CN1232754C - 再生和导热式传热系统 - Google Patents

再生和导热式传热系统 Download PDF

Info

Publication number
CN1232754C
CN1232754C CNB018208045A CN01820804A CN1232754C CN 1232754 C CN1232754 C CN 1232754C CN B018208045 A CNB018208045 A CN B018208045A CN 01820804 A CN01820804 A CN 01820804A CN 1232754 C CN1232754 C CN 1232754C
Authority
CN
China
Prior art keywords
heat transfer
transfer system
heat
bed
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018208045A
Other languages
English (en)
Other versions
CN1481489A (zh
Inventor
M·S·麦克卡特尼
P·R·蒂贝奥尔特
G·D·朱科拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of CN1481489A publication Critical patent/CN1481489A/zh
Application granted granted Critical
Publication of CN1232754C publication Critical patent/CN1232754C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0058Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having different orientations to each other or crossing the conduit for the other heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0084Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed with recirculation of separated solids or with cooling of the bed particles outside the combustion bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/24Devices for removal of material from the bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/02Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using granular particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2206/00Fluidised bed combustion
    • F23C2206/10Circulating fluidised bed
    • F23C2206/103Cooling recirculating particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0045Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for granular materials

Abstract

一种再生和导热式传热系统(10,10′),该传热系统在操作上实现了在传热系统(10,10′)的第二部分(20,20′)内对流经传热表面(32,32′)的“工作流体”进行加热,这是由于热量从大量的再生固体(24,24′)通过传导传递给该工作流体。在传热系统(10,10′)的第一部分(12,12′)中,大量的再生固体(24,24′)从内部产生的热源或者外部产生的热源(22,22′)中以再生方式获取热量。

