CN1539224A - 用于支持非线性、高度可缩放的增减拥塞控制方案的方法 - Google Patents

用于支持非线性、高度可缩放的增减拥塞控制方案的方法 Download PDF

Info

Publication number
CN1539224A
CN1539224A CNA028153685A CN02815368A CN1539224A CN 1539224 A CN1539224 A CN 1539224A CN A028153685 A CNA028153685 A CN A028153685A CN 02815368 A CN02815368 A CN 02815368A CN 1539224 A CN1539224 A CN 1539224A
Authority
CN
China
Prior art keywords
source node
data
network
congested
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA028153685A
Other languages
English (en)
Inventor
��D����ŵ��
D·洛古诺夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1539224A publication Critical patent/CN1539224A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/25Flow control; Congestion control with rate being modified by the source upon detecting a change of network conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/11Identifying congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/18End to end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/26Flow control; Congestion control using explicit feedback to the source, e.g. choke packets
    • H04L47/263Rate modification at the source after receiving feedback
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Abstract

具有多画面(4,6)的彩票(2),其能在相互之上或者彼此接近地折叠以形成独特的视觉显示,其中能在一个或者多个画面上提供多个彩票游戏区(14,16),以便玩一个或多个单独的彩票游戏或者一个或多个交互式游戏。

