CN1314121C - 集成电路结构及其制造方法 - Google Patents

集成电路结构及其制造方法 Download PDF

Info

Publication number
CN1314121C
CN1314121C CNB2004100949060A CN200410094906A CN1314121C CN 1314121 C CN1314121 C CN 1314121C CN B2004100949060 A CNB2004100949060 A CN B2004100949060A CN 200410094906 A CN200410094906 A CN 200410094906A CN 1314121 C CN1314121 C CN 1314121C
Authority
CN
China
Prior art keywords
transistor
field effect
type field
sidewall spacer
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2004100949060A
Other languages
English (en)
Other versions
CN1624922A (zh
Inventor
杨海宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1624922A publication Critical patent/CN1624922A/zh
Application granted granted Critical
Publication of CN1314121C publication Critical patent/CN1314121C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823864Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current

Abstract

本发明公开了一种在同一衬底上形成集成电路结构的方法,该结构具有第一类型的晶体管,比如P型场效应晶体管(PFET)和互补的第二类型的晶体管,比如N型场效应晶体管(NFET)。具体而言,本发明在所述衬底上在沟道区域上方形成栅极导体,邻近所述栅极导体形成侧壁间隔件,和在衬底上形成源极和漏极延伸部分。所述侧壁间隔件在PFET中比在NFET中更大(从栅极导体延伸更远)。所述侧壁间隔件在注入过程中使源极和漏极延伸部分对准。所以,当与NFET相比时,对于PFET来说,较大的侧壁间隔件使源极和漏极注入物远离沟道区域定位。然后,在随后的退火工艺中,更快移动的PFET杂质将限制扩散过远进入栅极导体下方的沟道区域内。这样避免当源极和漏极杂质延伸过远到栅极导体下方,使沟道区域短路时,出现的短沟道效应。

Description

集成电路结构及其制造方法
技术领域
本发明涉及互补的金属氧化物半导体(CMOS)和其他的互补晶体管结构,尤其涉及一种改进的结构,该结构包括用于不同类型晶体管的不同尺寸的间隔件,从而提供改进的源极和漏极延伸部分间隔。
背景技术
当CMOS器件热装时,源极和漏极延伸部分和结需要变浅,以防止不希望的短沟道效应。作为更浅的延伸部分和结的结果,源极和漏极延伸部分的电阻急剧增加,导致更低的驱动和更差的性能。目前的工艺在结注入之前为PFET和NFET形成相同尺寸的间隔件。因为PFET结/延伸部分掺杂剂(比如硼)比NFET结的掺杂剂(即,As)扩散的更快,所以间隔件的尺寸通常由PFET的需求确定。然而,这阻碍NFET的性能的完全实现。此外,长PFET延伸部分导致较高的串联电阻。下述的本发明解决了这些问题。
发明内容
本发明提供了一种在同一衬底上形成集成电路结构的方法,该结构具有第一类型的晶体管,比如P型场效应晶体管(PFET)和互补的第二类型的晶体管,比如N型场效应晶体管(NFET)。具体而言,本发明在所述衬底的沟道区域上方形成栅极导体,邻近所述栅极导体形成侧壁间隔件,和在衬底上形成源极和漏极延伸部分。所述侧壁间隔件在PFET中比在NFET中更大(从栅极导体延伸更远)。所述侧壁间隔件在注入过程中使源极和漏极延伸部分对准。所以,当与NFET相比时,对于PFET来说,较大的侧壁间隔件使源极和漏极注入物远离沟道区域定位。然后,在随后的退火工艺中,更快移动的PFET杂质将受到限制,避免扩散过远进入栅极导体下方的沟道区域内。这样避免当源极和漏极杂质在栅极导体下方延伸过远、使沟道区域短路时,出现的短沟道效应。
形成所述侧壁间隔件的工艺可包括形成氧化物衬层,其中氧化物衬层在PFET中比在NFET中更厚。这种PFET的氧化物衬层在与NFET的氧化物衬层不同的工艺步骤中形成。此外,形成侧壁间隔件的工艺可包括形成多层侧壁间隔件,其中在PFET中的侧壁间隔件具有比在NFET中更多的侧壁间隔件层。这些工艺都使侧壁间隔件在PFET中比在NFET中更厚。本发明还在侧壁间隔件的一些部分和衬底之间形成硅化物区。所述硅化物区在PFET晶体管中比在NFET晶体管中更大。
当结合下面的描述和附图考虑时,本发明的这些和其他方面及目的将更好理解。然而,应当理解,虽然下面的描述示出了本发明的优选实施例及其许多具体细节,但下述内容是示例性给出的,而非限制性的。在本发明的范围内可以作出各种变化和改进,而没有脱离其主旨,且本发明包括所有这些改进。
附图说明
从下面结合附图的详细描述中,将更好地理解本发明,其中:
图1是本发明的部分完成的互补晶体管结构的示意图。
图2是本发明的部分完成的互补晶体管结构的示意图。
图3是本发明的部分完成的互补晶体管结构的示意图。
图4是本发明的部分完成的互补晶体管结构的示意图。
图5是本发明的部分完成的互补晶体管结构的示意图。
图6是本发明的部分完成的互补晶体管结构的示意图。
图7是本发明的部分完成的互补晶体管结构的示意图。
图8是本发明的部分完成的互补晶体管结构的示意图。
图9是本发明的部分完成的互补晶体管结构的示意图。
图10是本发明的部分完成的互补晶体管结构的示意图。
图11是本发明的部分完成的互补晶体管结构的示意图。
图12是本发明的部分完成的互补晶体管结构的示意图。
图13是本发明的部分完成的互补晶体管结构的示意图。
图14是示出了场效应晶体管的公共掺杂分布的示意图。
图15是示出了本发明的优选方法的流程图。
本发明的优选实施例的详细描述
参照在附图中示出且在下面的描述中详述的非限制性实施例,将更充分地理解本发明及其各种特征和优点的细节。应当指出的是,在附图中示出的特征不必按比例绘出。省略了公知部件和加工技术的描述,从而不会不必要地模糊本发明。在此所使用的示例仅是为了有利于本发明可以实施的方式的理解,从而使本领域的技术人员能够实施本发明。因此,所述示例不应解释为限制本发明的范围。
本发明在同一衬底上形成了一种互补的集成电路结构,该结构具有第一类型的晶体管,比如P型场效应晶体管(PFET)和互补的第二类型的晶体管,比如N型场效应晶体管(NFET)。利用本发明,所述侧壁间隔件在PFET中比在NFET中更大(从栅极导体延伸更远)。所述侧壁间隔件在注入过程中使源极和漏极延伸部分对准。所以,当与NFET相比时,对于PFET来说,较大的侧壁间隔件使源极和漏极延伸部分注入物远离沟道区域定位(对准)。然后,在随后的退火工艺中,更快移动的PFET杂质将受到限制,避免扩散过远而进入栅极导体下方的沟道区域内。这样避免当源极和漏极杂质延伸过远到栅极导体下方、使沟道区域短路时,出现的短沟道效应。
换言之,本发明在同一芯片上形成了一种比PFET间隔件更窄的NFET间隔件,从而使NFET延伸部分更短。这样实现了较低的延伸部分电阻。这是可行的,因为用于形成NFET延伸部分和结的As掺杂剂比PFET的B掺杂剂扩散得更慢。
此外,本发明在PFET延伸部分中形成了较浅的硅化物,从而再次减小延伸部分电阻。这是通过在PFET栅极侧壁间隔件下方的TEOS层中形成凹槽实现的。例如,一些钴可以溅射入所述凹槽,从而形成非常浅的硅化物。作为硼扩散较快的结果,PFET的延伸部分较深,且在PFET延伸部分中的浅硅化物的形成将不增加泄漏。所述凹槽的尺寸通过间隔件氮化物下方的氧化物厚度调整。氧化物的厚度越大,所述凹槽应越大。在PFET间隔件下方形成的氧化物比在NFET间隔件下方形成的更厚,因此对于PFET来说,形成更大的凹槽和更大的硅化物。所以,在PFET器件下方的硅化物区比NFET器件下方的硅化物区更长,更靠近栅极导体。
本发明的第一实施例在图1-9中示出。图1示出了通过衬底110中的浅沟槽隔离(STI)区122分开的PFET 120和NFET 118器件。栅极导体112形成图案,且形成薄间隔件114,而将延伸部分的离子注入物偏移至沟道。图2示出了淀积在栅极导体112和薄间隔件114上的薄氧化物衬层124(比如100A厚的LTO)。在图3中,施加保护掩模128,比如光致抗蚀剂,并图案化而覆盖PFET器件120。然后,通过反应离子刻蚀(RIE)或湿法化学刻蚀去除薄氧化物124,露出NFET器件118,如图4所示。然后去除掩模128。
在从晶片上去除光致抗蚀剂128之后淀积第二薄氧化物层130,如图5所示(比如50A厚的LTO)。这一工艺增加了氧化物124的厚度。所以,氧化物124比氧化物130更厚,PFET器件120具有比NFET器件118更厚的总氧化物层124。图6示出了偏移源极和漏极离子注入物的间隔件134(比如Si3N4)。在该实施例中,总间隔件尺寸(厚度)由间隔件134与氧化物124,130一起的组合厚度确定。因此,NFET器件118具有更薄的总间隔件尺寸,以及更短的延伸部分和更低的延伸部分电阻。此处形成源极/漏极延伸部分注入物。
图7示出了晶片在HF化学制品中湿法清洗,这通常在形成硅化物(例如钴)之前需要。在间隔件氮化物134下方的氧化物凹槽138的数量由PFET器件120中的氧化物124的厚度确定。NFET器件118也是这样。因为NFET具有更薄的氧化物层130,所以它具有更薄的凹槽136。图8示出了溅射金属且进行硅化退火,从而在栅极poly144和源极/漏极区域上形成硅化物。一些金属溅射入间隔件下方的凹槽中,而在延伸部分区域形成浅硅化物(对于PFET器件120来说是140,对于NFET器件118来说是142),从而减小串联电阻。如图9所示,淀积一触点刻蚀阻挡层150,另外,执行公知的工艺步骤,从而完成所述结构。
在图10-13所示的第二实施例中,NFET 118的氧化物间隔件124可以减薄或被完全去除(如图10所示),从而进一步减小NFET延伸部分的长度。具体而言,图10示出了NFET 118的较薄的氧化物层114,且氧化物间隔件124例如利用含化学制品的HF刻蚀。而且,在图11中,去除了光致抗蚀剂128之后淀积厚氧化物(比如50A厚的LTO)130。在图12中形成Si3N4间隔件134。利用该实施例,实现了更短的NFET延伸部分。图13示出了在进行硅化之后的所述结构,这样再次减小了NFET和PFET器件的延伸部分电阻。
图14示出了场效应晶体管的标准掺杂分布,且示出了源极/漏极延伸部分152相对于普通元件/漏极注入物154的位置,以及普通的光晕注入物150。图14还示出了栅极导体156,栅极氧化物158,沟道区域160,和绝缘侧壁间隔件162,164。这种结构是公知的,因此关于这些结构及其相应制造工艺的细节故意省略,从而使读者的注意力集中在本发明的突出特征上。
图15是示出了在同一衬底上形成具有第一类型的晶体管、比如P型场效应晶体管(PFET)和互补的第二类型的晶体管,比如N型场效应晶体管(NFET)的集成电路结构的本发明的方法的流程图。具体而言,本发明在衬底200中沟道区域上方形成栅极导体。接着,本发明靠近栅极导体202形成不同尺寸的侧壁间隔件,且在衬底204中形成源极和漏极延伸部分注入物。所述侧壁间隔件在PFET中比在NFET中更大(从栅极导体延伸更远)。所述侧壁间隔件在注入过程中使源极和漏极延伸部分对准。所以,当与NFET相比时,对于PFET来说,较大的侧壁间隔件使源极和漏极注入物远离沟道区域定位(对准)。然后,在随后的退火工艺中,更快移动的PFET杂质将受到限制,避免扩散过远而进入栅极导体下方的沟道区域内。这样避免当源极和漏极杂质延伸过远进入栅极导体下方、使沟道区域短路时,出现的短沟道效应。
形成所述侧壁间隔件的工艺可包括形成氧化物衬层,其中氧化物衬层在PFET中比在NFET中更厚。这种PFET的氧化物衬层在与NFET的氧化物衬层不同的工艺步骤中形成。此外,形成侧壁间隔件的工艺可包括形成多层侧壁间隔件,其中在PFET中的侧壁间隔件具有比在NFET中更多的侧壁间隔件层。这些工艺都使侧壁间隔件在PFET中比在NFET中更厚。
本发明还在侧壁间隔件的一些部分和衬底之间形成硅化物区。具体而言,本发明去除了侧壁间隔件206下方的氧化物的一部分,然后执行在所述侧壁间隔件的一些部分下方形成硅化物区的硅化工艺208。所述硅化物区在第一类型晶体管中比在第二类型晶体管中更大。
这样,本发明在同一衬底上形成了一种互补的集成电路结构,该结构具有第一类型的晶体管和互补的第二类型的晶体管。利用本发明,所述侧壁间隔件在一种类型的晶体管中更大(从栅极导体延伸更远)。所述侧壁间隔件在注入过程中使源极和漏极延伸部分对准。所以,当与另一种类型的晶体管相比时,该类型晶体管较大的侧壁间隔件使源极和漏极注入物远离沟道区域定位(对准)。然后,在随后的退火工艺中,更快移动的杂质将被限制扩散过远而进入栅极导体下方的沟道区域内。这样避免当源极和漏极杂质延伸过远进入栅极导体下方、使沟道区域短路时,出现的短沟道效应。
而且,在PFET间隔件下方的硅化物减小了PMOS晶体管的串联电阻,而使其性能改善。在PMOS间隔件下方形成硅化物是切实可行的,由于P型掺杂剂扩散较快,从而形成较深的延伸部分区域,这样避免P型硅和硅化物之间的结泄漏较高。
虽然已经根据优选实施例描述了本发明,但本领域的技术人员将认识到本发明可以利用在所附权利要求的主旨和范围内的改进实现。

Claims (24)

1.一种集成电路结构,包含:
在同一衬底上形成的第一类型的晶体管和第二类型的晶体管,其中所述第一类型的晶体管和所述第二类型的晶体管包含:
在所述衬底中的沟道区域上方的栅极导体;
邻近所述栅极导体的侧壁间隔件;以及
在所述沟道区域的相对侧上的源极和漏极延伸部分,
其中所述侧壁间隔件在所述第一类型的晶体管中比在所述第二类型的晶体管中更大;以及
在所述侧壁间隔件的一些部分和所述衬底之间的硅化物区,
其中所述硅化物区在所述第一类型的晶体管中比在所述第二类型的晶体管中更大。
2.如权利要求1所述的集成电路结构,其特征在于所述源极和漏极延伸部分在所述第一类型的晶体管中比在所述第二类型的晶体管中与所述沟道区域间隔更远。
3.如权利要求1所述的集成电路结构,其特征在于所述侧壁间隔件包括氧化物衬层,以及
其中所述氧化物衬层在所述第一类型的晶体管中比在所述第二类型的晶体管中更厚。
4.如权利要求1所述的集成电路结构,其特征在于所述侧壁间隔件包含多层侧壁间隔件,在所述第一类型的晶体管中的所述侧壁间隔件具有比在所述第二类型的晶体管中更多的侧壁间隔层。
5.如权利要求1所述的集成电路结构,其特征在于所述第一类型的晶体管具有与所述第二类型的晶体管不同的性能特征。
6.如权利要求1所述的集成电路结构,其特征在于在所述第一类型的晶体管中源极和漏极延伸部分由与在所述第二类型的晶体管中不同的材料制成。
7.一种集成电路结构,包含:
在同一衬底上形成的P型场效应晶体管和N型场效应晶体管,
其中所述P型场效应晶体管和所述N型场效应晶体管包含:
在所述衬底中的沟道区域上方的栅极导体;
邻近所述栅极导体的侧壁间隔件;以及
在所述沟道区域相对侧上的源极和漏极延伸部分,
其中所述侧壁间隔件在所述P型场效应晶体管中比在所述N型场效应晶体管中更大;以及
在所述侧壁间隔件的一些部分和所述衬底之间的硅化物区,
其中所述硅化物区在所述P型场效应晶体管中比在所述N型场效应晶体管中更大。
8.如权利要求7所述的集成电路结构,其特征在于所述源极和漏极延伸部分在所述P型场效应晶体管中比在所述N型场效应晶体管中与所述沟道区域间隔更远。
9.如权利要求7所述的集成电路结构,其特征在于所述侧壁间隔件包括氧化物衬层,
其中所述氧化物衬层在所述P型场效应晶体管中比在所述N型场效应晶体管中更厚。
10.如权利要求7所述的集成电路结构,其特征在于所述侧壁间隔件包含多层侧壁间隔件,在所述P型场效应晶体管中的所述侧壁间隔件具有比在所述N型场效应晶体管中更多的侧壁间隔件层。
11.如权利要求7所述的集成电路结构,其特征在于所述P型场效应晶体管具有与所述N型场效应晶体管不同的性能特征。
12.如权利要求7所述的集成电路结构,其特征在于在所述P型场效应晶体管中源极和漏极延伸部分由与在所述N型场效应晶体管中不同的材料制成。
13.一种在同一衬底上形成具有第一类型的晶体管和第二类型的晶体管的集成电路结构的方法,所述方法包含:
在所述衬底中的沟道区域上方形成栅极导体;
形成邻近所述栅极导体的侧壁间隔件,其中所述侧壁间隔件在所述第一类型的晶体管中比在所述第二类型的晶体管中更大;以及
在所述衬底中形成源极和漏极延伸部分;以及
在所述侧壁间隔件的一些部分和所述衬底之间形成硅化物区,
其中所述硅化物区在所述第一类型的晶体管中比在所述第二类型的晶体管中更大。
14.如权利要求13所述的方法,其特征在于形成所述源极和漏极延伸部分的所述工艺形成在所述第一类型的晶体管中比在所述第二类型的晶体管中更远离所述沟道区域的所述源极和漏极延伸部分。
15.如权利要求13所述的方法,其特征在于形成所述源极和漏极延伸部分的所述工艺包含注入所述源极和漏极延伸部分,其中在所述注入工艺中所述侧壁间隔件使所述源极和漏极延伸部分对准。
16.如权利要求13所述的方法,其特征在于形成所述侧壁间隔件的所述工艺包括形成氧化物衬层,其中所述氧化物衬层在所述第一类型的晶体管中比在所述第二类型的晶体管中更厚。
17.如权利要求16所述的方法,其特征在于所述第一类型的晶体管的氧化物衬层以与所述第二类型的晶体管中的氧化物衬层不同的加工步骤形成。
18.如权利要求15所述的方法,其特征在于形成所述侧壁间隔件的所述工艺包括形成多层侧壁间隔件,其中在所述第一类型的晶体管中的所述侧壁间隔件具有比在所述第二类型的晶体管中更多的侧壁间隔件层。
19.一种在同一衬底上形成具有P型场效应晶体管和N型场效应晶体管的集成电路结构的方法,所述方法包含:
在所述衬底中的沟道区域上方形成栅极导体;
形成邻近所述栅极导体的侧壁间隔件,其中所述侧壁间隔件在所述P型场效应晶体管中比在所述N型场效应晶体管中更大;以及
在所述衬底中形成源极和漏极延伸部分;以及
在所述侧壁间隔件的一些部分和所述衬底之间形成硅化物区,
其中所述硅化物区在所述P型场效应晶体管中比在所述N型场效应晶体管中更大。
20.如权利要求19所述的方法,其特征在于形成所述源极和漏极延伸部分的所述工艺形成在所述P型场效应晶体管中比在所述N型场效应晶体管中更远离所述沟道区域的所述源极和漏极延伸部分。
21.如权利要求19所述的方法,其特征在于形成所述源极和漏极延伸部分的所述工艺包含注入所述源极和漏极延伸部分,其中在所述注入工艺中所述侧壁间隔件使所述源极和漏极延伸部分对准。
22.如权利要求19所述的方法,其特征在于形成所述侧壁间隔件的所述工艺包括形成氧化物衬层,其中所述氧化物衬层在所述P型场效应晶体管中比在所述N型场效应晶体管中更厚。
23.如权利要求22所述的方法,其特征在于所述P型场效应晶体管的氧化物衬层以与所述N型场效应晶体管的氧化物衬层不同的加工步骤形成。
24.如权利要求21所述的方法,其特征在于形成所述侧壁间隔件的所述工艺包括形成多层侧壁间隔件,其中在所述P型场效应晶体管中的所述侧壁间隔件具有比在所述N型场效应晶体管中更多的侧壁间隔件层。
CNB2004100949060A 2003-12-02 2004-11-18 集成电路结构及其制造方法 Active CN1314121C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/726,326 US6946709B2 (en) 2003-12-02 2003-12-02 Complementary transistors having different source and drain extension spacing controlled by different spacer sizes
US10/726,326 2003-12-02

Publications (2)

Publication Number Publication Date
CN1624922A CN1624922A (zh) 2005-06-08
CN1314121C true CN1314121C (zh) 2007-05-02

Family

ID=34620506

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100949060A Active CN1314121C (zh) 2003-12-02 2004-11-18 集成电路结构及其制造方法

Country Status (3)

Country Link
US (2) US6946709B2 (zh)
JP (1) JP2005167252A (zh)
CN (1) CN1314121C (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6975006B2 (en) * 2003-07-25 2005-12-13 Taiwan Semiconductor Manufacturing Company Semiconductor device with modified channel compressive stress
JP2006253198A (ja) * 2005-03-08 2006-09-21 Oki Electric Ind Co Ltd 半導体装置の製造方法
US7371627B1 (en) 2005-05-13 2008-05-13 Micron Technology, Inc. Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
US7120046B1 (en) 2005-05-13 2006-10-10 Micron Technology, Inc. Memory array with surrounding gate access transistors and capacitors with global and staggered local bit lines
US7858458B2 (en) 2005-06-14 2010-12-28 Micron Technology, Inc. CMOS fabrication
US7541632B2 (en) * 2005-06-14 2009-06-02 Micron Technology, Inc. Relaxed-pitch method of aligning active area to digit line
US7888721B2 (en) 2005-07-06 2011-02-15 Micron Technology, Inc. Surround gate access transistors with grown ultra-thin bodies
US7768051B2 (en) 2005-07-25 2010-08-03 Micron Technology, Inc. DRAM including a vertical surround gate transistor
US7696567B2 (en) 2005-08-31 2010-04-13 Micron Technology, Inc Semiconductor memory device
US7557032B2 (en) 2005-09-01 2009-07-07 Micron Technology, Inc. Silicided recessed silicon
US7687342B2 (en) 2005-09-01 2010-03-30 Micron Technology, Inc. Method of manufacturing a memory device
US7416943B2 (en) 2005-09-01 2008-08-26 Micron Technology, Inc. Peripheral gate stacks and recessed array gates
JP5076119B2 (ja) * 2006-02-22 2012-11-21 富士通セミコンダクター株式会社 半導体装置及びその製造方法
US7618868B2 (en) * 2006-05-03 2009-11-17 Samsung Electronics Co., Ltd. Method of manufacturing field effect transistors using sacrificial blocking layers
US7541239B2 (en) * 2006-06-30 2009-06-02 Intel Corporation Selective spacer formation on transistors of different classes on the same device
JP5096716B2 (ja) * 2006-09-21 2012-12-12 パナソニック株式会社 半導体装置の製造方法および半導体装置
US7550351B2 (en) * 2006-10-05 2009-06-23 International Business Machines Corporation Structure and method for creation of a transistor
JP5040286B2 (ja) * 2006-12-13 2012-10-03 富士通セミコンダクター株式会社 半導体装置および半導体装置の製造方法
US20080272437A1 (en) * 2007-05-01 2008-11-06 Doris Bruce B Threshold Adjustment for High-K Gate Dielectric CMOS
US7923373B2 (en) 2007-06-04 2011-04-12 Micron Technology, Inc. Pitch multiplication using self-assembling materials
JP4994139B2 (ja) * 2007-07-18 2012-08-08 パナソニック株式会社 半導体装置及びその製造方法
CN102915969B (zh) * 2011-08-03 2015-07-22 中芯国际集成电路制造(北京)有限公司 半导体器件及其制造方法
CN102446857B (zh) * 2011-09-08 2013-12-04 上海华力微电子有限公司 一种用于提高半导体器件性能的硅化物掩模刻蚀方法
CN106208990B (zh) * 2016-08-26 2019-03-19 宜确半导体(苏州)有限公司 一种射频功率放大器及射频前端模块
CN108962987B (zh) * 2017-05-19 2020-11-13 中芯国际集成电路制造(上海)有限公司 半导体装置及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696012A (en) * 1995-12-29 1997-12-09 Lg Semicon Co., Ltd. Fabrication method of semiconductor memory device containing CMOS transistors
US5963803A (en) * 1998-02-02 1999-10-05 Advanced Micro Devices, Inc. Method of making N-channel and P-channel IGFETs with different gate thicknesses and spacer widths

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3095564B2 (ja) * 1992-05-29 2000-10-03 株式会社東芝 半導体装置及び半導体装置の製造方法
JPH0766296A (ja) 1993-08-31 1995-03-10 Toshiba Corp Mis型半導体装置及びその製造方法
US5846857A (en) 1997-09-05 1998-12-08 Advanced Micro Devices, Inc. CMOS processing employing removable sidewall spacers for independently optimized N- and P-channel transistor performance
JP2000223568A (ja) * 1999-02-02 2000-08-11 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2002026139A (ja) 2000-06-30 2002-01-25 Toshiba Corp 半導体装置及び半導体装置の製造方法
US6696334B1 (en) * 2002-09-30 2004-02-24 Advanced Micro Devices, Inc. Method for formation of a differential offset spacer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696012A (en) * 1995-12-29 1997-12-09 Lg Semicon Co., Ltd. Fabrication method of semiconductor memory device containing CMOS transistors
US5963803A (en) * 1998-02-02 1999-10-05 Advanced Micro Devices, Inc. Method of making N-channel and P-channel IGFETs with different gate thicknesses and spacer widths

Also Published As

Publication number Publication date
US6946709B2 (en) 2005-09-20
JP2005167252A (ja) 2005-06-23
US20050116296A1 (en) 2005-06-02
CN1624922A (zh) 2005-06-08
US7572692B2 (en) 2009-08-11
US20050263826A1 (en) 2005-12-01

Similar Documents

Publication Publication Date Title
CN1314121C (zh) 集成电路结构及其制造方法
CN103545213B (zh) 半导体器件及其制造方法
US7208362B2 (en) Transistor device containing carbon doped silicon in a recess next to MDD to create strain in channel
US8716090B2 (en) Semiconductor device manufacturing method
US7736968B2 (en) Reducing poly-depletion through co-implanting carbon and nitrogen
US8361895B2 (en) Ultra-shallow junctions using atomic-layer doping
JPH1079506A (ja) 半導体装置およびその製造方法
KR100861835B1 (ko) 듀얼 게이트 cmos형 반도체 소자의 제조 방법
JPH1050988A (ja) 絶縁ゲート型電界効果トランジスタ及びその製造方法
US8822293B2 (en) Self-aligned halo/pocket implantation for reducing leakage and source/drain resistance in MOS devices
US7151032B2 (en) Methods of fabricating semiconductor devices
US20100084712A1 (en) Multiple spacer and carbon implant comprising process and semiconductor devices therefrom
CN102446761B (zh) 半导体结构的制造方法
CN1189918A (zh) 制造pic(功率集成电路)器件的方法以及这种方法制造的pic器件
CN1489219A (zh) 包括单独的抗穿通层的晶体管结构及其形成方法
US9202913B2 (en) Method for manufacturing semiconductor structure
JPH09172176A (ja) Mosデバイス製造方法
US20080160710A1 (en) Method of fabricating mosfet device
KR100519507B1 (ko) 반도체 소자의 제조방법
US20050247976A1 (en) Notched spacer for CMOS transistors
CN102054699B (zh) 改善半导体器件结深特性的方法
CN101989549B (zh) Nmos晶体管的制造方法
CN101989550A (zh) Nmos晶体管的制造方法
KR20040058666A (ko) 모스트랜지스터 제조방법
KR100752197B1 (ko) 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20170109

Address after: The Cayman Islands (British) Grand Cayman

Patentee after: INTERNATIONAL BUSINESS MACHINES Corp.

Address before: American New York

Patentee before: Globalfoundries second U.S. Semiconductor Co.,Ltd.

Effective date of registration: 20170109

Address after: American New York

Patentee after: Globalfoundries second U.S. Semiconductor Co.,Ltd.

Address before: American New York

Patentee before: International Business Machines Corp.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180328

Address after: Ontario, Canada

Patentee after: International Business Machines Corp.

Address before: The Cayman Islands (British) Grand Cayman

Patentee before: INTERNATIONAL BUSINESS MACHINES Corp.