The second inspection block coupled to the accelerometer frame; a first pair of diametrically opposed from the acceleration sensing electrodes coupled to the frame structure and disposed along said first axis generating respective first accelerometer sensing signal; and by coupled to said frame and disposed along said second axis in the second opposed pair of acceleration sensing electrode structure generating a respective second accelerometer sensing signal, said first and second inspection block, the drive electrode structure, and said first and second acceleration sensing electrode structure is included in the first multi-sensor sub-structure, wherein each sensing signal generated in the first and in the second generation step independently of the rest of the sensed signal.
30.根据权利要求29的方法,还包括步骤:利用信号处理单元,提取与沿所述第一和第二轴的加速度感测有关的信息,以及提取与相对于所述第三轴的角速度感测有关的信息。 30. The method of claim 29, further comprising the steps of: using a signal processing unit, extracts information about the acceleration along the sensing of the first and second shafts, and extracting the angular velocity with respect to the sense of said third shaft measuring the relevant information.
31.根据权利要求28的方法,还包括步骤:利用驱动结构,围绕各个旋转轴,反相地振动至少一个第一块和至少一个第二块,所述第一和第二块彼此相邻,并且耦合到所述第二衬底且悬挂在所述第二衬底上方,每个块具有垂直于所述各个旋转轴的相关联的纵轴和横轴,所述各个纵轴平行于所述第四轴,和所述各个横轴平行于所述第五轴;由可操作地耦合到所述第一块的第一和第二对完全相对的加速度感测结构产生各自的感测信号,所述第一和第二对加速度感测结构分别沿所述第一块的所述纵轴和所述横轴安置;以及由可操作地耦合到所述第二块的第三和第四对完全相对的加速度感测结构产生各自的感测信号,所述第三和第四对加速度感测结构分别沿所述第二块的所述纵轴和所述横轴安置,所述第一和第二块、所述驱动结构、以及所述第一、第二、第三和第四对加速度感测结构被包括在所述第二多传感器子结构中,其中,在所述第一和第二产生步骤中产生的各个感测信号指示相对于所述第四和第五轴的角速度感测,并且还指示相对于所述第六轴的加速度感测。 31. The method of claim 28, further comprising the steps of: using a drive structure, around each rotation axis, at least one of vibration in opposite phase to the first block and at least one second block, the first and second blocks adjacent to each other, and coupled to said second substrate and suspended above the substrate in the second, each block having a longitudinal axis and a horizontal axis perpendicular to the respective associated rotation axis, wherein the respective longitudinal axis parallel to the fourth axis, and the respective horizontal axis parallel to the fifth axis; a first and a second opposed pair of acceleration sensing structure of the first block by operatively coupled to said sensing signal to produce a respective, said first and second acceleration sensing structure of the first block, respectively, along the longitudinal axis and the horizontal placement; and by operatively coupled to the second third and fourth pairs of block diametrically opposed acceleration sensing structure to produce a respective sensing signal, said third and fourth pair of acceleration sensing structure along the longitudinal axis of the second block and the cross shaft disposed respectively, the first and a second block, the drive structure, and the first, second, third and fourth pair of acceleration sensing structure is included in the second multi-sensor sub-structure, wherein, in the first and two generating step generating signals indicative of the respective sensed relative to said fourth and fifth sensing the angular velocity of the shaft, and also with respect to the sixth axis indicates acceleration sensing.
32.根据权利要求31的方法,还包括步骤:由信号处理单元合并由所述第一、第二、第三和第四对加速度感测结构所产生的各个线性感测信号分量,以产生输出信号,所述输出信号包括与相对于所述第六轴的加速度感测有关的信息。 32. A method according to claim 31, further comprising the step of: merging by the signal processing unit generated by said first, second, third and fourth pair of acceleration sensing structure of each linear sensing signal component to generate an output signal, said output signal comprises information with respect to the acceleration sensed sixth axis.
33.根据权利要求31的方法,还包括步骤:由信号处理单元合并由所述第一和第三对加速度感测结构所产生的各个旋转感测信号分量,以产生输出信号,所述输出信号包括与相对于所述第四轴的角速度感测有关的信息。 33. The method of claim 31, further comprising the steps of: combined by the signal processing unit generated by said first and third acceleration sensing structure of the various components of the rotation sensing signal to generate an output signal, said output signal including information related to the angular velocity with respect to the axis of the fourth sensing.
34.根据权利要求31的方法,还包括步骤:由信号处理单元合并由所述第二和第四对加速度感测结构所产生的各个旋转感测信号分量,以产生输出信号,所述输出信号包括与相对于所述第五轴的角速度感测有关的信息。 34. The method of claim 31, further comprising the steps of: sensing rotation of each signal component by the signal processing unit combined by said second and fourth pair of acceleration sensing structure generated, to produce an output signal, said output signal includes information relating to the relative angular velocity sensing said fifth axis.
35.根据权利要求28的方法,还包括步骤:合并所述第一衬底和所述第二衬底,使得在所述第一衬底上制造的所述第一多传感器子结构和在所述第二衬底上制造的所述第二多传感器子结构具有四边形对称结构。 35. The method of claim 28, further comprising the steps of: combining the first substrate and the second substrate such that said first substrate on said multi-sensor producing a first sub-structure and at the wherein said second substrate manufacturing the second multi-sensor sub-structure having a quadrilateral symmetrical structure.
Description  translated from Chinese
六自由度微机械多传感器 Six degrees of freedom micro-machined multi-sensor

相关申请的交错引用本申请要求2003年4月28日提交的、题目为“SIXDEGREE-OF-FRREEDOM MICRO-MACHINED MULTI-SENSOR(六自由度微机械多传感器)”的美国临时专利申请No.60/466,083的优先权。 Reference to Related Applications staggered This application claims the April 28, 2003 submission, entitled "SIXDEGREE-OF-FRREEDOM MICRO-MACHINED MULTI-SENSOR (six degrees of freedom micro-machined multi-sensor)," the US Provisional Patent Application No.60 / 466,083 priority.

关于联邦资助研究或者开发的声明N/A技术领域本发明一般涉及集成的角速度和加速度传感器(“多传感器”),以及更具体地涉及六自由度的微机械多传感器设备,它能够提供三个加速度感测轴和三个角速度感测轴。 REGARDING FEDERALLY SPONSORED RESEARCH or development statement N / A TECHNICAL FIELD The present invention relates generally to integrated angular velocity and the acceleration sensor ("multi-sensor"), and more particularly relates to six degrees of freedom micromechanical multi-sensor device, which can provide three acceleration sensing axis and three-axis angular velocity sensing.

背景技术 BACKGROUND

已经熟知的是,微机械多传感器包括至少一个加速度计,用于在单个多传感器设备中提供加速度感测和角速度感测的指示。 It is well known that the micro-mechanical multi-sensor comprises at least one accelerometer to provide acceleration and angular velocity sensing sensed in a single multi-sensor device indication. 在1995年2月28日发布的、题目为“MICRO-MACHINED ACCELEROMETERGYROSCOPE(微机械加速度计陀螺仪)”的美国专利No.5,392,650中描述了一种传统的微机械多传感器,该微机械多传感器包括一对加速度计,其中每个加速度计包括:固定到衬底上的刚性加速度计框,以及利用多个弯曲部分自刚性框悬挂下来的检验块。 Describes a more traditional micro-mechanical sensor in February 28, 1995 release, entitled "MICRO-MACHINED ACCELEROMETERGYROSCOPE (micromachined accelerometer gyroscope)," the US Patent No.5,392,650, which include micro-mechanical multi-sensor one pair of accelerometers, wherein each accelerometer comprising: an accelerometer fixed to a rigid frame on the substrate, and the use of a plurality of curved part from the rigid frame of the suspended inspection block. 微机械多传感器通常具有单加速度感测轴和与其相关联的垂直于加速度轴的单旋转感测轴。 Multi micromechanical acceleration sensor generally has a single sensing axis vertical and associated with a single sense of rotation axis of the acceleration axis. 此外,微机械多传感器通常被配置为沿振动轴同时反相振动所述检验块,其中该振动轴垂直于加速度轴和旋转轴。 Moreover, micromechanical multisensor is typically configured to simultaneously inverting the vibration along the axis of vibration of said inspection block, wherein the vibration axis perpendicular to the acceleration axis and the rotation axis.

在当传统的微机械多传感器经历线性和旋转运动时以反相方式同时振动所述检验块的情况下,产生线性以及科里奥利加速度力,该线性以及科里奥利加速度力相对于衬底偏转所述检验块。 When the conventional multi-sensor experiences micromechanical linear and rotational movement in the case of simultaneous vibration inverting said inspection block, produces a linear acceleration and Coriolis force, the linear acceleration and Coriolis force with respect to the liner bottom deflecting said inspection block. 多传感器被配置为感测各个检验块的偏转,并且产生相应的加速度感测信号,该相应的加速度感测信号的值与偏转幅度成正比。 Multi-sensor configured to sense the deflection of each inspection block, and generates the corresponding acceleration sensing signal, proportional to the value of the deflection amplitude of the corresponding acceleration sensing signal. 因为振动的检验块对线性加速度的响应是同相的,而检验块对科里奥利加速度的响应是反相的,所以可以通过分别将所述信号进行合适的相加或相减以抵消旋转或线性分量,从而分离线性加速度分量(包含加速度感测信息)以及旋转加速度分量(包含角速度感测信息)。 Since the response of the inspection block linear vibration acceleration are in phase, and the response of the inspection block to Coriolis acceleration is inverted, so that the signal can be carried out by respectively adding or subtracting an appropriate rotation or to counteract linear component, thereby separating the linear acceleration components (containing the acceleration sensing information) and the rotation acceleration component (including the angular velocity sensing information).

上述传统的微机械多传感器的一个缺点在于:它通常提供仅仅1个角速度感测轴以及仅仅1个加速度感测轴,然而,通常在单个微机械多传感器设备中提供多于1个加速度感测和/或角速度感测轴是有利的。 Above conventional micro-mechanical multi-sensor is one drawback: it usually provides only an angular velocity sensing axis, and only one acceleration sensing axis, however, usually provide more than an acceleration sensing in a single micro-machined multi-sensor device and / or the angular velocity sensing axis is advantageous.

1999年2月9日发布的、题目为“MICRO-MACHINED DEVICEWITH TOTATIONALLY VIBRATED MASSES(具有旋转振动块的微机械设备)”的美国专利No.5,869,760描述了第二种传统的微机械传感器,它能够相对于两个旋转感测轴来测量旋转速度。 February 9, 1999 release, entitled "MICRO-MACHINED DEVICEWITH TOTATIONALLY VIBRATED MASSES (micro-mechanical devices with rotational vibration blocks)," the US Patent No.5,869,760 describes a second conventional micro-mechanical sensors, it can be relatively sense of rotation in two axes to measure rotational speed. 该微机械传感器包括一对加速度计,其中每个加速度计包括其形式为通过多个弯曲部分悬挂在衬底上方的圆梁的块,以及相邻的一对加速度感测电极。 The micro-mechanical sensor comprises a pair of accelerometers, wherein each accelerometer includes the form of a plurality of curved portions by suspended above a substrate block circular beam, and a pair of acceleration sensing electrode adjacent. 与微机械传感器相关的两个旋转感测轴处于衬底的平面上。 Micromechanical sensors associated with two rotary axes in the plane of the sensing substrate. 此外,微机械传感器被配置为以反相方式可旋转地振动圆梁,也就是,顺时针方向/逆时针方向交替地旋转一个圆梁,而同时在相反的方向上以基本上相同的量旋转另一个横梁。 In addition, micro-mechanical sensor is configured to rotatably inverting mode vibrational circular beam, i.e., clockwise / counterclockwise rotation of a circular beam alternately, while in the opposite direction with substantially the same amount of rotation Another beams.

在当第二传统微机械传感器经历线性和旋转运动时同时反相地旋转圆梁的情况下,产生线性以及科里奥利加速度力,该线性以及科里奥利加速度力相对于衬底偏转横梁。 In the case when the second conventional micro-mechanical sensors through linear and rotational motion while rotating circular inverted beam, produces a linear acceleration and Coriolis force, the linear acceleration and Coriolis force deflection beam relative to the substrate . 加速度感测电极感测各个横梁的偏转,并且产生相应的加速度感测信号,该相应的加速度感测信号与偏转的大小以及相对于旋转感测轴的旋转速度成正比。 Acceleration sensing electrode sensing the deflection of each beam, and generates a sensing signal corresponding to the acceleration, the acceleration sensing signal corresponding to the deflection of the size and the rotational speed of the shaft relative to the sense of rotation is proportional. 因为感测信号的旋转加速度分量(包含角速度感测信息)的符号对应于圆梁的旋转方向,所以通过合适地将信号相减以抵消线性分量,可以分离感测信号的旋转分量与线性加速度分量。 Because the rotation sensing signal component of acceleration (including angular velocity sensing information) symbol corresponds to the direction of rotation of the circular beam, so that by appropriately to offset the signal subtracting linear component, the component may be rotated with linear acceleration sensing signal component separating . 然而,虽然该微机械传感器能够提供多于1个角速度感测轴,但是它缺点在于:它通常没有提供加速度感测信息。 However, while the micro-mechanical sensor capable of providing more than one angular velocity sensing axis, but the disadvantage is that it: it usually does not provide the acceleration sensing information.

因此,希望有一种微机械多传感器,它在单个多传感设备中提供多于1个加速度感测轴以及多于1个角速度感测轴。 It is therefore desirable to have a micro-mechanical sensor, which provides a single multi-sensor device in more than one axis of acceleration sensing and angular velocity sensing more than one axis. 这种微机械多传感设备将避免上述传统的微机械传感器设备的缺陷。 This micro-machined multi-sensor devices will avoid defects above conventional micro-mechanical sensor device.

发明内容 SUMMARY

根据本发明,公开了一种六自由度的微机械多传感器,该六自由度的微机械多传感器在单个多传感器设备中提供3个加速度感测轴以及3个角速度感测轴。 According to the invention, there is disclosed a six degrees of freedom of micromechanical sensor, the six degrees of freedom of the micro-mechanical multi-sensor provides three-axis acceleration sensing, and 3-axis angular velocity sensing in a single multi-sensor device. 当前公开的微机械多传感器设备包括两个多传感器子结构,其中每个子结构提供3个加速度感测轴和角速度感测轴。 Current micromechanical multi-sensor apparatus disclosed comprises two multi-sensor sub-structure, in which each sub-structure provides three acceleration sensing axis and the angular velocity sensing axis.