Description

用于支持非线性、高度可缩放的增减拥塞控制方案的方法
发明背景
1. 发明领域
本发明涉及数字分组传输,尤其涉及一种在使用连续数据传输的数字交换分组通信网络中提供拥塞控制的方法和系统。
2. 发明描述
传统的拥塞控制方案用于将交换缓冲器需求减到最小,并且使用户能够公平地接入可用带宽。尤其是在载荷变得过多且分组发生丢失时,拥塞控制用来减少网络上的载荷。因此,拥塞控制允许网络从拥塞中恢复且以最佳的载荷运行。由于可缩放性的问题,拥塞控制通常是端到端地实施,即因特网源节点基于网络的拥塞状态而动态地执行拥塞控制。
在多数的因特网应用中,典型的拥塞控制基于二进制拥塞反馈和网络中的可用带宽,使用增减响应函数来调整发送速率。如果反馈信息表明已经超过了网络中的瓶颈链路的容量,则该拥塞控制将减少函数(fD)应用到当前的发送速率。否则,该拥塞控制将增加函数(fI)应用到当前的发送速率。在这个方案中,通过适当地调整发送速率来限制网络上的载荷而将网络载荷保持在最佳的容量。
下面的等式概括了增减拥塞控制方案:
上述等式(1)使用了这些符号:
如果存在拥塞,则f=肯定拥塞;否则,f为零(实际上,分组丢失典型地被用作反馈f);
xi=在周期i期间的当前发送速率,其中每个拥塞控制周期对发送速率作一次调整,以及一个典型的拥塞控制周期长度是一个往返行程时间(RTT);
xi+1=数据的下一发送速率;
fD=用于当前发送速率的减少函数;以及
fI=用于当前发送速率的增加函数。
称为AIMD(加性增加/乘法减少)方案的现有技术具有作为当前速率xi的线性函数的fI和fD。AIMD方法典型地在TCP环境中使用,且被定义为:
Figure A0281536800071
从上面的等式(2)中能够推断出AIMD方法中的减少步长(fD)是倍增的(或者对于各个RTT是乘以一个系数的线性函数)以及增加步长(fI)是加性的(或者是对于各个RTT的恒定函数)。β和α的建议值分别是0.5和1。
另一个在现有技术中的增强的增减算法称为二项式算法,是上述AIMD原理的扩展且被定义如下:
Figure A0281536800072
然而实际上,该二项式算法不能被用于l>1的情况,因为该减少步长可能导致发送速率从任意态xi减少到一个负值。因此,传统二项式算法的使用被限制到l≤1的值,而且l和k的建议值已经被限制到满足k+l=1的条件。上述二项式拥塞控制方案的特殊情形称为IIAD(反向增加加性减少)方法,建议设置k=1且l=0,以及另一个SQRT(平方根)方法建议设置k=l=0.5。此外,在所有的二项式方案中,k+l必须严格的大于0以达到一个公平状态(公平链路利用)。对于背景信息,可参看实例“Binomial Congestion Control Algorithms(二项式拥塞控制算法)”,IEEE InfoCom 2001,其内容在此引入仅作参考。
尽管如上所述,存在不同类型的拥塞控制方案,但是却不存在在源和目的地端系统之间能够有效地控制数据流、以便能够在保持一定服务质量(QoS)的同时控制拥塞并且利用未使用的容量的现有技术。因此,本发明提出一种非线性增减拥塞控制方法,该方法利用瓶颈带宽的实时估算,以实现高数据流可缩放性且维持稳定的分组丢失,该分组丢失并不随共享一个公共链路的数据流数量的增加而增长。
发明概述
本发明给出一种用于在源系统和目的地系统之间的实时数据流应用中提供拥塞控制的方法和系统。
根据本发明的一个方面,有一种用于在通信网络中提供拥塞控制的方法。该方法包括步骤:从源节点到目的地节点发送多个连续的数据传输;确定网络的带宽容量以确定是否存在拥塞状态;如果没有拥塞出现,则将根据第一预定准则来调整源当前发送数据的发送器速率;以及,如果出现了拥塞,则根据第二预定准则来调整源的发送器速率。第一预定准则包括增加由源节点发送的分组的数量,而第二预定准则包括减少由所述源节点发送的分组的数量。任何的调整步骤被执行以建立高的流可缩放性且维持源节点的良好公平性。
根据本发明的另一个方面,提供一种用于在通信网络中通过调整在至少一个发送器节点和目的地节点之间的发送器速率来提供拥塞控制的系统。该系统包括:用于从一个源节点到目的地节点发送多个数据传输的装置;用于确定网络的带宽容量的装置;用于基于网络的带宽容量产生拥塞反馈信息以确定拥塞状态的装置;以及,基于拥塞反馈信息和网络的带宽容量,而调整源当前正在传送数据的速率的发送器速率的装置。如果没有拥塞出现,则该系统以第一速率增加由源节点传送的分组的数量,并且如果使用了网络的预定范围的带宽容量,则以第二速率增加由源节点传送的分组的数量。如果出现了拥塞,则该系统以预定速率减少由源节点传送的分组的数量。
通过结合附图阅读下面的详细描述,这些和其它的优点对本领域的普通技术人员来说将变得显而易见。
附图简述
图1示出了可以使用根据本发明的拥塞控制方案的数据通信系统;
图2是示出了根据本发明一个实施方案的源和目的地端系统的简化框图;
图3是示出了根据本发明一个实施方案的系统的功能元件的简化框图;
图4是根据本发明的一个实施方案的带宽利用的图形表示;以及,
图5是示出了根据本发明的一个实施方案提供拥塞控制的操作步骤的流程图。
优选实施方案的详细描述
在下面的描述中,为了提供对本发明全面的理解,出于解释而不是限制的目的,阐述了诸如特定结构、接口、技术等的具体细节。另外,出于清楚和简明的目的,省略了对已知设备、电路和方法的详细描述,免得由于不必要的细节而使本发明的描述不清楚。
参考图1,根据本发明的一个示范性实施方案示出了用于交换数据分组的分组数据通信系统。该系统包括彼此经由通信链路10相连接的源节点18和目的地节点22。通信链路10可以是点对点链路的形式或者共享通信媒介的形式,即令牌环或者以太网LAN。另外,通信链路10可以包括无线链路、有线链路、卫星链路或者远距离光纤链路。多个用户节点12a-12n和16a-16n分别被连接到源节点18和目的地节点22。每个节点可以包括工作站、前端处理器、桥接器、路由器或者能够发送和接收数据分组的任何处理器类型的设备。应当注意,为了例示的目的,图1中示出的网络是小型的。实际上,大多数网络包括更多数量的主(计算)机和网络交换设备。因此,不应以附图中节点的数量来限制本发明的范围。
图2示出了示范本发明实施方案的图1的放大的视图。本发明提供了基于拥塞反馈信息来调整分组传输速率的拥塞控制,该拥塞反馈信息得自于接收机(节点22)对数据流的监控和以特殊分组的形式给发送器报告分组丢失。在运行中,由源节点18产生的数据分组被传送到中间节点20,然后被传送到目的地节点22。如果由于提供给网络的业务量超过该网络的容量而使该网络经历拥塞,则要控制该拥塞情况以保证各个连接的服务质量(QoS)。基于分组丢失来检测该拥塞状态在本领域中是熟知的,而且能够以多种方式来执行。
图3示出了能够根据本发明的实施方案调整发送速率的源节点18的功能块元件。源节点18包括数据源32、拥塞控制器30和数据缓冲器34。拥塞控制器30基于接收的拥塞反馈信息和通过分组缓冲器34监控的当前分组速率,通过传送一个发送信号到数据源32来调度各个数据进入网络的传输时间。
图4示出了根据本发明的公平原理。在这里,y轴表示在特定路径上一个连接的发送速率。粗体曲线是流1的发送速率,其开始于时间0。虚线给出了流2,其开始于某时间t0>0。如图4所示,第一流在时间t0处占用了该路径的整个容量,因此对第二流是不公平的。因此,“收敛到公平”(convergence to fairness)意指两个流最后将近似保持等于C/2的相同的发送速率,其中C是容量。达到公平状态所需要的时间(即,t1-t0)称为“收敛速度”或者简单地称为“收敛”。因而,希望以高的收敛速度进行拥塞控制。本发明允许使用等式(3)中的这种参数,这种参数保证比当前方法的可能速度更快地达到公平。应当注意这仅是使用本发明的益处之一,而第二个益处是实现更高的流可缩放性(即,能够支持很多同时的流而没有高分组丢失的不利影响)。同样,应当注意这两个益处并非总是同时都可能的(即,快速收敛和可缩放性是相互折衷的)。
现在,有关如何在所有的节点中公平地共享可用带宽而同时又在给定的网络中保持一定的QoS保证(即,恒定的分组丢失)的详细描述在下文中被解释。在解释调整发送器速率的该创造性的方法之前,理解一些背景材料是必须的。
返回去参考背景部分的等式(1)到(3),其提出传统二项式算法不能用于减少函数的l>1的情况。如果使用l<1的任何值,则减少函数会导致次最佳地收敛到公平。然而,如果减少函数使用l>1,则系统能够保证更快地收敛到公平。因此,在本发明中提供了l大于1的使用以更快地达到公平。例如,通过在等式(3)中设置l=2及k=0可以实现更快的收敛;然而,传统的方法被限制到l≤1的值。
传统方法中存在的第二个问题是差的可缩放性。可缩放性是指一种方案支持多个并发流而不会随着在共享链路上流数量n的增加而使分组丢失增加的能力。许多分析和试验已经示出分组丢失随着流数量n的增加而成比例的增加到nl+2k+1。为了实现更好的可缩放性,幂的值l+2k+1必须很小。传统的AIMD方法具有差的可缩放性,其被定义为n2。其它的现有技术方法,IIAD(反向增加加性减少,即k=1,l=0)和SQRT(即,l=k=0.5)分别具有更差的可缩放性n3和n2.5。本发明的一个关键的方面是获得尽可能接近于0的值l+2k+1。当l+2k+1的值落到0之下时,收敛到公平的时间将变得更长。此外,理想的拥塞控制方法将不管用户的数量如何,都争取保持恒定的(而不是减少的)分组丢失,以便网络可以保证一定的QoS。
为了保持恒定的分组丢失(即,l+2k+1=0),l的值必须严格地大于1。调用由k+l>0给出的收敛条件,k+l>0与l+2k+1=0相组合变为-(l+1)/2+1>0,即l>1。在本发明中,使用l>1的值是必要的,而且k的值一定小于-1。因此,下面的条件对于实现在通信系统中恒定的分组丢失是必要的。
Figure A0281536800111
为了实施上述条件,本发明使用实时带宽估算C,以允许利用在现有技术方案中不可能的、带有恒定分组丢失可缩放性的减少功率函数。目的地节点22使用端到端的方法实时测量瓶颈带宽。对于分组的每个突发(一个突发是由发送器一个一个连续发送的两个或者多个分组),本发明获得一个瓶颈容量C的估算,从而克服使用l大于1的值的不可能性。在本领域中已知能够以多种方式实施瓶颈带宽的估算。参看例如由同一个申请人在2001年4月19日提交的序列号为09/837,936的美国专利,其内容在此引入作为参考。
继续参考等式(1)和(3),并且已知瓶颈链路的容量C,本发明使用下面的α和β值来调整分组速率:
α = C K + 1 D 以及
β = 1 m C l - 1 - - - - ( 4 )
应当注意新的速率永远不能低于0,通过上述等式(4)中常数的选择来满足这一条件。这是由于速率xi始终由C所限制的事实。在现有技术的系统中,α和β的值分别固定为1和0.5。然而,在本发明的实施方案中,等式(4)被选择以便对xi≤C的所有值来使fD(xi)和fI(xi)的值相捆绑。也就是说,对于低于容量C的所有速率xi来说,增加量fI(xi)不大于xi/D,而减少量fD(xi)不大于xi/m。因此,新的速率xi+1不小于xi(l-1/m),其始终大于0。
参数m规定了减少循环应当如何进取以及它影响了链路的长期使用的行为。应当注意m必须至少是1,以及m的较大值可能导致更高的链路使用,但是更慢收敛到公平。参数D规定了在增加阶段期间拥塞控制应当如何进取,以及它影响了流在共享链路上经历的分组丢失的量。这样,D的较大值导致较少的分组丢失,但更慢收敛到公平。因此,为了找到一个最佳的工作点,建议值是2≤m≤8,以及5≤D≤20。此外,k<-1和l>1的条件要求对于创建具有恒定分组丢失的拥塞控制方案是必要条件。
为了利用等式(4)中示出的参数改善方案的收敛特性,本发明提出了如下所述的两种另外的方法。应当注意这两个方法是可选择的,但彼此能够独立地使用。
为了在增加循环期间加速收敛到公平,该方案在每个增加循环内将使α的值加倍。随着增加步长变得越来越大,这将使得该方案逐渐地更加进取。当花费很长时间来填充瓶颈链路的全部容量时,这将加速该方案搜索新的带宽。在该方案每次经历分组丢失并且被迫降低速率时,α的值都将被重新设置为等式(4)中示出的值。实际上,α值的这种指数增加必须在某个时间停止,该时间是当增加步长fI(xi)变成超过容量C的某个百分比,即C/M时,其中M是大于1的某个常数。换句话说,当该条件保持:
α x i - k ≤ C / M - - - - ( 5 ) 时,α被加倍,
其中,C是瓶颈链路的容量,而M是常数(典型地在10-100的范围内)。换句话说,增加函数fl将随着各个拥塞循环(即,每RTT一次)加倍,直到其增加到容量C的1%到10%之间的范围内的一个确定值为止。在达到带宽容量的某一百分比(1-10%)之后,该增加函数fl将是恒定的,即,f(xi)=C/M。这将构成一个对新带宽的线性探测,而且等价于使用增加幂k=0。通过使用下面的、用于除拥塞之后的那个增加循环(在拥塞后的第一个增加循环期间,该方案使用等式(4))之外所有增加循环的α的计算来实施这个条件:
α i + 1 = min ( 2 α i , Cx i k / M ) .
第二个改善被应用于具有恒定分组丢失可缩放性的方案的减少循环。为了在拥塞期间加速后退(即速率减少),第二种建议的方法在每个减少循环之后使β值加倍。应当注意,一旦减轻了拥塞,则β值被重新设置为等式(4)中的默认值。同样的规则被应用于对β值加倍,即不允许该减少步长变得比当前发送速率xi的一半更进取,即fD(xi)应始终不大于xi/2。因此,对于各个减少循环(除了恰好在第一次检测到拥塞之后的一个循环之外),下面的条件必须被满足:
β i + 1 = min ( 2 β i , x i 1 - l / 2 ) - - - - ( 6 )
提供前面优选实施方案的描述以使得本领域的普通技术人员能够得到或者使用本发明。这些实施方案的各种修改,以及其它的实施方案对本领域的普通技术人员来说将是显而易见的,不需要使用创造性劳动。因此,本发明不应被限制到这里所示出的实施方案,而是要被给予与这里所公开的原理和新的特征相一致的最宽的范围。