Description

再生和导热式传热系统
背景技术
本发明涉及传热系统,尤其是涉及再生和导热式传热系统,该系统在操作上通过将热量从热的再生固体传递给“工作流体”以实现对“工作流体”的加热。如这里所采用的术语“工作流体”指的是热力循环的“工作流体”,如蒸汽或氨,以及指的是过程原料。将热的再生固体本身加热的热源可以有很多形式,这些最普通广为流行的热源是内热源,如当燃料和空气在某些类型的燃烧室中燃烧时产生的热的气体。但是这个热源也可以是外热源的形式,如从透平机或其它类似设备中排出的热的气体,或者可以是热的过程物流的形式,作为某些类型化学反应的结果而生成出的过程物流。
进一步参考内热源的情况,用来燃烧矿物燃料的炉子已经长期应用以作为产生有用功的可控热量的装置。因此,功的应用可以是直接做功的形式,如用转窑,或者可以是间接做功的形式,如利用工业上或船舶使用的或用于发电的蒸汽发生器。在所涉及的这种锅炉范围内,其它的差别在于炉子的外壳是否被冷却,如用水冷壁,或者不冷却,如用耐火衬料。
人们相信,这样的炉子的开发起源于约在公元前4000年烧制陶器的需要,或约公元前3000年为了熔化铜的需要。相信通过使用风箱将空气鼓入到炉子中来加快和改进燃烧,发生在约公元前2000年。
与这样的炉子紧密相联的是对应的蒸汽锅炉。这样的锅炉起源于希腊和罗马并应用于家庭设施。结合水管原理的Pompeiian(庞培)水锅炉是最早记录的例子,即在约公元前130年,是做机械功的锅炉。因此,Pompeiian水锅炉将蒸汽送到Hero的引擎,中空的球安装在耳轴上并在上面旋转,耳轴中一个允许蒸汽通过,蒸汽通过两个相交成直角的喷嘴排出,引起球转动。大多数人认为这是世界上第一个反作用力式的透平机。
实际上在接着的1600年内,整体上锅炉特别是水管锅炉基本上是被忽略的技术。这可能部分归因于这个事实,即蒸汽作为工作流体没有应用的地方,直到Thomas Savery在1698年发明第一个商业上成功的蒸汽发动机。1705年Newcomen的发动机诞生和到1771年为止,这个发动机通常的用途是从煤矿中泵抽出水。相信自调节的蒸汽阀第一次出现是在1713年。
在18世纪的下半叶发明了火管锅炉的许多变型,以所谓的苏格兰船舶锅炉达到顶点。如火管锅炉名字所暗示的那样,在火管锅炉中可以认为管子是炉子的组成部分,在管束内发生燃烧过程。但是在当时因为当时可用的钢板厚较薄,这样的装置限制在操作压力约150psig。接着开发了现代的水管锅炉用来产生高压蒸汽和其尺寸也大于现有的火管锅炉。今天,这样产生蒸汽的现代水管锅炉包括下面的所有锅炉:中心站的蒸汽发生器、工业锅炉、流化床锅炉、和船舶锅炉。
对所有这些不同类型的锅炉,如果需要将本申请涉及的再生和导热式传热系统分类到这些类型锅炉中的一种,就与这样的再生和导热式传热系统相连的所采用的内热源来说,本申请涉及的再生和导热式传热系统可能被认为是,更类似于流化床锅炉而不是上述的任何其它各种类型的锅炉。因此,下面在涉及的现有技术的范围内讨论的重点将主要集中在流化床锅炉这一类型。所以,流化床反应器在无燃烧的反应中已经使用了几十年,在流化床中各反应剂的彻底混合和密切接触产生高的生产量并提高时间和能量的经济效益。虽然燃烧固体燃料的其它方法可以以高效率产生能量,但是流化床燃烧可以在足够低的温度下有效地燃烧固体燃料,以避免在其它模式中燃烧的许多问题。
对本领域普通技术人员来说,众所周知在术语“流化床锅炉”中所用的词“流态化”指的是,使得固体物料具有象流体自由流动的特性。即:当气体通过固体颗粒的床时,气体流动产生的力使颗粒互相分离。在低的气体流量时,各颗粒保持与其它的固体颗粒接触并阻止运动。这种条件一般称为固定床。另一方面,当气体流量增加时,达到某一点这时作用在颗粒的力刚好足够使其分离。从而使床流态化,也就是说,在固体之间的气垫允许颗粒自由运动,使得该床具有类似液体的特征。
在流化床锅炉燃烧器中流态化的状态主要取决于床颗粒的直径和流态化速度。因此,主要有两个基本的流化床燃烧系统,每个系统在流化的不同状态下运行。这两个基本的流化床燃烧系统中的一个其特征是,相对低的速度和有粗的床颗粒尺寸、流化床是稠密的,有均匀的固体浓度,并有很好限定的表面。这个系统被工业界最通常称为成泡流化床,因为比使床流态化所需量大的空气以气泡的形式通过该床。成泡流化床进一步的特征在于,合适的床固体混合率,和相对低的在燃料气中的固体夹带。尽管几乎不需要将夹带的材料回收到床中以便维持床的总量,但可以使用相当大的回收率以便提高性能。
这两个基本的流化床燃烧系统中的另一个其特征在于,较高的速度和有更细的床颗粒尺寸,由于固体夹带增加使流化床的表面变成发散,从而不再有限定的床表面。还有,为了维持床的总量需要高速将夹带材料回收到床。随着燃烧器的高度增加,床的大宗密度降低。有这些特征的流化床被工业界最普通称为循环流化床,因为材料高速从燃烧器循环到颗粒回收系统,接着回到燃烧器。循环流化床进一步的特征在于非常高的固体混合率。
在各种形式流化床燃烧系统的现有技术中已经找到许多实例,在时间的进程中已经构思出它们。回到早至50年代的晚期,它的最早例子是1957年12月31日颁发的美国专利2,818,049,其名称是“加热的方法”,在这方面是通过示范而不是限制的方式引入作为参考。按照美国专利2,818,049号的教示,它提供从燃烧的流体传热的一种方法,包括使用离散材料流态化伪液体床,该材料是氧化的催化剂和通过预定路径由重力连续循环,该路径包括上游柱和下游柱。继续,该方法包括如下各步,维持该床在流态化伪液体状态和在上游柱中通过引入和燃烧燃料,产生燃烧气体使上游柱的密度基本上低于下游柱的密度,使燃烧气体向上流过上游柱,在上游柱的上端从上游柱分离出部分燃烧气体,在上游柱中高于引入和燃烧燃料的位置使一种液体以与该床进行间接热交换的方式通过,以便把热量传给流体和维持该床的循环率,从而使在紧挨上述位置的下游该床的温度和夹带气体的温度大体上低于紧靠上述位置的上游的温度。
它的第2个例子是1961年5月9日颁发的美国专利2,983,259,其名称是“产生蒸汽的方法和设备”,在这方面是通过示范而不是限制的方式引入作为参考。按照美国专利2,983,259号的教示,装设最低的热交换区。在这个最低的热交换区中材料最好至少部分是由活性的氧化催化剂组成,以便使这个区有足够高的催化活性,从而可以直接往其中引入燃料空气混合物并在该处显著和有效地氧化,释放出热量和因此产生热的气流,气流向上通过该材料使这个热量的一部分被这个区和在这个区上面的热交换区吸收。为了在实际高度的流化床内有有效的和完全的燃烧和氧化和使燃烧支承气体被预热到合理的程度,采用活性的氧化催化剂是很重要的,从而使材料有足够的催化活性来实现燃料的完全氧化,使燃料能提供的基本上所有的热含量与这个床的材料接触也是很重要的,以便从流态化材料吸收相当大的热量,为了使材料的温度将不会上升到所有催化剂的去活化温度之上,即,高于该温度时催化剂受到永久性的损害,从而使它丧失它的催化活性的全部或绝大部分。
它的第3个例子是1961年8月22日颁发的美国专利2,997,031,其名称是“加热和产生蒸汽的方法”,在这方面是通过示范而不是限制的方式引入作为参考。按照美国专利2,997,031号的教示,使燃料空气混合物在催化剂氧化材料主体上通过,该材料可以成很薄的颗粒层的形式,用这种有很高催化活性的相对小量的材料,使之活化温度低和因而是相对较贵的催化剂。在这种材料上通过的燃料空气混合物被催化氧化和这样生成的热的燃烧气体通过材料床,在材料中沉入导管从而提高这种材料的温度。调节燃料和空气以便提高这种材料床的温度到那么一点,那时引入到床中的燃料和空气混合物将完全氧化。将燃料和空气供给到这个床之后和在那里氧化到几乎没有或没有燃料,然后通过和接触高度活性的催化剂。
它的第4个例子是1963年8月27日颁发的美国专利3,101,697,其名称是“产生蒸汽”,在这方面是通过示范而不是限制的方式引入作为参考。按照美国专利3,101,697号的教示,在材料床紧挨的上游应用氧化催化剂,该材料在燃料空气混合物将在该材料床内氧化和燃烧之前,需要加热到比氧化催化剂高得多的温度。提供壳体,在壳体内设置离散材料床。将这个材料床支承在各个水平设置的细长部件上,该部件延伸跨过壳体和以一般平行间隔的方式设置,从而使该材料不能向下通过这些部件但流态化气体可以向上流过。用活性氧化催化剂涂覆或浸渍这些部件,从而使催化剂的活化温度大大低于氧化燃料空气混合物所需的最小的床温度。装设装置以便迫使空气向上流过在细长部件上的壳体和通过该材料床使这种材料流态化,并采用空气加热器将空气加热使催化剂的温度上升到它的活化温度。在细长部件的下面是多个燃料分配导管和紧接这些部件的上面和在该床的下部有另一组燃料分配导管。在操作时,首先使用在细长部件下面的燃料分配导管将燃料喷射到壳体中,这燃料与空气混合并被催化剂氧化用这样产生的热量加热材料床或床的一部分到它所需的最小温度。代替在支承该床的细长部件下装设分离的燃料分配导管,这些部件可以是中空的有朝向下的开孔装设在那里,从而该部件本身构成可以供给燃料的分配导管。
它的第5个例子是1963年12月31日颁发的美国专利3,115,925,其名称是“燃烧燃料的方法”,在这方面是通过示范而不是限制的方式引入作为参考。按照美国专利3,115,925号的教示,提供起动程度,其中大大降低了流化床的点火温度。所以,将金属盐的催化溶液喷洒或其它方法引入到颗粒材料床上,之后预热该床直到已经达到点火温度。保持在流化床颗粒表面上盐的干化剩余残渣催化天然气和空气的点火,在比原先的1150°F低得多的温度点火。
它的第6个例子是1964年1月28日颁发的美国专利3,119,378,其名称是“产生蒸汽”,在这方面是通过示范而不是限制的方式引入作为参考。按照美国专利3,119,378号的教示,提供一种加热流体的方法,它包括离散氧化催化剂的向上流动的流化床,催化剂有活化和去活化温度,含有燃料足够富的燃料空气混合物是在床内燃料实现引燃的催化氧化的范围之外,达到这种程度允许在混合物中含有空气,同时维持催化剂温度在去活化温度之下,使燃料的剩余部分和从床来的其它支流向上流经离散惰性材料的另一个流化床,惰性材料不受火焰燃烧的影响,因而将该材料大体加热到支流和在催化剂床中充分氧化的燃料的温度,以便将另一床的温度上升到足够高的值从而氧化其中的燃料空气混合物同时维持催化剂在它的去活化温度之下,将足够的空气引入到另一个床中以便支承燃料剩余部分的燃烧,实现燃料剩余部分在另一个床中的氧化,和将热量从该床传给以间接热交换方式流过该床的流体。
它的第7个例子是1982年4月20日颁发的美国专利4,325,327,其名称是“混合流化床燃烧器”,在这方面是通过示范而不是限制的方式引入作为参考。按照美国专利4,325,327号的教示,将第一大气成泡流化床炉与第二湍流循环流化床炉组合以便用粉碎的固体燃料有效地生产热量。第二炉子的床接收粉碎的较小尺寸的固体燃料,从第一床来的没有反应的灰石,和从第一床燃料气中淘洗分离出来的固体。粉碎的固体燃料的两级燃烧器声称提供效率更高的系统,其效率大于现有使用单级流化床炉子的效率。
它的第8个例子是1982年6月22日颁发的美国专利4,335,662,其名称是“流化床的固体燃料送料系统”,在这方面是通过示范而不是限制的方式引入作为参考。按照美国专利4,335,662号的教示,燃烧煤和石灰石的流化床从一个系统补充粉碎的煤,该系统从在该床表面下的站侧向排出煤。在该床的一侧安装一室,或进料箱,箱的内部用堰板与床分离,在堰板下煤侧向流入床中,同时将床的材料接收到高于该板的室中以便维持室中材料预定的最低水平。
它的第9个例子是1982年11月23日颁发的美国专利4,360,339的主题,其名称是“流态化锅炉”,在这方面是通过示范而不是限制的方式引入作为参考。按照美国专利4,360,339号的教示,提供一种流化床装置,邻近燃料颗粒燃烧的流态化区和直接在其下面设置惰性蓄热颗粒的静止点火床,其特征在于蓄热颗粒通常是球形的,每个颗粒有多个突出部,突出部从颗粒表面向外伸出预先选择的长度,从而使在静止的点火床内相邻的球形颗粒之间最小的间隔保持与突出部预先选择的长度相等,所以保证了在静止的点火床内存在足够的空间能使流态化的空气向上流过静止的点火床进入到流态化区而没有额外的压力降和对燃料颗粒使其侧向穿过静止的点火床。
它的第10个例子是1984年5月1日颁发的美国专利4,445,844的主题,其名称是“流化床锅炉的液体燃料和空气进料设备”,在这方面是通过示范而不是限制的方式引入作为参考。按照美国专利4,445,844号的教示,提供一种流化床炉子,其中可以燃烧液体燃料。喷射器向上穿过无孔的床板,它恰当地使油或其它流体燃料与流态化空气混合,使油挥发。当混合物进入流化床时使这个混合物通过受限的开口,从而获得高速的流动和在流化床的整个横截面上相当均匀的燃料和燃烧分布。
它的第11个例子是1987年1月6日颁发的美国专利4,633,818的主题,其名称是“可移动的烧煤流化床动力设备”,在这方面是通过示范而不是限制的方式引入作为参考。按照美国专利4,633,818号的教示,提供可移动的烧煤流化床锅炉系统用于产生为火车头提供动力的蒸汽。在流化床炉室内在流态化空气中燃烧煤从而产生热的烟道气,烟道气从炉室通过锅炉管和节约器。将在锅炉管和炉室壁中产生的蒸汽收集到蒸汽鼓中并使其通过床中的过热器,从那里将蒸汽送到动力产生装置生产驱动火车头的动力。
它的第12个例子是1995年3月28日颁发的美国专利5,401,130的主题,其名称是“内循环流化床(ICFB)燃烧系统和它的操作方法”,在这方面是通过示范而不是限制的方式引入作为参考。按照美国专利5,401,130号的教示,提供一种流化床燃烧系统特别适合用于实现焚化,即废木料和污泥混合物的燃烧,该混合物有很高的水和灰分的含量,这使它们很难燃烧。流化床燃烧系统包括流化床燃烧器实施由床固体构成的流化床。将空气通过空气分配器喷射到流化床中以便建立第一可控流态化速度区和第二可控流态化速度区。在第二可控流态化速度区之上将材料引入到流化床燃烧器中,随后在其上面将床固体流到该材料之上,这样引入床固体,使之实现覆盖。然后干燥该材料,接着燃烧。将由该材料夹带的惰性物/错配材料/烧结块,以及大直径固体,从那里分离,然后从流化床燃烧器清除出去。
通过示范而不是限制的方式,下面是几个现有技术流化床装置的其它例子。这些例子中的第一个是由J.G.Ballantyne在1987年6月9-11日在美国伦敦举行的Coalteth(煤技术)87年大会中宣读的论文,名称为“固体循环锅炉的介绍”中提出的。按照上面参考的论文中提出的主题锅炉的操作模式,燃烧在稠密的成泡流化床中产生,流化床布置成3个区从而使颗粒停留时间最大化。该床是由筛分的熔凝的铝土珠加上燃料灰和石灰石组成,这样选择主要的流态化速度,使只有灰和石灰石的很细颗粒与烟道气一起离开该床。因为合适的砂粒装载和气体速度,烟道气在被排放到多级旋风分离器之前可以通过逆流的表面。处理冷却气体的这个多级旋风分离器是低碳钢结构,和将石灰石和没有燃烧材料粗的颗粒回到流化床中重新使用。从该床,由非机械的阀连续地引出可控数量的材料,并在与锅炉结构成整体的水冷沟道中冷却。用来携带这个材料所需的传送空气将用于二次燃烧的目的。
构成上述题目论文的锅炉的发明人被断定是W.B.Johnson。相信就是这位W.B.Johnson是1985年9月10日颁发的美国专利4,539,939号名称为“流化床燃烧设备和方法”的发明人。按照W.B.Johnson的美国专利4,539,939号的教示,将多个相对稠密的珠状惰性固体材料颗粒保持散布在整个流态化燃烧床,用于循环通过与燃烧床分离的热交换装置和与其它床的组分一起回到流化床。也可将细的石灰石颗粒与新的燃料颗粒一起引入到流化床中。从弓形的热交换出口排放循环的床组分,以便将回来的床组分引导到直接在燃烧床上面大致水平的方向用于增加床中的循环。此外,引入新的燃料和细的石灰石的入口刚好位于弓形的排放沟道之下以便提高水平的排放速度。燃烧室的一部分,通常在弓形排放沟道的对面,装设倾斜的壁段以便进一步提高床内的循环。
在结束流化床装置现有技术形式的这个讨论之前,相信把注意力集中到流化床装置这样现有技术形式的几个方面,特别是关于流化床装置这样现有技术形式的操作模式和结构特性是很重要的。所以,应该指出按照流化床装置现有技术形式的操作模式和结构特性,特别是大循环流化床装置的现有技术形式,通常在大循环流化床装置这样现有技术形式中,在造成这些细的固体燃料灰份/吸附剂颗粒流动到和通过流化床热交换器之前将其与烟道气分离。因此,这里并不将造成会流动到和通过流化床热交换器的固体颗粒的类型进行分类。所以,按照这样的操作模式,造成会流动到和通过流化床热交换器的固体颗粒整个包括所有灰份的混合物,已经在大循环流化床装置这样现有技术形式的燃烧室内在空气的存在下作为固体燃料燃烧结果生产出的灰份。
此外,相信也应把注意力引向这个事实,即按照特别是大循环流化床装置现有技术形式的操作模式和结构特性,当在大循环流化床装置这样现有技术形式中应用流化床灰份冷却器时一般使用这样的流化床灰份冷却器来冷却灰份,已经在大循环流化床装置这样现有技术形式的燃烧室内在空气的存在下作为固体燃料燃烧的结果生产出的灰份,使这样的灰份离开所述的大循环流化床装置现有技术的形式。认识到,可以操作这样流化床灰份冷却器实现大的灰颗粒与其夹带的细粒的分离,在这样分离的细粒回到所述的大循环流化床装置之前。但是,与前面段落中已经讨论的那样这里再次提出,在流化床灰份冷却器的情况下并不对固体颗粒的类型进行分类,它共同地包括已经在大循环流化床装置所述现有技术形式的燃烧室内在空气的存在下作为固体燃料燃烧的结果生产出的灰份。即,如在前面段落中讨论的那样,通过这样流化床灰份冷却器的操作所分离的固体颗粒整个包括所有灰份的混合物,已经在大循环流化床装置所述现有技术形式的燃烧室内在空气的存在下作为固体燃料燃烧的结果生产出的灰份。
还是在这方面,将注意力引向这个事实,即按照这里前面已经参考的美国专利4,539,939号的教示,将采用铝矾土的床材料从成泡床中抽出。但是在所述美国专利4,539,939号的所述教示中,找不到任何公开的企图从采用铝矾土的床材料中分离任何残余的灰份或燃料的打算,在引起采用铝矾土的这样床材料流动到热交换器之前进行分离的打算。
因此,通过这方面总结的方式,已经看到流化床装置现有技术形式至今的通常实践,特别是,所考虑的大循环流化床装置的现有技术形式,按照流化床装置这样现有技术形式的操作模式和结构特性并没有打算在它的操作中实现各种类型固体颗粒之间的分类/分离,在它们回到流化床热交换器之前。更重要的是,在各自的主张中,与流化床热交换器相联系的现有技术,特别是这样的流化床热交换器包括逆流传热系统时并没有公开或甚至提出在各种类型固体颗粒之间进行分类/分离的打算。更具体地说,在各自的主张中,在这里前面已经参考的任何现有技术文献中没有教示出或甚至提出实现各种类型固体颗粒之间的分类/分离,该颗粒共同地包括已经在流化床装置现有技术形式的燃烧室中在空气的存在下作为固体燃料燃烧的结果生产出的灰份,在这样的固体颗粒流经逆流的传热系统之前或之后进行分类/分离。
虽然按照前面已经参考过的各个美国专利的教示而构造的流化床锅炉,以及依据在Coaltech(煤技术)87年会议上宣读的上面已参考的论文主题构造成的流化床锅炉都声称各锅炉的操作已经证明达到了它们设计的目的,但在现有技术中已经证明这样的流化床锅炉需要进一步的改进。更具体地说,在现有技术中明显需要低成本的传热系统,该系统体现出一种基于新方法的结构,其特征在于它的固体强化传热效果。所以,从所采用的术语即“流化床锅炉”的观点来看并不今人惊奇,按照前面已经参考过的各个美国专利的教示所构造的所有这样的流化床锅炉,以及依据Coaltech 87年会议上宣读的上面已参考的论文主题构造成的流化床锅炉的基本特征是,不管流化床锅炉结构成采用成泡床类型的操作模式或者循环流化床类型操作模式,均需要使用流态化空气来实现流化床锅炉的操作。即,不管采用的是否是成泡类型操作模式还是循环流化床类型操作模式,无论如何始终存在一种需要,即,如果所需的操作模式有效地完成,则需要以某种目的应用流态化的空气。不管采用的是否是成泡类型的操作模式还是循环流化床类型操作模式,设计这样的流态化空气使其按预先选定的速度喷射,速度的选择主要决定于特定的流化床锅炉以成泡类型模式或者循环流化床类型模式来操作,从而使这样的流态化空气流过包括各材料颗粒的床,材料的特性可以采取许多形式,如燃料颗粒、石灰石颗粒、惰性颗粒等等。因此,由于在现有技术形式的流化床锅炉中至今还需要使用这样的流态化空气,所以到目前为止不可能实现燃烧、传热和环境控制过程完全地断开联系,并且由于这个事实,到目前为止在使用这样的现有技术形式的流化床锅炉的情况下,不存在下述的可能性,即不允许例如燃烧过程、传热过程和环境控制过程的这些过程单独地最优化。
因此,本发明的一个目的是提供一种用于传热系统的新的和改进的结构,该传热系统基于所涉及的传热系统范围内的新的和新颖的方法的采用。
本发明的另一个目的是提供这种新的和改进的传热系统,其特征在于它的低成本。
本发明还有一个目的是提供这种新的和改进的传热系统,其特征在于固体强化了由其能够实现的传热。
本发明另有一个目的是提供这种新的和改进的传热系统,其特征在于由此燃烧、传热和环境控制过程能完全断开联系。
本发明另一个目的是提供这种新的和改进的传热系统,其特征在于由于使燃烧、传热和环境控制过程完全断开联系,所以能使这些过程的每一个分别最优化。
本发明还有一个目的是提供这种新的和改进的传热系统,其特征在于在使如铝矾土的传热固体流到传热装置之前,这些传热固体被有效地在分类步骤中与固体燃料灰、吸附剂、易燃剂、和烟道气分离。
本发明还有另一个目的是提供这种新的和改进的传热系统,其特征在于这样的传热系统不受燃料特性改变的影响,不管燃料是固体、液体或气体,由于应用了分类过程,从而只有如铝矾土的传热固体与传热装置接触。
本发明另有一个目的是提供这种新的和改进的传热系统,其特征在于就与这种新的和改进的传热系统相连接而采用内热源来说,在内热源的区域内没有使用传热表面。
本发明进一步的目的是提供这种新的和改进的传热系统,其特征在于这种传热系统仍保持使得NOX的排放最小的能力。
本发明还有一个目的是提供这种新的和改进的传热系统,其特征在于硫的收集与燃烧过程断开联系。
本发明还有另一个目的是提供这种新的和改进的传热系统,其特征在于按照该传热系统的最佳模式的实施例,不再需要流化床式的热交换器,由于该结果还获得到以下优点,尽管使用这种新的和改进的传热系统仍可能具有一种在其一端处逆流段紧接着外部传热表面的流化床结构,但其减小了辅助的动力和节省了鼓风机和相联的管道系统的成本。
本发明另有一个目的是提供这种新的和改进的传热系统,其特征在于可以采用冷的旋风分离器代替热的旋风分离器,后者通常是更普遍采用的。
本发明还有另一个目的是提供这种新的和改进的传热系统,其特征有利地在于这样的传热系统相对比较便宜,同时结构上也相对简单。
发明内容
按照本发明,提供一种新的和改进的传热系统,该传热系统的结构基于所涉及的传热系统范围内的新的和新颖的方法的采用。更具体地说,本发明主题的传热系统代表一种新的和新颖的方法,其设计出一种使用固体强化传热的低成本传热系统。本发明的传热系统所实施的构思包括将燃烧、传热和环境控制过程完全断开联系,从而允许每个过程分别最优化。按照本发明的传热系统与常规结构的100MW循环流化床系统之间的成本比较,从这样成本比较的结果中可确定:本发明传热系统的所有压力部件的成本可比常规的100MW循环流化床系统的相应部分减小约65%,并且本发明的传热系统所用的结构钢、工厂占地、和建筑物数量与常规结构的100MW循环流化床系统可实现的相应部分相比可显著地减小。
继续,本发明的传热系统采用的混合结构能在如高至1100℃的高温下运行并且以旋风分离器的低固体循环率运行。第二固体循环回路也重叠在其上面。按照本发明传热系统的操作模式,将稠密的冷固体流引入到该系统的第一部分顶部。然后通过在本发明传热系统第一部分内产生的在这些冷固体和热源之间的再生传热来加热这些固体,热源可以在本发明传热系统第一部分的内部产生或在它的外部产生,当这些固体朝向本发明的传热系统的第一部分的底部落下时,热源本身依次被冷却到本发明传热系统的第一部分出口处的低温。将热床固体从本发明传热系统的第一部分排入到位于本发明传热系统的第一部分下面的强制通风式热交换器内,该强制通风式热交换器与第一部分可以以机械方式连接,尽管按照本发明的最佳模式实施例并不需要该热交换器。在这方面,强制通风式热交换器不必直接位于燃烧器的下面,只要强制通风式热交换器的位置与燃烧器足够近,从而使传热固体可由其本身重力从燃烧器向下流入强制通风式热交换器就行。按照本发明的最佳模式实施例,本发明传热系统的所有传热表面积都位于这个强制通风式热交换器之中。按照本发明传热系统的操作模式,固体以这种方式缓慢向下移动通过该强制通风式热交换器,按照本发明的最佳模式实施例这类似于移动床的特性。热固体与为此目的适当地定位在强制通风式热交换器内的管子的直接接触,从而提供了它们之间高的热传导率并减小了所需传热表面积的总数量。
在本发明传热系统与现有技术形式的传热系统比较中起到有利的特征作用的某些关键特性如下:a)显著地减小了传热表面积,b)用本发明传热系统实施的技术可以实现高温兰金(Rankine)循环,c)简单的压力部件结构,d)标准的压力部件结构,e)简单的支承结构,f)减小气体侧压力降,和g)过程最优化。根据如下事实达到了显著地减小传热表面积,按照本发明传热系统实施的结构,所有压力部件传热表面积都合并到单个逆流热交换器中,该热交换器相对于上面提及的本发明传热系统第一部分定位成,使得有可能使传热固体依靠本身的重力从燃烧器向下流到所述热交换器。因此,通过热固体和传热表面积之间的直接接触,对所有表面都提供高的传热率。此外,在本发明传热系统中可以使用增大的表面积,这进一步减小了传热表面积的需求。成本比较研究显示,本发明传热系统总的压力部件的重量和成本将是与本发明传热系统操作在相同结构条件下的循环流化床系统的约1/3。
本发明的传热系统能进行高温兰金循环并利用它们高的装置效率,而无需开发或使用稀有材料。另外,在本发明传热系统中使用如移动床那样运动的热固体移动床,从而获得高的传热率,按照本发明最佳模式实施例,不再需要在这样的热固体和强制通风式热交换器管之间非常高的温度差,随之也减小了管金属的最大温度。所以用上述本发明传热系统的第一部分中的中等的温度可以实现高温蒸汽的条件,从而能使用容易获得的高镍合金。试验已经显示,本发明传热系统的强制通风式热交换器的管子加上增大的表面积对传热表面积的要求有极大的影响。在这方面,本发明传热系统可以获得的高的传热率和增大的管子表面积,大大减小了所有传热段的成本,在昂贵的高温段内可以达到约减小50%。如果需要,通过开发高温翅片也可以实现表面积的进一步减小。
本发明传热系统用作用于节煤器、蒸发器和过热器的单回路的单程式的传热系统。单段过热器因而不再需要中间的加热器。还有,因为本发明传热系统的蒸汽出口与透平机位于同一平面,所以传热系统-透平机的可应用的连接管线大大缩短。用本发明的传热系统由于在它的不同管段上控制固体流的结果可以使蒸汽侧和气体侧的不平衡最小化。还有,由于传热段不与燃料灰接触,不需要吹灰器。此外,由于如移动床样的运动所产生热传导,按照本发明最佳模式的实施例,提供了围绕管子中心线的均匀热流,不象在现有技术传热系统中普遍采用的水冷壁,它经受的是一侧加热。另外,因为本发明传热系统没有水冷壁,就消除了水冷壁由于奥氏体/铁素体材料的混合和因单侧热流引起的应力差所造成的缺陷,这些缺陷构成现有技术传动系动的不利特征。另外,用本发明的传热系统也消除了高温腐蚀,而现有技术传热系统已知是普遍存在的。
本发明所属技术领域的普通技术人员众所周知,常规结构的循环流化床系统的压力部件结构必须设计用于在其燃烧室中燃烧的特定燃料。本发明所属技术领域的普通技术人员也是众所周知的是,经过常规结构的循环流化床系统的尾部烟道(backpass)的气体流速随着燃料水份含量的增高而增加。因此,对水份含量高的燃料必须增加常规结构循环流化床系统尾部烟道中管间距离以便保持流过这样管子合适的气体速度,这就造成在常规结构循环流化床系统的情况下更大和更昂贵的尾部烟道。所以,当需要多种燃料时,在所涉及的常规结构循环流化床系的范围内,燃烧室必须设计成可接受最差的燃料燃烧。
在另一方面,本发明传热系统中传热表面积不受燃料特性改变的影响,不管是在采用与本发明的传热系统相连的内部产生的热源,还是采用与本发明传热系统相连的外部产生的热源。这归因于这样的事实,在任何一种情况下燃烧气体和燃料灰都不与本发明传热系统的传热表面接触。这是因为包括了分类过程,该过程下面将要详细描述,按照本发明最佳模式实施例该过程位于强制通风式热交换器之前,从而这个分类过程在操作上可将例如铝矾土的传热固体从固体燃料灰、吸附剂、易燃剂和烟道气中分离出来。此外,当采用与本发明的传热系统相连的内部产生的热源时,在使用水份含量高的燃料情况下,本发明的传热系统将具有更高的气体速度流过它的第一部分。最后,当采用与本发明的传热系统相连的内部产生的热源时,对于不同的燃料可通过改变再循环颗粒尺寸和再循环率,从而使得在本发明传热系统的第一部分中保持热量再生。
继续,在本发明传热系统的第一部分中不设置任何的传热表面积,所以理想的是圆筒形、自支承的薄的耐火壳体的结构。还有,这样的结构,在本发明传热系统的涉及范围内,不再需要拱边支柱并大大地减少了结构钢的需要。此外,由于在本发明传热系统的第一部分内热源被冷却,所以冷的旋风分离器将显著地小于常规结构循环流化床系统中所用的分离器尺寸,同时随之将仅需要少量的耐火和结构钢。另外,通过使用本发明的传热系统,其热交换器的支承需求也明显降低,因为在这样的热交换器中所用的管束其位置更接近地面,并且比在常规结构的循环流化床系统中所采用的那些管更轻。
还应该注意到,本发明传热系统中固体循环率大大低于常规结构的循环流化床系统的循环率,所以气体侧的压力降也低。另外,在本发明传热系统的所采用热交换器中,热固体是以移动床样的方式移动通过该热交换器,按照本发明的最佳模式实施例,不再需要流化床热交换器(FBHE),该流化床热交换器是常规结构的循环流化床普遍采用的一个组件,这又减小了辅助的动力需求和鼓风机和管道系统的成本。
从上述中,应该很清楚本发明的传热系统为过程的最优化提供了某些独特的可能,因为使用了本发明的传热系统,燃烧、传热、和环境控制各过程被有效地断开联系。另外,通过使用本发明的传热系统,在它的高温第一部分内仍能保持常规的流化床系统燃料的灵活性,以便与用于烧完的碳的旋风分离器再循环连接。此外,用本发明的传热系统还能得到下述的特点:在本发明传热系统第一部分的下部可使放出的NOX最小化;通过应用合适的后端系统,硫的收集与本发明传热系统的热源产生过程断开联系;在本发明传热系统的第一部分内仍可煅烧石灰石,虽然按照本发明的最佳模式实施例,要求这样的石灰石足够细以便一次通过本发明传热系统的第一部分就行。但是认识到可能有这样的情况,对硫含量高的煤可能希望在传热系统的第一部分内试图进行和获得某些硫的收集。在这样的情况下可以希望测定石灰石的大小,从而使石灰石通过旋风分离器之前将经过几次再循环。
附图说明
图1是按照本发明构造的传热系统的示意图,其示出了所采用的与该系统相连的内部产生的热源;
图2是按照本发明构造的传热系统的示意图,其示出了所采用的与该系统相连的外部产生的热源;
图3是按照本发明的最佳模式实施例、图1中示出的本发明传热系统的第一部分和它的强制通风式热交换器之间机械的互相连接的放大侧视图,按照本发明传热系统操作的模式,热固体从第一部分横向进入强制通风式热交换器;和
图4是本发明传热系统该段的放大侧视图,其中进行分类过程,以使例如铝矾土的传热固体与固体燃料灰、吸附剂、易燃剂和烟道气分离。
具体实施方式
现在参考附图,特别是图1,其中示出了按照本发明构造的传热系统,整体由附图标记10表示,所示的传热系统采用与其相连的内部产生的热源。如图1清楚所示,传热系统10包括第一部分,即容器,它整体由附图标记12表示,容器本身包括两个区,即下区和上区。整体由附图标记14表示的下区在操作上作为燃烧区,即形成一内部产生的热源的区。如附图标记16的箭头所示,将燃料喷射到这个区14内,并如附图标记18所示,将燃烧用空气也喷入其中,优选地使用常规的成泡床技术,使燃料16和燃烧用空气18燃烧从而以热气体的形式形成内部产生的热源,它是作为燃料16和燃烧用空气18的这种燃烧的结果产生的即生成的。
容器12的上区整体由附图标记20表示,即位于区14之上在容器12内的区,该上区以反应器的方式操作,使之有6到7秒数量级的相对较长的停留时间,从而在其中以再生方式获得到来自内部产生的热源的热量,这在下面将要进一步说明,其中构成在区14内燃烧产生的产物的热气体如附图标记22表示的箭头所示地向上流动,热量传递给如附图标记24表示的箭头所示地喷射到容器12的上区20中的固体颗粒流,该颗粒流如附图标记26表示的箭头所示地向下流动。因此,容器12的上区20其基本功能是以逆流的方式直接接触的热交换器。所以,无论在容器12的区14或是上区20都没有热量传给水/水蒸汽的情况发生。因此,容器12的壁可以设计成耐火衬料。另外,固体颗粒24有效地从内部产生的热源即气体22中以再生方式获得热量,使气体的温度降低到足够低以便能在本发明传热系统10中使用常规形式的空气加热器,该空气加热器示意地说明在图1中,其中所述空气加热器整体由附图标记28表示。
按照本发明的优选实施例,用于从气体22中以再生方式获得热量所采用的固体颗粒24设计成具有高的密度以及高的导热性。即:固体颗粒的密度越高,并且固体颗粒24的数目越大,也就是,固体颗粒24的表面积越大,容器12就可以越小。所以,已经发现各种形式的铝矾土,如Al2O3,适合用作固体颗粒24。在这方面,各种形式的铝矾土如Al2O3不仅是因为它们的热特性,而且另外因为它们是低技术陶器的原料,以及它们在世界上每个国家实际上都存在,所以其具有吸引力。但是,应该理解还有体现上述特性的希望实施的其它类型颗粒,可以采用它们代替各种形式的上文中叙述的铝矾土,而不会背离本发明的精神。
用于从气体22中以再生方式获得热量所采用的固体颗粒24还设计成具其有比固体燃料灰和吸附剂颗粒更高的密度和更大的尺寸。固体颗粒设计成在容器12的上区20内以最大气体速度朝下降落通过炉子,也就是,在容器12的上区20内固体颗粒24的终端速度大于容器12的上区20内最大气体速度。容器12的上区20的横截面积设计成,以便确保其中的气体速度足够高,以便能夹带大部分的固体燃料灰和吸附剂颗粒并如图1中附图标记36表示的箭头所示地携带它们向上流出容器12,其方式下面将要进一步说明。
以这样的方式从容器12下区14排出固体颗粒24,即,以便保证基本上没有细或粗的固体燃料灰或吸附剂被传送到由附图标记30表示的强制通风式热交换器。按照本发明的最佳模式实施例,在图1中每一个床排放管都由相同的附图标记31表示,并且下面将对它们进一步说明,多个床排放管是这样定位的,即,使图1中由相同的附图标记31a表示的每个床排放管31的入口位于容器12的区14的底板之上,该底板由附图标记14a表示。通过使用这个设计,包括采用多个床排放管31的每个的入口31a位于容器12的区14的底板14a之上,从而使得没有大块矿石等被允许通过容器12的区14到达强制通风式热交换器30。因此这样大块的矿石等只能从容器12通过分离床排放处理系统除去,后者在图1中示意地由附图标记33表示的箭头说明。
以与特定的图4的讨论相联系的更加充分详细的方式说明,将足够量的空气引入到多个床排放管31中的每一个中,从而使其速度足够高以便防止细粒、燃料灰和吸附剂颗粒向下流过多个床排放管31中的任何一个或几个中,尽管同时这个空气流的速度不足以阻碍固体颗粒向下流过多个床排放管31的每一个到达强制通风式热交换器30。引入到多个床排放管31每一管中的空气还可在操作上实现任何没有烧尽的含碳物质的燃烧,该物质可能进入多个床排放管31中的任何一个或几个中。由这样的燃烧产生的热量设计成使其从各自床排放管31回到容器12。
继续在图1中说明的本发明传热系统10的描述,按照本发明构造的传热系统10还包括第二部分,即前面已经描述过的强制通风式热交换器30。如图1所示,在强制通风式热交换器30内以安装关系合适地支承一个或几个传热表面。按照本发明传热系统10在图1中的说明,4个这样的传热表面示意性地以合适的支承方式安装在强制通风式热交换器30内,每个传热面在图1中都由相同的附图标记32表示,这可通过使用适合于这样目的的任何常规形式的安装机构来实施(为了保持图中说明的简明,没有显示出),例如优选地在强制通风式热交换器30内适当地互相间隔一定距离。但是应该理解,在强制通风式热交换器30内可以采用更多或更少数目的这样的传热表面32,而不会背离本发明的精神。
固体颗粒24通过强制通风式热交换器30基本上是简单的质量流动,固体颗粒从由附图标记31b表示的多个床排放管31每一个的出口流出和排放出来之后,如由相同的附图标记35表示的每个箭头所示意地进入到强制送风式热交换器30,从而一旦这些固体颗粒24在容器12的第一部分20内从该内部产生的热源即从气体22中以再生方式获得热量,则这些固体颗粒24主要在重力的影响下以非常慢的速度,如40m/小时的数量级向下移动。因此,这些固体颗粒24当它们向下移动时形成移动床的特征。虽然按照本发明的最佳模式实施例,这些固体颗粒24当它们向下移动时形成移动床的特征,但应理解这些固体颗粒24也可以用某些其它的方式向下移动而不会背离本发明的精神。这里重要的一点是,优选地是完全以逆流的方式完成传热作用,或者另一种是最小程度至少以部分逆流的方式完成传热作用。因此,至少部分的热交换作用必须是以逆流的方式进行。
在以上面已经说明的方式向下流动的过程中,固体颗粒24的该向下移动的质量流在传热表面32上流过,按照本发明最佳模式实施例每个传热表面优选地包括多个单独的管(为了保持附图说明的简明,没有示出),该管在共同地作用时构造成单个传热表面32。循环的“工作流体”如由词语“流体”标记的每个箭头示意地流经每个传热表面32的这些每根管子(未示出)。如这里所用的那样,术语“工作流体”指的是热力循环的“工作流体”,例如蒸汽或氨,以及过程的原料。在固体颗粒24向下移动的质量流和通过各管(未示出)流动的工作流体之间实现的传导的热交换最好是如上面已经讨论的那样百分之一百的逆流,这些管子共同地作用时构成热交换表面32中的一个。虽然如上面已经讨论过的那样,在固体颗粒24向下移动的质量流和通过各管(未示出)流动的工作流体之间这样的传导的热交换在最小程度上可以是至少部分逆流的。
当所采用的用于燃烧从而形成该内部产生热源的燃料改变时,不需要改变各个管(未示出)之间的距离,这些管子整体地构成每个传热表面32。另外,由于在各个管子(未示出)上没有气体流动,这些管子共同地构成每个传热表面32,因此没有气体侧的速度限制,这些限制在气体与管子传热的热交换器中造成需要多部段结构的过热器、再加热器、蒸发器和节约器的传热表面积,在现有技术形式的循环流化床系统以及现有技术形式的粉化煤燃烧的蒸汽发生器中它们是普遍需要的。因此用本发明的传热系统10被认为有可能提供从它的节约器入口到它的过热器出口的单个回路,并具有消除大部分排出压力损失的伴随效果。
按照本发明最佳模式实施例,在强制通风式热交换器30中固体颗粒24实际上由百分之百的铝矾土即Al2O3构成,并只包括最小量的固体燃料灰。这是由于在容器12内在铝矾土即Al2O3的固体颗粒24与固体燃料灰之间实现分类。即,在容器12区14内固体燃料16和燃烧用空气18燃烧产生的固体燃料灰具有微米级尺寸和低密度,所以被夹带在向上的气流22中。在另一方面,铝矾土即Al2O3的固体颗粒24是非常稠密并具有600-1200微米的尺寸,这样的颗粒太大以至于不能被夹带在向上的气流22中。此外,如上面已经叙述过那样和下面与附图4的相联系的进一步描述的那样,多个床排放管31和将空气引入到该处相结合的设计提供了辅助的分类并进一步保证只有铝矾土即Al2O3的固体颗粒24向下通到强制通风式热交换器30。所以,如上面已经描述的那样,铝矾土即Al2O3的固体颗粒24主要是在重力的影响下朝下移动。
继续参考附图的图1,当固体颗粒24到达强制通风式热交换器30的底部时,如图1所示,固体颗粒24已经被足够冷却,即在近似500°F的温度,从而使固体颗粒24,如在图1中整体由附图标记34表示的虚线所示的那样,可以被运送回到容器12的顶部以用于喷射到它的第一部分20中,从而如前面已经描述过那样用于再一次重复固体颗粒24流过容器12然后通过强制通风式热交换器30的过程。在本发明的传热系统10内固体颗粒24的这种流动这里称为“下再循环回路”。
进一步说明本发明的传热系统10的容器12的区14内由固体燃料16和燃烧用空气18的燃烧所产生的固体燃料灰,如附图的图1说明的那样,其中采用了与之相联的内部产生的热源,如前面已经描述过的那样这种固体燃料灰被夹带在气体22中,因此从容器12的区14向上流动进入并通过容器12的第一部分20,并且如在图1中由附图标记36表示的箭头所示的那样,最终夹带固体燃料灰的气体22被排放到低温的即冷的常规结构的旋风分离器中,该冷的旋风分离器在图1中整体由附图标记38表示。在冷的旋风分离器38内,以对本发明所属技术领域的普通技术人员来说是众所周知的方式,使固体燃料灰与气体22分离。在使用冷的旋风分离器38内分离之后,如图1中整体由附图标记40表示的箭头和虚线所示的那样,使部分的分离的固体燃料灰回到容器12的区14,并将剩余的分离的固体燃料灰从冷的旋风分离器中排出以用于作最后的处理,如在图1中整体由附图标记41表示的箭头和虚线所示的那样。另一方面,如在图1中整体由附图标记42表示的箭头和虚线所示的那样,在冷的旋风分离器38内已经与固体燃料灰分离的气体从冷的旋风分离器38排放到空气加热器28。如上述的固体燃料灰再循环这里将称之为“上再循环回路”,它主要执行如下两种功能:1)它减小没有燃烧的碳的数量,否则这些没有燃烧的碳将从容器12中排出,和2)它能有对强制通风式热交换器30内温度的起到辅助控制作用。
强制通风的热交换器30的温度是非常重要的,因为该温度形成固体颗粒24向下的质量流与传热表面32的管子(未示出)之间进行传导传热的基础,以及由此形成与流过这些管子(未示出)的工作流体之间进行传导传热的基础。在本发明的传热系统10中,在强制通风式热交换器30内的温度是燃烧的Q值、多余的空气、上再循环率、和下再循环率的函数。对给定的燃烧Q值,独立变量是上再循环率和下再循环率。如果需要增加固体颗粒24的温度,那么可以减小下再循环率,但气体22离开容器12的第一部分20的出口温度将增加,这是由于从热源以再生方式获得热量的表面积减小,即当采用与本发明的传热系统10相连的内部产生的热源时,该热源就是在容器12的区14内由固体燃料16和燃烧用空气18燃烧产生的气体22。可以减小上再循环率以便增加固体颗粒24的温度,但碳的损失将加大,这是因为在固体燃料灰中的未燃烧的碳具有更少的机会从冷的旋风分离器38再循环到容器12的区14。所以,认为最好的策略是适当的某种组合,它包括两个变量中的每一个的调节,即在下再循环率中某些调节以及在上再循环率中某些调节。这里还注意到在强制通风式热交换器30内温度的上限是由固体燃料16灰份熔合的温度获得的,名义上它是1100℃。所以,为了使固体颗粒24在强制通风式热交换器30内保持自由流动,在强制通风式热交换器30的温度必须保持在使容器12的区14内固体燃料16和燃烧用空气18变粘的温度之下。
汇集在自由流动的固体颗粒24的质量中的热量或从热源通过再生方式获得到热量的固体颗粒24’的质量中的热量,当这样的热源分别是图1中所示的内部产生的热源和是图2中所示的外部产生的热源时,使得在循环流化床系统的现有技术形式中或者在燃烧粉碎煤的蒸汽发生器现有技术形式中不可能的许多情况变成可能。在这方面通过示范而不是限制的方式,这里参考如下几点,使用按照本发明构造的传热系统,如在图1中描述的本发明的传热系统10,以下这些全都被认为是可能的,1)在按照本发明构造的传热系统10的所有回路中逆流是可能的;2)当经过本发明传热系统10的温度下降时不需要替换传热表面32的管子(未示出);3)不管固体燃料16多么差,传热表面32的管子(未示出)没有腐蚀、磨损或堵塞的可能;4)无论固体燃料16的特性如何,可以在传热表面32的所有管子(未示出)上设置翅片;5)通过围绕每根这样单个管子(未示出)的轴线的导热从而均匀加热传热表面32的所有管子(未示出),这样消除了例如用水墙形式的结构会发生的管子(未示出)的单侧加热,和6)由于已知的是热传导率在固体与管子传热时大大高于气体与管子的传热中的对流传热,所以极大地强化了传热效果。
为了完成在图1中说明的本发明传热系统10的描述,这里注意到这个事实,即,喷射到容器12的区14内的燃烧用空气18在注入到其中之前,优选地通过气体和空气之间的热交换在空气加热器28中首先预热,使附图标记42表示的气体流过空气加热器28,由附图标记44表示的箭头所示的空气为这个目的进入并流过空气加热器28。也被认为是很重要的是,注意到应用本发明传热系统10按照它的最佳模式实施例喷射到容器12的区14内的燃烧用空气18基本仅采用空气。另外,这里还注意到,当使用的热源是内部产生的热源时仅采用这种燃烧用空气18。进一步讨论这一点,被认为很重要的是,认识到没有将任何空气或任何气体喷射到强制通风式热交换器30中用于在强制送风式热交换器内实现固体颗粒24向下流动的质量流态化。应用到本发明的传热系统10中的其它空气仅被引入到多个床的排放管31的每个床排放管中,以用于在其中实现固体颗粒24与任何可能进入某一个或几个床排放管31中的细粒、固体燃料灰和吸附剂颗粒之间的附加分类。
接着转到参照图2,图中描述按照本发明构造的整体由附图标记10′表示的传热系统,该系统与图1所示的传热系统10不同,其中在图1中所示的传热系统10中采用了与其相连的内部产生的热源,而在图2中所示的传热系统10′与在图1中说明的传热系统10完全不同,是采用了与其相连的外部产生的热源。为了理解在附图的图2中说明的按照本发明的传热系统10′的操作模式和构造特性,与传热系统10的组件相对应的传热系统10′中的组件是与图1中所示的那些组件相同的,并已经与按照本发明构造的传热系统10的描述相联系地在前面被描述过,在图2中由相同的附图标记来表示,但加上一撇号作为上标,以便与在图1中已经采用的相同的组件相区别。
所以,参考附图的图2能清楚地了解,传热系统10′包括第一部分,即容器,该容器整体由附图标记12′表示,该容器本身包括两个区,即下区和上区。整体由附图标记14′表示的下区在操作上作为容纳外部产生的热源的区,该热源在图2中由附图标记15整体表示的箭头示意地表示。所以,外部产生的热源可以采用从透平机或其它相似类型设备排出的热气体的形式,或者可以是热的过程物流的形式,它可以是某种类型化学反应的结果生成的物流,并不会背离本发明的精神。在任何情况下,如果外部产生的热源是热排出的气体的形式,那么如在图2中由附图标记15表示的箭头示意的那样将这个排出的热气体喷射到第一部分12′的下区14′中。或者,如果外部产生的热源是热的过程物流的形式,那么如在图2中由附图标记15表示的箭头示意的那样将这个热的过程物流喷射到第一部分12′的下区14′中。
容器12′的整体由附图标记20′表示的上区是在容器12′内位于区14′上面的区,该上区以反应器的方式来操作,从而提供6到7秒数量级的相对较大的停留时间,从而在其中以再生方式获得热量,这在前面已经与图1中所示的传热系统10的描述相联系地说明过,其中从外部产生的热源来的热量是以热的排出气体或热的过程物流的形式这样的外部热源,这样的排出热气体或热的过程物如由附图标记22′表示的箭头所示地流向上流动,将热量传给由附图标记24′表示的箭头所示的喷射到容器12′的上区20′中的向下流动的固粒颗粒流,向下流动是由附图标记26′表示的箭头所示的。因此,容器12′的上区20′基本上以逆流、直接接触的热交换器的方式工作。所以在容器12′的区14′内或在容器12′的上区20′内都没有热传给水/蒸汽的情况发生。因此,容器12′的壁设计成以便它们可以使用耐火衬料。另外,固体颗粒24′能有效地从外部产生的热源中以再生方式获得热量,该热源是示意地用22′表示的热的排出的气体或热的过程物流,以使该固体颗粒的温度下降到足够低,以便在本发明的传热系统10′中能够使用常规形式的空气加热器,该空气加热器在图2中示意地所示,其中所述空气加热器整体是由附图标记28′表示。
按照本发明的优选实施例,用于从热的排出气体或热的过程物流22′中以再生方式获得热量所采用的固体颗粒24′设计成具有高密度以及高的导热性。即,固体颗粒的的密度越高,并且固体颗粒24′的数目越大,也就是,固体颗粒24′的表面面积越大,容积12′可以越小。所以,已经发现各种形式的铝矾土如Al2O3都适合用作固体颗粒24′。在这方面,各种形式的铝矾土如Al2O3不仅是因为它们的热特性,而且另外因为它们是低技术陶器的原料,以及它们在世界上每个国家实际上都存在,所以其具有吸引力。但是,应该理解还有体现上述特性的希望实施的其它类型颗粒,可以采用它们代替各种形式的上文中叙述的铝矾土,而不会背离本发明的精神。
用于从热的排出气体或热的过程物流22′中以再生方式获得热量所采用的固体颗粒24′还可设计成具有比可能被夹带在热的排出气体或热的过程物流中的任何物质更大的密度和尺寸,这些热的气流被喷射到容器12′的下区14中之后,在容器12′内向上流动。固体颗粒24′设计成在容器12′的上区20′内以最大气体流速向下掉落以经过炉子,也就是说,固体颗粒24′在容器12′的上区20内的终端速度大于容器12′的上区20′内最大气体速度。容器12′的上区20′的横截面积设计成,以便保证其中的气体速度足够高以便夹带大多数物质,并使热的排出气体或热的过程物流如在图2中由附图标记36′表示的箭头所示地携带这些物质向上和流出容器12′,其方式下面将要进一步说明。
以这样的方式将固体颗粒24′从容器12′的下区14′排出,即,保证基本上没有由热的排出气体或热的过程物流22′所夹带的细的或粗的物质传送到由附图标记30′表示的强制送风式热交换器。按照本发明最佳模式的实施例,多个床排放管这样定位,在图2中每一个床排放管都由相同的附图标记31′表示,并且下面将对它们进一步说明,多个床排放管是这样定位的,即,使图2中由相同的附图标记31a′表示的每个床排放管31′的入口位于容器12′的区14′的底板之上,该底板由附图标记14a′表示。通过使用这个设计,包括采用多个床排放管31′的每个的入口31a′位于容器12′的区14′的底板14a之上,从而使得没有大块矿石等被允许通过容器12′的区14′到达强制通风式热交换器30。因此这样大块的矿石等只能从容器12′通过分离床排放处理系统除去,后者在图2中示意地由附图标记33′表示的箭头说明。
以与特定的图4的讨论相联系的更加充分详细的方式说明,将足够量的空气引入到多个床排放管31′中的每一个,从而使其速度足够高以便防止可能被热的排出气体或热的过程物流22′可能夹带的任何物质向下流入到多个床排放管31′中的任何一个或几个中,尽管同时这个空气流的速度不足以阻碍固体颗粒向下流过多个床排放管31′的每一个到达强制通风式热交换器30′。引入到多个床排放管31′的每一管的空气还可在操作上实现任何没有烧尽的含碳物质的燃烧,该物质可能进入多个床排放管31′中的任何一个或几个中。由这样的燃烧产生的热量设计成使其从各自床排放管31′回到容器12′。
继续在图2中说明的本发明传热系统10′的描述,按照本发明构造的传热系统10′还包括第二部分,即前面已经参考过的强制送风式热交换器30′。如参考图2清楚地所示,在强制送风式热交换器30′内以安装关系合适地支承一个或几个传热表面。按照本发明传热系统10′在图2中的说明,4个这样的传热表面示意地说明以合适的支承方式安装在强制送风式热交换器30′内,每个传热面在图2中都由相同的附图标记32′表示,这可通过使用适合于这样目的的任何常规形式的安装机构来实施(为了保持图中说明的简明,没有显示出),例如优选地在强制通风式热交换器30′内适当地互相间隔一定距离。但是应该理解,在强制通风式热交换器30′内可以采用更多或更少数目的这样的传热表面32′,而不会背离本发明的精神。
固体颗粒24′通过强制送风式热交换器30′基本上是简单的质量流动,固体颗粒从由附图标记31b′表示的多个床排放管31′每一个的出口流出和排放出来之后,如每个由相同的附图标记35′表示的箭头所示意地进入到强制送风式热交换器30′,从而一旦这些固体颗粒24′已经在容器12′的第一部分20′内从外部产生的热源即从热的排出气体或热的过程物流22′中以再生方式获得热量,则这些固体颗粒24′主要在重力的影响下以非常缓慢的速度,如40m/小时的数量级向下移动。因此,这些固体颗粒24′当它们向下移动时形成移动床的特征。虽然按照本发明最佳模式实施例,这些固体颗粒24′当它们向下移动时形成移动床的特征,但应该理解这些固体颗粒24′也可以用某些其它的方式向下移动而不会背离本发明的精神。这里重要的一点是以最小程度为至少部分逆流的方式完成传热作用。因此,至少部分的热交换作用必须是以逆流的方式进行。
在以上面已经说明的方式向下流动的过程中,固体颗粒24′的该向下移动的质量流在传热表面32′上流过,按照本发明最佳模式实施例每个传热表面优选地包括多个单独的管(为了保持附图说明的简明,没有示出),该管在共同地作用时构成单个传热表面32′。循环的“工作流体”如由词语“流体”标记的每个箭头示意地流经每个传热表面32′的这些每根管子(未示出)。如这里所用的那样,术语“工作流体”指的是热力循环的“工作流体”,例如蒸汽或氨,以及过程的原料。在固体颗粒24′向下移动的质量流和通过各管(未示出)流动的工作流体之间实现的传导的热交换最好是如上面已经讨论的那样百分之一百的逆流,这些管子共同地作用时构成热交换表面32′中的一个。虽然如上面已经讨论过的那样,在固体颗粒24′向下移动的质量流和通过各管(未示出)流动的工作流体之间这样的传导的热交换在最小程度上可以是至少部分逆流的。
当所采用的用于燃烧从而形成产生热源的燃料改变时,不需要改变各个管(未示出)之间的距离,这些管子共同地构成每个传热表面32′。另外,由于在各个管子(未示出)上没有气体流动,这些管子共同地构成每个传热表面32′,因此没有气体侧的速度限制,这些限制在气体与管子传热的热交换器中造成需要多部段结构的过热器、再加热器、蒸发器和节约器的传热表面积,这些限制在现有技术形式的循环流化床系统以及现有技术形式的粉化煤燃烧的蒸汽发生器中是普遍需要的。因此用本发明的传热系统10′被认为有可能提供从它的节约器入口到它的过热器出口的单个回路,并具有消除大部分排出压力损失的伴随效果。
按照本发明最佳模式实施例,在强制送风式热交换器30′中的固体颗粒24′实际上由百分之百的铝矾土即Al2O3构成,并只包括最小量的其它物质。这是由于在容器12′内在铝矾土即Al2O3的固体颗粒24′与可由热的排出气体或热的过程物流22′夹带的任何物质之间实现分类。即,可被热的排出气体或热的过程物流22′夹带的任何物质具有微米级尺寸和低密度,从而被夹带在热的排出气体或热的过程物流22′的向上流动之中。在另一方面,铝矾土即Al2O3的固体颗粒24′是非常致密和600-1200微米的尺寸,这样的颗粒太大以至于不能被夹带在热的排出气体或热的过程物流22′的向上流动中。另外,如上面已经叙述过那样和下面与附图4的讨论相联系将进一步说明那样,多个床排放管31′的设计和将空气引入到该处相结合的设计提供了辅助的分类并进一步保证只有铝矾土即Al2O3的固体颗粒24′向下通到强制送风式热交换器30′。所以,如上面已经描述的那样,铝矾土即Al2O3的固体颗粒24′主要是在重力影响下朝下移动。
继续参考附图的图2,当固体颗粒24′到达强制送风式热交换器30′的底部时,如参考图2所示,固体颗粒24′已经被足够冷却,即在近似500°F的温度,从而使固体颗粒24′,如在图2中整体由附图标记34′表示的虚线示意说明的那样,可以被运送回到容器12′的顶部以用于喷射到它的第一部分20′中,如前面已经描述过那样用于再一次重复固体颗粒24′流过容器12′然后通过强制送风式热交换器30′的过程。在本发明的传热系统10′内固体颗粒24′的这种流动这里将称为“下再循环回路”。
进一步说明可能夹带在热的排出气体或热的过程物流22′中的物质,如在附图的图2中说明的那样,其中采用了与传热系统10′相联的外部产生的热源,这样的物质与热的排出气体或热的过程物流22′从容器12′的区14′向上流动进入并通过容器12′的第一部分20′,并且如在图2中由附图标记36′表示的箭头所示的那样,最终热的排出气体和热的过程物流22′与这样夹带的物质一起被排放到低温即冷的常规结构的旋风分离器中,该冷的旋风分离器在图2中整体由附图标记38′表示。在冷的旋风分离器38′内,以对本发明所属技术领域的普通技术人员来说是众所周知的方式,使被夹带在热的排出气体或热的过程物流22′的物质分离出。在冷的旋风分离器38′内分离之后,夹带在热的排出气体或热的过程物流22′中的物质的一部分,如在图2中整体由附图标记40′表示的箭头和虚线所示的那样,使其回到容器12′的区14′,并将这样物质的剩余部分,如在图2中整体由附图标记41′表示的箭头和虚线所示的那样,从冷的旋风分离器38′中排出以用于作最后的处理。在另一方面,如在图2中整体由附图标记42′表示的箭头和虚线所示的那样,与所夹带的物质分离之后,热的排出气体和热的过程物流22′从冷的旋风分离器38′排出到空气加热器28′。如上所述,被热的排出气体或热的过程物流22′可能夹带的这样物质的再循环这里将称为“上再循环回路”。
强制送风式热交换器30′的温度是非常重要的,因为该温度形成固体颗粒24′向下的质量流与传热表面32′的管子(未示出)之间进行传导传热的基础,以及由此形成与流过这些管子(未示出)的工作流体之间进行传导传热的基础。在本发明的传热系统10′中在强制送风式热交换器30′内的温度是燃烧的Q值、多余的空气、上再循环率和下再循环率的函数。对给定的燃烧Q值,独立变量是上再循环率和下再循环率。如果需要增加固体颗粒24′的温度,那么可以减小下再循环率,但热的排出气体或热的过程物流22′离开容器12′第一部分20′的出口温度将增加,这是由于从热源中以再生方式换热的表面面积减小的原因,即当外部产生的热源采用如在附图的图2中说明的传热系统10′的形式时,这个热源就是热的排出气体或热的过程物流22′。可以减小上再循环率以便增加固体颗粒24′的温度,但碳的损失将加大,这是因为可能被夹带在热的排出气体和热的过程物流22′中的未燃烧的含碳物质将有更少的机会从冷的旋风分离器38′再循环到容器12′的区14′。所以,认为最好的策略是适当的某种组合,它包括两个变量中的每一个的调节,即在下再循环率中某些调节以及在上再循环率中某些调节。
汇集在自由流动的固体颗粒24的质量中的热量或从热源中以再生方式获得热量的固体颗粒24′的质量中的热量,当这样的热源分别是图1中所示的内部产生的热源和在图2中所示的外部产生的热源时,使得在循环流化床系统的现有技术形式中或者在粉化煤燃烧的蒸汽发生器现有技术中不可能的许多情况变成可能。在这方面通过示范而不是限制的方式,这里参考如下几点,用按照本发明构造的传热系统,如在图2中描述的本发明的传热系统10′,以下这些全都被认为是可能的:1)在按照本发明构造的传热系统10′的所有回路中逆流是可能的;2)当经过本发明传热系统10′的温度下降时,不需要替换传热表面32′的管子(未示出);3)无论采用的与传热系统10′相连的外部产生热源的特性如何,传热表面32′的管子(未示出)没有腐蚀、磨损或堵塞的可能;4)无论热的排出气体或热的过程物流22′的特性如何,可以在传热表面32′的所有管子(未示出)上设置翅片;5)通过围绕每根这样单个管子(未示出)的轴线的导热从而均匀加热传热表面32′的所有管子(未示出),这样消除了例如用水墙形式的结构会发生的管子(未示出)的单侧加热,和6)由于已知的是热传导率在固体与管子传热时大大高于气体与管子的传热中的对流传热,所以极大地强化了传热效果。
为了完成在图2中说明的本发明传热系统10′的描述,相信很重要的是,认识到没有将任何空气或气体喷射到强制送风式热交换器30′中以用于在强制送风式热交换器30′内实现其中固体颗粒24′向下流动的质量流态化。按照本发明最佳模式实施例,应用本发明的传热系统10′其它空气仅被引入到多个床排放管31′中的每一根,以用于实现固体颗粒24′和可能夹带在热的排出气体和热的过程物流22′中任何物质之间附加分类,这些夹带可能是其它方式进入到多个床排放管31′中任何一个或几个。
下面这里将接着简要地参考附图的图3。因此,按照本发明最佳模式实施例,在图3中描述机械互相连接部的放大的侧视图,即在图1中所示的本发明传热系统10的第一部分,即容器12与它的强制送风式热交换器30之间的互相连接,如在图1中所示的那样按照本发明传热系统10的操作模式,热的固体颗粒24从容器12到强制送风式热交换器30横截通过该热交换器30。特别是,参考图3能清楚地理解,在容器12的区14和强制送风式热交换器30之间实现机械互相连接使得在它们之间形成在图3中由附图标记29整体表示的空间。即,包围空间29的周边是封闭的,这可使用任何常规形式的机构来实现,只要适合用于进行容器12的区14的底板14a和强制送风式热交换器30的机械互相连接,从而以互相间隔的关系支承容器12和强制送风式热交换器30并在它们之间限定的空间29的延伸。如与图1中所示的本发明构造的传热系统10的描述相联系和与图2中所示的本发明构造的传热系统10′的描述相联系的前面已经叙述过那样,在图1中所示的传热系统10的情况下多个床排放管31和在图2中所示的传热系统10′的情况下多个床排放管31′横跨过限定的空间29,从而在图1中所示的本发明构造的传热系统10的情况下在容器12的区14和强制送风式热交换器30之间形成唯一的连通装置,并在图2中所示的本发明构造的传热系统10′的情况下在容器12′的区14′和强制送风式热交换器30′之间形成唯一的连通装置。所以,参考图3能清楚地理解,如图3中所示,多个床排放管31向上突伸穿过容器12的区14的底板14a,使多个床排放管31的每个入口31a位于容器12的区14的底板14a之上以相隔一定的距离。类似地,如图3中所示,多个床排放管31每个的出口31b向内突伸到强制送风式热交换器30之中,使多个床排放管31每个的出口31b从限定的空间29延伸到强制送风式热交换器30之内合适的程度。
这里接着将考虑附图的图4,图中放大地示出在图1中所示的本发明传热系统10的一段,在其中进行分类过程,从而使例如铝矾土的传热颗粒24与固体燃料灰、吸附剂、易燃剂和烟道气分离。因此,在附图的图4中所示的是容器12的区14的底板14a的一部分,以及强制送风式热交换器30的上表面的一部分,如图4所示,上表面在图4中整体由附图标记30a表示。此外,通过示范的方式在图4中示出多个床排放管30中的一根,它的入口31a位于容器的区14内并与底板14a适当地间隔开,而它的出口31b位于强制送风式热交换器30之内并与强制送风式热交换器的上表面30a适当地间隔开。
再参考附图的图4,如图所示,按照本发明最佳模式实施例,安装在图4中整体由附图标记46表示的分类装置与床排放管31成包围的关系,如在图4中所示的那样它与容器12的区14的底板14a和强制送风式热交换器30的上表面30a两者都适当地间隔开。任何适合以对床排放管31的包围关系实现分类装置46安装的常规形式的安装机构(为了附图说明的简明,没有示出)都可使用。如图1清楚地理解那样,按照本发明的最佳模式实施例,分类装置46优选地与多个床排放管31的每根配合地相连,从而使单独的分类装置46的数目对应于如图1中所示的本发明构造的传热系统10中采用的单独的床排放管31的数目。以类似的方式,如参考图2清楚地理解那样,按照本发明最佳模式实施例,分类装置46′优选地与多个床排放管31′的每根配合地相连,从而使单独的分类装置46′的数目对应于如图2中所示的本发明构造的传热系统10′中采用的单独的床排放管31′的数目。但是,应该理解在本发明的传热系统10中分类装置46的数目可小于各个床排放管31的数目,而不会背离本发明的精神,类似地在本发明的传热系统10′中分类装置46′的数目可小于各个床排放管31′的数目,而不会背离本发明的精神。
继续,如参考附图的图4清楚地理解那样,分类装置46包括在图4中由附图标记48表示的基本圆形的部件,管状部件合适地固定在其一端,该管状部件在图4中由附图标记50表示,通过使用适合这样目的的任何形式的常规机构,将管状部件50的另一端连接到合适的空气源(未示出),从而让空气流过合适的类似总管的机构(为了保持附图中说明的简明,没有示出)进入和通过管状部件50,以流到与床排放管31成包围关系的圆形部件48,其中使空气通过多个开孔进入床排放管31,在图4中用虚线表示这些开孔和为了参考方便在图4中每个孔都由相同的附图标记52表示,该开孔是围绕床排放管31的外周相互间隔适当的距离装设的。可以使用在图4中用虚线表示的或多或少数目的开孔52,而不会背离本发明的精神。空气在通过围绕床排放管31的外周装设的开孔进入床排放管31之后向上流动通过床排放管31进入到容器12的区14内。用上述方式引入到床排放管31中的空气总量设计成,使该空气流的速度足够高以便防止不希望的物质,如细粒、固体燃料灰和吸附剂颗粒从容器12的区中14向下流动通过床排放管31进入到强制送风式热交换器30,并且同时该空气流的速度又不足够阻碍固体颗粒24从容器12的区14向下流动通过床排放管31进入到强制送风式热交换器30。
这样,按照本发明已经为传热系统提供一种新的和改进的结构,它基于传热系统范围内所涉及新的和新颖的方法的采用。此外,按照本发明已经提供这样新的和改进的传热系统,其特征在于它的低成本。还有,按照本发明已经提供这样新的和改进的传热系统,其特征在于固体强化了由其能够实现的传热。还有,按照本发明已经提供这样新的和改进的传热系统,其特征在于由于使燃烧、传热、和环境控制过程完全断开联系,这样能使这些过程中的每一个过程分别最优化。加上按照本发明已经提供这样新的和改进的传热系统,其特征在于在使如铝矾土的传热固体流到传热装置之前,这些传热固体被有效地在分类步骤中与固体燃料灰、吸附剂、易燃剂、和烟道气分离。还有,按照本发明已经提供这样新和改进的传热系统,其特征在于这样的传热系统不受燃料特性改变的影响,不管燃料是固体、液体或气体,由于应用了分类过程,从而只有如铝矾土的传热固体与传热装置接触。另外,按照本发明已经提供这样新的和改进的传热系统,其特征在于就与这种新的和改进的传热系统相连接而采用内热源来说,在内热源的区域内没有使用传热表面。还有,按照本发明已经提供这样新的和改进的传热系统,其特征在于这样的传热系统无论如何仍能保持使得NOX的排放实现最小的能力。还有,按照本发明已经提供这样新的和改进的传热系统,其特征在于硫的收集与燃烧过程断开联系。另外,按照本发明已经提供这样新的和改进的传热系统,其特征在于按照该传热系统的最佳模式的实施例,不再需要流化床式的热交换器,由于该结果还获得到以下优点,尽管使用这种新的和改进的传热系统仍可能具有一种在其一端处逆流段紧接着外部传热表面的流化床结构,但其减小了辅助的动力和节省了鼓风机和相联的管道系统的成本。倒数第二,按照本发明已经提供这样新的和改进的传热系统,其特征在于可以采用冷的旋风分离器代替热的旋风分离器,后者通常是更普遍采用的。最后,按照本发明已经提供这样新的和改进的传热系统,其特征有利地在于这样的传热系统相对比较便宜,同时结构上也相对简单。
尽管已经描述了本发明的几个实施例,但对于本发明所属技术领域的普通技术人员来说将很清楚,可以很容易地进行它的各种变型,上面已经间接提到它的某些变型。因此,由后附的权利要求书来覆盖提出的变化以及所有其它的变型,它们全都在本发明的实际精神和范围内。

Claims (12)

1.一种借助于将热量从热的再生固体传递给工作流体以便在操作上实现该工作流体的加热的传热系统,其包括:
a)具有上区和下区的第一部分;
b)设置在所述第一部分的所述下区内的热源,所述热源在所述第一部分内可从该第一部分的所述下区向上移动到该第一部分的所述上区;
c)设置在所述第一部分的所述上区内的大量的再生固体,所述大量的再生固体均具有足够大的密度和颗粒尺寸,以使在所述第一部分内所述大量的再生固体的每一个的终端速度大于在所述第一部分内所述热源最大的向上速度,所述大量的再生固体可在所述第一部分内从该第一部分的所述上区向下移动到该第一部分的所述下区,以便当所述热源在所述第一部分内从该第一部分的所述下区向上移动到该第一部分的所述上区,同时伴随着所述大量的再生固体在所述第一部分内从该第一部分的所述上区向下移动到该第一部分的所述下区时,通过以再生方式获得到所述热源所具有的热量,从而使所述大量的再生固体被加热;
d)与所述第一部分机械地互相连接的强制通风热交换器;
e)床排放管装置,该床排放管装置从所述第一部分的所述下区内延伸到所述强制通风热交换器内,并具有位于其一端处的入口和位于其另一端处的出口,所述床排放管装置具有的所述一端突伸到所述第一部分的所述下区内,以便使其所述入口位于所述第一部分的所述下区内,所述床排放管装置具有的所述另一端突伸到所述强制通风热交换器内,以便使其所述出口位于所述强制通风热交换器内,从而使所述大量的再生固体从所述第一部分的所述下区进入所述床排放管装置并向下流过所述床排放管装置,由此所述大量的再生固体从所述床排放管装置流出并以移动床的方式向下流经所述强制通风热交换器;和
f)以安装关系支承在所述强制通风热交换器内的传热表面,所述传热表面具有流过该传热表面的工作流体,所述传热表面这样操作,即,当所述工作流体流过时所述大量的再生固体以流动床的方式向下流过与所述热交换器成包围的关系的所述强制通风热交换器,从而使所述工作流体被加热,同时在所述第一部分内被加热的所述大量的再生固体与流过所述传热表面的所述工作流体之间传导传热,从而使所述大量的再生固体被冷却;和
g)使得所述强制通风热交换器与所述第一部分的所述上区互连的再循环装置,该再循环装置在操作上使得所述大量的再生固体从所述强制通风热交换器再循环到所述第一部分的所述上区。
2.如权利要求1所述的传热系统,其特征在于,将空气和固体燃料均喷射到所述第一部分的所述下区中,所述空气和所述固体燃料随后在所述第一部分的所述下区内进行燃烧,并且由所述空气和所述固体燃料在所述第一部分的所述下区内燃烧产生的热量,所述热源是在所述第一部分的所述下区中由该热量产生的。
3.如权利要求1所述的传热系统,其特征在于,所述热源是在所述第一部分的所述下区的外部产生的。
4.如权利要求3所述的传热系统,其特征在于,在所述第一部分的所述下区的外部产生的所述热源包括来自透平机的热的排出气体,该热的排出气体随后引入到所述第一部分的所述下区中。
5.如权利要求3所述的传热系统,其特征在于,在所述第一部分的所述下区的外部产生的所述热源包括由某种类型化学反应的生成的由化学反应产生的热的过程物流,所述热的过程物流随后引入到所述第一部分的所述下区中。
6.如权利要求1所述的传热系统,其特征在于,所述大量的再生固体包括铝矾土的颗粒。
7.如权利要求1所述的传热系统,其特征在于,其还包括分类装置,该分类装置可与外部的空气源相连并配合地与所述床排放管装置相关联,所述分类装置在操作上将足够量的空气引入到所述床排放管装置内,从而使所述空气的速度足够高,以防止除了所述大量的再生固体之外的物质从所述第一部分的所述下区向下流过所述床排放管装置进入到所述强制通风热交换器中,所述分类装置包括以与所述床排放管装置成包围关系地安装的至少一个圆形部件和至少一个管状部件,该管状部件的一端固定到所述至少一个圆形部件上并且其另一端可连接到外部空气源,所述至少一个管状部件在操作上将空气从外部空气源供给到所述至少一个圆形部件中。
8.如权利要求1所述的传热系统,其特征在于,所述床排放装置包括至少一对以互相间隔开的关系支承的床排放管,以便每个床排放管从所述第一部分的所述下区内延伸到所述强制通风热交换器内,所述至少一对床排放管均具有位于其一端的入口和位于其另一端的出口,所述至少一对床排放管均具有突伸到所述第一部分的所述下区中的所述一端,以便使其所述入口位于所述第一部分的所述下区内,并且还具有突伸到所述强制通风热交换器中的所述另一端,以便使其所述出口位于所述强制通风热交换器内,从而使该至少一对床排放管在操作上实现将所述大量的再生固体从所述第一部分的所述下区传送到所述强制通风热交换器中。
9.如权利要求8所述的传热系统,其特征在于,其还包括分类装置,该分类装置可与外部的空气源相连并配合地与所述床排放管装置关联,所述分类装置包括至少一对圆形部件和至少一对管状部件,所述至少一对圆形部件均以与所述至少一对床排放管中的一个成包围关系的方式来安装,所述至少一对管状部件均具有固定到所述至少一对圆形部件的对应一个上的一端,和可连接到外部的空气源上的另一端,所述至少一对管状部件均在操作上将空气从外部空气源供给到与其所述一端固定的所述至少一对圆形部件中的该一个部件中。
10.如权利要求1所述的传热系统,其特征在于,流过每一个所述多个传热表面的工作流体是蒸汽。
11.如权利要求1所述的传热系统,其特征在于,流过每一个所述多个传热表面的工作流体是氨。
12.如权利要求1所述的传热系统,其特征在于,流过每一个所述多个传热表面的工作流体是用于化学过程的原料。
CNB018208045A 2000-12-18 2001-10-10 再生和导热式传热系统 Expired - Fee Related CN1232754C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/740,356 US6554061B2 (en) 2000-12-18 2000-12-18 Recuperative and conductive heat transfer system
US09/740,356 2000-12-18

Publications (2)

Publication Number Publication Date
CN1481489A CN1481489A (zh) 2004-03-10
CN1232754C true CN1232754C (zh) 2005-12-21

Family

ID=24976150

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018208045A Expired - Fee Related CN1232754C (zh) 2000-12-18 2001-10-10 再生和导热式传热系统

Country Status (8)

Country Link
US (1) US6554061B2 (zh)
EP (1) EP1343999B1 (zh)
KR (1) KR100568897B1 (zh)
CN (1) CN1232754C (zh)
AU (1) AU2002211631A1 (zh)
DE (1) DE60120756T2 (zh)
TW (1) TW522208B (zh)
WO (1) WO2002050474A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8066056B2 (en) * 2004-05-26 2011-11-29 Sme Products, Lp Heat exchange system for plume abatement
US7685737B2 (en) 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US7694523B2 (en) * 2004-07-19 2010-04-13 Earthrenew, Inc. Control system for gas turbine in material treatment unit
US7024800B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
US7622094B2 (en) 2004-11-19 2009-11-24 Larry Lewis Method of recovering energy using a catalytic finned heat exchanger
US7610692B2 (en) 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
US9163829B2 (en) * 2007-12-12 2015-10-20 Alstom Technology Ltd Moving bed heat exchanger for circulating fluidized bed boiler
US20090163756A1 (en) * 2007-12-19 2009-06-25 Uop Llc, A Corporation Of The State Of Delaware Reactor cooler
US7896951B2 (en) * 2008-02-18 2011-03-01 Alstom Technology Ltd Reducing carbon dioxide (CO2) emissions from the burning of a fossil fuel
DE102009039055A1 (de) * 2009-08-28 2011-03-10 Technische Universität Darmstadt Verfahren und Einrichtung zur Abscheidung von CO2 aus Abgas
US20110108477A1 (en) * 2009-11-10 2011-05-12 Baker Hughes Incorporated Tubular Screen Support and System
US8277543B2 (en) * 2010-12-02 2012-10-02 Bert Zauderer Fossil fuel fired, closed cycle MHD generator in parallel with steam turbine cycle with zero emissions and CO2 sequestration
US20140056766A1 (en) * 2012-08-21 2014-02-27 Uop Llc Methane Conversion Apparatus and Process Using a Supersonic Flow Reactor
US20140065559A1 (en) * 2012-09-06 2014-03-06 Alstom Technology Ltd. Pressurized oxy-combustion power boiler and power plant and method of operating the same
EP2952244B1 (en) 2014-06-02 2018-08-22 General Electric Technology GmbH Carbon capture system and method for capturing carbon dioxide
US9458838B2 (en) * 2014-07-17 2016-10-04 The Babcock & Wilcox Company Power generation plant integrating concentrated solar power receiver and pressurized heat exchanger

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2818049A (en) 1954-08-05 1957-12-31 Combustion Eng Method of heating
US2983259A (en) 1955-02-09 1961-05-09 Combustion Eng Method and apparatus of steam generation
US2997031A (en) 1955-12-12 1961-08-22 Combustion Eng Method of heating and generating steam
US3101697A (en) 1956-05-07 1963-08-27 Combustion Eng Steam generation
US3119378A (en) 1956-06-26 1964-01-28 Combustion Eng Steam generation
US3115925A (en) 1957-01-04 1963-12-31 Combustion Eng Method of burning fuel
US3127744A (en) * 1960-10-19 1964-04-07 Nettel Frederick Combined steam turbine-air turbine power plants
US3219105A (en) * 1962-10-24 1965-11-23 Nettel Frederick Method and apparatus for producing superheated steam, in particular for power recovery from the exhaust of internal combustion engines
DE1936949B2 (de) * 1969-07-21 1972-02-17 Siegener AG Geisweid, 5930 Hüttental-Geisweid Waermetauscher mit in einem schacht gefuehrten umlaufenden waermeuebertragern
CS148943B1 (zh) * 1970-10-22 1973-05-24
GB1448196A (en) * 1972-10-20 1976-09-02 Sprocket Properties Ltd Fluidised bed incinerators
US4227488A (en) * 1978-10-03 1980-10-14 Foster Wheeler Energy Corporation Fluidized bed unit including a cooling device for bed material
US4335662A (en) 1980-09-12 1982-06-22 Combustion Engineering, Inc. Solid fuel feed system for a fluidized bed
US4360339A (en) 1981-02-02 1982-11-23 Combustion Engineering, Inc. Fluidized boiler
US4325327A (en) 1981-02-23 1982-04-20 Combustion Engineering, Inc. Hybrid fluidized bed combuster
NL8102307A (nl) * 1981-05-12 1982-12-01 Esmil Bv Inrichting en werkwijze voor het indikken door verdampen van een vloeistof.
US4539939A (en) 1981-12-15 1985-09-10 Johnson William B Fluidized bed combustion apparatus and method
US4445844A (en) 1982-12-20 1984-05-01 Combustion Engineering, Inc. Liquid fuel and air feed apparatus for fluidized bed boiler
US4750543A (en) * 1985-07-15 1988-06-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Pumped two-phase heat transfer loop
US4633818A (en) 1985-12-20 1987-01-06 Combustion Engineering, Inc. Mobile coal-fired fluidized bed power unit
JPS62169914A (ja) * 1986-01-21 1987-07-27 Ishikawajima Harima Heavy Ind Co Ltd 流動床炉の安定燃焼法
DE3635215A1 (de) * 1986-10-16 1988-04-28 Bergwerksverband Gmbh Verfahren zur allothermen kohlevergasung und wirbelbett-gasgenerator zur durchfuehrung des verfahrens
FR2615199B1 (fr) * 1987-05-11 1991-01-11 Inst Francais Du Petrole Procede de vapocraquage dans une zone reactionnelle en lit fluide
DE8916174U1 (de) * 1989-03-30 1994-10-20 Saarbergwerke Ag Wirbelbettfeuerungsanlage
DE3916325A1 (de) * 1989-05-19 1990-11-22 Grochowski Horst Wanderbettreaktoranlage
US5190451A (en) * 1991-03-18 1993-03-02 Combustion Power Company, Inc. Emission control fluid bed reactor
US5330562A (en) * 1993-03-12 1994-07-19 Medx, Inc. Fluidized bed scrubber for use in gas cleaning system
US5401130A (en) 1993-12-23 1995-03-28 Combustion Engineering, Inc. Internal circulation fluidized bed (ICFB) combustion system and method of operation thereof
SE9502248L (sv) * 1995-06-21 1996-12-22 Abb Carbon Ab Förfarande och anordning för värmeenergiutvinning ur rökgaser

Also Published As

Publication number Publication date
DE60120756T2 (de) 2006-10-05
KR20030066714A (ko) 2003-08-09
DE60120756D1 (de) 2006-07-27
US6554061B2 (en) 2003-04-29
KR100568897B1 (ko) 2006-04-10
WO2002050474A1 (en) 2002-06-27
TW522208B (en) 2003-03-01
AU2002211631A1 (en) 2002-07-01
CN1481489A (zh) 2004-03-10
US20020124996A1 (en) 2002-09-12
EP1343999B1 (en) 2006-06-14
EP1343999A1 (en) 2003-09-17

Similar Documents

Publication Publication Date Title
CN1232754C (zh) 再生和导热式传热系统
EP0581869B1 (en) Pulsed atmospheric fluidized bed combustor apparatus and process
CN102159888B (zh) 燃烧空气的作好co2捕集准备的循环流化床蒸汽发生器
CN1110645C (zh) 低no.的联合切向燃烧系统
US5255634A (en) Pulsed atmospheric fluidized bed combustor apparatus
CN101949535B (zh) 低倍率生物质循环流化床锅炉及其燃烧方法
CN1012989B (zh) 循环流化床反应器运行方法及设备
CN101970938B (zh) 降低来自矿物燃料的燃烧的二氧化碳(co2)排放
WO1999023431A1 (fr) Four de gazeification et de chauffage a lit fluidise
CN1057373C (zh) 可拆型沸腾床水管锅炉
JP2009019870A (ja) 流動層ガス化燃焼炉
CN1041646A (zh) 复合循环流化床锅炉
GB2074890A (en) Fluidized Bed Combustors
EP3597996B1 (en) Falling fluid sand type circulating fluidized bed boiler with a plurality of risers and method of operating the same
Kerr et al. Fluidised bed combustion: Improved system design leading to reduced pollutant emissions
JPS6329104A (ja) 流動床燃焼法
CN86108138A (zh) 排渣式燃烧装置
JP3763656B2 (ja) 循環流動床燃焼器
JPH0195208A (ja) 循環型流動層ボイラ用燃焼器
FARAG et al. Staged cascaded fluidized bed combustor (SCFBC) evaluation
KR20030058411A (ko) Rdf를 위한 내부순환 유동층 연소로
JPS62255712A (ja) 流動層燃焼方法
JPH0355408A (ja) 循環流動層を使用した炭材の燃焼方法
JPH05340675A (ja) 循環流動層における気体燃料の混焼方法
JPS61180801A (ja) 流動床ボイラ−の運転方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: ALSTOM SCIENCE & TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: ALSTOM (SCHWEIZ) AG.

Effective date: 20040430

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20040430

Address after: Baden, Switzerland

Applicant after: Alstom Technology Ltd.

Address before: Baden, Switzerland

Applicant before: Alstom (Switzerland) Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Baden, Switzerland

Patentee after: ALSTOM TECHNOLOGY LTD

Address before: Baden, Switzerland

Patentee before: Alstom Technology Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051221

Termination date: 20201010