CN1672635A - X射线发生装置 - Google Patents

X射线发生装置 Download PDF

Info

Publication number
CN1672635A
CN1672635A CNA2005100624237A CN200510062423A CN1672635A CN 1672635 A CN1672635 A CN 1672635A CN A2005100624237 A CNA2005100624237 A CN A2005100624237A CN 200510062423 A CN200510062423 A CN 200510062423A CN 1672635 A CN1672635 A CN 1672635A
Authority
CN
China
Prior art keywords
electron beam
target
heat dissipating
dissipating layer
ray generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005100624237A
Other languages
English (en)
Other versions
CN100391406C (zh
Inventor
浮田昌昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of CN1672635A publication Critical patent/CN1672635A/zh
Application granted granted Critical
Publication of CN100391406C publication Critical patent/CN100391406C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1204Cooling of the anode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1291Thermal conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • H01J35/186Windows used as targets or X-ray converters

Abstract

本发明涉及一种微焦点X射线管,其具有粘接形成在靶上的散热固体。具体而言,限定了一个开口的该散热固体形成在电子束照射的靶表面上。靠近靶表面产生的热量通过经表面固体的热传导而迅速的散开,其中通过穿过开口的电子束的撞击产生热量。该散热固体有利于降低电子束所撞击的靶层的表面温度,并有利于减少形成该靶的材料的蒸发,从而延长X射线产生时间。