在一个实施例中,所述六自由度的微机械多传感器设备包括第一多传感器子结构以及第二多传感器子结构。 In one embodiment, the six degrees of freedom of the micro-mechanical multi-sensor multi-sensor device comprises a first sub-structure and the second multi-sensor substructure. 所述第一多传感器子结构包括刚性加速度计框、第一检验块、以及第二检验块,每个都形成在第一硅衬底上。 Said first sub-structure comprising a rigid multi-sensor accelerometer frame, a first inspection block, and a second inspection block, each formed on the first silicon substrate. 所述第一子结构具有所述第一衬底的平面中的相互正交的第一和第二加速度感测轴,以及与所述第一和第二加速度轴垂直的相关联的第一旋转感测轴。 The plane of said first sub-structure having a first substrate in the mutually orthogonal first and second acceleration sensing axis, and said first and second axis perpendicular to the acceleration associated with the first rotating sensing axis. 第一和第二检验块沿振动轴具有公共对称轴,其与第一旋转轴垂直。 The first and second inspection block having a common axis of symmetry along a vibration axis normal to the first axis of rotation. 此外,所述第一和第二检验块都沿振动轴相互弹性地耦合。 In addition, the first and second inspection block are resiliently coupled to each other along the axis of vibration. 所述第一和第二检验块通过各自的多个弯曲部分自刚性框悬挂下来,所述刚性框由多个弯曲部分固定到所述第一衬底上。 Said first and second curved part from the inspection block rigid frame is suspended by a respective plurality of said rigid frame by a plurality of curved portions is fixed to said first substrate. 所述多个弯曲部分都配置为将所述第一和第二检验块限制为使其更容易在振动轴的线性方向上相对于所述刚性框移动,以及将刚性框限制为使其基本上仅仅以旋转的方式相对于所述第一衬底移动。 Said plurality of curved portions are configured to move the first and second inspection block is limited to make it easier in the linear direction relative to the axis of vibration of said rigid frame movement, and it will be limited to a substantially rigid frame only in rotary manner with respect to the first substrate movement.

在当前描述的实施例中,所述第一多传感器子结构包括驱动电极结构,该驱动电极结构被配置为使所述第一和第二检验块沿振动轴反相线性地振动。 In the presently described embodiment, the first multi-sensor sub-structure includes a driving electrode structure, the electrode structure is configured to drive said first and second inspection block along the axis of vibration inverting linearly vibrates. 所述第一子结构还包括第一对加速度感测电极结构和第二对加速度感测电极结构,其中所述第一对加速度感测电极结构耦合到所述刚性框并且沿所述第一加速度轴完全相对地安置,第二对加速度感测电极结构耦合到所述刚性框并且沿所述第二加速度轴完全相对地安置。 Said first sub-structure further comprises a first pair of acceleration sensing electrode structure and a second pair of acceleration sensing electrode structure, wherein said first acceleration sensing electrode structure coupled to said rigid frame and disposed along said first acceleration Axis is completely relative placement, the second acceleration sensing electrode coupled to the rigid frame structure and along the second axis acceleration entirely relative placement. 所述第一多传感器子结构被配置为:(1)将由第一加速度感测电极对提供的感测信号相加,以提取与沿所述第一加速度轴的加速度感测有关的信息,(2)将由第二加速度感测电极对提供的感测信号相加,以提取与沿所述第二加速度轴的加速度感测有关的信息,以及(3)将由第一加速度感测电极对提供的感测信号之差与由第二加速度感测电极对提供的感测信号之差相加,以提取与相对于六自由度的多传感器设备的第一旋转轴的角速度感测有关的信息。 The first multi-sensor sub-structure is configured to: (1) the sensed signal by adding a first acceleration sensing electrode, in order to extract the acceleration along the first axis of acceleration sensing information, ( 2) by the second acceleration sensing electrode for sensing a signal provided by adding, to extract relevant information along with the measured acceleration of the second acceleration sense axis, and (3) by the first acceleration sensing electrodes provided the difference between the sensed signal and the difference between the sensed signal to provide a summed by the second acceleration sensing electrode, with respect to extraction and sensing the angular velocity of the first rotating shaft of the six degrees of freedom of the multi-sensor device information related.

第二多传感器子结构包括在第二硅衬底上形成的第三检验块和第四检验块。 Second multi-sensor sub-structure includes a third block and a fourth verification test block on the second silicon substrate. 通过各自的多个弯曲部分将所述第三和第四检验块悬挂在第二衬底上方并且固定到第二衬底上。 A plurality of bent portions through a respective third and fourth of said inspection block is suspended above the substrate and a second fixed to the second substrate. 所述第二子结构具有所述第二衬底的平面上的相互正交的第二和第三旋转感测轴,以及与所述第二和第三旋转感测轴垂直的相关联的第三加速度感测轴。 The first second and third mutually orthogonal sensing axes of the plane of rotation of said second sub-structure having a substrate on which the second, and with the second and third sense of rotation perpendicular to the axis associated three-axis acceleration sensing. 此外,第三和第四检验块具有横对称轴和纵对称轴,以及与横轴和纵轴垂直的相关联的驱动旋转轴。 In addition, the third and fourth inspection block having a symmetry axis and the vertical transverse axis of symmetry, as well as horizontal and vertical axes perpendicular to the drive associated with the rotary shaft. 沿着相应的第三和第四检验块的横轴以及纵轴安置相应的第三对加速度感测电极结构以及相应的第四对加速度感测电极结构。 Along a respective horizontal axis of the third and fourth inspection block and the corresponding third acceleration sensing electrode structure disposed longitudinal axis and the corresponding fourth pair of acceleration sensing electrode structure. 第二子结构还包括叉形部件,该叉形部件被配置来耦合第三和第四检验块,以允许所述块相对反相移动,并且阻止所述块同相移动。 The second sub-structure further comprises a fork, the fork-shaped member being configured to couple the third and the fourth inspection block to allow the block to move relative to the inverter, and prevent the block with mobile phase. 将第三和第四检验块固定到第二衬底的多个弯曲部分被配置为将所述块限制为使其基本上仅仅以旋转的方式相对于第二衬底移动。 A plurality of curved portions of the third and fourth inspection block is fixed to the second substrate is configured to limit the block such that it substantially only in rotary manner with respect to the second substrate movement.

在当前公开的实施例中,第二多传感器子结构包括驱动电极结构,该驱动电极结构被配置来反相可旋转地振动第三和第四检验块,也就是,绕着它的旋转轴,以顺时针方向/逆时针方向交替旋转一个块,而同时在相反的方向上绕着另一个块的旋转轴以基本上相同的量旋转该另一个块。 In the embodiment disclosed in the present embodiment, multi-sensor sub-structure comprises a second driving electrode structure, the electrode structure is configured to drive rotatably inverting the third and fourth vibration test block, that is, around its rotation axis, clockwise / counterclockwise rotation alternately one block, while another block is rotated about an axis in opposite directions at substantially the same amount of rotation of the other block. 在具有可旋转地振动的块的第二多传感器子结构经历线性和/或者旋转运动的情况下,第三和第四对加速度感测电极根据施加在第三和第四检验块上的线性和科里奥利加速度力,产生在电性上独立的加速度感测信号。 In the case of a block having a rotatably vibration of the second multi-sensor substructure through linear and / or rotational movement of the third and fourth sensing electrode according to the linear acceleration applied to the third and fourth inspection block and Coriolis acceleration forces, produced in the electrically independent acceleration sensing signal. 第二子结构被配置为(1)将由与第三检验块相关联的第三对加速度感测电极感测的加速度之差与由与第四检验块相关联的第三对加速度感测电极感测的加速度之差相加,以获得与相对于第二旋转轴的角速度感测有关的信息,(2)将由与第三检验块相关联的第四对加速度感测电极感测的加速度之差与由与第四检验块相关联的第四对加速度感测电极感测的加速度之差相加,以获得与相对于第三旋转轴的角速度感测有关的信息,以及(3)将由与第三检验块相关联的第三对加速度感测电极感测的加速度之和、由与第四检验块相关联的第三对加速度感测电极感测的加速度之和、由与第三检验块相关联的第四对加速度感测电极感测的加速度之和、以及由与第四检验块相关联的第四对加速度感测电极感测的加速度之和相加,以获得与相对于六自由度的多传感器设备的第三加速度轴的加速度感测有关的信息。 The second sub-structure is configured to (1) by the acceleration sensing electrode sensing third inspection block associated with the difference between the third pair of acceleration by the acceleration of the sensing electrodes sense a fourth inspection block associated with the third pair The difference between the measured accelerations are summed to obtain information about the relative angular velocity sensing a second rotating shaft, (2) will be related to the inspection block associated with the third acceleration sensing electrodes for sensing a difference in acceleration between the fourth and added by the acceleration sensing electrodes sense the difference between the fourth and the fourth test the acceleration associated with the block, in order to obtain information about the phase of the sensed angular velocity of the third rotation shaft, and (3) by the first third acceleration sensing electrodes and the sensed acceleration of the inspection block associated with the third, by the fourth inspection block associated with the third pair of acceleration sensing electrodes and the sensing of acceleration, the inspection block associated with the third The fourth pair of acceleration sensing electrodes of the sensed acceleration and linked, and the fourth inspection block by a fourth pair of acceleration sensing electrodes associated with the sensed acceleration of and summed to obtain the six degrees of freedom with respect to acceleration sensing information about multi-sensor apparatus of the third acceleration axis.

通过提供微机械多传感器,可以在单个多传感器设备中获得3个加速度感测轴和3个角速度感测轴,其中该微机械多传感器包括第一多传感器子结构和第二多传感器子结构,其中第一多传感器子结构提供2个加速度感测轴和1个角速度感测轴,第二多传感器子结构提供第三加速度感测轴以及第二和第三角速度感测轴。 By providing a micromechanical sensor, can obtain three acceleration sensing axis and three-axis angular velocity sensing in a single multi-sensor device, wherein the micro-mechanical multi-sensor multi-sensor comprising a first sub-structure and the second multi-sensor sub-structure, wherein the first multi-sensor substructure provide two acceleration sensing axis and an angular velocity sensing axis, the second multi-sensor sub-structure to provide a third acceleration sensing axis and the second and third angular velocity sensing axis.

通过以下本发明的详细描述,本发明的其它特征、功能以及方面将变得很清楚。 By the following detailed description of the invention, other features, functions, and aspects of the invention will become apparent.

附图说明 Brief Description

通过参考结合附图的以下详细说明,将会更充分地理解本发明,在附图中,图1是根据本发明的硅微机械多传感器设备的示意透视图;图2是在图1的硅微机械多传感器中包括的第一多传感器子结构的平面图;图3是图2的第一多传感器子结构的示意图;图4是图2的第一多传感器子结构的操作方法的流程图;图5是在图1的硅微机械多传感器中包括的第二多传感器子结构的方框图;图6是图5的第二多传感器子结构的详细平面图;图7是用于图5的第二多传感器子结构的加速度感测信号处理电路的示意图;图8是图5的第二多传感器子结构的可替换实施例的方框图;图9是图8的第二多传感器子结构的可替换实施例的详细平面图;和图10是图5的第二多传感器子结构的操作方法的流程图。 The following detailed description of the drawings by reference, will be more fully understood from the present invention, in the drawings, FIG. 1 is a silicon micromachined multi-sensor apparatus of a schematic perspective view of the present invention; FIG. 2 in FIG. 1 is a silicon a plan view of a first multi-sensor multi substructure micromechanical sensor comprising; Figure 3 is a schematic view of a first multi-sensor sub-structure of Figure 2; Figure 4 is a flowchart showing the operation method of the first multi-sensor sub-structure of Figure 2; Figure 5 is a block diagram of the second sub-structure in a multi-sensor FIG silicon micromachined sensor 1 comprises a multi-; Figure 6 is a detailed plan view of the second multi-sensor substructure 5; FIG. 7 is a diagram for a second 5 schematic view of an acceleration sensing signal processing circuit sub-structure of the multi-sensor; FIG. 8 is a second multi-sensor sub-structure of Figure 5 a block diagram of an alternative embodiment; FIG. 9 is a view of a second alternative embodiment of multiple sensor sub-structure 8 detailed plan view of an example; and Fig. 10 is a flowchart showing the operation method of the second multi-sensor sub-structure of Fig.

具体实施方式 DETAILED DESCRIPTION

在此将2003年4月28日提交的、题目为“SIXDEGREE-OF-FRREEDOM MICRO-MACHINED MULTI-SENSOR(六自由度的微机械多传感器)”的美国临时专利申请No.60/466,083引入,作为参考。 Here the April 28, 2003 submission, entitled "SIXDEGREE-OF-FRREEDOM MICRO-MACHINED MULTI-SENSOR (six degrees of freedom micro-mechanical multi-sensor)," the US Provisional Patent Application No.60 / 466,083 is incorporated herein by reference.

公开了一种六自由度的微机械多传感器,该六自由度的微机械多传感器在单个多传感器设备中提供3个加速度感测轴和3个角速度感测轴。 Discloses a six degrees of freedom of micromechanical sensor, the six degrees of freedom of the micromechanical sensor provides more than three acceleration sensing axis and 3-axis angular velocity sensing in a single multi-sensor device. 当前公开的微机械多传感器包括两个三自由度的多传感器子结构,它们的每一个可以对称地布置在各自的模片上,以提高产量以及整个多传感器设备的性能。 The presently disclosed multi micromechanical sensor comprising two three degrees of freedom of the multi-sensor sub-structure, each of them can be arranged symmetrically on the respective die, in order to improve the yield and performance of the entire multi-sensor device.

图1描述了根据本发明的六自由度的微机械多传感器100的示意图。 Figure 1 depicts a schematic diagram 100 in accordance with six degrees of freedom of the micro-mechanical sensor of the present invention more. 当前公开的六自由度的多传感器100包含:包括衬底102的第一三自由度的多传感器子结构103、以及包括衬底108的第二三自由度的多传感器子结构105。 Six degrees of freedom of the presently disclosed multi-sensor 100 includes: a first three degrees of freedom of the substrate 102 multi-sensor substructure 103, and includes a substrate 108, the second of three degrees of freedom of multi-sensor substructure 105. 衬底102和108中的每个可以包括硅衬底,使硅衬底经历任何合适的体微机械处理,以形成微机电系统(MEMS)多传感器设备。 Substrates 102 and 108 each may include a silicon substrate, the silicon substrate through any suitable bulk micromachining process to form micro-electromechanical systems (MEMS) multi-sensor device.