Claims (23)

1.一种在通信网络中提供拥塞控制的方法,该方法包括步骤:
(a)从源节点(18)发送多个连续的数据传输到目的地节点(22);
(b)确定在所述网络中是否出现拥塞;
(c)确定所述网络的带宽容量;
(d)如果没有拥塞出现,则根据第一预定准则来调整所述源当前正在发送数据的发送器速率;以及,
(e)如果出现拥塞,则根据第二预定准则来调整所述源节点(18)的所述发送器速率。
2.权利要求1的方法,其中根据所述第一预定准则的所述调整步骤(d)包括增加由所述源节点(18)发送的分组的数量。
3.权利要求1的方法,其中根据所述第二预定准则的所述调整步骤(e)包括减少由所述源节点(18)发送的分组的数量。
4.权利要求1的方法,其中根据所述第一预定准则的所述调整步骤(d)包括步骤:
将所述源节点(18)当前正在发送数据的所述发送器速率增加一个规定量;以及,
当在所述网络中使用所述带宽的一个预定百分比时,使所述发送器速率返回到线性速率。
5.权利要求1的方法,其中根据所述第二预定准则的所述调整步骤(e)包括将所述源节点(18)当前正在发送数据的所述发送器速率减少一个规定量的步骤。
6.权利要求1的方法,其中进行任何所述发送器速率的调整以建立一个最大数据传输速率和恒定的分组丢失。
7.权利要求1的方法,其中所述调整步骤的任何所述预定准则提供到稳定运行的更快收敛。
8.权利要求1的方法,其中来自所述源节点(18)的所述数据流被同时地传送到多个目的地节点,以及确定被传送到所述多个目的地节点(22)中的每一个目的地节点的各个所述数据流的所述带宽容量。
9.一种在通信网络中提供拥塞控制的方法,该方法包括步骤:
(a)从源节点(18)发送多个连续数据传输到目的地节点(22);
(b)监控所述源节点(18)当前正在将数据传送到所述网络的发送速率,以及所述目的地节点(22)当前正在接收数据的当前速率,以确定是否出现拥塞状态;以及
如果出现拥塞状态,则根据出现拥塞时的第一预定准则来减少所述源节点(18)的所述发送器速率;
如果没有出现拥塞状态,则确定所述网络的带宽容量;以及,
根据未出现拥塞时的第二预定准则来增加所述源节点(18)的所述发送器速率。
10.权利要求9的方法,其中如果所述目的地节点(22)允许的速率超过所述源节点(18)的容量,则出现拥塞状态。
11.权利要求9的方法,其中增加所述发送器速率高于所述网络的工作点和减少所述发送器速率低于所述网络的工作点的所述步骤以最小的延时提供最大的吞吐量。
12.权利要求9的方法,其中根据下列等式来确定根据所述第一预定准则减少所述发送器速率的步长(fD(xi)):
                xi+1=xi-βxl和β=1/mCl-1
其中,xi+1表示数据的下一发送速率;xi表示在循环i期间的所述当前发送速率;C表示所述网络的带宽容量,l表示大于1的恒定值;以及,值m的范围在2≤m≤8之间。
13.权利要求9的方法,其中根据下列等式来确定根据所述第二预定准则减少所述发送器速率的步长:
                    xi+1=xi+αx-k
α = C k + 1 D ,
其中,xi+1表示数据的下一发送速率;xi表示在循环i期间的所述当前发送速率;C表示所述网络的带宽容量,k表示小于1的恒定值;以及,值D的范围在5≤D≤20之间。
14.一种用于在通信网络中通过调整在至少一个发送器节点(18)和目的地节点(22)之间的发送器速率来提供拥塞控制的系统,包括:
用于从所述源节点(18)发送多个数据传输到所述目的地节点(22)的装置;
用于确定所述网络的带宽容量的装置;
用于基于所述网络的带宽容量来产生拥塞反馈信息以确定拥塞状态的装置;以及
基于所述拥塞反馈信息和所述网络的带宽容量,调整所述源节点(18)当前正在传送数据的所述发送器速率的装置。
15.权利要求14的系统,进一步包括使用所述拥塞反馈信息来确定在所述网络中的拥塞状态的装置。
16.权利要求14的系统,其中所述产生装置包括:用于监控所述源节点(18)当前正在将数据传送到所述网络的所述发送速率、以及所述目的地节点(22)当前正在接收数据的当前速率,以产生所述拥塞控制信息的装置。
17.权利要求14的系统,其中,如果没有拥塞出现,则所述调整装置以第一速率增加由所述源节点(18)传送的分组的数量,以及如果使用所述网络的预定范围的带宽容量,则以第二速率增加由所述源节点(18)传送的分组的数量。
18.权利要求14的系统,如果出现拥塞,则所述调整装置以预定速率减少由所述源节点(18)传送的分组的数量。
19.权利要求14的系统,其中运行所述调整装置,以建立最大数据传输速率和恒定的分组丢失。
20.权利要求14的系统,其中所述拥塞反馈信息由所述源节点(18)和所述目的地节点(22)中的至少一个来提供。
21.一种用于在通信网络中通过调整在发送器节点(18)和目的地节点(22)之间的发送器速率来提供拥塞控制的系统,包括:
用于存储计算机可读代码的存储器;以及,
可操作地耦合到所述存储器的处理器,所述处理器配置为:
(a)从所述源节点(18)到所述目的地节点(22)发送多个连续的数据传输;
(b)确定在所述网络中是否出现拥塞状态;
(c)确定所述网络的带宽容量;
(d)如果没有拥塞出现,则根据第一预定准则来调整所述源节点(18)当前正在发送数据的所述发送器速率;以及,
(e)如果出现拥塞,则根据第二预定准则来调整所述源节点(18)的所述发送器速率。
22.一种其上存储有表示指令序列的数据的机器可读媒体,以及当处理器执行该指令序列时,使该处理器:
从源节点(18)发送多个连续的数据传输到目的地节点(22);
监控所述源节点(18)当前正在将数据传送到所述网络的发送速率、以及所述目的地节点(22)当前正在接收数据的当前速率,以确定是否出现拥塞状态;
如果出现拥塞状态,则根据出现拥塞时的第一预定准则来减少所述源节点(18)的所述发送器速率;
如果没有出现拥塞状态,则确定所述网络的带宽容量;以及,
根据没有出现拥塞时的第二预定准则来增加所述源节点(18)的所述发送器速率。
23.权利要求22的机器可读媒体,其中来自所述源节点(18)的所述数据流被同时地传送到多个目的地节点(22),且确定被传送到所述多个目的地节点(22)中的每一个的各个所述数据流的所述带宽容量。
CNA028153685A 2001-08-06 2002-07-29 用于支持非线性、高度可缩放的增减拥塞控制方案的方法 Pending CN1539224A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/923,868 US7206285B2 (en) 2001-08-06 2001-08-06 Method for supporting non-linear, highly scalable increase-decrease congestion control scheme
US09/923,868 2001-08-06

Publications (1)

Publication Number Publication Date
CN1539224A true CN1539224A (zh) 2004-10-20

Family

ID=25449388

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA028153685A Pending CN1539224A (zh) 2001-08-06 2002-07-29 用于支持非线性、高度可缩放的增减拥塞控制方案的方法

Country Status (8)

Country Link
US (1) US7206285B2 (zh)
EP (1) EP1417808B1 (zh)
JP (1) JP2004538719A (zh)
KR (1) KR20040023719A (zh)
CN (1) CN1539224A (zh)
AT (1) ATE350841T1 (zh)
DE (1) DE60217361T2 (zh)
WO (1) WO2003015355A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300970C (zh) * 2004-11-23 2007-02-14 北京航空航天大学 分布式仿真系统数据传输拥塞控制方法
WO2008003249A1 (fr) * 2006-06-27 2008-01-10 Huawei Technologies Co., Ltd. Procédé et système et de noeud de réseau pour la commande de l'encombrement niveau 2 dans un réseau sans fil
CN101325778B (zh) * 2007-06-15 2012-10-10 中兴通讯股份有限公司 宽带码分多址系统中流媒体业务服务质量的测量方法

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3904435B2 (ja) * 2001-11-28 2007-04-11 株式会社日立製作所 Webサービス向け輻輳制御装置及び方法
GB0216728D0 (en) * 2002-07-18 2002-08-28 British Telecomm Network resource control
US7305464B2 (en) * 2002-09-03 2007-12-04 End Ii End Communications, Inc. Systems and methods for broadband network optimization
US7933235B2 (en) 2003-07-15 2011-04-26 Qualcomm Incorporated Multiflow reverse link MAC for a communications system
US8000284B2 (en) * 2003-07-15 2011-08-16 Qualcomm Incorporated Cooperative autonomous and scheduled resource allocation for a distributed communication system
US6970437B2 (en) * 2003-07-15 2005-11-29 Qualcomm Incorporated Reverse link differentiated services for a multiflow communications system using autonomous allocation
US20050047424A1 (en) * 2003-07-21 2005-03-03 Norman Hutchinson Method and system for managing bandwidth use in broadcast communications
US20080089347A1 (en) * 2003-08-29 2008-04-17 End Ii End Communications Inc. Systems and methods for broadband network optimization
CN1327677C (zh) * 2003-11-21 2007-07-18 清华大学 基于ecn且带预测验证的拥塞控制方法
CN100391195C (zh) * 2003-12-15 2008-05-28 上海贝尔阿尔卡特股份有限公司 基于网络服务质量动态调整数据分组长度的方法
EP1587275B1 (de) * 2004-04-13 2012-05-23 SMSC Europe GmbH Netzwerk mit flexiblem Multimedia Data Routing
WO2005104672A2 (en) * 2004-05-05 2005-11-10 Telefonaktiebolaget Lm Ericsson (Publ) Hsdpa flow control data frame, frame sequence number
US8627213B1 (en) * 2004-08-10 2014-01-07 Hewlett-Packard Development Company, L.P. Chat room system to provide binaural sound at a user location
KR100640492B1 (ko) 2004-08-31 2006-10-30 삼성전자주식회사 네트워크의 가용 대역폭 측정 방법
KR100728275B1 (ko) * 2005-02-18 2007-06-13 삼성전자주식회사 QoS 보장형 네트워크에서의 적응형 서비스 대역폭 조절장치 및 방법
US7492710B2 (en) * 2005-03-31 2009-02-17 Intel Corporation Packet flow control
US7630401B2 (en) * 2005-04-28 2009-12-08 Sony Corporation Bandwith management in a network
FR2890817A1 (fr) * 2005-09-09 2007-03-16 France Telecom Procede de gestion d'interface pourvue de moyens de controle de terminaux distants.
FR2890816A1 (fr) * 2005-09-09 2007-03-16 France Telecom Procede de gestion optimisee de ressources dans un terminal muni d'interfaces multiples
US8102878B2 (en) * 2005-09-29 2012-01-24 Qualcomm Incorporated Video packet shaping for video telephony
US8842555B2 (en) * 2005-10-21 2014-09-23 Qualcomm Incorporated Methods and systems for adaptive encoding of real-time information in packet-switched wireless communication systems
US8548048B2 (en) * 2005-10-27 2013-10-01 Qualcomm Incorporated Video source rate control for video telephony
US8514711B2 (en) * 2005-10-21 2013-08-20 Qualcomm Incorporated Reverse link lower layer assisted video error control
US8406309B2 (en) * 2005-10-21 2013-03-26 Qualcomm Incorporated Video rate adaptation to reverse link conditions
WO2008066428A1 (en) * 2006-11-28 2008-06-05 Telefonaktiebolaget Lm Ericsson (Publ) A method and a system for down link control in a cellular telephony system
WO2008086509A2 (en) * 2007-01-10 2008-07-17 Qualcomm Incorporated Content- and link-dependent coding adaptation for multimedia telephony
US7769882B1 (en) * 2007-03-22 2010-08-03 Sprint Communications Company L.P. Bandwidth projection for customer bandwidth usage