Description

X射线发生装置
技术领域
本发明涉及一种用于非破坏性X射线检查系统或X射线分析系统的X射线发生装置。具体而言,本发明涉及一种具有非常小的X射线源的装置,该射线源以微米计,以获取微小对象的荧光图像。更具体而言,本发明涉及一种微焦点X射线管。
背景技术
通常,上述的这种X射线发生装置根据下面的原理来运行。首先,电子(Sa[A])从一个电子源射出,其中该电子源在真空中保持在高的负电位(-Sv[V]),然后电子由于电子源和地电位0V之间的电位差而被加速。接着,被加速的电子利用一个电子透镜聚焦到20到0.1微米的直径范围内。被聚焦的电子束撞击由金属(例如,钨或钼)形成的固体靶,从而实现以微米计的X射线源。这时产生的X射线的最大能量是Sv[keV],X射线的聚焦大小大致对应于聚焦的电子束的直径。
这些X射线发生装置中的一种特别高分辨度的装置是X射线管,其被称为传输微焦点X射线发生装置。该X射线管具有一种靶结构,该结构包括以铝或铍的X射线传输板的形式出现的真空窗。该真空窗具有在其真空侧表面上形成为厚度2到10微米的靶金属。由电子束产生的撞击靶金属的X射线以电子束入射的方向通过真空窗,并在大气中被利用。
在这种传输X射线发生装置中,检查对象和X射线焦点通过对应于真空窗厚度的范围而彼此靠近,从而在几何上能进行高放大率的X射线照相术,从而获取高空间分辨度的荧光图像。这种X射线管用于在检查对象中搜寻微小瑕疵的检查装置。这些检查操作对于每个对象有时将花费数小时的时间(例如,见日本未审查专利公开NO.2000-25484,以及日本未审查专利公开NO.2000-306533)。
然而,电子束撞击的靶的部分变成高温,并且靶材料蒸发和衰减,X射线管将在应当发射的时间停止发射X射线。为克服该困难,已经提出,在反射型X射线管的情况,在相对于靶的电子撞击表面的内部层上,形成一个散热层,以通过热传导而限制靶的温升(例如,见日本未审查专利公开NO.2000-082430)。
根据上述原理的传统的微焦点X射线管具有下面的问题。
当良好聚焦的电子束撞击靶时,温升集中在靶表面上靠近电子束撞击点的位置,从而易于蒸发靶材料。该蒸发将造成放大X射线聚焦区或发射X射线失败的不利因素,这就需要比如更换X射线管或靶的维修操作。当发射强电子束以增加X射线发射剂量时,靶材料将即刻蒸发,使得X射线发射剂量增加变成不可能。
发明内容
本发明考虑到上述现有技术的情况而提出,本发明的主要目的在于,提供一种X射线发生装置,其具有改进的靶的局部散热性能,用于延长靶的寿命,增加该装置的运行率,并改进X射线密度。
上述目的通过本发明而实现;一种X射线发生装置,包括散热层,该散热层与被电子束照射的靶表面接触。
根据本发明的X射线发生装置,散热层的热传导立即散发在电子束撞击点上局部产生的热量,并减小在靶表面上的局部温升。这就减小了在电子束照射位置周围的靶材料的蒸发。结果,靶的寿命可以延长,该装置的运行率可以增加,而更换和调整靶的次数得以降低。类似的,X射线密度也会增加。
最好,散热层在电子束照射位置限定一个开口或孔。
利用这种结构,散热层不会阻碍电子束的路线,而同时允许电子束像现有技术那样照射靶层,散热层的热传导立即散发在电子束撞击点上局部产生的热量,并减小在靶表面上的局部温升。这就减小了在电子束照射位置周围的靶材料的蒸发。结果,靶的寿命可以延长,该装置的运行率可以增加,而更换和调整靶的次数得以降低。类似的,X射线密度也会增加。
最好,散热层通过薄膜成形方法和掩模方法形成。通过使用薄膜成形方法,可以容易的形成散热层。掩模方法能以高精度形成一个对应于聚焦的电子束的直径的最小开口。因此,散热层能靠近电子束撞击位置形成,从而增加散热效率。
最好,散热层通过薄膜成形方法和精密加工形成。通过使用薄膜成形方法,可以容易的形成散热层。精密加工能以高精度形成一个对应于聚焦的电子束的直径的最小开口。因此,散热层能靠近电子束撞击位置形成,从而增加散热效率。此外,成形过程简化,造价降低。
优选的是,在靶表面形成散热层之后,靶被连接到X射线管,并通过X射线管的电子束形成开口。换言之,通过用与产生X射线一样的电子束照射散热层,形成该开口。因此,不需要调整照射位置以确保产生X射线。进一步,由于X射线管能以简化的操作安装,安装时间得以减短,X射线管能廉价制造,并且相比于掩模方法或精密加工,该开口能被容易的形成。
最好,在从电子束照射位置的中心开始的17倍电子束半径内,形成该散热层的开口。
通过散热层的热传导,该结构能有效的降低电子束照射位置的温度。
最好,散热层具有大于电子束半径的厚度。
通过散热层的热传导,该结构能有效的降低电子束照射位置的温度。热传导量和带走热量的量成比例。因此,通过形成厚度大于电子束半径的散热层,电子束照射位置的温度被有效降低了。
最好,开口形成为锥形,从而该开口的内壁以电子束的前进方向聚焦。
利用该结构,开口的形状类似于电子束所具有的锥形,其中前端通过一个透镜而在前进方向聚焦(尺寸减小)。也就是说,该结构能引导电子束到靶表面,而不会阻碍电子束穿过开口。此外,散热层能覆盖靠近减小到微直径的电子束的撞击点的靶区域。因此,电子束照射位置的温度能被有效的降低。
散热层可包括多个从靶表面向上叠加的层,或者包括多个彼此靠近并沿电子束径向排列的层。
这些结构使得能够进行一些最佳的多层设计,这些设计考虑了层材料的蒸发量和热传导性,从而改善了散热效果和热阻。也就是说,相比于单层的散热层,该散热多层更适合于X射线管。
最好,越靠近电子束照射位置的层,利用较高熔点的材料形成。
该结构能减少散热层的最高温部分的蒸发,其中散热层越靠近电子束,温度越高。也就是说,该结构利用了熔点越高的材料蒸发越少的原理。因此,在通过电子束撞击而在靶中产生的热量影响下,该结构能防止由散热层本身蒸发而导致的散热效果的降低。
最好,散热层由热传导率高于靶的材料形成。
相比于散热层利用和靶一样的材料形成的情况,该结构能减小热传导量。相反,由于容易降低电子束的撞击点上的局部温升,在电子束照射位置附近的靶的蒸发能被减少。
最好,一个高熔点保护膜覆盖散热层中的开口的内壁和边缘区。
利用该结构,相比于散热层直接接触真空的情况,该覆盖有保护膜的散热层不会轻易的蒸发。此外,由于该保护膜由高熔点材料形成,该保护膜的蒸发量能进一步减少。因此,散热层的蒸发得以减少,散热效果的降低得以减少。
最好,经散热层中形成的孔而接触真空的靶表面由薄保护膜形成,该膜由高熔点材料或电子易穿透材料形成。
利用该结构,可以直接防止靶的蒸发,并减少靶表面的温升。
根据本发明的X射线发生装置还可包括用于检测开口位置的检测装置、用于移动靶的定位装置以及用于检测装置和定位装置的控制器。
利用该结构,由于控制器执行位置调整以使得电子束照射到散热层中的开口,所以,电子束撞击到开口的中心。因此,在连接靶到X射线管时不需要有非常大的机械精度。此外,由于电子束照射开口的中心,可以获得均匀的散热效果,也就是说,最大的散热效果。
由于多个开口形成在散热层中,所以当一个开口因为电子束照射不能再使用时,控制器可以执行位置调整以指向另一个开口。因此,靶和X射线管能使用很长一段时间。
最好,定位装置是一种用于偏转电子束路线的偏转装置。
相比于机械定位靶的情况,该结构中的偏转装置能以高精度在靶上容易的移动电子束撞击点。因此,获得均匀的散热效果,也就是说,最大的散热效果。
最好,该检测装置的一部分包括含有电子绝缘层的所述靶。因此,电子束照射产生的电流可容易测量。
最好,根据本发明的X射线发生装置包括,和靶接触并背对电子束照射的表面的内部散热层。
该结构使得靶中产生的热量以后表面的方向容易的散除,从而进一步促进靶表面上温度的降低。
附图说明
为阐述本发明,在附图中示出了一些形式,这些形式在此是优选的,然而,应当理解,本发明不被限制到所示的精确的构造和手段。
图1示出X射线发生装置的大致结构的截面图;
图2示出用于产生X射线的主要部分的截面图;
图3示出靶表面上的热传导的示例图;
图4示出孔的形成的示例图;
图5示出孔的形成的示例图;
图6是钨的温度和蒸发的视图;
图7是表面固体的热传导的试验计算的示例图;
图8是例1的靶周围的主要部分的截面图;
图9是例2的靶周围的主要部分的截面图;
图10是例3的靶周围的主要部分的截面图;
图11是例4的靶周围的主要部分的截面图;
图12是例4的一种变型的靶周围的主要部分的截面图;
图13是例5的靶周围的主要部分的截面图;
图14是例6的靶周围的主要部分的截面图;
图15是示出例6的靶和传统靶的仿真的温度变化的视图;
图16是示出电子束的位置调整的示意图;
图17是示出电子束的位置调整的示意图;
图18是示出一种靶移动方法的示意图;
图19A至19C是示出变型的表面固体的透视图;
图20是示出变型的表面固体的透视图;
图21A和21B是示出变型的表面固体的透视图;
图22是表面温度分布的视图;
图23是示出散热效果的计算结果的视图。
具体实施方式
下面将参照附图描述本发明的实施例。
图1示出X射线发生装置的大致结构,其中X射线管1以截面示出。
图2是示出用于产生X射线的主要部分的截面图。
图1所示的本实施例中的X射线发生装置包括X射线管1、高压发生器2、真空泵3以及控制器5。由操作者发出的指令经计算机4传输到控制器5,以根据需要产生X射线。
图1中截面图示出的X射线管1被称为开放式X射线管,因为它能在任何时候打开用于清洁和维护,并在每次使用之前由连接到真空容器6的真空泵3抽真空。由高压发生器2产生的负高压经高压电缆10和插入到高压插座8中的插头9而施加到构成电子枪7的灯丝11和栅网12。真空容器6具有一个附于其上的穿孔阳极14,并具一个用于电子经过的中心孔。阳极14保持在地电位,其作为正极,并加速来自灯丝11的电子。连接到真空容器6的真空管13具有一个周向安装的偏转器15。
将轭16与磁线圈17组合在一起的电子透镜设置在X射线管1的前端,以用于会聚电子束B。靶30紧密的安装在轭16的前端,并由O形环密封。靶30包括真空上的靶层18。
发射自灯丝11的电子,其由栅网12调整,通过穿孔阳极14的电位差而被加速,以穿过真空管13。然后,电子由电子透镜聚焦到以1微米计的直径,其中该透镜组合了磁线圈17和轭16,并且电子撞击靶层18,从而产生微径的X射线。偏转器15能改变电子束B的方向,并调整靶30上的电子束照射位置。
图2示出靶30的X射线发生部分的结构的截面图。如图2所示,表面固体20和靶层18的表面紧密接触,其中靶层18由背板19支承。本发明的特征所在的该表面固体20示出定义了开口21。会聚的电子束B经该开口21撞击靶层18的表面,然后产生X射线和热量。虽然示出的开口21是以延伸通过表面固体20的孔的形式出现的,但是本发明并不限定在这种孔,而是可以采用许多不同的形式。
图2所示的背板19主要作为一个真空窗和X射线传输窗。最好,背板19能够承受大气压力并有效的传输X射线。在许多情况下,铝或铍用作其材料。厚度大约是0.1到1.0毫米。也就是说,薄材料优选用于利于传输X射线同时承受大气压。背板19维持在地电位,并作为靶中产生的热量的散布路径。
图2所示的靶层18由比如钨或钼的高熔点金属制成。高熔点金属通常作为靶是因为它不会轻易的蒸发。通常,最好大致根据加速电压来选择靶层18的厚度。靶层18最好由钨制成,当加速电压是100kV时其具有10微米计的厚度,当加速电压是30kV时其具有1微米计的厚度。然而,为延长靶的寿命,选择或多或少偏大的厚度,并且传输X射线管可以吸收大量的X射线。在这种关系下,反射型X射线管通常具有1毫米或更大的厚度,这是由于反射方向的X射线不会经过反射型靶。
图2所示的表面固体20和靶层18的表面紧密接触,而靶层被电子束B照射,并且表面固体20限定了位于聚焦的电子束B撞击位置附近的开口21。在该实施例中,会聚到1微米直径的电子束撞击靶,因此开口21的直径也设置为1微米。利用该结构,表面固体20不会阻碍电子束B的路线,X射线像现有技术那样从靶层18产生。此外,即使通过电子束撞击而在靶表面附近产生热量,电子束撞击位置的温度也通过表面固体20的热传导以及靶层18和背板19的热传导而降低。
图3详细示出了热量散布的方法。当会聚的电子束B撞击靶30时,热量在撞击发生的表面附近产生。根据图1所示的X射线管1,撞击时的电子束B具有大约1微米的直径,这产生了局部温升。电子束B撞击的靶表面承受了瞬时的温升。局部产生的热量如箭头31和32那样辐射。
在不具有表面固体20的传统靶中,所产生的热量仅如箭头32那样、经靶层18向背板19辐射。然而,根据本发明,紧密接触靶层18的表面固体20还作为如电子束B径向的箭头31所表示的散热路径。表面固体20使得热传导量增加。温升和每容积的热流入量成比例。在本发明中,温升减少,因为热值是一样的而热传导量增加了。也就是说,能容易的辐射热量并产生降温效果。由于本发明在表面上提供了散热层,所以,减少靶表面上的温升特别有效,其中靶表面承受了相当大的温升。很清楚,表面固体20越厚,热传导量就越大,从而促进了散热效果。
表面固体20位于电子束撞击位置附近,并靠近热区。由于较大的温差导致了较大的热流速,所以,表面固体20越靠近电子束撞击位置,热流速就越大,从而减少了电子束撞击位置附近的温升。也就是说,易于辐射热量和产生降温效果。由于本发明在靶表面上提供了散热层,所以,减少靶表面上的温升特别有效,其中靶表面承受了相当大的温升。很清楚,表面固体20越靠近电子束撞击位置,散热效果就越大。
如上所述,表面固体20降低了靶层的温升,从而减少了靶材料的蒸发,进而延长了靶寿命。进一步,靶能减小到一个最低的厚度以增加X射线传输量。
最好,表面固体20例如由具有高热导率[W/mK]的材料制成。高热导率提供了每单位容积的高热流速,从而增加散热量,这将进一步降低靶上的电子束撞击位置的温度。这种材料的具体的例子是,比如铜、银、金和铝、比如金刚石的碳、DLC膜、PGS以及碳化硅、硼的化合物以及氧化铝陶瓷。还可以使用颗粒材料。
高熔点的材料也是表面固体20的理想材料。由于高熔点材料即使在高温下也具有低蒸发率,可减少表面固体本身的蒸发量,从而散热效果可维持一段很长的时间。当靶由钨形成时,高熔点材料最好是碳材料,当靶由钼形成时,该高熔点材料还可以是钨、铼或钽。因此,最好根据X射线管将用于何目的,考虑这些材料的热传导率和熔点温度来设计表面固体20。然而,还可以对靶和表面固体20使用相同的材料。根据本发明的最简单的一个结构是,靶由钨形成时,提供由钨形成的表面固体20。
下面,将描述一种用于在靶表面上形成表面固体20的制造方法。
在最简单的制造方法中,穿孔金属板粘结到靶表面。然而,该实施例的一种用于形成高精度开口的制造工艺,最好通过薄膜成形方法和开口成形方法的结合而实现。因此,撞击靶的电子束的直径决定了所需的成形准确度,并对制造方法产生了限制。在该实施例中,电子束的撞击直径被设置为大约1微米,最佳的是采用IC制造技术用于形成如权利要求3至5所述的表面固体20。
适用于本发明的薄膜成形方法包括PVD(真空沉积、离子镀层、多种溅射方法),CVD和镀层方法。在这些方法中,PVD和CVD具有广阔的应用范围并非常有效,这是由于这些方法能从包括靶材料的几乎所有固体材料,比如陶瓷和金属中形成薄膜。例如,在形成靶层之后,该工艺过程会继续进行,即在真空中形成表面固体20。因此,靶和表面固体20能形成为彼此紧密接触的薄膜。在镀层方法中,能形成为薄膜的材料受到限制,但它的工艺是简单的,因为薄膜不是在真空中形成而是在溶液中形成。此外,容易形成大约数微米的厚膜,因此当金、银、铜、镍或铬用作用于表面固体20的材料时,该镀层方法是适用的廉价的薄膜成形方法。
作为一种适用于本发明的开口成形方法,平版印刷方法是高准确度和最适用的,该方法是一种IC制造技术。该平版印刷方法是一种用于微米结构的复杂的方法,经历了按照下面的顺序进行的工艺过程:光致抗腐蚀涂覆、曝光、显影、图案蚀刻以及光致抗腐蚀除层。在该实施例中,该方法用于形成直径为1微米的开口是非常有效的。然而,通过一种使用沉积掩模、镀层掩模等等的方法,还可形成数微米到数十微米直径的开口。这些方法是非常有用的,这是因为其工艺过程仅包括寥寥几步,并且比较廉价。这些方法每一个都使用掩模,因此下面将简称为“掩模方法”。
接着,将描述结合了薄膜成形方法和掩模方法的制造过程的一个具体的例子。
薄膜成形方法用于在靶层18上形成表面固体20,其中靶层18形成在背板19的表面上。接着,掩模方法用于形成开口。在掩模方法的一个例子中,首先施加抗蚀剂以暴露开口图案。接着,对应于开口的抗蚀剂被去除,通过蚀刻去除表面固体20的开口部分,以形成开口(孔21)。最后,余下的抗蚀剂例如通过砂磨而去除,以获得本发明的产品。当如下文所述提供一个复合层结构或保护膜到表面固体20上时,可以重复类似于上述的步骤。
为在表面固体20中形成直径为几或几十微米的开口,还可以采用如权利要求4所述的方法。薄膜成形方法和上述一样,而开口成形方法采用精密加工(电火花加工、激光束加工、电子束加工等等)。精密加工是合适的,因为它不采用掩模,或真空或镀层溶液,并且因为它为处理尺寸提供了自由度,并能容易的形成开口,即使是在厚膜当中。
当X射线发生装置采用直径为0.1毫米或更大的电子束时,具有孔的表面固体20可通过不同的方法形成。例如,表面固体20可通过施加包括碳颗粒或金属颗粒的喷雾或粘接剂而形成。本发明的X射线发生装置的制造方法并不限定在上述方法中。
如权利要求5所述的X射线发生装置能以最简单的方法制造。该制造方法可使用和上述制造方法中一样的薄膜成形方法,但是开口成形方法不同。
第一步骤是,在背板19上的靶层18的表面上形成表面固体20作为一个薄膜。如图4所示,形成没有开口的散热层。在第二步骤中,靶连接到X射线管。在最后步骤中,开口21通过利用电子束B照射表面固体20而形成,其中电子束B从X射线管的电子枪发射出。如图5所示,电子束撞击以蒸发表面固体20的一部分,直到开口达到靶层18的表面以成为开口21。该工艺利用局部温升导致的局部蒸发,而该温升是由小直径的电子束照射而产生的。由靶和表面固体的材料和厚度,根据经验来确定电子束的照射条件是很实际的。
进一步,优选的是,在脉冲序列中发射大约1兆秒或更小的电子束,这是因为这样能比连续照射更加有效的产生局部温升,从而在对应于电子束撞击直径附近形成开口。然而,当表面固体20由不易于蒸发的材料形成时,将比产生X射线时需要更大的电流。那么,需要的是仅使用大电流输出的电子枪。换言之,优选的是,表面固体20由相对易于蒸发的材料形成,比如铜、金或银。
当通过利用上述步骤在表面固体20中形成开口21时,在连接靶30到X射线管后,不需要对撞击所形成的开口21的电子束B进行位置调整。这是理想化的,并简化了本发明的制造过程。
接着,表面固体20的材料、形状和温升之间的关系将利用试验计算的例子来描述。
当把靶简化为一个半无限对象,以及认为电子束是在该半无限对象的表面上均匀照射一个半径“a”圆周的热源,从下面的方程式(1)中获取在该半无限对象表面上距离该热源中心数倍于半径“a”的k的位置上的温升tsem(k):
t sem ( k ) = Q sem 2 πa λ sem ∫ 0 ∞ J 0 ( k · ξ ) J 1 ( ξ ) · 1 ξ dξ · · · ( 1 )
上述方程式是一个公式,其中半无限对象的材料常数不依赖于温度,其热传导率λsem[W/m*K]是固定的,在圆周半径a[m]中表面被电子束以Q[W](=[J/sec])均匀加热,但没有热辐射。进一步,J0和J1是零序和第一序的第一种贝塞尔函数,一旦k确定,方程式(1)的积分项是可计算的,该积分项表示为Tsem(k)。Tsem(k)描述了图22所示的曲线,其表示具有最大温升归一化为1的表面温升。由于热源内部(k≤1)均匀生热,所以,最大Tsem(0)=1在热源中心(k=0)。
在热源外部(k>1),热量从热源中心半球状传导。将可以看到,当增加k时,温度急速变小。计算显示了在k=10,仅最大温度的5%的温升,以及k=17的最大温度的仅2.9%的温升。
图6示出了钨的蒸发量,其中钨是靶最普遍使用的材料。2500℃时的热量值仅为5.8*10μm/sec(=0.21μm/hour),但是熔点(3410℃)上的热量值变成了高达0.12μm/sec。因此,蒸发量在靠近熔点温度(3410℃)时按指数规律增加。在两个温度之间的910℃范围内的蒸发量是1/2000,转换成每降低100℃蒸发量降低1/2.3。
也就是说,当靶30使用于熔点温度时,通过表面固体20的作用在靶中心降低100℃,靶30的寿命延长了2.3倍。100℃温差对应于熔点温度的2.9%。从半无限对象的温度计算结果看,可以理解的是,由钨形成的表面固体20必须至少紧密接触热源半径17倍范围内的部分。
接着,将描述表面固体的散热效果的试验计算例。作为最简单的形式,当表面固体是具有一个孔的中空盘时,其中孔形成在盘中,盘的热传导公式能被使用。
如图7所示,盘具有数倍于热源半径“a”的内径k1,数倍于热源半径“a”的外径k2,以及厚度d。热传导率λdisk[W/m*K]固定的,并不依赖于温度。假设,热Qdisk[W](=[J/sec])的量从盘的内表面传导到外表面而没有热辐射,内表面的温度td(k1)[℃]和外表面的温度td(k2)[℃]之间的关系通过下面的方程式(2)来表示:
t d ( k 1 ) - t d ( k 2 ) = Q disk 2 π · d · λ disk Log ( k 2 k 1 ) · · · ( 2 )
利用设置在靶表面上的中空盘形式的表面固体,当盘的内外表面的温差{td(k1)-td(k2)}小于半无限对象的表面在k1和k2时的温差{tsem(k1)-tsem(k2)}时,可以说,该中空盘具有比半无限对象更高的降低表面温度的效果。那么,基于方程式(1)和方程式(2),这些温差之间的比值由下面的方程式(3)来表示:
t d ( k 1 ) - t d ( k 2 ) t sem ( k 1 ) - t sem ( k 2 ) = Q disk Q sem · λ sem λ disk · d a · Log ( k 2 k 1 ) T sem ( k 1 ) - T sem ( k 2 ) · · · ( 3 )
当方程式(3)的值小于1时,则说明该散热盘具有高于半无限对象的降低表面温度的能力。同时,能试验计算该散热盘的散热效果。然而,还假设流入到该散热盘的热/从该散热盘流出的热发生在内/外表面,在该散热盘的接触表面和半无限对象上没有热传导,方程式(3)被认为是给出了本发明的最坏效果值。进一步,由于Qsem是热输入的总量,方程式(3)的左边第一项变成1或更小,但是它很难准确的确定。最坏值1的散热效果将通过对比来说明。
首先,方程式(3)的左边第二项是热传导率的比值。它示出,当散热盘具有比半无限对象高的热传导率时,散热效果也更高。
接着,方程式(3)的左边第三项示出,当散热盘比半无限对象更厚时,散热效果更高。
方程式(3)的左边第四项由散热盘的内径和外径决定。它示出,当第四项的值更小时,散热效果更高。
图23示出当k1<k2时精确计算的第四项的数值。
从图23中可看出,k1=1和k2=2的散热盘具有最高的散热效果。类似的,靠近热源的部分对于最高散热效果是最优的。进一步,将可以看出,对每一k1值,k2的增加降低了散热效果。
将描述两个例子作为特殊情况,其中总体热输入通过散热盘,并且散热盘由和靶一样.的材料制成。
首先,方程式(3)和图23示出,在K=1时,接触热源的散热盘产生的散热效果至少对应当“1.8<d/a”建立时半无限对象的散热效果,也就是说,当散热盘的厚度等于或大于电子束的直径时。这作为散热固体的厚度标准。
图23中的表格中的最坏值18.9发生在k1=9和k2=10时。即使在这种情况下,与半无限对象可比的散热效果将通过增加厚度d到18.9倍于电子束半径来保证。也就是说,对应于电子束半径的厚度d具有降低温度1/18.9=5.2%的效果。不超过10倍于热源半径的散热盘就称为具有充分的效果。
接着,将描述作为散热层的表面固体20的例子。和上述实施例相同的部件将采用相同的附图标记,仅特别描述不同的部件。
<实施例1>
对应于权利要求8的图8中所示的例子和孔21的形状和上述实施例不同。尤其是,孔21具有锥形,其内壁表面从电子束进入侧向靶层18收敛。也就是说,孔21的内壁表面对应于电子束B的形状而成锥形,该电子束的前端通过透镜而以运动方向聚集。该锥形具有一个角度θ,该角度最好例如是几度到60度,尽管该角度依赖于电子束B的聚焦水平。
该结构能引导锥形的电子束B进入靶层18,而不会阻碍电子束B的运动。此外,紧密接触靶层18的表面固体20的部分能位于电子束B撞击靶表面的位置附近。因此,通过从该部分经表面固体20散热,靶表面上的加热部分的温度能被迅速降低。
开口21的锥形内壁表面可形成一个缓坡,或阶梯状形成,该阶梯从表面固体表面开始到靶层18的表面逐渐变窄。
<实施例2>
图9所示的例子对应于权利要求9,其中表面固体20a-20c形成为靶表面上的多层。该多层结构通过变化材料重复薄膜成形过程而形成。例如,最底层20a紧密接触靶层18,其由比如铜或银的高导热材料形成。接下来,中间层20b由高导热并蒸发量相对少的金形成。最后,最上层20c由高熔点并蒸发量相对少的钨或钼形成。
利用该结构,中间层20b和最上层20c防止了最底层20a的蒸发并同时保持了最底层20a的散热效果。该结构减少了由靶热引起的表面固体20的蒸发和薄化,其中靶热由电子束照射产生,并保持表面固体20的散热效果达很长一段时间。因此,该X射线发生装置能使用一段很长时间。
虽然该例具有三层结构,但是,通过包含铜和钨、或铜和金的两层结构也能产生类似的效果。薄的粘接层能插入到所示层中,以形成多层结构。还可以使用合金来代替。
<实施例3>
图10所示的例子对应于权利要求10,其中表面固体20a-20c形成为靶表面上的多层。多层结构径向地靠近电子束设置。在这种情况下优选的是,靠近电子束的层20a由高熔点材料制成,而外部层20b和20c由高导热材料制成。
利用该结构,层20a具有最高的温度,但是它的蒸发通过其材料特性和层20b,c的散热而得以抑制。因此,该X射线发生装置能使用一段很长时间。
<实施例4>
图11所示的例子对应于权利要求13,散热固体由保护膜22覆盖。特别的,孔21的边缘区和内壁由保护膜22覆盖。保护膜22的厚度被设置为0.1到1.0微米。
最好,保护膜22由比如钨的高熔点材料制成。更优选的是,使用比表面固体20的材料更高熔点的材料,虽然这要依赖于X射线管的操作环境。例如,当表面固体20由钨形成时,优选用于该保护膜22的材料选自石墨、金刚石,以及比如TaC,HfC,NbC,Ta2C和ZrC的碳化物。当表面固体20由钼形成时,除了上述材料,优选用于保护膜22的材料还可选自钨、比如TiC,SiC和WC的碳化物、比如HfN,TaN和BN的氮化物,以及比如HfB2和TaB2的硼化物。进一步,当表面固体20由铜形成时,除了上述材料,优选用于保护膜22的材料还可选自高熔点金属和氧化物。高熔点金属例如是W,Mo和Ta。氧化物是ThO2、BeO、Al2O3、MgO和SiO2
上述结构有力的抑制了由热量导致的表面固体20的蒸发。因此,散热效果能在长时间保持,从而延长了靶层18的寿命。
图12所示的例子对应于权利要求14,其中通过孔21而暴露以用于和电子束B撞击的靶表面也由保护膜22覆盖。
相比于图11所示的结构,该结构能省略从电子束撞击部分去除该保护膜22的工作。由于保护膜22很薄,因此电子束B的主要部分能低能损的穿过该保护膜22,从而产生X射线。
当电子束电流比较小,因此仅产生一个很小的温升时,保护膜22不会大量蒸发。因此,保护膜22能某种程度的有助于靶层18的表面温度的降低。该保护膜22还能有力地抑制由热量导致的靶层18的蒸发。
然而,当大电流的电子束B继续撞击时,电子撞击部分的保护膜22将蒸发并变化为和图11一样的形式,即,在靶表面没有保护膜22。由于X射线如在图11所示的结构中那样产生,所以这并不存在什么问题。
现在将估算和补充图12所示的保护膜22的标准厚度。最大电子穿透深度Dmax[μm]由下面的方程式(4)表示:
Dmax=0.021V2/ρ                        …(4)
其中V[kV]是电子加速电压,而ρ[g/cm3]是材料密度。
基于上述方程式,1%或小于Dmax值的厚度可被标准化。例如,在厚度为1%、钨(密度:19.3g/cm3)的加速电压是60kV时,Dmax=3.9μm,因此,钨表面上的保护膜的厚度被设置为大约0.04μm。当用于钽(密度:4.54g/cm3)的加速电压是60kV时,Dmax=16.7μm,因此,钽表面上的保护膜的厚度被设置为大约0.2μm。当用于锂(密度:0.53g/cm3)的加速电压是60kV时,Dmax=143μm,因此,钽表面上的保护膜的厚度被设置为大约2μm。参照图11示出的组合物可用作该材料,并能以类似方法进行计算。
从最大电子穿透深度Dmax[μm]的表达式(4)可以推知,电子也类似地在靶的反方向散射。因此,电子束的撞击半径如权利要求6中的热源半径所述。然而,应当注意,实际上以更高的准确度确定表面固体层的形式是非常有用的,从而将电子散射半径加到电子束的撞击半径上而得到的长度作为热源半径。也就是说,当靶材料是钨而加速电压是60kV时,Dmax=3.9μm被计算出,虽然电子束撞击半径时1纳米,但热源半径是1.95μm。可以理解的是,以表面固体20的形式出现的散热盘具有非常有效的散热效果,其中表面固体20包括3.9μm以内的表面保护膜22。该例子给出了权利要求6的一个补充例。
<实施例5>
图13中所示的例子具有由薄的保护膜22覆盖的靶层18的整个表面。保护膜22由比靶层18更易被电子穿透的材料薄薄的形成,并需要进行厚度设置。保护膜22的厚度可设置成低于如图4中所示的最大电子穿透深度。然而,该薄保护膜22会容易蒸发,因为容易被电子穿透的材料同样具有低的熔点。因此,X射线管以低功率运行长时间是非常有效的。
用于保护膜22的材料的具体的例子是,密度在8.9-0.58g/cm3范围内的金属,比如镍和锂。特别是,优选密度是0.58g/cm3的钽。容易被电子穿透并具有高热导的材料也是适合的。这些材料具有大的((1/密度)*热导率)的值,比如,Be,Mg,Al,Si,C,Cu和Ag。
利用该结构,电子能以低能损穿透保护膜22,从而到达靶层18并产生X射线。保护膜22能减少靶层18的表面温度,还能抑制靶层18由于热量而产生的蒸发。
进一步,当电子束B继续撞击一段较长时间,电子撞击部分上的保护膜22将蒸发,并变化成靶表面上没有保护膜22的形式。这不存在任何问题。
<实施例6>
图14所示的例子对应于权利要求18,其中除了散热层20之外,厚度为1至10微米的内部散热层23紧密接触靶层18的背面而形成。最好,内部散热层23由热导率比靶层18高的材料形成(金、银、铜或铝)。由于内部散热层23位于靶层18和背板19之间,所以,即使该材料熔点比靶层18的材料熔点低,由热量产生的材料蒸发能被阻止。
除了表面固体20的热传导,该结构能经由以靶厚度方向进行的热传导而实施有效的三维散热。因此,靶层18的表面温度能更有效的降低,从而能进一步抑制靶层18的蒸发。本发明的发明者仿真了图14所示的靶和传统靶的温度。在该仿真中,传统靶由3微米厚度的钨层形成,并具有100微米厚度的铝背板。除了上述的传统靶,本发明的靶包括表面固体20和内部散热层。该表面固体20由厚度d=1μm的铜形成,开口形成为半径r1=a(k1=1)和距离开口中心(电子束中心)的半径距离r2=∞。内部散热层23由1μm厚的铜形成,位于靶的背表面。作为下面提到的其它仿真条件。热传导率不依赖于温度。钨、铝和铜的热传导率分别固定为90,200和342W/mk。电子束B在0.5μm的半径内撞击靶。0.5W的热量产生在直径1μm的撞击表面上。背板19保持在100℃。然后,通过在上述条件下的有限元方法,完成靶的温度的仿真。
结果如图15所示。水平轴表示从被认为是0的电子束照射中心到靶层18的距离。垂直轴表示靶层18的温度。实线A表示传统靶的表面温度。实线B表示本发明的靶的表面温度。图15中的仿真结果示出了相当显著的改进;靶表面温度在0.5μm半径内减小大约1000℃,而最高温度降低了大约860℃。最高温度位于由电子束照射的靶表面上的中心点上,那么,仿真结果是传统靶3570℃,而本发明的靶2710℃。也就是说,在同一热量0.5W下,本发明使得最大温度下降了24%。因此,已经证实,在靶的前部和背部表面上形成散热层是最有效的。
接着,将描述对应于权利要求15的一个例子。为实施位置调整以使得电子束B如上述每一个实施例一样穿过开口21,需要组合地控制检测装置和定位装置。定位装置是一种用于移动靶或偏转电子束的装置。控制器扫描以利用检测装置和定位装置来检测开口位置,其中定位装置用于移动电子束撞击靶的位置。在扫描操作之后,控制执行移动电子束B到一个特定位置,从而电子束B穿过开口21。
作为检测装置的一个例子,使用于SEM(扫描电子显微镜)中的电子检测装置是适用的。具体而言,该检测装置包括一个电流表,其能够检测后向散射电子、二次电子或吸收电流。根据电子撞击的对象的材料和形状不同,后向散射电子、二次电子和吸收电流的量彼此不同。因此,通过检测和对比这些电流的量,能确定表面固体20或靶层18的位置。
图17所示的检测装置对应于权利要求17,其中靶包括形成在靶层18和表面固体20之间薄绝缘层24。绝缘层24便于检测流到靶层18或表面固体20的电流。由于不需要在X射线管中形成一个特别的检测器,所以,该结构提供了一种最小的检测装置。
定位装置可以是一种电子束移动装置。
如图16所示,一种电子束移动装置是,用于偏转电子束B的路线的偏转器15,其对应于权利要求16。由于电子束B的路线能被偏转器15偏转,所以电子束B撞击靶的位置是可移动的。偏转器15是理想的,因为它能采用利用磁或静电的许多模式,容易的在靶上产生两维运动,并以高速偏转电子束B的路线。
机械定位装置是最适合用于该靶移动装置的。如图18所示,例如,波纹管25可位于背板19和X射线管体之间,当保持真空时,该靶可通过使用测微计或微电机而被移动。
本发明不限制于上述实施例,并可以如下面的(1)-(6)中那样进行变型:
(1)在上述每一个实施例中,电子束B允许直接撞击靶,其中靶包括限定了圆柱开口21的表面固体20。图16示出靶的一个特别有用的变型,其中表面固体20限定了多个这样的开口21。当一个开口21因电子束照射而不能使用时,其它开口能用于产生X射线。也就是说,一个靶能够重复使用,从而延长X射线管的寿命。
(2)如图19A所示,可采用一种环形表面固体20。进一步,如图19B所示,该环形表面固体20能分成沿电子束B撞击的表面周围分布的多个部分。如图19C所示,方形表面固体20能设置成两维阵列。这种划分的结构简化了靶制造过程,因为符合这种划分的形状的沉积掩模能容易的制备。该划分结构具有进一步的优点,即,保证多个电子束撞击位置,从而可在一段很长的时间使用该靶。
(3)如图20所示,旋转阳极靶可具有在中间形成的一个小表面固体20a,以及在小表面固体20a周围形成的大环形表面固体20b,电子束B撞击在这两个表面固体之间的靶部分。该结构能连续移动电子束撞击位置,从而可在一段很长的时间使用该靶。
(4)如图21A所示,表面固体20可在靶层18的表面上形成为格子形状。进一步,如图21B所示,可平行设置预定宽度和长度的线性表面固体20。这种结构能保证多个由电子束B照射的位置。通过以适时方式改变照射位置,一个靶可在一段很长的时间使用。
图21A和21B均示出了靠近电子束撞击位置附近的靶的一部分。最好,该靶具有多种这种图案。
(5)前述例子也适用于反射型X射线发生装置。
(6)虽然前述例子都涉及X射线发生装置,但是本发明还适用于电子束发射装置的电子通道窗。
本发明可以其它的具体形式实施,而不脱离本发明的精神或基本属性,因此,应当参照所附的权利要求书,而不是参照上述的具体方式来表示本发明的范围。

Claims (19)

1.一种X射线发生装置,用于通过用电子束照射靶而产生X射线,包括散热层,该散热层与电子束照射的所述靶表面接触。
2.如权利要求1所述的X射线发生装置,其中当散热层与电子束照射的所述靶的表面接触时,所述散热层在电子束照射位置限定开口或孔。
3.如权利要求2所述的X射线发生装置,其中所述散热层通过薄膜成形方法和掩模方法形成。
4.如权利要求2所述的X射线发生装置,其中所述散热层通过薄膜成形方法和精密加工形成。
5.如权利要求2所述的X射线发生装置,其中在所述靶表面形成所述散热层之后,所述靶连接到X射线管,并通过电子束撞击形成所述开口。
6.如权利要求2所述的X射线发生装置,其中所述散热层的开口在从电子束照射位置的中心开始17倍电子束半径内形成。
7.如权利要求2所述的X射线发生装置,其中所述散热层具有大于电子束半径的厚度。
8.如权利要求1所述的X射线发生装置,其中所述开口形成在具有锥形的所述散热层中,从而所述开口的内壁会聚在所述电子束的移动方向。
9.如权利要求1所述的X射线发生装置,其中所述散热层包括多个从所述靶表面向上叠加的层。
10.如权利要求1所述的X射线发生装置,其中所述散热层包括多个层,所述多个层设置在沿电子束径向彼此靠近排列。
11.如权利要求9所述的X射线发生装置,其中构成所述散热层的所述层由这样的材料制成,即,所述层越靠近电子束照射位置,该材料的熔点越高。
12.如权利要求1所述的X射线发生装置,其中所述散热层由热传导率高于所述靶的材料形成。
13.如权利要求2所述的X射线发生装置,其中所述散热层具有由高熔点保护膜覆盖的开口的内壁和边缘区。
14.如权利要求1所述的X射线发生装置,其中经所述散热层中形成的孔而暴露的所述靶表面由保护膜覆盖,该膜由高熔点材料或电子易穿透材料形成。
15.如权利要求2所述的X射线发生装置,其特征在于还包括:
检测装置,用于检测在所述散热层中形成的开口的位置;
移动装置,用于移动电子束或靶;以及
控制装置,用于通过移动电子撞击位置而控制开口的位置检测,并进行位置调整以使得电子束照射所检测的开口的位置。
16.如权利要求15所述的X射线发生装置,其中所述移动装置包括用于改变电子束路线的偏转装置。
17.如权利要求15所述的X射线发生装置,其中所述检测装置的一部分中包括含有电子绝缘层的所述靶。
18.如权利要求1所述的X射线发生装置,其特征在于还包括:与被电子束照射的所述靶表面的背面接触的内部散热层。
19.如权利要求18所述的X射线发生装置,其中所述内部散热层具有设置为1到10微米的厚度。
CNB2005100624237A 2004-03-26 2005-03-28 X射线发生装置 Expired - Fee Related CN100391406C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004092076 2004-03-26
JP2004092076A JP2005276760A (ja) 2004-03-26 2004-03-26 X線発生装置

Publications (2)

Publication Number Publication Date
CN1672635A true CN1672635A (zh) 2005-09-28
CN100391406C CN100391406C (zh) 2008-06-04

Family

ID=34858498

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100624237A Expired - Fee Related CN100391406C (zh) 2004-03-26 2005-03-28 X射线发生装置

Country Status (4)

Country Link
US (2) US7215741B2 (zh)
EP (1) EP1580787A3 (zh)
JP (1) JP2005276760A (zh)
CN (1) CN100391406C (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765546A (zh) * 2011-08-31 2014-04-30 佳能株式会社 靶结构和x射线产生装置
CN104795301A (zh) * 2014-08-06 2015-07-22 上海联影医疗科技有限公司 X射线靶组件
CN105097393A (zh) * 2014-04-23 2015-11-25 西门子爱克斯射线真空技术(无锡)有限公司 阳极模块及射线管装置
CN107887243A (zh) * 2017-09-19 2018-04-06 中国电子科技集团公司第三十八研究所 一种用于电子束扫描ct的x射线源的阵列靶及制作方法
CN109192642A (zh) * 2018-08-30 2019-01-11 中国科学院国家空间科学中心 一种辐射相干性的脉冲星x射线模拟源
CN110808112A (zh) * 2018-08-06 2020-02-18 斯格瑞公司 Talbot-lau x射线源和干涉测量系统
CN110999543A (zh) * 2017-08-04 2020-04-10 昂达博思有限公司 X射线发生器

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276760A (ja) * 2004-03-26 2005-10-06 Shimadzu Corp X線発生装置
DE102005039188B4 (de) * 2005-08-18 2007-06-21 Siemens Ag Röntgenröhre
DE102005039187B4 (de) * 2005-08-18 2012-06-21 Siemens Ag Röntgenröhre
DE102006062452B4 (de) * 2006-12-28 2008-11-06 Comet Gmbh Röntgenröhre und Verfahren zur Prüfung eines Targets einer Röntgenröhre
US20110121179A1 (en) * 2007-06-01 2011-05-26 Liddiard Steven D X-ray window with beryllium support structure
CA2692742A1 (en) * 2007-07-09 2009-01-15 Brigham Young University Methods and devices for charged molecule manipulation
JP5022124B2 (ja) * 2007-07-11 2012-09-12 知平 坂部 回転対陰極x線発生装置及びx線発生方法
WO2009045915A2 (en) * 2007-09-28 2009-04-09 Brigham Young University Carbon nanotube assembly
US8498381B2 (en) 2010-10-07 2013-07-30 Moxtek, Inc. Polymer layer on X-ray window
US9305735B2 (en) 2007-09-28 2016-04-05 Brigham Young University Reinforced polymer x-ray window
JP2010541172A (ja) * 2007-10-02 2010-12-24 ライス,ハンス−ヘニング X線回転式陽極板とその製造方法
US8111025B2 (en) * 2007-10-12 2012-02-07 Varian Medical Systems, Inc. Charged particle accelerators, radiation sources, systems, and methods
US20100239828A1 (en) * 2009-03-19 2010-09-23 Cornaby Sterling W Resistively heated small planar filament
US8247971B1 (en) 2009-03-19 2012-08-21 Moxtek, Inc. Resistively heated small planar filament
JP5687001B2 (ja) * 2009-08-31 2015-03-18 浜松ホトニクス株式会社 X線発生装置
US7983394B2 (en) * 2009-12-17 2011-07-19 Moxtek, Inc. Multiple wavelength X-ray source
US8406378B2 (en) 2010-08-25 2013-03-26 Gamc Biotech Development Co., Ltd. Thick targets for transmission x-ray tubes
US8526574B2 (en) 2010-09-24 2013-09-03 Moxtek, Inc. Capacitor AC power coupling across high DC voltage differential
US8995621B2 (en) 2010-09-24 2015-03-31 Moxtek, Inc. Compact X-ray source
US8804910B1 (en) 2011-01-24 2014-08-12 Moxtek, Inc. Reduced power consumption X-ray source
US8750458B1 (en) 2011-02-17 2014-06-10 Moxtek, Inc. Cold electron number amplifier
US8929515B2 (en) 2011-02-23 2015-01-06 Moxtek, Inc. Multiple-size support for X-ray window
US8792619B2 (en) 2011-03-30 2014-07-29 Moxtek, Inc. X-ray tube with semiconductor coating
US8831179B2 (en) 2011-04-21 2014-09-09 Carl Zeiss X-ray Microscopy, Inc. X-ray source with selective beam repositioning
US8989354B2 (en) 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
US9174412B2 (en) 2011-05-16 2015-11-03 Brigham Young University High strength carbon fiber composite wafers for microfabrication
JP5081314B1 (ja) * 2011-05-23 2012-11-28 日立アロカメディカル株式会社 X線発生装置
JP2012256443A (ja) * 2011-06-07 2012-12-27 Canon Inc X線放出ターゲットおよびx線放出装置
JP5812700B2 (ja) 2011-06-07 2015-11-17 キヤノン株式会社 X線放出ターゲット、x線発生管およびx線発生装置
US20150117599A1 (en) 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
US8817950B2 (en) 2011-12-22 2014-08-26 Moxtek, Inc. X-ray tube to power supply connector
US8761344B2 (en) 2011-12-29 2014-06-24 Moxtek, Inc. Small x-ray tube with electron beam control optics
JP5984403B2 (ja) * 2012-01-31 2016-09-06 キヤノン株式会社 ターゲット構造体及びそれを備える放射線発生装置
JP2013239317A (ja) * 2012-05-15 2013-11-28 Canon Inc 放射線発生ターゲット、放射線発生装置および放射線撮影システム
JP6140983B2 (ja) * 2012-11-15 2017-06-07 キヤノン株式会社 透過型ターゲット、x線発生ターゲット、x線発生管、x線x線発生装置、並びに、x線x線撮影装置
US9072154B2 (en) 2012-12-21 2015-06-30 Moxtek, Inc. Grid voltage generation for x-ray tube
CN103901057B (zh) 2012-12-31 2019-04-30 同方威视技术股份有限公司 使用了分布式x射线源的物品检查装置
US9177755B2 (en) 2013-03-04 2015-11-03 Moxtek, Inc. Multi-target X-ray tube with stationary electron beam position
US9184020B2 (en) 2013-03-04 2015-11-10 Moxtek, Inc. Tiltable or deflectable anode x-ray tube
US9173279B2 (en) * 2013-03-15 2015-10-27 Tribogenics, Inc. Compact X-ray generation device
US9173623B2 (en) 2013-04-19 2015-11-03 Samuel Soonho Lee X-ray tube and receiver inside mouth
JP2015028879A (ja) * 2013-07-30 2015-02-12 東京エレクトロン株式会社 X線発生用ターゲット及びx線発生装置
US20150092924A1 (en) * 2013-09-04 2015-04-02 Wenbing Yun Structured targets for x-ray generation
US9570265B1 (en) 2013-12-05 2017-02-14 Sigray, Inc. X-ray fluorescence system with high flux and high flux density
US9449781B2 (en) 2013-12-05 2016-09-20 Sigray, Inc. X-ray illuminators with high flux and high flux density
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US9448190B2 (en) 2014-06-06 2016-09-20 Sigray, Inc. High brightness X-ray absorption spectroscopy system
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US9823203B2 (en) 2014-02-28 2017-11-21 Sigray, Inc. X-ray surface analysis and measurement apparatus
US9594036B2 (en) 2014-02-28 2017-03-14 Sigray, Inc. X-ray surface analysis and measurement apparatus
JP6264145B2 (ja) * 2014-03-28 2018-01-24 株式会社島津製作所 X線発生装置
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
KR102061208B1 (ko) * 2014-11-17 2019-12-31 주식회사바텍 엑스선 소스
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
EP3389055A1 (de) * 2017-04-11 2018-10-17 Siemens Healthcare GmbH Röntgeneinrichtung zur erzeugung von hochenergetischer röntgenstrahlung
JP6867224B2 (ja) * 2017-04-28 2021-04-28 浜松ホトニクス株式会社 X線管及びx線発生装置
US10847336B2 (en) * 2017-08-17 2020-11-24 Bruker AXS, GmbH Analytical X-ray tube with high thermal performance
DE102017120285B4 (de) * 2017-09-04 2021-07-01 Comet Ag Bauteil oder Elektronenfanghülse für eine Röntgenröhre und Röntgenröhre mit einer solchen Vorrichtung
DE102018100956B4 (de) * 2018-01-17 2021-06-24 Comet Ag Transmissionstarget für eine offene Röntgenröhre, offene Röntgenröhre, Verfahren zur Erkennung eines Transmissionstargets und Verfahren zur Einstellung der Kenngrößen dieses Transmissionstargets
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
WO2019236384A1 (en) 2018-06-04 2019-12-12 Sigray, Inc. Wavelength dispersive x-ray spectrometer
JP7300745B2 (ja) * 2018-06-29 2023-06-30 北京納米維景科技有限公司 走査型のx線源及びその画像形成システム
US10658145B2 (en) 2018-07-26 2020-05-19 Sigray, Inc. High brightness x-ray reflection source
DE112019004433T5 (de) 2018-09-04 2021-05-20 Sigray, Inc. System und verfahren für röntgenstrahlfluoreszenz mit filterung
CN112823280A (zh) 2018-09-07 2021-05-18 斯格瑞公司 用于深度可选x射线分析的系统和方法
US11894209B2 (en) 2018-09-14 2024-02-06 Comet Ag Component or electron capture sleeve for an X-ray tube and X-ray tube having such a device
WO2021011209A1 (en) 2019-07-15 2021-01-21 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure
US11170965B2 (en) * 2020-01-14 2021-11-09 King Fahd University Of Petroleum And Minerals System for generating X-ray beams from a liquid target
CN111403073B (zh) * 2020-03-19 2023-01-03 哈尔滨工程大学 一种基于电子加速器的多用途终端
JP7099488B2 (ja) * 2020-04-06 2022-07-12 株式会社ニコン X線発生装置、x線装置、構造物の製造方法、及び構造物製造システム
EP3933881A1 (en) 2020-06-30 2022-01-05 VEC Imaging GmbH & Co. KG X-ray source with multiple grids

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR984432A (fr) * 1943-09-23 1951-07-05 Tubix Sa Tube pour rayons x de grande longueur d'onde
GB782388A (en) * 1955-05-06 1957-09-04 Vickers Electrical Co Ltd Improved method of treating cast copper
GB1249341A (en) * 1968-10-08 1971-10-13 Rigaku Denki Company Ltd Improvements in or relating to x-ray tubes
JPS54129892A (en) * 1978-03-31 1979-10-08 Hitachi Ltd Anode for rotary anode x-ray tube
DE3236104A1 (de) * 1982-09-29 1984-03-29 Siemens AG, 1000 Berlin und 8000 München Hochleistungs-roentgendrehanode und verfahren zu ihrer herstellung
JPH02172149A (ja) * 1988-12-24 1990-07-03 Hitachi Ltd 回転陽極x線管用ターゲツト
EP0553912B1 (en) * 1992-01-27 1998-01-07 Koninklijke Philips Electronics N.V. X-ray tube with improved temperature control
DE19509516C1 (de) * 1995-03-20 1996-09-26 Medixtec Gmbh Medizinische Ger Mikrofokus-Röntgeneinrichtung
DE19544203A1 (de) * 1995-11-28 1997-06-05 Philips Patentverwaltung Röntgenröhre, insbesondere Mikrofokusröntgenröhre
JP2000082430A (ja) 1998-09-08 2000-03-21 Hamamatsu Photonics Kk X線発生用ターゲット及びこれを用いたx線管
JP2000306533A (ja) 1999-02-19 2000-11-02 Toshiba Corp 透過放射型x線管およびその製造方法
JP2002025484A (ja) 2000-07-07 2002-01-25 Shimadzu Corp マイクロフォーカスx線発生装置
JP2005276760A (ja) * 2004-03-26 2005-10-06 Shimadzu Corp X線発生装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765546B (zh) * 2011-08-31 2016-03-23 佳能株式会社 靶结构和x射线产生装置
US9524846B2 (en) 2011-08-31 2016-12-20 Canon Kabushiki Kaisha Target structure and X-ray generating apparatus
CN103765546A (zh) * 2011-08-31 2014-04-30 佳能株式会社 靶结构和x射线产生装置
CN105097393A (zh) * 2014-04-23 2015-11-25 西门子爱克斯射线真空技术(无锡)有限公司 阳极模块及射线管装置
CN104795301A (zh) * 2014-08-06 2015-07-22 上海联影医疗科技有限公司 X射线靶组件
CN104795301B (zh) * 2014-08-06 2017-11-28 上海联影医疗科技有限公司 X射线靶组件
CN110999543A (zh) * 2017-08-04 2020-04-10 昂达博思有限公司 X射线发生器
CN110999543B (zh) * 2017-08-04 2023-08-25 昂达博思有限公司 X射线发生器
CN107887243A (zh) * 2017-09-19 2018-04-06 中国电子科技集团公司第三十八研究所 一种用于电子束扫描ct的x射线源的阵列靶及制作方法
CN107887243B (zh) * 2017-09-19 2019-11-08 中国电子科技集团公司第三十八研究所 一种用于电子束扫描ct的x射线源的阵列靶及制作方法
CN110808112A (zh) * 2018-08-06 2020-02-18 斯格瑞公司 Talbot-lau x射线源和干涉测量系统
CN110808112B (zh) * 2018-08-06 2023-07-18 斯格瑞公司 Talbot-lau x射线源和干涉测量系统
CN109192642A (zh) * 2018-08-30 2019-01-11 中国科学院国家空间科学中心 一种辐射相干性的脉冲星x射线模拟源

Also Published As

Publication number Publication date
EP1580787A2 (en) 2005-09-28
EP1580787A3 (en) 2010-11-24
CN100391406C (zh) 2008-06-04
US20050213711A1 (en) 2005-09-29
US7346148B2 (en) 2008-03-18
US7215741B2 (en) 2007-05-08
US20070110217A1 (en) 2007-05-17
JP2005276760A (ja) 2005-10-06

Similar Documents

Publication Publication Date Title
CN1672635A (zh) X射线发生装置
CN100336422C (zh) 输出稳定性增强的x射线源组件及优化x射线传输的方法
US8208603B2 (en) X-ray generating device
JP5548188B2 (ja) X線発生装置とそれを用いた検査装置
JP7095083B2 (ja) 半導体計測用の液体金属回転式アノードx線照明源、x線ベース計測システム、x線放射発生方法
US9117624B2 (en) Apparatus for X-ray generation and method of making same
JP2019012695A (ja) X線ソース
JP5136346B2 (ja) X線装置用電極
US7410296B2 (en) Electron absorption apparatus for an x-ray device
US20040234023A1 (en) Stationary computed tomography system with compact x ray source assembly
JP2011077027A (ja) X線発生用ターゲット、x線発生装置、及びx線発生用ターゲットの製造方法
CN111326381A (zh) 具有应力消除层的多层x射线源靶
JP5479276B2 (ja) X線照射装置
EP1970935A1 (en) Lens coil cooling of a magnetic lens
CN109473329A (zh) 一种面发射透射式阵列结构的空间相干x射线源
EP3555902B1 (en) X-ray source comprising a semiconductor x-ray target
JP2002343290A (ja) X線管ターゲット、x線発生器、x線検査装置およびx線管ターゲットの製造方法
JP2008500686A (ja) Xuv線を発生させかつ放射するための装置
WO2012169143A1 (en) X-ray emitting target and x-ray emitting device
JP2010033992A (ja) X線管およびx線分析装置
JP2004138460A (ja) X線顕微検査装置
JP2005203358A (ja) X線ビームの発生方法及び装置
JP7099488B2 (ja) X線発生装置、x線装置、構造物の製造方法、及び構造物製造システム
US20220390395A1 (en) Patterned x-ray emitting target
JP2006125881A (ja) X線発生器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080604

Termination date: 20160328