如图1所示,MEMS子结构103包括传感器101,传感器101具有在衬底102的平面中安置的相互正交的两个相关联的加速度感测轴XA和YA,以及与加速度轴XA和YA垂直的一个相关联的旋转感测轴ZR。 1, MEMS substructure 103 includes a sensor 101, a sensor 101 having mutually orthogonal acceleration sensing axis XA and YA in the two associated placement plane of the substrate 102, and the acceleration axis XA and YA A sense of rotation perpendicular to the axis ZR associated. MEMS子结构103被配置来提供两个沿加速度轴XA和YA的加速度感测的指示,以及一个相对于旋转轴ZR的角速度感测的指示。 MEMS substructure 103 is configured to provide acceleration along two axes XA and YA indication acceleration sensed, and an indication with respect to the rotation axis of the angular velocity sensing of ZR. 而且,MEMS子结构105包括传感器104,传感器104具有在衬底108的平面中安置的相互正交的两个相关联的旋转感测轴XR和YR,以及与旋转轴XR和YR垂直的一个相关联的加速度感测轴ZA。 Moreover, MEMS substructure 105 includes a sensor 104, a sensor 104 having mutually orthogonal rotation sensing axis XR and YR in the plane of the two associated substrate 108 in place, and a relevant rotation axis perpendicular to XR and YR acceleration sensing axis ZA linked. MEMS子结构105被配置来提供两个相对于旋转轴XR和YR的角速度感测的指示,以及一个相对于加速度轴ZA的加速度感测的指示。 MEMS substructure 105 is configured to provide two with respect to the rotation axis XR and YR indicating the angular velocity sensed, and an indication of acceleration with respect to the sensed acceleration of the axis ZA.

应当明白的是,整个六自由度的多传感器设备100有效地具有在设备的平面中的相互正交的两个相关联的X和Y轴(没有示出),以及与X和Y轴垂直的一个相关联的Z轴(没有示出)。 It should be appreciated that the six degrees of freedom of the entire multi-sensor device 100 effectively has a planar device in the two associated mutually orthogonal X and Y-axis (not shown), as well as perpendicular to the X and Y axis a Z-axis (not shown) associated with it. 例如,衬底102和108可以是共平面的,并且X和Y轴可以在衬底102和108的平面中。 For example, the substrate 102 and 108 may be coplanar, and the X and Y axes 102 and 108 may be in the substrate plane. 此外,六自由度的多传感器设备100被配置来提供相对于三个轴X、Y和Z中的每个的加速度感测的指示以及角速度感测的指示。 In addition, more than six degrees of freedom of the sensor device 100 is configured to provide with respect to the three axes X, Y and Z directions as well as an indication of the angular velocity of each sensed acceleration sensed. 为了讨论清楚起见,在多传感器100中包括的MEMS子结构103和105被描述为分别具有两组轴XA、YA、ZR和XR、YR、ZA。 For clarity of discussion, in the multi-sensor 100 comprises a MEMS substructure 103 and 105 are described as having two axes XA, YA, ZR and XR, YR, ZA.

图2描述了在MEMS子结构103(见图1)中包括的传感器101的例示性实施例201。 Depicts the embodiment of the MEMS substructure 103 (see FIG. 1) includes a sensor 101 of an exemplary embodiment 201 2. 在所述例示的实施例中,传感器201包括在衬底202上形成的刚性加速度计框230以及检验块232.1-232.2和234.1-234.2。 In the illustrated embodiment, the accelerometer sensor 201 includes a rigid frame 202 formed on the substrate 230 and the inspection block 232.1-232.2 and 234.1-234.2. 分别通过谐振器弯曲部分236.1-236.2,检验块232.1-232.2自刚性框230悬挂下来,以及分别通过谐振器弯曲部分238.1-238.2,检验块234.1-234.2自刚性框悬挂下来。 Respectively, through the curved portion of the resonator 236.1-236.2, 232.1-232.2 test block suspended since the rigid frame 230, respectively, through the resonator and the curved portion 238.1-238.2, 234.1-234.2 self test piece rigid frame hanging down. 而且,利用加速度计弯曲部分244.1-244.4,将刚性框230固定到衬底,其中加速度计弯曲部分244.1-244.4被对角地安置在衬底202上。 Moreover, the use of accelerometer curved portion 244.1-244.4, the rigid frame 230 is fixed to the substrate, wherein the curved portion 244.1-244.4 accelerometers are diagonally arranged on the substrate 202.

传感器201还包括驱动电极结构246.1-246.2、248.1-248.2以及加速度感测电极结构AD。 Sensor 201 further includes a driving electrode structure 246.1-246.2,248.1-248.2 and the acceleration sensing electrode configuration AD. 如图2所示,驱动电极结构246.1-246.2以及248.1-248.2包括各自的多个驱动电极(“指针(finger)”),它们相互平行并且互相交错。 As shown in Figure 2, the driving electrode structure 246.1-246.2 and 248.1-248.2 comprises a respective plurality of driving electrodes ("pointer (finger)"), they are parallel to each other and cross each other. 驱动电极结构246.1-246.2被配置为响应于包括交流电压的驱动信号(没有示出)而分别向检验块232.1=232.2施加静电力,以及驱动电极结构248.1-248.2被配置为响应于包括交流电压的驱动信号(没有示出)而分别向检验块234.1-234.2施加静电力。 246.1-246.2 driving electrode structure is configured to include a response to the drive signal AC voltage (not shown) respectively to the inspection block 232.1 = 232.2 applying an electrostatic force, and a driving electrode structure 248.1-248.2 be configured to respond to an AC voltage comprising drive signal (not shown) are applied to the electrostatic force inspection block 234.1-234.2. 应当理解的是,驱动电极结构246.1-246.2和248.1-248.2可以替换地包括电磁驱动结构,该电磁驱动结构被配置为分别响应于交流电流信号而向检验块232.1-232.2和234.1-234.2施加电磁力。 It should be understood that, the driving electrode structure 246.1-246.2 and 248.1-248.2 may alternatively comprise an electromagnetic drive mechanism, the electromagnetic drive mechanism is configured as an alternating current signal, respectively, in response to an electromagnetic force applied to the inspection block 232.1-232.2 and 234.1-234.2 . 还应当理解的是,一些驱动电极可以被替换使用来提供速度信号和科里奥利信号处理的基准,其中速度信号为驱动电子设备提供反馈。 It should also be appreciated that some of the drive electrodes may be used interchangeably to provide a reference speed signal and the Coriolis signal processing, wherein the speed signal for driving the electronic device to provide feedback.

进一步如图2所示,加速度感测电极结构AD包括各自的多个感测电极(“指针”),它们相互平行并且互相交错。 As further shown in Figure 2, the acceleration sensing electrode structure comprises a respective plurality of AD sensing electrodes ("Pointer"), parallel to each other and cross each other. 具体地,感测电极结构A、B、C和D包括各自的第一组感测指针以及相应的第二组感测指针,其中第一组感测指针整体地耦合到刚性框230,第二组感测指针固定于衬底202上。 Specifically, the sensing electrode structure A, B, C and D include respective sets of sensing a first pointer and a corresponding second set of sense pointer, wherein the first set of sense pointer integrally coupled to the rigid frame 230, a second set of sense pointer fixed on the substrate 202. 例如,在传感器202经历线形和/或旋转运动的情况下,响应于产生的线形加速度和/或科里奥利力,刚性框230相对于衬底202偏转。 For example, in the case of 202 undergo linear and / or rotational movement of the sensor, in response to linear accelerations and / or the Coriolis force, the rigid frame 230 relative to the substrate 202 deflection. 因为当刚性框230偏转时刚性框230和与感测电极结构AD相关联的第一组感测指针(例如,见与感测电极结构B相关联的感测指针250)一起移动,而第二组感测指针(例如,见与感测电极结构B相关联的感测指针252)保持固定于衬底202上,所以感测电极结构AD通过感测第一和第二组感测指针的相对运动来感测框230的偏转,并且产生其大小与偏转的幅度成正比的感测信号A'-D'(见图3)。 Because when the rigidity of the rigid frame 230 deflection block 230 and the sense electrode structures AD associated with the first set of sensing pointers (e.g., pointers to see and sensing the sensing electrode structure B associated 250) move together, and the second set of sense pointer (e.g., pointer sensed and the sensing electrode structure see 252 associated B) remains fixed on the substrate 202, so that the sensing electrode structures AD by sensing the first and second sets of sensing the relative pointer motion sensing deflection block 230, and generates a size proportional to the amplitude of the deflection of the sensing signal A'-D '(see FIG. 3). 应当明白的是,感测电极结构A、C和D具有与感测电极结构B的指针结构类型类似的感测指针结构。 It should be appreciated that the sensing electrode structures A, C and D have the pointer to a structure type B of the sensing electrode structure similar to the structure of the sensing pointer.

传感器201还包括多个自刚性框230悬挂下来的支杆240.1-240.4,以及用于支杆240.1-240.4的驱动电极结构240.5-240.6。 Sensor 201 also includes a plurality of rigid frame 230 since the suspension strut down 240.1-240.4 and 240.1-240.4 strut for driving the electrode structure of 240.5-240.6. 具体而言,支杆240.1弹性地耦合在检验块232.1和支杆240.3之间,支杆240.2弹性地耦合在检验块232.2和支杆240.4之间,支杆240.3弹性地耦合在检验块234.1和支杆240.1之间,以及支杆240.4弹性地耦合在检验块234.2和支杆240.2之间。 Specifically, strut 240.1 resiliently coupled between test blocks 232.1 and 240.3 strut, strut 240.2 resiliently coupled between test blocks 232.2 and 240.4 strut, strut 240.3 resiliently coupled and branched inspection block 234.1 between the rod 240.1, 240.4 and strut resiliently coupled between test blocks 234.2 and 240.2 strut. 支杆240.1-240.4的目的在于耦合检验块的运动,使得它们作为单个谐振振荡。 The purpose of the strut is movement coupled 240.1-240.4 inspection block, so that their use as a single resonator oscillator. 此外,驱动电极结构240.5-240.6包括各自的多个驱动指针,它们被安置为相互平行并且彼此互相交错。 Further, the driving electrode structure comprises a respective plurality of 240.5-240.6 driving the hands, which are arranged parallel to each other and intertwined with each other. 该驱动电极结构240.5被配置为将静电力施加到支杆240.1和240.3上,以及驱动电极结构240.6被配置为将静电力施加到支杆240.2和240.4上。 The driving electrode structure 240.5 are configured to electrostatic force applied to the struts 240.1 and 240.3, 240.6 and the driving electrode structure is configured to electrostatic force applied to the struts 240.2 and 240.4. 应当理解的是,驱动电极结构240.5-240.6可以替换地包括各自的电磁驱动结构。 It should be understood that, the driving electrode structure 240.5-240.6 may alternatively include respective electromagnetic drive structure.

应该注意的是,检验块232.1机械地耦合到检验块232.2,使得检验块232.1-232.2基本上作为单个块一起移动。 It should be noted that the test piece is mechanically coupled to 232.1 232.2 inspection block, so that the inspection block 232.1-232.2 substantially move together as a single block. 同样,检验块234.1机械地耦合到检验块234.2,使得检验块234.1-234.2基本上作为单个块一起移动。 Similarly, the inspection block is mechanically coupled to 234.1 234.2 inspection block, so that the inspection block 234.1-234.2 substantially move together as a single block. 此外,将检验块232.1-232.2自刚性框230悬挂的弯曲部分236.1-236.2被配置为将检验块232.1-232.2限制为基本上仅仅在轴XA方向上相对于框230移动。 In addition, the self-test bending rigidity of the block 232.1-232.2 236.1-236.2 suspension block 230 is configured to limit the inspection block 232.1-232.2 XA substantially only in the axial direction relative to the frame 230 moves. 同样,将检验块234.1-234.2自刚性框230悬挂的弯曲部分238.1-238.2被配置为将检验块234.1-234.2限制为基本上仅仅在轴XA方向上相对于框230移动。 Similarly curved portion, since the rigidity of the inspection block 234.1-234.2 238.1-238.2 suspension block 230 is configured to limit the inspection block 234.1-234.2 XA substantially only in the axial direction relative to the frame 230 moves. 将刚性框230固定到衬底202上的弯曲部分244.1-244.2被配置为将刚性框230限制为允许框230相对于衬底202旋转运动,以用于科里奥利感测。 The rigid frame 230 is fixed to the substrate 202 244.1-244.2 curved portion is configured to allow the rigid frame 230 is limited to the frame 230 with respect to the rotational movement of the substrate 202, for Coriolis sensing.

对角弯曲部分244.1-244.4形成折叠对,使得它们允许一些平移运动,不像被安排为对角辐条的单个弯曲部分。 Diagonal to form a curved portion 244.1-244.4 fold right, so that they allow some translational motion, is arranged like the spokes of a single curved diagonal part. 这减少了用于表面微机械的淀积膜中的应力,并且允许沿XA和YA轴的线性加速度感测。 This reduces the surface of the deposited film is used in the micro-mechanical stress, and allows the shaft along the XA and YA linear acceleration sensing. 科里奥利加速度通常远小于将要感测的线性加速度,于是希望使弯曲部分244.1-244.2对于旋转运动比沿着XA和YA轴更具柔性。 Coriolis acceleration is typically much smaller than the linear acceleration to be sensed, so desirable to the rotational movement of the bent portion 244.1-244.2 than more flexible along the axis XA and YA. 通过使用合适的弯曲长度与折叠间隔的比率来产生期望的柔性比率。 Ratio to produce a desired flexibility by using a suitable bending length and the ratio of the folding interval.

还应当注意的是,在传感器201的横对称轴的每一侧上和垂直对称轴的每一侧上,以镜像的方式安置刚性框230、检验块232.1-232.2和234.1-234.2、驱动电极结构246.1-246.2、248.1-248.2和240.5-240.6、加速度感测电极结构AD、支杆240.1-240.4以及弯曲部分236.1-236.2、238.1-238.2以及244.1-244.4。 It should also be noted that on each side of the transverse axis of symmetry of the sensor 201, and on each side of the vertical symmetry axis, disposed in mirror fashion rigid block 230, the inspection block 232.1-232.2 and 234.1-234.2, driving electrode structure 246.1-246.2,248.1-248.2 and 240.5-240.6, acceleration sensing electrode structures AD, and the curved portion of the strut 240.1-240.4 and 244.1-244.4 236.1-236.2,238.1-238.2. 因而,传感器201具有两个正交的镜面对称,并且可以对称地将中心定位于模片(没有示出)上,以减少模片表面区域变形和梯度对传感器性能的不利影响。 Thus, sensor 201 has two orthogonal mirror symmetry, and may be symmetrically positioned in the center of the die (not shown), to reduce the adverse effects of deformation of the surface area of the die and the gradient of the sensor performance.

图3描述了图1的MEMS子结构103的例示性实施例的示意图。 Figure 3 depicts a MEMS substructure example of Figure 1 shows a schematic view of an embodiment 103. 在该例示性实施例中,MEMS子结构303包括:传感器301、跨阻放大器304、多个差分放大器306、308、310、312、316和320、多个求和放大器314、318和322、以及相位解调器324。 In this exemplary embodiment, MEMS substructure 303 includes: a sensor 301, transimpedance amplifier 304, a plurality of differential amplifiers 306,308,310,312,316 and 320, a plurality of summing amplifiers 314, 318 and 322, as well as phase demodulator 324. 如上所述,检验块232.1-232.2(见图2)被耦合在一起作为单个块来运动,以及检验块234.1-234.2(见图2)也类似地被耦合在一起作为单个块来运动。 As described above, inspection block 232.1-232.2 (see FIG. 2) are coupled together as a single block to the motion, and the inspection block 234.1-234.2 (see FIG. 2) are similarly coupled together as a single block motion. 因而,传感器301包括:代表刚性框230(见图2)的刚性加速度计框330、代表检验块232.1-232.2的第一检验块332、以及代表检验块234.1-234.2的第二检验块334。 Thus, the sensor 301 includes: a rigid frame 230 representatives (see FIG. 2) of a rigid accelerometer frame 330, on behalf of the first inspection block 232.1-232.2 inspection block 332, and representative of the second inspection block 234.1-234.2 inspection block 334.

具体而言,第一检验块332通过谐振器弯曲部分336自刚性框330悬下,其中谐振器弯曲部分336代表弯曲部分236.1-236.2(见图2),以及第二检验块334通过谐振器弯曲部分338自刚性框330悬下,其中谐振器弯曲部分338代表弯曲部分238.1-238.2(见图2)。 Specifically, the first inspection block 332 through the resonator 336 since the bending rigidity of the lower portion of the hanging block 330, wherein the curved portion 336 on behalf of the resonator bent portion 236.1-236.2 (see Figure 2), and a second inspection block 334 through the resonator bending Since the rigid portion 338 is suspended block 330, wherein the curved portion 338 on behalf of the resonator bent portion 238.1-238.2 (see Figure 2). 此外,刚性框330通过多个加速度计弯曲部分(例如弯曲部分244.1-224.4,见图2)固定到衬底(例如,衬底202,见图2)上。 In addition, the rigid frame 330 by a plurality of accelerometers curved portion (bent portion 244.1-224.4 e.g., see FIG. 2) fixed to the substrate (e.g., substrate 202, see FIG. 2).

传感器301(见图3)还包括代表支杆的弹性部件340和驱动电极结构240.1-240.6(见图2)。 Sensor 301 (see FIG. 3) further includes a resilient member 340 on behalf of the strut and drive electrode structure 240.1-240.6 (see FIG. 2). 弹性部件340弹性地互连第一检验块332和第二检验块334。 Elastic member 340 elastically interconnecting the first test block 332 and block 334 second test. 此外,传感器301包括用于振动检验块332和334的驱动电极结构(例如驱动电极结构246.1-246.2和248,1-248.2,见图2),以及代表图2的感测电极结构AD的加速度感测电极结构A、B、C和D。 Furthermore, the sensor 301 includes an electrode structure for driving the vibration test block 332 and 334 (e.g., the drive electrode structures 246.1-246.2 and 248,1-248.2, see Fig. 2) the structure of the sensing electrodes sense acceleration AD, as well as representatives of Figure 2 measuring electrode structure A, B, C and D.

具体而言,驱动电极结构被配置为以机械谐振来同时振动相应的第一和第二检验块332和334,并且弹性部件340被配置为沿振动轴反相(也就是,相差180)移动检验块332和334,其中在当前公开的实施例中振动轴平行于加速度轴XA。 Specifically, a driving electrode structure is configured to be simultaneously the mechanical resonant vibration respective first and second inspection block 332 and 334, and the elastic member 340 along the axis of vibration are configured to reverse phase (i.e., a difference of 180 ) movement Test blocks 332 and 334, which in the presently disclosed embodiment the vibration acceleration axis parallel to the axis of embodiment XA. 完全相对的加速度感测电极结构AB沿加速度轴YA安置并且耦合到刚性框330,完全相对的加速度感测电极结构CD沿加速度轴XA安置并且耦合到刚性框330。 Acceleration sensing electrode structure is completely arranged opposite AB block 330 and coupled to the rigid shaft along the acceleration YA, diametrically opposite sensing acceleration along an acceleration axis of the electrode structure of the CD XA arranged and coupled to the rigid frame 330. 相应的感测电极结构AD被配置为分别产生电性上独立的感测信号A'、B'、C'和D'。 Corresponding AD sensing electrode structure is configured to generate electrically sensed signal on a separate A ', B', C 'and D'. 或者,来自用于将框附着到衬底上的弯曲部分244.1-244.4的偏转的弹簧力可以用于平衡科里奥利力和用来感测这些偏转的结构A、B、C和D。 Alternatively, from the frame is attached to the deflection for the spring force of the bent portion on the substrate 244.1-244.4 may be used to balance the Coriolis force and means for sensing the deflection of the structure A, B, C and D. 如果用于表面微机械的结构膜是多晶硅,则弯曲部分的偏转与这些力非常线性相关,从而使得引入电恢复力的复杂性是不经济的。 If the structure of the film surface micromachined polysilicon is used, the curved portion of the very linear deflection associated with these forces, so that the introduction of the complexity of the electrical restoring force is not economical.

本领域的普通技术人员应该明白,由于检验块332和334沿振动轴振动,同时刚性框330围绕旋转轴ZR旋转,所以检验块332和334的每一个在由加速度轴XA和YA定义的平面内经历科里奥利加速度。 Of ordinary skill in the art should understand that due to the test block 332 and 334 along the axis of vibration of vibration, while the rigid frame 330 around the rotational axis ZR rotation, so the test blocks each plane by the acceleration axis XA and YA 332 and 334 defined in the experience Coriolis acceleration. 此外,因为检验块332和334反相振动,所以相应的检验块332和334在相反的方向上经历科里奥利加速度。 In addition, since the test block 332 and 334 inverted vibration, so the corresponding inspection blocks 332 and 334 in opposite directions experience Coriolis acceleration. 因此,视在的科里奥利力被施加到检验块332和334,在加速度轴XA和YA的平面内,在相反的方向上偏转检验块332和334。 Thus, depending on the Coriolis force is applied to the test block 332 and 334, in the acceleration axis XA and YA plane, in the opposite direction deflection test block 332 and 334.

因而,检验块332和334对相对于旋转轴ZR的科里奥利加速度的响应是反相的,而检验块332和334对相对于加速度轴XA和YA的线形加速度的响应是同相的。 Thus, in response to the Coriolis acceleration with respect to the rotation axis ZR of the inspection blocks 332 and 334 is inverted, and the test block 332 and the response 334 pairs of acceleration with respect to the axis XA and YA of the linear acceleration are in phase. 因此,合适地相加和/相减电性上独立的加速度感测信号A'、B'、C'和D',以提取与线性加速度对应的信息(例如加速度感测信息),以及提取与科里奥利加速度对应的信息(例如角速度感测信息)。 Thus, suitably the sum and / subtracting an acceleration sensing signal independent electrically on A ', B', C 'and D', to extract information corresponding to the linear acceleration (e.g., acceleration sensing information), and extracted with Coriolis acceleration corresponding information (e.g., angular velocity sensing information). 例如,第一组电恢复力(没有示出)可以被采用来平衡线性加速度力,以及第二组电恢复力(没有示出)可以被用来平衡科里奥利加速度力。 For example, a first set of electrical restoring force (not shown) may be employed to balance the linear acceleration force, and a second set of electrical restoring force (not shown) can be used to balance the Coriolis acceleration forces. 此外,相应的感测电极结构A、B、C和D可以被配置来根据电恢复力的大小产生电性上独立的加速度感测信号A'、B'、C'和D'。 In addition, the respective sensing electrodes structure A, B, C and D may be configured to generate an independent acceleration sensing signal A according to the size of electrical power on the resilience ', B', C 'and D'.

具体而言,差分放大器306被配置来从感测电极结构B接收差分感测信号B',并且将相应的感测信号b提供给求和放大器314和差分放大器316。 Specifically, the differential amplifier 306 is configured to the sensing electrode structure B receives the differential sense signal B ', and the corresponding sensed signal b is supplied to summing amplifier 314 and a differential amplifier 316. 类似地,差分放大器308被配置为从感测电极结构A接收差分感测信号A',并且将相应的感测信号a提供给求和放大器314和差分放大器316。 Similarly, the differential amplifier 308 is configured as a sensing electrode structure A receives the differential sense signal A ', and from a corresponding sensing signal is supplied to a summing amplifier 314 and a differential amplifier 316. 此外,差分放大器310被配置为从感测电极结构D接收差分感测信号D',并且将相应的感测信号d提供给求和放大器318和差分放大器320,以及差分放大器312被配置为从感测电极结构C接收差分感测信号C',并且将相应的感测信号c提供给求和放大器318和差分放大器320。 In addition, the differential amplifier 310 is configured to receive the differential sense signal from the sense electrode structure D D ', and the corresponding sensing signal d supplied to the summing amplifier 318 and a differential amplifier 320, and a differential amplifier 312 is configured to sense from measuring electrode structure C receives the differential sense signal C ', and the corresponding sensed signal c supplied to the summing amplifier 318 and a differential amplifier 320.

求和放大器314被配置为将感测信号a和b相加,并且产生感测信号和a+b,该感测信号和a+b包含与沿加速度轴XA的加速度感测有关的信息(“X-加速度”)。 Summing amplifier 314 is configured to sense the signals a and b are added, and generates a sensing signal and a + b, the sensing signal and a + b comprises sensing acceleration along an acceleration axis XA of information (the " X- acceleration "). 同样,求和放大器318被配置为将感测信号c和d相加,并且产生感测信号和c+d,该感测信号和c+d包含与沿加速度轴YA的加速度感测有关的信息(“Y-加速度”)。 Similarly, summing amplifier 318 is configured to sense the signal c and d are added, and generates a sensing signal and c + d, the sensing signal and c + d comprises sensing acceleration along an acceleration axis YA of information relating to ("Y- acceleration"). 本领域技术人员应该理解的是,可以要求附加的锁相载波来提取加速度感测信息。 The skilled artisan will appreciate that the carrier can require additional phase-locked to extract the acceleration sensing information.

差分放大器316被配置为将感测信号a和b相减,并且将感测信号差ab提供给求和放大器322。 The differential amplifier 316 is configured to sense the signals a and b are subtracted and the difference ab sensing signal supplied to the summing amplifier 322. 同样,差分放大器320被配置为将感测信号c和d相减,并且将感测信号差cd提供给求和放大器322。 Similarly, the differential amplifier 320 is configured to sense the signal c and d are subtracted and the difference between the sensing signal supplied to the summing amplifier 322 cd. 此外,求和放大器322被配置为将感测信号ab和cd相加,并且将和a+cbd提供给相位解调器324。 Also, summing amplifier 322 is configured to sense the signals ab and cd are added, and the and a + cbd to the phase demodulator 324. 感测信号a+cbd包括与相对于旋转轴ZR的角速度感测有关的信息(“Z-角速度”)。 Sensed signal a + cbd comprises sensing relative angular velocity about the axis of rotation of ZR information ("Z- angular velocity"). 但是,应该注意的是,感测信号a+cbd也可以包括至少一些与沿着加速度轴XA和YA的中一个或者两者的加速度感测有关的信息。 However, it should be noted that the sensed signal a + cbd may also include at least one or some of the information related to the acceleration along the axis of both the XA and YA acceleration sensing. 因而,相位解调器324被配置为抑制陀螺感测信号a+cbd中的加速度信息。 Thus, a phase demodulator 324 is configured to suppress gyro sensed signal a + cbd the acceleration information.

具体而言,相位解调器324针对速度感测信号V来解调陀螺感测信号a+cbd,其中速度感测信号V与检验块332和334的振动速度同相,而与检验块加速度异步。 Specifically, the phase demodulator 324 for speed sensing signal V gyro sensed signal demodulating a + cbd, wherein the velocity sensing signal V and the vibration speed inspection block 332 and 334 in-phase, while the inspection block acceleration asynchronous. 如图3所示,传感器301包括速度感测电极结构342,被配置为将速度感测信号V(电流信号)提供给跨阻放大器304,该跨阻放大器304将电流信号转化为相应的电压信号v。 3, the sensor 301 includes a speed sensing electrode structure 342, configured to sense the velocity signal V (current signal) is supplied to the transimpedance amplifier 304, the transimpedance amplifier 304 to a current signal into a corresponding voltage signal v. 通过感测耦合到检验块332和334的电极与固定到衬底上的电极的相对运动,速度感测电极结构342感测检验块332和334的振动速度,并且产生速度感测信号V,该速度感测信号V与振动速度同相。 By sensing electrodes coupled to the test block 332 and 334 fixed to the relative movement of the electrode on the substrate, the speed of the sensing electrode structures 342 sensing vibration velocity inspection block 332 and 334, and generating a speed sensing signal V, the speed sensing signal V and vibration velocity in phase. 接着,跨阻放大器304将电压信号v作为相位基准提供给相位解调器324。 Then, transimpedance amplifier 304 as the phase voltage signal v Jizhun Ti phase demodulator 324 is supplied. 因为速度感测信号V与加速度信号a+b和c+d异步,所以通过相位解调器324抑制了在求和放大器322的输出处的加速度信息,由此在相位解调器的输出处增加了陀螺的信噪比(SNR)。 Since the speed sensing signal and the acceleration signal V a + b and c + d asynchronous, so suppressed by the phase demodulator 324 in the acceleration information at the output of summing amplifier 322, thereby increasing the output of the phase demodulator the gyro signal to noise ratio (SNR).

可以明白的是,为了利用差分电容器感测加速度计电极A、B、C和D的静态偏转,必须向框330提供交流电压,并且针对该电压同步地解调信号。 Can be appreciated that in order to take advantage of the differential accelerometer sensing capacitor electrode A, the static deflection of B, C and D, an AC voltage must be provided to the frame 330, and demodulates the voltage signal for synchronization. 可以在差分放大器306、308、310和312或者求和放大器314、316、318和322中执行该种解调。 This kind of demodulation may be performed in a differential amplifier 306, 308 and 312 or 314,316, 318, and summing amplifier 322. 为了提高灵敏度,交流电压的频率应该如实际中一样高。 To improve sensitivity, the frequency of the AC voltage should be as high as practical. 为了阻止来自相对频率漂移的误差,应当使用锁相环使交流电压与速度信号相关,锁相环是本领域技术人员公知的。 In order to prevent the error from the relative frequency drift, should be used so that the AC voltage associated with the phase-locked loop velocity signal, phase-locked loop is known to those skilled in the art. 还应当注意的是:在此为了容易解释而分开示出的各种放大器可以组合为一个集成电路中的晶体管的更有效配置,以及然后可以不遵守精确的操作顺序,但保留整个功能。 It should also be noted that: In the separated for ease of explanation of the various amplifiers shown may be combined into an integrated circuit of the transistor is more efficient allocation, and then can not abide precise sequence of operations, but retain the entire function. 特别地,如果选择连续时间(例如基于放大器)实现,则通过维持直到相位解调器的差分信号路径,来最佳地保留过程的完整性。 In particular, if the continuous time selection (e.g., based on an amplifier) implemented, maintained until the differential signal path through the phase demodulator, to optimally retain the integrity of the process. 如果使用离散时间(例如数字化的)实现,则合并加法、减法、解调和/或过滤操作常常是有效的。 If a discrete time (e.g., digitized) implementation, the combined addition, subtraction, demodulation and / or filtering operation is often effective.

参考图4描述当前公开的多传感器子结构303(见图3)的操作方法。 4 is described with reference to FIG Multisensor substructure 303 presently disclosed (see FIG. 3) of the method of operation. 如步骤402中所述,在多传感器子结构303中包括的两个检验块沿振动轴反相地振动,同时多传感器围绕旋转轴ZR旋转。 As described in step 402, the two multi-sensor inspection block included in the sub-structure 303 along the axis of vibration in opposite phase to the vibration, while multi-sensor rotation about a rotation axis ZR. 应该理解的是,振动轴在多传感器的衬底平面上(例如,平行于加速度轴XA),以及旋转ZR与振动轴和多传感器的衬底垂直。 It should be appreciated that (e.g., parallel to the acceleration axis XA), and the vibration axis perpendicular to the substrate plane on a substrate with a multi-sensor ZR rotation axis and multiple vibration sensors. 接着,如步骤404中所述,将多传感器的加速度感测电极结构A和B产生的差分感测信号A'和B'分别转化为感测信号a和b。 Next, as the step 404, the differential sense signal A multisensor acceleration sensing electrodes produce structures A and B 'and B' are converted to the sensed signals a and b. 同样,如步骤406中所述,将加速度感测电极结构C和D产生的差分感测信号C'和D'分别转化为感测信号c和d。 Similarly, as described in step, the acceleration sensing electrode structure C and D generated by the differential sense signal C 'and D' 406 are converted to a sensing signal c and d. 加速度感测电极结构A和B沿加速度轴XA安置。 Acceleration sensing electrode structures A and B arranged along the acceleration axis XA. 此外,加速度电极结构C和D沿加速度轴YA安置,其中加速度轴YA处于衬底的平面上并且垂直于加速度轴XA。 In addition, the acceleration electrode structure C and D arranged along the acceleration axis YA, YA wherein acceleration in the plane of the substrate axis and perpendicular to the acceleration axis XA. 然后,如步骤408中所述,将感测信号a和b相加,以产生感测信号之和a+b,该感测信号之和a+b包含与沿加速度轴XA的加速度感测有关的信息(X-加速度)。 Then, as the step 408, the sensed signals a and b are summed to produce sensing signals, and a + b, the sensing signal that contains the sum a + b and the sensing acceleration along an acceleration axis XA of the relevant information (X- acceleration). 同样,如步骤410中所述,将感测信号c和d相加,以产生感测信号之和c+d,该感测信号之和c+d包含与沿加速度轴YA的加速度感测有关的信息(Y-加速度)。 Similarly, as described in step, the sensed signal is added to 410 c and d, to produce sensing signals, and c + d, the sensing signal that contains the sum c + d with the acceleration sensing acceleration along the axis YA Information (Y- acceleration). 接着,如步骤412中所述,将感测信号a和b相减,以产生感测信号之差ab。 Subsequently, as described in step 412, the sensed signals a and b are subtracted to produce a difference ab sensed signals. 同样,如步骤414中所述,将感测信号c和d相减,以产生感测信号之差cd。 Similarly, as described in step 414, the sensed signal c and d are subtracted to produce a difference cd sensed signals. 然后,如步骤416中所述,将感测信号ab和cd相加,以产生感测信号之和(ab)+(cd),该感测信号之和(ab)+(cd)包含与相对于旋转轴ZR的角速度感测有关的信息(Z-角速度)。 Then, as the step 416, the sensing signals ab and cd summed to generate the sensing signals and (ab) + (cd), the sensing signals and (ab) + (cd) comprises opposite Information (Z- angular velocity) to sense the rotation axis angular velocity measured ZR-related. 最后,如步骤418中所述,最优化地抑制在陀螺感测信号a+cbd中可能包括的加速度信息,以增加陀螺的SNR。 Finally, as described in step 418, the acceleration information is optimally suppressed in the gyro sensing signal a + cbd may be included to increase the gyro SNR. 信号处理领域的技术人员应该理解,图4的示意性算法不是仅有的产生期望最终结果的算法,其它离散时间实现在功能上是等效的。 Signal processing in the art should appreciate that Figure 4 is a schematic of the algorithm is not only to produce the desired final result of the algorithm, the other discrete time achieve functionally equivalent. 例如,可以合适地互换或者合并加法、减法和解调的顺序。 For example, you can order a suitable interchangeable or merger of addition, subtraction and demodulation.

图5描述了在MEMS子结构105(见图1)中包括的传感器104的例示性实施例504。 Figure 5 depicts the example in MEMS substructure 105 (see FIG. 1) includes a sensor 104 of an exemplary embodiment 504. 在该例示性实施例中,传感器504包括一对加速度计505-506。 In this exemplary embodiment, the sensor 504 includes a pair of accelerometers 505-506. 加速度计505-506分别包括块509和507,块509和507的每一个基本上是圆形的。 Accelerometers 505-506 respectively include blocks 509 and 507, blocks 509 and 507 each substantially circular. 应当理解的是,可替换地,块507和509可以基本上为正方形、六边形、八边形或者任何其他合适的几何形状。 It should be understood that, alternatively, the block 507 and 509 may be substantially square, hexagonal, octagonal, or any other suitable geometry. 通过多个弯曲部分(没有示出)将圆形块507和509固定到衬底508并且悬挂于衬底508的上方。 By a plurality of curved portions (not shown) to the circular blocks 507 and 509 fixed to the substrate 508 and is suspended above the substrate 508. 传感器504还包括叉形部件510,该叉形部件510被配置为耦合圆形块507和508,以允许所述块相对反相移动,并且阻止所述块同相移动。 Sensor 504 further comprises a fork 510, the fork-shaped member 510 is configured to couple the circular blocks 507 and 508, to allow the block to move relative to the inverter, and prevent the block with mobile phase. 固定圆形块507和509并将它们悬挂在衬底508上方的多个弯曲部分被配置为将所述块限制为在平行于衬底的平面上基本上仅仅以旋转方式移动,以及在与衬底508垂直的平面上基本上仅仅以倾斜或者平移方式移动。 507 and 509 and 508 are suspended above the substrate a plurality of curved portions fixed circular block is configured to limit the block is substantially only rotationally moved in a plane parallel to the substrate, and in the liner basically the only way to move to tilt or pan on a plane perpendicular to the bottom 508.

例如,衬底508可以包括硅衬底,或者任何其它合适类型的衬底。 For example, the substrate 508 may include a silicon substrate, or any other suitable type of substrate. 此外,可以使衬底508经历任何合适的体微机械加工处理,以形成微机电系统(MEMS)多传感器设备。 In addition, the substrate 508 may undergo any suitable bulk micromachining process to form micro-electromechanical systems (MEMS) multi-sensor device. 可以经由现有技术中任何合适的处理来形成传感器504的圆形块507和509以及耦合叉形部件510。 The prior art may be via any suitable processing sensor 504 is formed of circular blocks 507 and 509 and the fork-shaped coupling member 510.

如图5所示,传感器504具有在衬底508平面内的相互正交的两个相关联的旋转感测轴XR和YR,以及与旋转感测轴XR和YR垂直(例如垂直于衬底508)的一个相关联的加速度感测轴ZA。 As shown, the sensor 504 in the substrate 508 having five plane mutually orthogonal rotation axes XR and YR sensing two associated, as well as the sensitive axes XR and YR vertical and rotational sense (e.g., perpendicular to the substrate 508 ) acceleration sensing axis of an associated ZA. 传感器504被配置为提供两个相对于旋转轴XR和YR的角速度感测的指示以及一个相对于加速度轴ZA的加速度感测的指示。 Sensor 504 is configured to provide two directions with respect to the rotation axis of the angular velocity sensing XR and YR, and an acceleration of the shaft relative to the sensed acceleration ZA indication. 此外,圆形块507和509的每一个具有横向和纵向对称轴(没有标出),以及与其相关联的垂直于横轴和纵轴的旋转轴(例如分别为旋转轴582和584)。 In addition, each of the circular blocks 507 and 509 of the lateral and longitudinal vertical axis of symmetry (not shown), as well as having associated therewith in the horizontal and vertical axes of the rotating shaft (e.g., rotating shaft 582, respectively, and 584).

传感器504还包括沿各个圆形块507和509的纵轴和横轴安置的加速感测电极结构512-519。 Acceleration sensor 504 also includes a sensing electrode structure along the vertical and horizontal axes of each round blocks 507 and 509 of the placement 512-519. 具体而言,加速度感测电极结构512-513和516-517分别沿着圆形块507的纵轴和横轴彼此完全相对,以及加速度感测电极结构514-515和518-519分别沿着圆形块509的纵轴和横轴彼此完全相对。 Specifically, the acceleration sensing electrode structures 512-513 and 516-517, respectively, along the longitudinal axis of the circular block 507 and the horizontal axis is completely opposite to each other, as well as acceleration sensing electrode structures 514-515 and 518-519, respectively, along the circle full-block 509 relative to the longitudinal axis and the horizontal axis to each other. 加速度感测电极结构512-519的每一个包括在相应的圆形块的表面上安置的第一电极和在与第一电极相对的衬底508的表面上安置的第二电极,形成差分电容器,该差分电容器的电容值基于第一和第二电极之间的距离而增加/减小。 Each sense acceleration on the first electrode comprises a respective surface of the circular blocks placed measuring electrode structure 512-519 and a second electrode on the first electrode surface opposite to the substrate 508 arranged to form a differential capacitor, The differential capacitance value of the capacitor of the distance between the first and second electrodes based on the increase / decrease. 传感器504包括电路,该电路被配置来感测电容值的变化,并且提供电性上独立的加速度感测信号,这些加速度感测信号包括与分别相对于旋转轴XR、YR和加速度轴ZA的角速度感测和加速度感测有关的信息。 Sensor 504 includes a circuit, the circuit is configured to sense changes in the measured capacitance value, and providing an independent acceleration signal sensed electrically, these acceleration signals comprises sensing with respect to the rotation axis XR, YR angular velocity and acceleration axis ZA sensing and sense acceleration measurement related information. 例如,加速度感测电极结构512-519的第一和第二电极的每一个可以由多晶硅(“多晶硅”)、扩散区域、金属或者任何其它合适的材料制成。 For example, the acceleration sensing electrode configuration of each of the first and second electrodes 512-519 may be made of polycrystalline silicon ("polysilicon"), the diffusion region, made of metal or any other suitable material.

图6描述了传感器104(见图1)的详细平面图604。 Figure 6 depicts a sensor 104 (see FIG. 1) is a detailed plan view 604. 如图6所示,微机械多传感器604包括一对加速度计605-606。 As shown in Figure 6, the micro-mechanical multi-sensor 604 comprises a pair of accelerometers 605-606. 加速度计605-606分别包括基本上为圆形的块609和607,其中圆形块609和607通过多个弯曲结构固定到衬底608并且悬挂在衬底608的上方,衬底608例如为硅衬底。 Accelerometers 605-606 each include a substantially circular blocks 609 and 607, wherein the circular blocks 609 and 607 by a plurality of curved configuration and is fixed to the substrate 608 is suspended above a substrate 608, a silicon substrate 608, for example, substrate. 具体而言,固定和悬挂圆形块607的弯曲结构的每一个包括固定部分670和应力释放部件660,以及固定和悬挂圆形块609的每个弯曲结构包括固定部分672和应力释放部件662。 Specifically, each of 660, and the fixed block 609 and each of the suspension circular curved structure comprises a fixed portion 670 and a strain relief member is fixed to and suspended circular curved configuration of the block 607 comprises a fixed portion 672 and the strain relief member 662. 在所述例示性的实施例中,应力释放部件660和662在中心自由对折,以释放应力。 In the exemplary embodiment, stress relief means 660 and 662 in the center fold freedom to release stress. 因为这种结构可以引起恢复力和力矩的一些局部不对称,所以折叠部件660和662成对地安置,以维持平衡(见图6)。 Because this structure may cause some localized asymmetric restoring force and moment, so the folded parts 660 and 662 disposed in pairs, in order to maintain the balance (see FIG. 6).

传感器604还包括叉形部件610,以及加速度感测电极结构612-619。 Sensor 604 further comprises a fork-shaped member 610, and the acceleration sensing electrode structures 612-619. 叉形部件610被配置为耦合两个圆形块607和609,以允许所述块相对反相旋转移动,并且阻止所述块同相旋转移动,如现有技术中所知。 Fork member 610 is configured to couple two circular blocks 607 and 609, to permit rotational movement of the block relative to the inverting and noninverting preventing rotational movement of said block, as known in the art. 加速度感测电极结构612-619沿着各个圆形块607和609的纵轴和横轴安置。 Acceleration sensing electrode structures 612-619 along each circular block vertical and horizontal axes 607 and 609 are disposed.

应该注意的是,圆形块607和609、叉形部件610以及加速度感测电极结构612-619基本上分别等效于传感器504(见图5)的圆形块507和509、叉形部件510和加速度感测电极结构512-519。 It should be noted that the circular blocks 607 and 609, the fork member 610 and circular block acceleration sensing electrode structures 612-619 are substantially equivalent to sensor 504 (see FIG. 5) 507 and 509, the fork 510 and acceleration sensing electrode structures 512-519. 此外,如图6所述的旋转感测轴XR和YR和加速度感测轴ZA对应于参考图5描述的旋转感测轴XR和YR和加速度感测轴ZA。 Further, the rotation sensing axis XR and YR and acceleration sensing axis ZA of FIG. 6 corresponds to the sense of rotation with reference to FIG. 5 axes XR and YR and acceleration sensing axis ZA described.

如图6所示,传感器604包括多个驱动电极结构640和642,它们固定于衬底608上,并且被配置来反相可旋转地振动圆形块607和609,也就是,围绕其旋转轴以顺时针方向/逆时针方向交替地旋转一个块,而同时在相反的方向上围绕另一个块的旋转轴以基本上相同的量旋转该另一块。 Shown, sensor 604 in FIG. 6 includes a plurality of driving electrode structures 640 and 642, which is fixed on the substrate 608, and is configured to rotatably vibrating circular inverted blocks 607 and 609, i.e., about its rotation axis clockwise / counterclockwise rotation alternately in one block, while another block around the rotary shaft in opposite directions at substantially the same amount of rotation of the other one. 具体而言,驱动电极结构640被用来围绕旋转轴682可旋转地振动圆形块607,以及驱动电极结构642被用来围绕旋转轴684可旋转地振动圆形块609。 Specifically, the electrode structure 640 is used to drive the rotary shaft 682 rotatably around a vibrating circular blocks 607, 642 and a driving electrode structure is used around the rotary shaft 684 is rotatably vibration circular block 609. 在当前公开的实施例中,驱动电极结构640和642分别沿着圆形块607和609的径向轴安置。 In the embodiment disclosed in the present embodiment, the driving electrode structures 640 and 642 are respectively disposed along a radial axis circular blocks 607 and 609. 此外,每个驱动电极结构640和642包括多个电极(“指针”),它们分别与从圆形块607和609的至少一个径向边缘延伸的相应的多个指针互相交错。 In addition, each drive electrode structures 640 and 642 includes a plurality of electrodes ("Pointer"), respectively with a corresponding plurality of blocks of the at least one pointer from the circular radial edges 607 and 609 extending interwoven. 驱动电极结构640和642被耦合到用于产生驱动信号的信号源(没有示出),该驱动信号用于以振动的方式反相可旋转地振动块607和609,如方向箭头680所示。 Driving electrode structures 640 and 642 are coupled to a signal generating source (not shown) of the drive signal, the drive signals for a vibration manner inverting rotatably vibration blocks 607 and 609, as indicated by directional arrow 680 in FIG.

应该注意的是,圆形几何形状的主要目的在于提供枢轴和支杆,以将完全相对的块分段的非平行线性运动转换为适合与叉形部件耦合的运动。 It should be noted that the main purpose is to provide a circular geometry and pivot struts, diametrically opposed to the non-parallel linear motion block segment into a form suitable fork member coupled with the movement. 因而,在产生科里奥利力时的块分段的有用运动是主要的线性分量,而不是旋转分量。 Thus, in generating useful motion block segmentation of the Coriolis force is the main component of linear, rather than rotational component.

所述传感器604还包括多个速度感测电极结构650和652,该多个速度感测电极结构650和652固定于所述衬底608上且被配置来分别感测圆形块607和609的振动速度。 The sensor 604 further comprises a plurality of velocity sensing electrode structures 650 and 652, the plurality of velocity sensing electrode structures 650 and 652 fixed on the substrate 608 and is configured to sense the circular blocks 607 and 609, respectively, of vibration velocity. 在当前公开的实施例中,所述速度感测电极结构650和652分别沿着圆形块607和609的径向轴安置。 In the embodiment disclosed in the present embodiment, the speed sensing electrode structures 650 and 652 are respectively disposed along a radial axis circular blocks 607 and 609. 此外,所述速度感测电极结构650和652中的每个包括多个指针,该电极与分别从圆形块607和609的径向边缘延伸出去的相应的多个指针互相交错在一起。 Furthermore, the speed sensing electrode structures 650 and 652 each of which includes a plurality of pointers, the electrode with the corresponding plurality of pointers, respectively, extend radially from the edge of the circular blocks 607 and 609 are interleaved with each other out. 所述速度感测电极结构650和652的所述互相交错的指针形成差分电容器,该电容器的电容值基于所述圆形块607和609是否沿顺时针或逆时针旋转而增加/减少。 Sensing the speed of said electrode structures 650 and 652 are formed of interwoven pointer differential capacitor, the capacitance value of the capacitor based on the circular blocks 607 and 609 is rotating clockwise or counterclockwise direction to increase / decrease. 所述传感器604包括电路(未示出),该电路被配置来感测电容值中的变化,以及基于所述改变的电容值提供指示圆形块607和609的振动速度的速度感测。 The sensor 604 includes a circuit (not shown), the circuit is configured to sense a change in capacitance value, and provide an indication of the speed sensing vibrations circular blocks 607 and 609 speed based on the change in capacitance value.

本领域中的普通技术人员应该明白的是,由于圆形块607和609分别绕着所述旋转轴682和684振动,而所述传感器604绕着圆形块607和609的径向轴(未标识)旋转,所以所述圆形块607和609经历了科里奥利加速度。 The skilled in the art understand that, due to the circular blocks 607 and 609, respectively, about the rotary shaft 682 and 684 of the vibration, and the sensor 604 about a radial axis of the circular blocks 607 and 609 (not logo) rotation, so the circular blocks 607 and 609 through the Coriolis acceleration. 此外,由于所述圆形块607和609反相振动,所以所述科里奥利加速度被按照相反的方向施加到各个圆形块上。 Further, since the circular blocks 607 and 609 inverted vibration, so the Coriolis acceleration is applied in the opposite direction to the respective circular blocks. 结果是,视在的科里奥利力被施加到圆形块607和609上,并且相对于所述衬底608,按照相反的方向偏转所述圆形块607和609。 As a result, depending on the Coriolis force is applied to the circular blocks 607 and 609, and with respect to the substrate 608, the opposite direction to the deflection of the circular blocks 607 and 609.

例如,在图6中使用符号“+”和“-”来表示由于所施加的科里奥利力造成的圆形块607和609的偏转的相对方向。 For example, using the symbols in Fig. 6, "+" and "-" to indicate the relative direction of the deflection due to Coriolis forces caused by the applied circular blocks 607 and 609. 如图6中所示,圆形块607的加速度感测电极结构612-613和616-617分别被标识为-,+,-和+;圆形块609的加速度感测电极结构614-615和618-619分别被标识为+,-,+和-;以指示所述施加的科里奥利力相对于所述衬底608按照相反的方向偏转所述圆形块607和609的这些相应区域。 As shown in Figure 6, the circular structure of the block acceleration sensing electrodes 612-613 and 616-617, respectively, 607 is identified as -, +, - and +; acceleration sensing electrode structure and circular block 609 614-615 618-619 were identified as +, -, + and -; to indicate that the Coriolis force and applied to the substrate 608 in the opposite direction of the deflection of the corresponding region of these blocks 607 and 609 of circular .

应该注意的是,分别利用相反的符号-和+来标识圆形块607的沿着纵轴的加速度感测电极结构612-613以及沿着横轴的加速度感测电极结构616-617。 It should be noted that the use of an opposite sign, respectively - and + circular block to identify the sensing acceleration along the longitudinal axis of the electrode structures 612-613 and 607 of the acceleration along the horizontal axis of the sensing electrode structures 616-617. 同样,分别利用相反的符号+和-来标识圆形块609的沿着纵轴的加速度感测电极结构614-615以及沿着横轴的加速度感测电极结构618-619。 Similarly, the use of an opposite sign respectively + and - to identify a circular block 609 along the longitudinal axis of the acceleration structure of the sensing electrodes 614-615 and the acceleration along the horizontal axis of the sensing electrode structures 618-619. 这是因为,在所述公开的实施例中,所述圆形块607和609是刚性结构,其被配置来响应于所述施加的科里奥利力来相对于所述衬底608倾斜。 This is because, in the disclosed embodiment, the circular blocks 607 and 609 is a rigid structure, which is configured to respond to the Coriolis force is applied to the substrate 608 is inclined with respect to the.

而且,由于所述施加的科里奥利力按照相反的方向偏转所述圆形块607和609,所述圆形块607和609对相对于旋转轴XR和YR的科里奥利加速度的响应是反相的,而所述圆形块607和609对相对于加速度轴ZA的线形加速度的响应是同相的。 Moreover, due to the Coriolis force applied in the opposite direction of the circular deflection block 607 and 609, 607 and 609 pairs with respect to the rotation axis XR and YR Coriolis acceleration in response to said circular block is inverted, and the circular blocks 607 and 609 pairs of acceleration with respect to the shaft in response to linear acceleration ZA are in phase. 因此,经由所述加速度感测电极结构612-619提供的电性上独立的感测信号可以被相加和/或相减来从所述感测信号提取与所述线性加速度对应的信息(也就是,加速度感测信息),以及从所述感测信号中提取与所述科里奥利加速度对应的信息(也就是,所述角速度感测信息)。 Thus, independent of the sensed acceleration signal is provided via the sensing electrode structures 612-619 may be summed on the electrically and / or subtracted to the sensed signal to extract the information from the corresponding linear acceleration (also That is, the acceleration sensing information), and extracts the information corresponding to the Coriolis acceleration (i.e., from the sense signal, the angular velocity sensing information).

图7描述了加速度感测信号处理电路700的例示实施例,该信号处理电路被配置来从加速度感测电极结构612-619(见图6)提供的加速度感测信号中提取所述加速度感测信息和所述角速度感测信息。 Figure 7 depicts the acceleration sensed signal processing circuit 700 illustrated embodiment, the signal processing circuitry is configured to the acceleration sensing signal from the acceleration sensing electrode structures 612-619 (see FIG. 6) provided to extract the acceleration sensing information and the angular velocity sensing information. 例如,所述信号处理电路700可以在与传感器604相同的一个衬底上实现。 For example, the signal processing circuit 700 may be implemented on the sensor 604 with the same one substrate. 在所述例示的实施例中,所述感测信号处理电路700包括多个求和放大器702-706以及多个差分放大器708-709,其用于相加/相减所述加速度感测电极结构612-619感测的加速度,以提取所述加速度感测信息和所述角速度感测信息。 In the illustrated embodiment, the sensed signal processing circuit 700 includes a plurality of summing amplifiers 702-706 and a plurality of differential amplifiers 708-709, for adding / subtracting the acceleration sensing electrode structure 612-619 sensed acceleration, to extract the acceleration sensing information and the angular velocity sensing information.

具体而言,所述加速度感测电极结构612-613感测的加速度包括相对于加速度轴ZA的线形分量Az和相对于所述旋转轴YR的时变旋转分量ay(w),而所述加速度感测电极结构614-615感测的加速度包括相对于加速度轴ZA的线形分量Bz和相对于所述旋转轴YR的时变旋转分量by(w)。 Specifically, the structure of the sensing electrodes 612-613 acceleration sensed acceleration comprises a linear component with respect to the axis ZA and acceleration Az with respect to the rotation axis YR becomes rotational component ay (w), and the acceleration 614-615 sensing structure comprises an acceleration sensing electrodes with respect to the axis ZA linear acceleration component Bz and the rotation axis YR when the change with respect to the rotational component by (w). 应该注意的是,所述旋转分量ay(w)和by(w)按照角速度振动频率w改变,并且与绕着与所述振动速度矢量垂直的径向轴旋转的速度成正比。 It should be noted that the rotational component ay (w) and by (w) according to the angular velocity of the vibration frequency w change, and is proportional to the vibration velocity vector about the vertical axis of rotation of the radial velocity. 由于圆形块607和609的振动速度相反,并且加速度感测电极结构612-613感测的加速度分别为Az+ay(w)和Az-ay(w),而加速度感测电极结构614-615感测的加速度分别为Bz+by(w)和Bz-by(w)。 Since the circular blocks 607 and 609 of the vibration velocity contrast, the sensing electrode and the acceleration sensed acceleration structures 612-613, respectively Az + ay (w) and Az-ay (w), and the acceleration sensing electrode structures 614-615 sensed accelerations respectively Bz + by (w) and Bz-by (w). 同样,加速度感测电极结构616-617感测的加速度分别为Az+ax(w)和Az-ax(w);而加速度感测电极结构618-619感测的加速度分别为Bz+bx(w)和Bz-bx(w)。 Similarly, the acceleration sensing electrode structures 616-617 are sensed acceleration Az + ax (w) and Az-ax (w); and the acceleration sensing electrode structures 618-619 are sensed accelerations Bz + bx (w ) and Bz-bx (w).

如上所述,所述圆形块607和609(见图6)对相对于旋转轴XR和YR的科里奥利加速度的响应是反相的,而所述圆形块607和609对相对于加速度轴ZA的线性加速度的响应是同相的。 As described above, the circular blocks 607 and 609 (see FIG. 6) with respect to the rotation axis of XR and YR Coriolis acceleration response is inverted, and the circular blocks 607 and 609 pairs with respect to the in response to the acceleration axis ZA of the linear acceleration are in phase. 因此,所述圆形块607和609(见图6)对由加速度ay(w)和-ay(w),by(w)和-by(w),ax(w)和-ax(w),bx(w)和-bx(w)表示的相对于旋转轴XR和YR的科里奥利加速度的响应是反相的,而所述圆形块607和609对由加速度Az和Bz表示的相对于加速度轴ZA的线性加速度的响应是同相的。 Thus, the circular blocks 607 and 609 (see FIG. 6) of the acceleration ay (w) and -ay (w), by (w) and -by (w), ax (w) and -ax (w) , bx (w) and -bx (w) expressed with respect to the rotation axis in response to the Coriolis acceleration of XR and YR are inverted, and the circular block by the 607 and 609 pairs of acceleration Az and Bz represents ZA acceleration axis with respect to the response of linear acceleration are in phase.

如图7中所示,表示由电极结构616和618感测的加速度Az+ax(w)和Bz+bx(w)的信号被分别施加于所述求和放大器702,该求和放大器702被配置为相加这些加速度。 Shown in Figure 7, is represented by the electrode structure 616 and 618 sensed acceleration Az + ax (w) and Bz + bx (w) signals are respectively applied to the summing amplifier 702, the summing amplifier 702 is configured as the sum of these accelerations. 同样,表示由电极结构617和619感测的加速度Az-ax(w)和Bz-bx(w)的信号被分别施加于所述求和放大器703,该求和放大器703被配置为相加这些加速度。 Likewise, electrode structure 617 and 619 represents the sensed acceleration Az-ax (w) and Bz-bx (w) are respectively the signals applied to the summing amplifier 703, the summing amplifier 703 is configured to sum these acceleration. 接着,所述求和放大器702-703将所述在其各自的输出端得到的信号施加给差分放大器708,所述放大器708将向其提供的各个信号和相减,并且产生指示相对于旋转轴XR的角速度感测的信号2ax(w)+2bx(w)(“X-角速度”)。 Next, the summing amplifier 702-703 applying the signal at its respective output terminals to the differential amplifier 708 obtained, the amplifier 708 will provide the respective signals thereto and subtraction, and generates an indication with respect to the rotation axis the angular velocity sensing signal XR of 2ax (w) + 2bx (w) ("X- angular velocity").

此外,表示电极结构612和614感测的加速度Az+ay(w)和Bz+by(w)的信号被分别施加给求和放大器704,该求和放大器704被配置为相加这些加速度。 Furthermore, an electrode structure 612 and acceleration Az + ay (w) and Bz + by (w) of the signal 614 is sensed are applied to the summing amplifier 704, the summing amplifier 704 is configured to sum these accelerometers. 表示由电极结构613和615感测的加速度Az-ay(w)和Bz-by(w)的信号被分别施加于所述求和放大器705,该求和放大器705被配置为相加这些加速度。 Is represented by the electrode structure 613 and 615 sensed acceleration Az-ay (w) and Bz-by (w) signals are respectively applied to the summing amplifier 705, the summing amplifier 705 is configured to sum these accelerometers. 接着,所述求和放大器704-705将所述在其各自的输出端得到的信号施加给差分放大器709所述放大器709将向其提供的各个信号和相减,并且产生指示相对于旋转轴YR的角速度感测的信号2ay(w)+2by(w)(“Y-角速度”)。 Next, the summing amplifier 704-705 to the signal obtained at the output of its respective differential amplifier is applied to the amplifier 709 to 709 of each signal supplied thereto and subtraction, and generates an indication with respect to the rotation axis YR The angular velocity sensing signal 2ay (w) + 2by (w) ("Y- angular velocity").

而且,所述求和放大器702-705将其各自的信号输出上得到的信号提供给所述求和放大器706,该求和放大器706被配置来相加这些信号来抵消所述旋转分量ax(w)、bx(w)、ay(w)和by(w),留下指示相对于加速度轴Z的加速度感测的线形分量4Az+4Bz(“Z-加速度”)。 Moreover, the summing amplifier 702-705 signal obtained on the output of its respective signal supplied to the summing amplifier 706, the summing amplifier 706 is configured to sum these signals to counteract the rotational component ax (w ), bx (w), ay (w) and by (w), leaving directions with respect to the linear component of the acceleration sensed by the acceleration axis Z 4Az + 4Bz ("Z- acceleration").

图8描述了根据本发明的传感器104(见图1)的第二例示实施例804。 Figure 8 depicts a sensor 104 of the present invention (see FIG. 1) of a second exemplary embodiment 804. 在所述例示的实施例中,所述传感器804包括加速度计801、802、891和892,其被安置为形成一个方阵。 In the illustrated embodiment, the sensor 804 includes accelerometers 801,802,891 and 892, which are arranged to form a square. 所述加速度计801、802、891和892分别包括块803、805、807和809,每个块基本上为正方形。 The accelerometer 801,802,891 and 803,805,807 and 892, respectively, including the block 809, each block is essentially square. 然而,应该理解的是,可选择地,所述块803、805、807和809可以是基本上为圆形、六边形、八边形或任何其他合适的几何形状。 However, it should be understood that, alternatively, the blocks 803,805,807 and 809 may be substantially circular, hexagonal, octagonal, or any other suitable geometry.

利用多个弯曲部分(未示出)将所述正方形块803、805、807和809悬挂在衬底808上方且固定在所述衬底808上。 Using a plurality of curved portions (not shown) of the square blocks 803,805,807 and 809 and is suspended over the substrate 808 is fixed on the substrate 808. 所述传感器804还包括耦合邻近块803和805的叉形部件810、耦合邻近块803和807的叉形部件812,耦合邻近块807和809的叉形部件814,以及耦合邻近块805和809的叉形部件816。 The sensor 804 also includes a fork coupling neighboring blocks 803 and 805 810, coupling fork neighboring blocks 803 and 807 812, coupling fork neighboring blocks 807 and 809 814, and the coupling of neighboring blocks 805 and 809 816 fork. 所述叉形部件810、812、814和816被配置来耦合所述块803、805、807和809,以允许所述邻近块绕旋转轴852、854、856和858相对反相地旋转移动,并且阻止所述邻近块绕旋转轴852、854、856和858同相旋转移动。 The fork-shaped member 810, 812 and 816 are configured to couple the blocks 803,805,807 and 809, to allow the neighboring block around a rotational axis 852,854,856 and 858 inverted relative to the rotational movement, and prevent said neighboring blocks around a rotational axis 852,854,856 and 858 move with phase rotation.

类似于所述传感器604的衬底608(见图6),所述传感器804的所述衬底808(见图8)包括硅衬底,或任何其他合适类型的衬底。 Similar to the sensor 604 of the substrate 608 (see FIG. 6), the sensor 804 of the substrate 808 (see FIG. 8) includes a silicon substrate, or any other suitable type of substrate. 此外,使衬底808经受任何合适的体微机械处理来形成微机电系统(MEMS)多传感器设备。 In addition, the substrate 808 is subjected to any suitable bulk micromachining processing to form a micro-electromechanical systems (MEMS) multi-sensor device.

如图8中所示,传感器804在衬底808的平面上具有两个关联的相互正交的旋转感测轴XR和YR,以及与所述旋转轴XR和YR垂直的一个关联的加速度感测轴ZA。 Sensing the acceleration shown in Figure 8, sensor 804 has two associated plane of the substrate 808 on mutually orthogonal axes XR and rotation sensing YR, and an association with the rotation axis perpendicular to the XR and YR axis ZA. 类似于所述传感器604(见图6),所述传感器804提供两个相对于旋转轴XR和YR的角速度感测的指示,以及一个相对于所述加速度轴ZA的加速度感测的指示。 Similar to the sensor 604 (see FIG. 6), the sensor 804 provides two with respect to the rotation axis XR and YR indicating the sensed angular velocity and acceleration relative to the acceleration axis ZA sensed indication.

所述传感器804还包括加速度感测电极结构818-821、826-829和822-825、830-833,所述加速度感测电极结构818-821、826-829和822-825、830-833沿着所述块803、805、807和809的所述纵轴和横轴彼此完全相对地安置。 The acceleration sensor 804 further comprises a sensing electrode structure 818-821,826-829 and 822-825,830-833, said acceleration sensing along electrode structure 818-821,826-829 and 822-825,830-833 completely positioned relative to the longitudinal axis of the block 803,805,807 and 809, and the horizontal axis to each other. 所述加速度感测电极结构818-833中的每个包括安置在各个块的表面上的第一电极,以及安置在与第一电极相对的衬底808的表面上的第二电极,由此形成其电容值基于第一和第二电极之间的距离而增加/减少的差分电容器。 The acceleration sensing electrodes 818-833 each of which includes structure disposed on a surface of the respective blocks of the first electrode and a second electrode disposed on a surface of the substrate opposite to the first electrode 808, thereby forming the capacitance value of the distance between the first and second electrodes based on the increase / decrease of the differential capacitor. 该电容值被用来提供电性上独立的加速度感测信号,该加速度感测信号包括与分别相对于旋转轴XR、YR和加速度轴ZA的角速度感测和加速度感测有关的信息。 This capacitance value is used to provide an independent acceleration signal sensed electrically on, the acceleration sensing signal includes information with respect to the angular velocity about the acceleration sensing and rotation sensing axis XR, YR and the acceleration axis ZA.

例如,所述加速度感测电极结构818-819、820-821、826-827和828-829分别被使用来提供加速度Az+ay(w)和Az-ay(w)、Bz+by(w)和Bz-by(w),Cz+cy(w)和Cz-cy(w),以及Dz+dy(w)和Dz-dy(w)的指示,其中,Az、Bz、Cz和Dz是相对于加速度轴ZA的线性加速度分量,而ay(w)、by(w)、cy(w)和dy(w)是相对于所述旋转轴YR的时变旋转加速度分量。 For example, the acceleration sensing electrode structure 818-819,820-821,826-827 and 828-829, respectively, are used to provide the acceleration Az + ay (w) and Az-ay (w), Bz + by (w) and Bz-by (w), Cz + cy (w), and Cz-cy (w), and Dz + dy (w) and Dz-dy (w) of the directions, wherein, Az, Bz, Cz, and Dz are relatively linear acceleration component of an acceleration axis ZA, and ay (w), by (w), cy (w) and dy (w) is the rotation axis YR of change with respect to the rotational acceleration component. 此外,所述加速度感测电极结构822-823、830-831、824-825和832-833分别被使用来提供加速度Az+ax(w)和Az-ax(w)、Bz+bx(w)和Bz-bx(w),Cz+cx(w)和Cz-cx(w),以及Dz+dx(w)和Dz-dx(w),其中,ax(w)、bx(w)、cx(w)和dx(w)是相对于所述旋转轴XR的时变旋转加速度分量。 Moreover, said acceleration sensing electrode structure 822-823,830-831,824-825 and 832-833, respectively, are used to provide the acceleration Az + ax (w) and Az-ax (w), Bz + bx (w) and Bz-bx (w), Cz + cx (w) and Cz-cx (w), and Dz + dx (w) and Dz-dx (w), which, ax (w), bx (w), cx (w) and dx (w) is the rotation axis with respect to change of rotation XR acceleration component. 通过合适地相减各个加速度,所述线形分量抵消,留下包括与相对于所述旋转轴XR和YR的角速度感测有关的信息的旋转分量。 By suitably subtracting each acceleration, the linear components cancel out, leaving including relative to the rotation axis of the rotating component of the angular velocity sensing information on XR and YR of. 而且,通过合适地相加各个加速度,所述旋转分量抵消,留下包括与相对于所述加速度轴ZA的加速度感测有关的信息的线形分量。 Further, by appropriately adding respective accelerations, the rotational component offset, leaving including information with respect to an acceleration of the acceleration sensing axes ZA of the linear component.

图9描述了微机械多传感器804(见图8)的详细平面视图904。 Figure 9 depicts a multi-micro-mechanical sensor 804 (see FIG. 8) a detailed plan view 904. 如图9所示,传感器904包括加速度计901、902、991和992。 As shown in Figure 9, the sensor 904 includes accelerometers 901,902,991 and 992. 加速度计901、902、991和992分别包括基本上为正方形的块903、905、907和909,利用多个弯曲部分将该正方形块903、905、907和909固定于衬底908上,并且悬挂在所述衬底908上方。 Accelerometers 901,902,991 and 992 respectively include substantially square blocks 903,905,907 and 909, the use of a plurality of curved portions square blocks 903,905,907 and 909 fixed on the substrate 908, and the suspension 908 over the substrate. 具体而言,固定所述块903并且悬挂所述块903的多个弯曲部分中的每个包括固定部分(比如固定部分970)和应力释放部件(比如应力释放部件960),固定所述块905并且悬挂所述块905的多个弯曲部分中的每个包括固定部分(比如固定部分972)和应力释放部件(比如应力释放部件962)。 Specifically, the fixed block 903 and the suspension of the curved portion 903 of the plurality of blocks each of which includes a fixed portion (such as the fixed portion 970) and a strain relief member (such as stress relief member 960), the block 905 is fixed and the suspension of the curved portion 905 of the plurality of blocks each of which includes a fixed portion (such as the fixed portion 972) and the strain relief member (such as stress relief member 962). 固定所述块907并且悬挂所述块907的多个弯曲部分中的每个包括固定部分(比如固定部分974)和应力释放部件(比如应力释放部件964)。 Fixed block 907 and the suspension of the curved portion 907 of the plurality of blocks each of which includes a fixed portion (such as the fixed portion 974) and the strain relief member (such as stress relief member 964). 固定所述块909并且悬挂所述块909的多个弯曲部分中的每个包括固定部分(比如固定部分976)和应力释放部件(比如应力释放部件966)。 Fixed block 909 and the suspension of the curved portion 909 of the plurality of blocks each of which includes a fixed portion (such as the fixed portion 976) and the strain relief member (such as stress relief member 966). 应该注意的是,所述固定/压力释放部件对沿着各个块903、905、907和909的纵轴和横轴安置。 It should be noted that the fixed / pressure releasing member disposed along a longitudinal and transverse axes 903,905,907 and 909 of the respective blocks. 所述传感器904还包括叉形部件910、912、914和916。 The sensor 904 also includes a fork 910,912,914 and 916. 该叉形部件910、912、914和916被配置来耦合所述邻近块,以允许所述块相对地反相旋转移动,并且阻止所述块同相旋转移动,如同现有技术中所述。 The fork member 910,912,914 and 916 are configured to couple the adjacent block to allow the block is relatively inverted rotational movement, and prevent rotational movement of the block in phase, as in the prior art.

应该注意的是,所述块903、905、907和909以及叉形部件910、912、914和916分别基本上等同于传感器804(见图8)的块803、805、807和809以及叉形部件810、812、814和816。 It should be noted that the blocks 903,905,907 and 910,912,914 and 909 and the fork member 916 are substantially identical to the sensor 804 (see FIG. 8) of the blocks 803,805,807 and 809 as well as fork Parts 810, 812 and 816. 此外,如图9所述的旋转感测轴XR和YR以及加速度轴ZA对应于参考图8在上面描述的旋转感测轴XR和YR以及加速度感测轴ZA。 Further, the rotation sensing axis XR and YR, and the acceleration of the shaft ZA 9 corresponds to FIG sense of rotation with reference to FIG axis XR and YR, and the acceleration sensing axis ZA 8 described above.

所述传感器904(见图9)包括多个驱动电极结构940、942、944和946,该多个驱动电极结构940、942、944和946固定于衬底908上,且被配置为分别可旋转地振动所述块903、905、907和909,使得邻近块反相振动。 The sensor 904 (see FIG. 9) includes a plurality of driving electrode structures 940,942,944 and 946, the plurality of driving electrode structures 940,942,944 and 946 fixed on the substrate 908, and is configured to be rotatable, respectively vibrating the block 903,905,907 and 909, making the neighboring block inverted vibration. 驱动电极结构940、942、944和946中的每个包括多个指针,该指针沿着所述块的径向安置,且与从所述块的至少一个径向边缘延伸出去的相应多个指针互相交错在一起。 Driving electrode structure 940,942,944 and 946 each of which includes a plurality of pointer that radially disposed along the block, and with at least one radial edge of said block extending away from a respective plurality of pointers interwoven together. 在优选实施例中,所述驱动电极结构940、942、944和946分别被对角地安置在所述块903、905、907和909上。 In a preferred embodiment, the drive electrode structures 940,942,944 and 946 are respectively diagonally arranged on the blocks 903,905,907 and 909.

所述传感器904还包括多个速度感测电极结构950、952、954和956,该多个速度感测电极结构950、952、954和956固定于所述衬底908上且被配置来分别感测块903、905、907和909的振动速度。 The sensor 904 further comprises a plurality of velocity sensing electrode structures 950, 952 and 956, the plurality of velocity sensing electrode structures 950, 952 and 956 fixed on the substrate 908 and is configured to sense, respectively, vibration velocity measurement block 903,905,907 and 909. 类似于驱动电极结构940、942、944和946,速度感测电极结构950、952、954和956中的每个包括沿着所述块的径向轴安置的多个指针,该指针与从所述块的至少一个径向边缘延伸出去的相应多个指针互相交错在一起。 Structure similar to the driving electrodes 940,942,944 and 946, the speed of the sensing electrode structures 950, 952 and 956 each of which includes a plurality of pointers along a radial axis of said blocks disposed of, and the pointer from the at least one of the plurality of pointers corresponding radial edge extending out of said block of interleaved with each other. 在所述例示的实施例中,所述速度感测电极结构950、952、954和956分别沿着块903、905、907和909的横轴安置。 In the illustrated embodiment, the velocity sensing electrode structures 950, 952 and 956 are disposed along the horizontal axis blocks 903,905,907 and 909. 应该注意的是,在所述传感器904绕所述块的径向轴(未标识)旋转时,在图9中使用符号“+”和“-”来指示由于给其施加的科里奥利力造成的振动块903、905、907和909的偏转的相对方向。 It should be noted that (not identified) is rotated, using the symbols in Fig. 9, a radial axis 904 of the sensor block around the "+" and "-" to indicate that due to the Coriolis force is applied to its deflection 903,905,907 and 909 relative to the direction of the vibration caused by the block.

应该明白的是,所述加速度计901、902、991和992以及叉形部件910、912、914和916被按照镜像方式安置在所述传感器904的对称的横轴的每侧上以及对称的纵轴的每侧上。 It should be understood that the accelerometers 901,902,991 and 910,912,914 and 916 and 992 are disposed in mirror-image fashion in accordance with each side of the horizontal axis of symmetry of the sensor 904 and the longitudinal symmetrical fork on each side of the shaft. 因此,所述传感器904可以对称地将中心定位于所述模片(未示出)上,以减少模片表面区域变形以及梯度对所述传感器的性能造成的不利影响。 Thus, the sensor 904 may be symmetrically positioned in the center of the die (not shown), to reduce the adverse effects of deformation of the surface area of the die and the gradient of the performance of the sensor caused.

参考图10来描述当前公开的包括传感器604(见图6)的多传感器子结构105(见图1)的操作方法。 10 will be described with reference to FIG present disclosure includes a sensor 604 (see FIG. 6) of the multi-sensor sub-structures 105 (see FIG. 1) of the method of operation. 如步骤1002中所述,所述块607和609分别绕着所述转动轴682、684反相可旋转地振动,而所述传感器604经历线性/旋转运动。 As described in step 1002, the block 607 and 609, respectively, about the rotational shaft rotatably 682,684 inverting vibration, while the sensor 604 undergo the linear / rotational movement. 应该理解的是,所述旋转轴XR和YR处于所述传感器衬底608的平面中,并且线性加速度轴ZA垂直于所述旋转轴。 It should be understood that the rotation axis XR and YR in the plane of the sensor substrate 608, and the linear acceleration axis perpendicular to said rotation axis ZA. 接着,如步骤1004中所述,将分别由加速度感测电极结构612-613产生的加速度感测信号Az+ay(w)和Az-ay(w)相减,以产生所述感测信号之差2ay(w),同样,如步骤1004中所述,将分别由加速度感测电极结构614-615产生的加速度感测信号Bz+by(w)和Bz-by(w)相减,以产生所述感测信号之差2by(w)。 Next, the acceleration sensing signal Az as described in step 1004, the acceleration sensed by the respective electrode structures 612-613 produced + ay (w) and Az-ay (w) are subtracted to generate the sensing signals difference 2ay (w), the same as described in step 1004, the acceleration sensed by the respective electrode structures 614-615 to produce an acceleration sensing signal Bz + by (w) and Bz-by (w) are subtracted to produce The sense of difference between measured signals 2by (w). 随后,如步骤1006中所示,将信号2ay(w)和2by(w)相加,以产生信号和2ay(w)+2by(w),该信号和包括与相对于旋转轴YR的角速度感测有关的信息(Y-角速度)。 Subsequently, as shown in step 1006, the signal 2ay (w) and 2by (w) are added, to produce a signal and 2ay (w) + 2by (w), the angular velocity signal and comprises the phase sense of the rotation axis YR measuring the relevant information (Y- angular velocity). 接着,如步骤1008中所述,将分别由加速度感测电极结构616-617产生的加速度感测信号Az+ax(w)和Az-ax(w)相减,以产生所述感测信号之差2ax(w),同样,如步骤1008中所述,将分别由加速度感测电极结构618-619产生的加速度感测信号Bz+bx(w)和Bz-bx(w)相减,以产生所述感测信号之差2bx(w)。 Next, the acceleration sensing signal as described in step 1008, the acceleration sensed by the respective electrode structures 616-617 generated Az + ax (w) and Az-ax (w) are subtracted to generate the sensing signals acceleration sensing signal Bz + bx (w) and Bz-bx (w) subtracting the difference 2ax (w), the same as described in step 1008, the acceleration sensed by the respective electrode structures 618-619 generated, to produce The sense of difference between measured signals 2bx (w). 随后,如步骤1010中所示,将信号2ax(w)和2bx(w)相加,以产生信号和2ax(w)+2bx(w),该信号和包括与相对于旋转轴x的角速度感测有关的信息(X-角速度)。 Subsequently, as shown in step 1010, the signal 2ax (w) and 2bx (w) are added, to produce a signal and 2ax (w) + 2bx (w), the angular velocity signal and includes a phase sense with respect to the rotation axis x measuring the relevant information (X- angular velocity). 最后,如步骤1012中所述,将信号Az+ay(w)、Az-ay(w)、Bz+by(w)、Bz-by(w)、Az+ax(w)、Az-ax(w)、Bz+bx(w)、Bz-bx(w)相加,以产生和4Az+4Bz,该和包括与相对于加速度轴Z的加速度感测有关的信息(Z-加速度)。 Finally, as described in step 1012, the signal Az + ay (w), Az-ay (w), Bz + by (w), Bz-by (w), Az + ax (w), Az-ax ( w), Bz + bx (w), Bz-bx (w) are added, to produce and 4Az + 4Bz, including with respect to the acceleration, and the sensed information related to the acceleration axis Z (Z- acceleration).

如上所述,传感器201(见图2)和传感器904(见图9)可以对称地将中心定位于不同模片(未示出)上,以减小模片表面变形和梯度对传感器性能的不利影响。 As described above, the sensor 201 (see FIG. 2) and sensor 904 (see FIG. 9) can be symmetrically located in the center of a different die (not shown), to reduce the die surface deformation and the performance of the negative gradient of the sensor affected. 应该明白的是,由于传感器201和传感器904可以在六自由度的微机械多传感器设备100(见图)内的不同衬底上实现,所以可以增加产量,并且减少传感器之间的陀螺干扰。 It should be understood that, since the sensor 201 and sensor 904 can be on different substrates six degrees of freedom of the micro-mechanical multi-sensor device 100 (see figure) in the realization, so it can increase production and reduce interference gyro sensor.

本领域普通技术人员还应该明白的是,可以对六自由度的微机械多传感器进行修改和变化。 The skilled in the art should also be aware that it is possible for more than six degrees of freedom of the micromechanical sensor modifications and changes. 例如,参考图1描述,衬底102和108可以是共平面的,且X和Y轴位于衬底102和108的平面内。 For example, described with reference to FIG. 1, the substrate 102 and 108 may be coplanar, and the X and Y axes 102 and 108 located within the substrate plane. 还可以合并衬底102和108,使得与此对应的各个传感器具有对称四边形。 You can also merge substrate 102 and 108, so that each sensor and this corresponds to a symmetrical quadrilateral. 更为具体地,传感器201(见图2)和传感器904(见图9)可以位于截开模片的轴上,使得表面应力效应消除,即使没有以传感器结构为中心。 More specifically, the sensor 201 (see FIG. 2) and sensor 904 (see FIG. 9) may be located in the shaft of the die cut opening, so that the surface stress effect to eliminate, even if not to the center of the sensor structure. 而且,应力隔离器(未示出)可以被合适地配置来减弱对称性要求。 Moreover, the stress isolator (not shown) may be suitably configured to weaken the symmetry requirements. 在不背离这里公开的本发明的原理的情况下,可以对上述多传感器进行进一步的修改和变化。 Under the principles disclosed herein without departing from the present invention may be made to the above-described multi-sensor further modifications and variations. 因此,本发明应该被认为仅由所附权利要求的范围和精神所限定。 Accordingly, the present invention should be considered only by the scope and spirit of the appended claims as defined.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN100449316C13 Aug 20067 Jan 2009重庆大学Arrangement structure of sensing elements of six-axle acceleration transducer
CN102180435A *15 Mar 201114 Sep 2011迈尔森电子(天津)有限公司Integrated micro electro-mechanical system (MEMS) device and forming method thereof
CN102180435B15 Mar 201110 Oct 2012迈尔森电子(天津)有限公司Integrated micro electro-mechanical system (MEMS) device and forming method thereof
CN102183677A *15 Mar 201114 Sep 2011迈尔森电子(天津)有限公司Integrated inertial sensor and pressure sensor and forming method thereof
CN102334010A *11 Feb 201025 Jan 2012感应动力股份公司Mems gyroscope for detecting rotational motions about an x-, y-, and/or z-axis
CN102334010B *11 Feb 201011 Mar 2015玛克西姆综合公司MEMS gyroscope for detecting rotational motions about an x-, y-, and/or z-axis
CN102498365A *27 Jul 201013 Jun 2012模拟设备公司Inertial sensors with reduced sensitivity to quadrature errors and micromachining inaccuracies
CN102498365B *27 Jul 20106 Jan 2016美国亚德诺半导体公司对于正交误差和微机械加工不准确性具有降低的敏感性的惯性传感器
CN103221779A *18 Sep 201124 Jul 2013快捷半导体公司Micromachined monolithic 6-xis inertial sensor
CN103221779B *18 Sep 201131 May 2017快捷半导体公司微机械整体式六轴惯性传感器
CN103900546A *28 Dec 20122 Jul 2014微机电科技香港有限公司Micro-electromechanical six-axis inertial sensor
CN103900546B *28 Dec 20123 Aug 2016上海矽睿科技有限公司一种微机电六轴惯性传感器
CN104344838A *8 Nov 201411 Feb 2015安徽北方芯动联科微系统技术有限公司Property testing device and testing method thereof for six-axis MEMS (micro-electromechanical system) movement sensor
CN104344838B *8 Nov 20141 Feb 2017安徽北方芯动联科微系统技术有限公司六轴mems运动传感器的性能测试装置及其测试方法
CN104807454A *29 Apr 201529 Jul 2015东南大学Monolithic integrated six-degree-of-freedom micro-inertial measurement unit and processing method thereof
CN104807454B *29 Apr 201518 Jul 2017东南大学一种单片集成六自由度微惯性测量单元及其加工方法
US878941611 Feb 201029 Jul 2014Maxim Integrated Products, Inc.MEMS gyroscope for detecting rotational motions about an X-, Y-, and/or Z-axis
US915667318 Sep 201113 Oct 2015Fairchild Semiconductor CorporationPackaging to reduce stress on microelectromechanical systems
US924601818 Sep 201126 Jan 2016Fairchild Semiconductor CorporationMicromachined monolithic 3-axis gyroscope with single drive
US927884531 Jan 20138 Mar 2016Fairchild Semiconductor CorporationMEMS multi-axis gyroscope Z-axis electrode structure
US927884618 Sep 20118 Mar 2016Fairchild Semiconductor CorporationMicromachined monolithic 6-axis inertial sensor
US935296116 Sep 201131 May 2016Fairchild Semiconductor CorporationFlexure bearing to reduce quadrature for resonating micromachined devices
US942532811 Sep 201323 Aug 2016Fairchild Semiconductor CorporationThrough silicon via including multi-material fill
US94444045 Apr 201313 Sep 2016Fairchild Semiconductor CorporationMEMS device front-end charge amplifier
US945535418 Sep 201127 Sep 2016Fairchild Semiconductor CorporationMicromachined 3-axis accelerometer with a single proof-mass
US948869316 Jan 20138 Nov 2016Fairchild Semiconductor CorporationSelf test of MEMS accelerometer with ASICS integrated capacitors
US959947216 Mar 201521 Mar 2017Fairchild Semiconductor CorporationMEMS proof mass with split Z-axis portions
US96183615 Apr 201311 Apr 2017Fairchild Semiconductor CorporationMEMS device automatic-gain control loop for mechanical amplitude drive
US962527211 Apr 201318 Apr 2017Fairchild Semiconductor CorporationMEMS quadrature cancellation and signal demodulation
WO2012122876A1 *23 Feb 201220 Sep 2012Memsen Electronics IncIntegrated mems component and forming method therefor
Classifications
International ClassificationG01C19/5719, G01P15/08, G01P15/125, G01P15/00, G01P15/18
Cooperative ClassificationG01C19/5719, G01P15/18, G01P15/125, G01P2015/082
European ClassificationG01C19/5719, G01P15/125, G01P15/18
Legal Events
DateCodeEventDescription
2 Aug 2006C06Publication
27 Sep 2006C10Entry into substantive examination
10 Nov 2010C14Grant of patent or utility model