US20080298248A1 (en) * 2007-05-28 2008-12-04 Guenter Roeck Method and Apparatus For Computer Network Bandwidth Control and Congestion Management
FR2918191B1 (fr) * 2007-06-28 2010-02-26 Wavecom Procede de programmation in situ d'au moins un moyen de stockage non volatile d'un dispositif de communication sans fil, equipement de programmation et paquet a telecharger correspondants.
JP2009094863A (ja) * 2007-10-10 2009-04-30 Nippon Telegr & Teleph Corp <Ntt> 高信頼マルチキャストデータ配信システム,高信頼マルチキャストデータ配信方法および高信頼マルチキャストデータ配信プログラム
EP2056265A3 (en) 2007-11-05 2010-04-21 Acei Ab A gaming system and a method of managing bandwidth usage in a gaming system
US8797850B2 (en) * 2008-01-10 2014-08-05 Qualcomm Incorporated System and method to adapt to network congestion
US7773519B2 (en) * 2008-01-10 2010-08-10 Nuova Systems, Inc. Method and system to manage network traffic congestion
US20090238070A1 (en) * 2008-03-20 2009-09-24 Nuova Systems, Inc. Method and system to adjust cn control loop parameters at a congestion point
US8116225B2 (en) 2008-10-31 2012-02-14 Venturi Wireless Method and apparatus for estimating channel bandwidth
US7995476B2 (en) * 2008-12-04 2011-08-09 Microsoft Corporation Bandwidth allocation algorithm for peer-to-peer packet scheduling
US8169904B1 (en) * 2009-02-26 2012-05-01 Sprint Communications Company L.P. Feedback for downlink sensitivity
KR101680868B1 (ko) * 2009-11-18 2016-11-30 삼성전자주식회사 무선통신시스템에서의 데이터 전송 제어장치 및 방법
KR101659365B1 (ko) * 2010-09-03 2016-09-23 삼성전자 주식회사 복수 프로세서 시스템의 트래픽 제어 방법 및 장치
US8578436B2 (en) * 2010-12-16 2013-11-05 Beihang University Method for two time-scales video stream transmission control
US8773993B2 (en) * 2011-01-31 2014-07-08 Apple Inc. Adaptive bandwidth estimation
WO2016081426A1 (en) 2014-11-21 2016-05-26 Arris Enterprises, Inc. Quality of service for mixed service tiers
US10367876B2 (en) * 2015-12-21 2019-07-30 AVAST Software s.r.o. Environmentally adaptive and segregated media pipeline architecture for multiple streaming sessions
FR3076158B1 (fr) 2017-12-22 2020-01-10 Aviwest Procede de regulation de debit
CN111211988B (zh) * 2019-12-04 2022-12-02 哈尔滨工业大学(深圳) 面向分布式机器学习的数据传输方法及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115429A (en) * 1990-08-02 1992-05-19 Codex Corporation Dynamic encoding rate control minimizes traffic congestion in a packet network
US5509050A (en) * 1991-04-16 1996-04-16 Quadphase Corporation Facsimile radio communication system having multiple data speeds
US6144639A (en) * 1996-09-03 2000-11-07 Sbc Technology Resources, Inc. Apparatus and method for congestion control in high speed networks
US6192406B1 (en) * 1997-06-13 2001-02-20 At&T Corp. Startup management system and method for networks
US6075769A (en) * 1997-11-26 2000-06-13 Cisco Systems, Inc. Method and apparatus for network flow control
US6477143B1 (en) * 1998-01-25 2002-11-05 Dror Ginossar Method and apparatus for packet network congestion avoidance and control
CA2238795A1 (en) * 1998-05-28 1999-11-28 Newbridge Networks Corporation Er information acceleration in abr traffic
US6577599B1 (en) * 1999-06-30 2003-06-10 Sun Microsystems, Inc. Small-scale reliable multicasting
US6850488B1 (en) * 2000-04-14 2005-02-01 Sun Microsystems, Inc. Method and apparatus for facilitating efficient flow control for multicast transmissions
US6839321B1 (en) * 2000-07-18 2005-01-04 Alcatel Domain based congestion management
JP4512699B2 (ja) * 2001-01-11 2010-07-28 富士通株式会社 フロー制御装置およびノード装置
US7961616B2 (en) * 2001-06-07 2011-06-14 Qualcomm Incorporated Method and apparatus for congestion control in a wireless communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300970C (zh) * 2004-11-23 2007-02-14 北京航空航天大学 分布式仿真系统数据传输拥塞控制方法
WO2008003249A1 (fr) * 2006-06-27 2008-01-10 Huawei Technologies Co., Ltd. Procédé et système et de noeud de réseau pour la commande de l'encombrement niveau 2 dans un réseau sans fil
CN101098301B (zh) * 2006-06-27 2011-04-20 华为技术有限公司 一种无线网络的二层拥塞控制方法
CN101325778B (zh) * 2007-06-15 2012-10-10 中兴通讯股份有限公司 宽带码分多址系统中流媒体业务服务质量的测量方法

Also Published As

Publication number Publication date
EP1417808A2 (en) 2004-05-12
KR20040023719A (ko) 2004-03-18
DE60217361T2 (de) 2007-10-31
JP2004538719A (ja) 2004-12-24
DE60217361D1 (de) 2007-02-15
US20030026207A1 (en) 2003-02-06
ATE350841T1 (de) 2007-01-15
EP1417808B1 (en) 2007-01-03
US7206285B2 (en) 2007-04-17
WO2003015355A2 (en) 2003-02-20
WO2003015355A3 (en) 2003-09-18

Similar Documents

Publication Publication Date Title
CN1539224A (zh) 用于支持非线性、高度可缩放的增减拥塞控制方案的方法
US7200672B2 (en) Flow control system and method
US6934296B2 (en) Packet transfer device and packet transfer method adaptive to a large number of input ports
KR100234212B1 (ko) 패킷 네트워크에서의 적응 속도기반 혼잡제어
US9762491B2 (en) Dynamic thresholds for congestion control
DE60301585T2 (de) Multisprungnetzwerk zum Übertragen von Paketen deren Größe durch die Anzahl der Sprünge bestimmt wird
CN100384174C (zh) 在包交换装置中用于避免拥堵的方法和系统
EP1475985A2 (en) Traffic scheduling apparatus and method for a base station in a mobile communication system
CN1449610A (zh) 多路径动态路由算法
CA2164489A1 (en) Traffic management and congestion control for packet-based networks
JP2002522961A (ja) Atmサーバのためのリンク・レベルのフロー制御方法
US20020124104A1 (en) Network element and a method for preventing a disorder of a sequence of data packets traversing the network
CN111464437B (zh) 一种车载异构网络中基于前向时延的多径传输路径优化方法
CN113206724B (zh) 一种适用于准动态链路的可预知确定性调度方法及装置
US7218608B1 (en) Random early detection algorithm using an indicator bit to detect congestion in a computer network
US11622028B2 (en) Explicit notification of operative conditions along a network path
CN115665060A (zh) 一种用于异构网络的多路径传输调度方法及装置
US7039011B1 (en) Method and apparatus for flow control in a packet switch
CN115914106B (zh) 一种用于网络流量转发的自适应缓冲方法
AU751005B2 (en) Available bandwidth control mechanism
Awan et al. Analysis of FAST TCP for Multiple-Streams Implementation
US7142558B1 (en) Dynamic queuing control for variable throughput communication channels
JPH02151152A (ja) フレーム送信方法
JP2002354033A (ja) マルチキャストデータ配信プログラム、マルチキャストデータ配信方法およびマルチキャストデータ配信装置
Orozco-Barbosa et al. Share-based congestion control scheme for systems of interconnected networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned