CN1149190A - 使微型机械装置部件解脱粘连的方法 - Google Patents

使微型机械装置部件解脱粘连的方法 Download PDF

Info

Publication number
CN1149190A
CN1149190A CN95105684A CN95105684A CN1149190A CN 1149190 A CN1149190 A CN 1149190A CN 95105684 A CN95105684 A CN 95105684A CN 95105684 A CN95105684 A CN 95105684A CN 1149190 A CN1149190 A CN 1149190A
Authority
CN
China
Prior art keywords
supercritical fluid
surfactant
liquid
micromachine
contact component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN95105684A
Other languages
English (en)
Inventor
M·A·道格拉斯
R·M·华莱士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN1149190A publication Critical patent/CN1149190A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00912Treatments or methods for avoiding stiction of flexible or moving parts of MEMS
    • B81C1/0096For avoiding stiction when the device is in use, i.e. after manufacture has been completed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00912Treatments or methods for avoiding stiction of flexible or moving parts of MEMS
    • B81C1/0096For avoiding stiction when the device is in use, i.e. after manufacture has been completed
    • B81C1/00968Methods for breaking the stiction bond
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/11Treatments for avoiding stiction of elastic or moving parts of MEMS
    • B81C2201/117Using supercritical fluid, e.g. carbon dioxide, for removing sacrificial layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

一种使微型机械装置(30)的接触部件(11,17)解脱粘连的方法,使装置暴露于具有表面活性剂(32)的低表面张力液体或超临界流体(62)以避免对装置(30)的易碎部件的损伤。控制暴露条件以得到最佳结果,但不损伤装置。

Description

使微型机械装置部件解脱粘连的方法
本发明涉及微型机械装置,特别是涉及有接触部件的微型机械装置,以及在接触部件已粘在一起后处理这类装置的方法。
电-机领域的近期发展是各种机械装置的微型化。这类装置的典型例子是微型马达、齿轮、杠杆及阀。这类“微型机械”装置是用集成电路技术制造的,常常与电气控制电路一起制造。常见的用途是加速表、压力传感器以及驱动器。在另一个实例中,是将微镜装成空间光调制器。
微型机械装置难以获得可靠性。一个常见的可靠性问题是粘结,这会在具有移动部件且该部件与装置的另一个表面接触的装置中发生。移动部件可能会粘在该表面上,而使装置中止正确的运行。与此相关的问题是:所述的部件间的重复接触会引起表面磨损。
由于微型机械装置的尺寸小,所以难以断定粘结的原因及解决粘结问题各种尝试的效果。在题为“解脱-蚀刻加工对表面微结构静摩擦的影响”(Alley.Cuan.Howe和Komvopoulos所作,发表在Proeedings of the IEEE Solid State Sensorand Actuator Workshop(1992)202-207页中)一文讨论了“静摩擦”的成因。所讨论的静摩擦的种种原因是固体桥、液体桥、范·德华力、静电力及表面粗糙等。
人们试图通过在制造时用各种物质,如润滑剂,涂覆接触表面以克服推定的粘附力,从而解决粘附问题。但是,这些技术是预防性的而不是治疗性的,不能解决接触部件一旦发生粘结以后使它们解脱的问题。
据认为,超临界流体是用来干燥曾在液体中淋洗的微型机械装置的一个手段,液体淋洗是微型机械制造过程的一部分,结果使部件粘附在一起。在题为“微结构的超临界二氧化碳干燥”(Mulhern.Soane和Howe所作,发表在7th Internationol Conference on SolidState Sensors and Actuators(1993)296-299页上)一文中讨论了通过临界点(SCF)干燥来改善液桥。但是这些技术仅限于在制造过程中的淋洗后干燥。
本发明的一个方面是使微型机械装置的接触部件解脱粘结的方法。将装置放在液体容器中,其接触部件被浸在含有表面活性剂的低表面张力液体中。接着,封住容器,在低表面张力液体和其蒸气相间的压力保持基本平衡的条件下干燥装置。低表面张力液体可以是诸如全氟代烷烃的碳氟化合物液体。另外,接触部件也可以不是浸在低表面张力的液体中,而是暴露于表面张力为零的超临界流体中。
本发明技术的优点在于使粘连部件解脱而不损伤部件。本发明的种种实施例除去了会引起粘连的残留物,从而防止粘连再次发生。该方法可以在微型机械装置上在接近它的制备过程终结作为完成步骤来进行,或在已制成的且已投入运行的装置中进行。
图1显示了一种微型机械装置(具有接触部件的数字微镜装置(DMD)的未偏转的镜部件。
图2显示了图1中的镜部件处于偏转位置。
图3-5显示了根据本发明处理微型机械装置的粘连部件的方法。
图6显示了替换图3步骤的另一步骤。
作为例子,下面描述一种特定类型的微型机械装置,“数字微镜装置”(DMD),有时也称为“变型镜装置”,DMD是一种空间光调制器。DMD有一个或多个小镜,它们可选择性地偏转,从而将光反射或不反射到所需的位置。本发明的方法可解决镜子粘连到“底垫”(小镜在完全偏转时与它接触)上的问题。
DMD的一种应用是形成图象,此时DMD有千百个可偏转的镜子构成阵列。每面镜子选择性地将光反射到成像平面上。由DMD所成的像可用于显示系统或非击打式印刷。DMD也可有不涉及成像的其它应用,如光引导、光开关及加速表。在这类应用的一些情况中,“镜子”不需要反射。在一些应用中,DMD以模拟方式而不是数字方式运行。总之,本文中“DMD”包括有至少一个与底表面接触的以绞链安装的部件的任何类型微型机械装置,它可对施加的电压或其它力,如由于加速引起的力,产生响应。
本发明对于有接触部件的其它类型的微型机械装置也是有用的。如同DMD的镜子,其它的微型机械装置可以有小旋转器、杠杆或其它与另一个表面接触的移动部分,它们也会发生粘结。
图1和图2显示了DMD的单镜部件10。在图1中,镜部件10处于平直状态(未偏转),而在图2中,镜部件10发生了偏转。如上所述,这类镜部件10可以单独或组成阵列用于DMD应用中。
图1和图2中的镜部件10被称为“扭转梁”部件。可以制备其它类型的镜子部件,包括悬臂梁和弹性梁型。在美国专利4,662,746号题为“空间光调制器和方法”;美国专利第4,956,610号题为“空间光调制器”;美国专利5,061,049“空间光调制器和方法”;美国专利5,083,857“多级可变形镜装置”以及美国专利申请08/097,824中叙及了种种DMD类型。这些专利都转让于“德克萨斯仪器股份有限公司”,这里列出供作参考。
在图像显示应用中,光源照射于DMD表面,可使用透镜系统使光的范围接近于镜部件10阵列的大小并将光导向于它们。每个镜部件10有一个由安装在支持柱13上的扭转铰链12所支持的可偏转的小镜11。这些支持柱13形成在基片15上并向外伸出。许多小镜11被放在控制电路14上,该电路包括寻址和贮存电路,并制成在基片15上。
根据控制电路14的存贮单元中的数据,将不同电压施加到处于镜11相对的两角下方的两个地址电极上。通过选择施加于地址电极16上的电压,可在镜11和指定电极16间产生不同大小的静电力。静电力使镜11倾斜约+10°(通)或-10°(断),从而调制入射于DMD表面上的光。由“通”的镜11反射的光通过显示光学系统反射到成像平面上,由“断”的镜子反射的光则不落在成像平面上。所得的图案形成图像。在每帧图象期间内镜子11处于“通”状态的时间比例决定了每个图像的灰度,可通过着色轮或三个DMD装置加上颜色。
事实上,镜11和地址电极16构成电容器。当向镜11和地址电极16施加适当的电压时,所得的静电力(吸引或排斥)使镜11向与产生吸力的地址电极16相联系的底垫电极17倾斜,一直斜到它的边缘接触该底垫电级17。
一旦除去指定电极16和镜11之间的静电力,贮存在绞链12中的能量提供了回复力使镜11回复到未偏转位置。可以向镜11或地址电极16施加适当电压以帮助镜11回复到未偏转位置。但是,若镜11粘住,这些力可能不足以克服粘力。
图3~5显示了根据本发明用低表面张力液体处理接触部件被粘住的微型机械装置的方法。图6显示了另一种用超临界流体,而不是低表面张力液体的图3所示步骤。
如上所述,作为例子阐述了DMD微型机械装置,但对任何微型机械装置可用相同的方法。该方法用在至少已基本装成的装置上。该方法可以作为装置的“末一道”装配步骤,其中微型机械部件在前面的装配步骤粘住。例如,该方法在制造晶片期间进行,而晶片最后分割成芯片,每个芯片上有DMD阵列。该方法极适用于这种类型的批量生产,结合在生产DMD或其它微型机械装置的生产流程中。另外,该方法也可作为已运行一段时间的装置的维护处理。
在图3中,DMD30至少已基本制成,包括底垫电极17、地址电极16和每个镜部件10中的镜11。一般来说,制造这些部件时要使用暂时的间隔材料,这在图3中已除去。正如已指出的,至少有一些镜部件10粘连在倾斜位置上。
DMD30被放在适于保存液体的容器31内,并浸在含有表面活性剂的低表面张力液体32中。合适的低表面张力液体31是碳氟化合物液体。特别是全氟代烷烃。一种合适的液体是“FC-77”,全氟代烷的混合物,3M公司出售。具有表面活性剂的适当液体例子是0.2%非离子表面活性剂在全氟代正甲基吗啉中。含有带表面活性剂全氟代烷的市售液体,PF-5052,3M公司出售,已被成功地使用。
图4显示了在图3浸渍步骤后的干燥步骤。在图4的例子中,干燥是真空干燥。盖41被放在容器31上,或者用其它方法使容器31封住,以在液体32干燥时保留住其蒸气32’,而不是将装置直接暴露于真空。控制真空从而使液体从容器31中抽出时,流体32的压力与其蒸气32’平衡。
图5显示了第三步,这可在图3和4的浸渍和干燥步骤后进行。在图5中,清洁装置30以除去可能残留在它的表面上表面活性剂的任何残留物。图5的清洁步骤可以有许多不同方法来进行。图中所示是将装置30暴露于有或无添加剂的超临界液体51中,从而使残留物增溶。例如,实验中发现使用超临界的二氧化碳/丙酮二元流体是令人满意的。
如图5所示,由于超临界流体的扩散性质与气体相似,DMD30被放在未有挡板进出口52a的容器52内。这些进出口52在超临界流体52进出时消除了气流湍动对镜部件10可能造成的任何损伤。合适档板52a的一个例子是密集堆积的珠。容器52的其余部分由适于盛放高压流体的材料制成,如不锈钢。
另一个除去表面活性剂残留物的合适处理方法是热处理。这对于某些表面活性剂在高于室温时会挥发,但该温度不会伤及装置的情况适用、可伴随加热通过干燥来帮助除去残留物。
图5的清洁步骤可改变其物理和化学工作参数,从而选择性地萃取残留物。例如,对于DMD来说,光致抗蚀剂以外的残留物可能更需要萃取。
图6显示了进行图3浸渍步骤的另一种装置。在图6中,DMD30暴露于超临界流体62(它可以含有或不含表面活性剂)。与背景技术中讨论的超临界流体干燥相比,本方法在将DMD30暴露超临界流体前,DMD30是“干的”,即未经用液体淋洗或浸渍。本发明所消除的粘结可由浸渍在液体中之外的其它原因所产生。适当的超临界流体62是二氧化碳。超临界流体可以是如由二氧化碳和乙醇或二氧化碳和丙酮组成的二元流体。带有表面活性剂的合适的超临界流体62的例子是包括二氧化碳和包含于PF-5052中的非离子表面活性剂的流体。如上结合图5所述,特定的容器52被用来使超临界流体进出。
为了得到最佳结果,可以决定特定的压力、温度和流体流量等条件。对DMD装置30的实验表明在35-80℃范围,在400sccm流速及500大气压的二氧化碳超临界流体62会给出良好的结果。暴露时间是30分钟。对于同样的超临界流体,在22升/小时流速下及80℃和500大气压下暴露2小时,结果不能令人满意。暴露了合适的时间后,控制压力释放,从而在一段时间里使流体排送至大气压,以避免损伤装置。
若超临界流体62含有表面活性剂,可按上面结合图5所作的说明,进一步处理DMD30以除去表面活性剂的任何残留物。
上述方法结果可使DMD30的镜部件10,或更为一般地使微型机械装置的接触部件解脱粘结。与此不同,在美国专利申请(律师文档号为TI-18702)题为“清洁和处理物品表面”(转让于德克萨斯仪器股份有限公司)中叙述了使用超临界流体作为清洁和处理方法的一部分,以防止微型机械装置的接触部件粘连,本发明参考了这些专利。
虽然参照特定实例阐述了本发明,但这些叙述不是用来限定本发明的范围的。本技术领域的人员可以很显而易见地得到所揭示的方案各种修改及替换的方案。因而应理解,后附的权利要求书覆盖了本发明范围中所有变改。

Claims (20)

1.一种使微型机械装置的接触部件解脱粘连的方法,包括以下步骤:
将所述的接触部件浸在含有表面活性剂的低表面张力的液体中;以及
干燥所述的装置,使所述低液体张力液体和它的蒸气相之间的压力基本保持平衡。
2.根据权利要求1所述的方法,其中所述的低表面张力液体是碳氟化合物液体。
3.根据权利要求2所述的方法,其中所述的碳氟化合物液体是全氟代烷。
4.根据权利要求1所述的方法,其中所述的低表面张力液体是全氟代正甲基吗啉。
5.根据权利要求1所述的方法,其中所述的表面活性剂是一种非离子表面活性剂。
6.根据权利要求1所述的方法,其中所述的干燥步骤是真空干燥步骤。
7.根据权利要求1所述的方法,它进一步包括除去所述表面活性剂残留物的步骤。
8.根据权利要求7所述的方法,其中所述的除去步骤是用超临界流体使残留物增溶。
9.根据权利要求8所述的方法,其中所述的超临界流体是二氧化碳/丙酮二元流体。
10.根据权利要求7所述的方法,其中所述的除去步骤用热处理来进行,从而使所述的残留物挥发。
11.一种使微型机械装置干燥的接触部件解脱粘连的方法,包括步骤:
将所述的接触部件暴露于超临界流体。
12.根据权利要求11所述的方法,其中所述的暴露步骤通过将所述的装置放在有挡板进口和出口的容器中进行。
13.根据权利要求11所述的方法,其中所述的暴露步骤在高压条件下进行,而且在暴露步骤后压力的释放是受控的。
14.根据权利要求11所述的方法,其中所述的超临界流体是二氧化碳。
15.根据权利要求11所述的方法,其中所述的超临界流体是二氧化碳/丙酮二元流体。
16.根据权利要求11所述的方法,其中所述的超临界流体是二氧化碳/乙醇二元流体。
17.根据权利要求11所述的方法,其中所述的暴露步骤在35-80℃的温度下进行。
18.根据权利要求11所述的方法,其中所述的暴露步骤在500大气压下进行。
19.根据权利要求11所述的方法,其中所述的超临界流体含有表面活性剂。
20.根据权利要求11所述的方法,其中所述的超临界流体含有表面活性剂,并进一步包括在所述的暴露步骤后从所述的装置中除去表面活性剂的步骤。
CN95105684A 1994-06-21 1995-06-20 使微型机械装置部件解脱粘连的方法 Pending CN1149190A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/263,292 US5482564A (en) 1994-06-21 1994-06-21 Method of unsticking components of micro-mechanical devices
US08/263,292 1994-06-21

Publications (1)

Publication Number Publication Date
CN1149190A true CN1149190A (zh) 1997-05-07

Family

ID=23001153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95105684A Pending CN1149190A (zh) 1994-06-21 1995-06-20 使微型机械装置部件解脱粘连的方法

Country Status (8)

Country Link
US (1) US5482564A (zh)
EP (1) EP0689076B1 (zh)
JP (1) JPH0886969A (zh)
KR (1) KR100351077B1 (zh)
CN (1) CN1149190A (zh)
CA (1) CA2149934A1 (zh)
DE (1) DE69524815T2 (zh)
TW (2) TW302554B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101750694A (zh) * 2008-11-27 2010-06-23 鸿富锦精密工业(深圳)有限公司 解胶装置和解胶方法
TWI415692B (zh) * 2008-12-05 2013-11-21 Hon Hai Prec Ind Co Ltd 解膠裝置和解膠方法

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219015B1 (en) 1992-04-28 2001-04-17 The Board Of Directors Of The Leland Stanford, Junior University Method and apparatus for using an array of grating light valves to produce multicolor optical images
US5617242A (en) * 1995-01-10 1997-04-01 Texas Instruments Incorporated Repair of digital micromirror device having white defects
US5717513A (en) * 1995-01-10 1998-02-10 Texas Instruments Incorporated Unsticking mirror elements of digital micromirror device
US5841579A (en) 1995-06-07 1998-11-24 Silicon Light Machines Flat diffraction grating light valve
US6312528B1 (en) 1997-03-06 2001-11-06 Cri Recycling Service, Inc. Removal of contaminants from materials
US5982553A (en) 1997-03-20 1999-11-09 Silicon Light Machines Display device incorporating one-dimensional grating light-valve array
US6306564B1 (en) 1997-05-27 2001-10-23 Tokyo Electron Limited Removal of resist or residue from semiconductors using supercritical carbon dioxide
US6500605B1 (en) 1997-05-27 2002-12-31 Tokyo Electron Limited Removal of photoresist and residue from substrate using supercritical carbon dioxide process
US6036786A (en) * 1997-06-11 2000-03-14 Fsi International Inc. Eliminating stiction with the use of cryogenic aerosol
US6088102A (en) 1997-10-31 2000-07-11 Silicon Light Machines Display apparatus including grating light-valve array and interferometric optical system
US6271808B1 (en) 1998-06-05 2001-08-07 Silicon Light Machines Stereo head mounted display using a single display device
US6004912A (en) * 1998-06-05 1999-12-21 Silicon Light Machines Vapor phase low molecular weight lubricants
US6101036A (en) 1998-06-23 2000-08-08 Silicon Light Machines Embossed diffraction grating alone and in combination with changeable image display
US6130770A (en) 1998-06-23 2000-10-10 Silicon Light Machines Electron gun activated grating light valve
US6215579B1 (en) 1998-06-24 2001-04-10 Silicon Light Machines Method and apparatus for modulating an incident light beam for forming a two-dimensional image
US6303986B1 (en) 1998-07-29 2001-10-16 Silicon Light Machines Method of and apparatus for sealing an hermetic lid to a semiconductor die
US6277753B1 (en) 1998-09-28 2001-08-21 Supercritical Systems Inc. Removal of CMP residue from semiconductors using supercritical carbon dioxide process
US7064070B2 (en) * 1998-09-28 2006-06-20 Tokyo Electron Limited Removal of CMP and post-CMP residue from semiconductors using supercritical carbon dioxide process
JP3527117B2 (ja) 1998-12-24 2004-05-17 富士電機デバイステクノロジー株式会社 半導体力学量センサの製造方法およびその製造装置
US6748960B1 (en) 1999-11-02 2004-06-15 Tokyo Electron Limited Apparatus for supercritical processing of multiple workpieces
IL152376A0 (en) 2000-04-25 2003-05-29 Tokyo Electron Ltd Method of depositing metal film and metal deposition cluster tool including supercritical drying/cleaning module
WO2001089986A1 (en) * 2000-05-26 2001-11-29 Chaker Khalfaoui A stiction-free electrostatically driven microstructure device
US6795605B1 (en) 2000-08-01 2004-09-21 Cheetah Omni, Llc Micromechanical optical switch
US6719613B2 (en) * 2000-08-10 2004-04-13 Nanoclean Technologies, Inc. Methods for cleaning surfaces substantially free of contaminants utilizing filtered carbon dioxide
US6543462B1 (en) 2000-08-10 2003-04-08 Nano Clean Technologies, Inc. Apparatus for cleaning surfaces substantially free of contaminants
US6530823B1 (en) 2000-08-10 2003-03-11 Nanoclean Technologies Inc Methods for cleaning surfaces substantially free of contaminants
US6556741B1 (en) 2000-10-25 2003-04-29 Omm, Inc. MEMS optical switch with torsional hinge and method of fabrication thereof
US6387723B1 (en) 2001-01-19 2002-05-14 Silicon Light Machines Reduced surface charging in silicon-based devices
US6562146B1 (en) 2001-02-15 2003-05-13 Micell Technologies, Inc. Processes for cleaning and drying microelectronic structures using liquid or supercritical carbon dioxide
IL158340A0 (en) * 2001-04-10 2004-05-12 Supercritical Systems Inc High pressure processing chamber for semiconductor substrate including flow enhancing features
US6707591B2 (en) 2001-04-10 2004-03-16 Silicon Light Machines Angled illumination for a single order light modulator based projection system
US6958123B2 (en) * 2001-06-15 2005-10-25 Reflectivity, Inc Method for removing a sacrificial material with a compressed fluid
US6747781B2 (en) 2001-06-25 2004-06-08 Silicon Light Machines, Inc. Method, apparatus, and diffuser for reducing laser speckle
US6782205B2 (en) 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US6646778B2 (en) 2001-08-01 2003-11-11 Silicon Light Machines Grating light valve with encapsulated dampening gas
US6829092B2 (en) 2001-08-15 2004-12-07 Silicon Light Machines, Inc. Blazed grating light valve
US6785001B2 (en) * 2001-08-21 2004-08-31 Silicon Light Machines, Inc. Method and apparatus for measuring wavelength jitter of light signal
US6666928B2 (en) 2001-09-13 2003-12-23 Micell Technologies, Inc. Methods and apparatus for holding a substrate in a pressure chamber
US6782900B2 (en) 2001-09-13 2004-08-31 Micell Technologies, Inc. Methods and apparatus for cleaning and/or treating a substrate using CO2
US6706641B2 (en) 2001-09-13 2004-03-16 Micell Technologies, Inc. Spray member and method for using the same
US6619304B2 (en) 2001-09-13 2003-09-16 Micell Technologies, Inc. Pressure chamber assembly including non-mechanical drive means
US6763840B2 (en) 2001-09-14 2004-07-20 Micell Technologies, Inc. Method and apparatus for cleaning substrates using liquid carbon dioxide
JP2003133070A (ja) * 2001-10-30 2003-05-09 Seiko Epson Corp 積層膜の製造方法、電気光学装置、電気光学装置の製造方法、有機エレクトロルミネッセンス装置の製造方法、及び電子機器
US6538233B1 (en) 2001-11-06 2003-03-25 Analog Devices, Inc. Laser release process for micromechanical devices
US7028698B2 (en) * 2001-12-28 2006-04-18 Brian Nils Hansen Pressure processing apparatus with improved heating and closure system
US6800238B1 (en) 2002-01-15 2004-10-05 Silicon Light Machines, Inc. Method for domain patterning in low coercive field ferroelectrics
US20040016450A1 (en) * 2002-01-25 2004-01-29 Bertram Ronald Thomas Method for reducing the formation of contaminants during supercritical carbon dioxide processes
US6876046B2 (en) * 2002-02-07 2005-04-05 Superconductor Technologies, Inc. Stiction alleviation using passivation layer patterning
US6924086B1 (en) 2002-02-15 2005-08-02 Tokyo Electron Limited Developing photoresist with supercritical fluid and developer
US6928746B2 (en) * 2002-02-15 2005-08-16 Tokyo Electron Limited Drying resist with a solvent bath and supercritical CO2
WO2003077032A1 (en) 2002-03-04 2003-09-18 Supercritical Systems Inc. Method of passivating of low dielectric materials in wafer processing
AU2003220443A1 (en) * 2002-03-22 2003-10-13 Supercritical Systems Inc. Removal of contaminants using supercritical processing
US7169540B2 (en) * 2002-04-12 2007-01-30 Tokyo Electron Limited Method of treatment of porous dielectric films to reduce damage during cleaning
US6728023B1 (en) 2002-05-28 2004-04-27 Silicon Light Machines Optical device arrays with optimized image resolution
US6767751B2 (en) 2002-05-28 2004-07-27 Silicon Light Machines, Inc. Integrated driver process flow
US6822797B1 (en) 2002-05-31 2004-11-23 Silicon Light Machines, Inc. Light modulator structure for producing high-contrast operation using zero-order light
US6841079B2 (en) * 2002-05-31 2005-01-11 3M Innovative Properties Company Fluorochemical treatment for silicon articles
US7256467B2 (en) * 2002-06-04 2007-08-14 Silecs Oy Materials and methods for forming hybrid organic-inorganic anti-stiction materials for micro-electromechanical systems
US6846380B2 (en) * 2002-06-13 2005-01-25 The Boc Group, Inc. Substrate processing apparatus and related systems and methods
US6829258B1 (en) 2002-06-26 2004-12-07 Silicon Light Machines, Inc. Rapidly tunable external cavity laser
US6813059B2 (en) 2002-06-28 2004-11-02 Silicon Light Machines, Inc. Reduced formation of asperities in contact micro-structures
US6714337B1 (en) 2002-06-28 2004-03-30 Silicon Light Machines Method and device for modulating a light beam and having an improved gamma response
US7134941B2 (en) * 2002-07-29 2006-11-14 Nanoclean Technologies, Inc. Methods for residue removal and corrosion prevention in a post-metal etch process
US6764385B2 (en) 2002-07-29 2004-07-20 Nanoclean Technologies, Inc. Methods for resist stripping and cleaning surfaces substantially free of contaminants
US7066789B2 (en) * 2002-07-29 2006-06-27 Manoclean Technologies, Inc. Methods for resist stripping and other processes for cleaning surfaces substantially free of contaminants
US7101260B2 (en) * 2002-07-29 2006-09-05 Nanoclean Technologies, Inc. Methods for resist stripping and other processes for cleaning surfaces substantially free of contaminants
US7297286B2 (en) * 2002-07-29 2007-11-20 Nanoclean Technologies, Inc. Methods for resist stripping and other processes for cleaning surfaces substantially free of contaminants
US6801354B1 (en) 2002-08-20 2004-10-05 Silicon Light Machines, Inc. 2-D diffraction grating for substantially eliminating polarization dependent losses
US7057795B2 (en) * 2002-08-20 2006-06-06 Silicon Light Machines Corporation Micro-structures with individually addressable ribbon pairs
US6712480B1 (en) 2002-09-27 2004-03-30 Silicon Light Machines Controlled curvature of stressed micro-structures
US20040112409A1 (en) * 2002-12-16 2004-06-17 Supercritical Sysems, Inc. Fluoride in supercritical fluid for photoresist and residue removal
US20040177867A1 (en) * 2002-12-16 2004-09-16 Supercritical Systems, Inc. Tetra-organic ammonium fluoride and HF in supercritical fluid for photoresist and residue removal
US20040154647A1 (en) * 2003-02-07 2004-08-12 Supercritical Systems, Inc. Method and apparatus of utilizing a coating for enhanced holding of a semiconductor substrate during high pressure processing
US6806997B1 (en) 2003-02-28 2004-10-19 Silicon Light Machines, Inc. Patterned diffractive light modulator ribbon for PDL reduction
US6829077B1 (en) 2003-02-28 2004-12-07 Silicon Light Machines, Inc. Diffractive light modulator with dynamically rotatable diffraction plane
DE10358967B4 (de) * 2003-12-15 2006-11-16 Universität Kassel Mikrospiegelarray
US7307019B2 (en) * 2004-09-29 2007-12-11 Tokyo Electron Limited Method for supercritical carbon dioxide processing of fluoro-carbon films
US20060102591A1 (en) * 2004-11-12 2006-05-18 Tokyo Electron Limited Method and system for treating a substrate using a supercritical fluid
US20060102208A1 (en) * 2004-11-12 2006-05-18 Tokyo Electron Limited System for removing a residue from a substrate using supercritical carbon dioxide processing
US7491036B2 (en) * 2004-11-12 2009-02-17 Tokyo Electron Limited Method and system for cooling a pump
US20060102204A1 (en) * 2004-11-12 2006-05-18 Tokyo Electron Limited Method for removing a residue from a substrate using supercritical carbon dioxide processing
US20060102590A1 (en) * 2004-11-12 2006-05-18 Tokyo Electron Limited Method for treating a substrate with a high pressure fluid using a preoxide-based process chemistry
US20060180572A1 (en) * 2005-02-15 2006-08-17 Tokyo Electron Limited Removal of post etch residue for a substrate with open metal surfaces
US7291565B2 (en) * 2005-02-15 2007-11-06 Tokyo Electron Limited Method and system for treating a substrate with a high pressure fluid using fluorosilicic acid
US20060180174A1 (en) * 2005-02-15 2006-08-17 Tokyo Electron Limited Method and system for treating a substrate with a high pressure fluid using a peroxide-based process chemistry in conjunction with an initiator
US20060186088A1 (en) * 2005-02-23 2006-08-24 Gunilla Jacobson Etching and cleaning BPSG material using supercritical processing
US7550075B2 (en) 2005-03-23 2009-06-23 Tokyo Electron Ltd. Removal of contaminants from a fluid
US20060226117A1 (en) * 2005-03-29 2006-10-12 Bertram Ronald T Phase change based heating element system and method
US7442636B2 (en) 2005-03-30 2008-10-28 Tokyo Electron Limited Method of inhibiting copper corrosion during supercritical CO2 cleaning
US7399708B2 (en) * 2005-03-30 2008-07-15 Tokyo Electron Limited Method of treating a composite spin-on glass/anti-reflective material prior to cleaning
US20060255012A1 (en) * 2005-05-10 2006-11-16 Gunilla Jacobson Removal of particles from substrate surfaces using supercritical processing
US7789971B2 (en) * 2005-05-13 2010-09-07 Tokyo Electron Limited Treatment of substrate using functionalizing agent in supercritical carbon dioxide
US20070012337A1 (en) * 2005-07-15 2007-01-18 Tokyo Electron Limited In-line metrology for supercritical fluid processing
US7580174B2 (en) * 2005-11-23 2009-08-25 Miradia, Inc. Anti-stiction gas-phase lubricant for micromechanical systems
US7471439B2 (en) * 2005-11-23 2008-12-30 Miradia, Inc. Process of forming a micromechanical system containing an anti-stiction gas-phase lubricant
US7723812B2 (en) * 2005-11-23 2010-05-25 Miradia, Inc. Preferentially deposited lubricant to prevent anti-stiction in micromechanical systems
US7616370B2 (en) * 2005-11-23 2009-11-10 Miradia, Inc. Preferentially deposited lubricant to prevent anti-stiction in micromechanical systems
US7463404B2 (en) * 2005-11-23 2008-12-09 Miradia, Inc. Method of using a preferentially deposited lubricant to prevent anti-stiction in micromechanical systems
US8096665B2 (en) * 2006-10-11 2012-01-17 Miradia, Inc. Spatially offset multi-imager-panel architecture for projecting an image
US7843695B2 (en) * 2007-07-20 2010-11-30 Honeywell International Inc. Apparatus and method for thermal management using vapor chamber
US8031391B2 (en) * 2008-04-16 2011-10-04 Texas Instruments Incorporated System and method for operating light processing electronic devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4662746A (en) 1985-10-30 1987-05-05 Texas Instruments Incorporated Spatial light modulator and method
US5061049A (en) 1984-08-31 1991-10-29 Texas Instruments Incorporated Spatial light modulator and method
US4956610A (en) 1988-02-12 1990-09-11 Pgm Diversified Industries, Inc. Current density measurement system by self-sustaining magnetic oscillation
FR2658532B1 (fr) * 1990-02-20 1992-05-15 Atochem Application des (perfluoroalkyl)-ethylenes comme agents de nettoyage ou de sechage, et compositions utilisables a cet effet.
US5083857A (en) 1990-06-29 1992-01-28 Texas Instruments Incorporated Multi-level deformable mirror device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101750694A (zh) * 2008-11-27 2010-06-23 鸿富锦精密工业(深圳)有限公司 解胶装置和解胶方法
CN101750694B (zh) * 2008-11-27 2012-11-21 鸿富锦精密工业(深圳)有限公司 解胶装置和解胶方法
TWI415692B (zh) * 2008-12-05 2013-11-21 Hon Hai Prec Ind Co Ltd 解膠裝置和解膠方法

Also Published As

Publication number Publication date
EP0689076B1 (en) 2002-01-02
US5482564A (en) 1996-01-09
TW335561B (en) 1998-07-01
KR100351077B1 (ko) 2002-12-26
DE69524815D1 (de) 2002-02-07
KR960000307A (ko) 1996-01-25
TW302554B (zh) 1997-04-11
CA2149934A1 (en) 1995-12-22
JPH0886969A (ja) 1996-04-02
DE69524815T2 (de) 2002-08-29
EP0689076A1 (en) 1995-12-27

Similar Documents

Publication Publication Date Title
CN1149190A (zh) 使微型机械装置部件解脱粘连的方法
US5523878A (en) Self-assembled monolayer coating for micro-mechanical devices
US5411769A (en) Method of producing micromechanical devices
US6024801A (en) Method of cleaning and treating a semiconductor device including a micromechanical device
US5512374A (en) PFPE coatings for micro-mechanical devices
JP3383031B2 (ja) 欠陥を有する電気機械画素の効果を軽減する方法
JP3512963B2 (ja) マイクロメカニカルデバイス
US5597767A (en) Separation of wafer into die with wafer-level processing
KR100700238B1 (ko) 마이크로구조물 및 나노구조물의 복제 및 전사
US5497262A (en) Support posts for micro-mechanical devices
CN101198904B (zh) 亚微米印花转移光刻术
US20080111203A1 (en) Wafer-level packaging of micro devices
US6806993B1 (en) Method for lubricating MEMS components
US20030064149A1 (en) Methods of applying coatings to micro electromechanical devices using a carbon dioxide carrier solvent
US7071025B2 (en) Separating wafers coated with plastic films
EP1220010A2 (en) Micromechanical device recoat methods
EP0615147B1 (en) Micromechanical deformable mirror device (DMD)
TW298624B (zh)
US7622244B2 (en) Method for contaminant removal
US20050148192A1 (en) Method for removal of pattern resist over patterned metal having an underlying spacer layer
KR100303602B1 (ko) 미소기계장치상에저표면에너지,내마모성박막을제조하기위한방법및전자장치
CN117105167A (zh) 一种mems扭转镜阵列的制作方法
Nuzzo From Flatland to Spaceland
JPS6339161A (ja) 光デイスク用スタンパ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned