CN1112105C - 用复合毒素防治昆虫 - Google Patents

用复合毒素防治昆虫 Download PDF

Info

Publication number
CN1112105C
CN1112105C CN96194239A CN96194239A CN1112105C CN 1112105 C CN1112105 C CN 1112105C CN 96194239 A CN96194239 A CN 96194239A CN 96194239 A CN96194239 A CN 96194239A CN 1112105 C CN1112105 C CN 1112105C
Authority
CN
China
Prior art keywords
toxin
insect
recombinant baculovirus
gene
aait
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96194239A
Other languages
English (en)
Other versions
CN1185718A (zh
Inventor
B·D·汉默克
R·海尔曼
H·莫斯克维茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of CN1185718A publication Critical patent/CN1185718A/zh
Application granted granted Critical
Publication of CN1112105C publication Critical patent/CN1112105C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/40Viruses, e.g. bacteriophages
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43513Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae
    • C07K14/43522Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae from scorpions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14111Nucleopolyhedrovirus, e.g. autographa californica nucleopolyhedrovirus
    • C12N2710/14141Use of virus, viral particle or viral elements as a vector
    • C12N2710/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/855Proteins from animals other than mammals or birds
    • Y10S530/858Proteins from animals other than mammals or birds insects; venom

Abstract

本发明提供一种加速杀死害虫如鳞翅目的速率的方法。该方法包含用由至少一种重组微生物表达的至少两种不同昆虫毒素处理害虫或其地点。已发现,这样的毒素对,它们彼此之间在相同的结合位点上无竞争而且在它们药理学上有差异,且提供增效防治。优选的杀虫微生物是杆状病毒。

Description

用复合毒素防治昆虫
发明领域
本发明一般地说涉及昆虫毒素在昆虫防治中的使用,更具体地说,涉及的是关于表达昆虫-选择性毒素的杀虫重组微生物,它们是增效的组合,用以提高杀死昆虫的速率。
本发明是在政府的支持下完成的,许可号为91-37302-6185,授权部门为美国农业部。美国政府在本发明中有一定的权利。
发明背景
鳞翅目夜蛾科包括一些很有破坏性的农业害虫,如棉铃虫属(Heliothis)、Helicoverpa、斜纹夜蛾属(Spodoptera)和粉纹夜蛾属(Trichoplusia)。例如在夜蛾科中还包括烟芽夜蛾(Heliothisvirescens)、棉铃虫(Helicoverpa zea)、棉叶夜蛾(Alabama argillacea)、八字纹地老虎(Ama thes niarum)、透明缓夜蛾(Crymodes devastator)、青铜地老虎(Nephelodes emmedonia)、草地夜蛾(Laphygma frugiperda)、甜菜夜蛾(Spodoptera exigua)和杂色地老虎(Peridroma saucia)。
农业害虫如夜蛾科昆虫(及其它)对农药的抗性,导致对环境和人类健康危害。对杀虫剂的抗性问题导致使用更多无选择的和有毒化合物以克服害虫的抗性,这就引起了破坏和恶性循环。
选择性天然毒素已被建议使用在昆虫防治中。这些毒素包括有毒动物体内特殊的腺组织中产生的物质。毒液可例如借助于穿刺器官,导入被捕获物或目标物的体内,麻痹和/或杀死它,以及其它的已知的释放毒物方法。以蝎子为例,在它的毒液中含有大量的有毒的和作用于兴奋系统的蛋白质或神经毒素。其中被建议用于昆虫防治的昆虫特异毒素是从苏云金芽孢杆菌(Bacillus thuringiensis)、蝎子如钳蝎(Buthu eupeus)和撒哈拉蜂蝎(Androctonus australis),Leiurus quinqustriatus hebraeus、Leiurus quinqustriatus quinqustriatus和螨(虱状蒲螨)(Pyemotestritici)获取的毒素。
由属于钳蝎亚科(Buthinae)蝎子中得到的毒液,主要含有四个重要组的调节轴突钠传导的多肽神经毒素。第一组蝎子神经毒素是α-毒素,它选择地作用于哺乳动物,由于延缓或阻断钠通道失活,使动作电位极端延长(Catterall,《科学》[Science],223:653-661(1984);Rochat等,《细胞药理学进展》[Advances in Cytopharmacology],pp.325-334(1979))。第二组毒素是β-毒素,损害钠通道的活性(Couraud和Jover,《自然毒素手册》[Handbook of Natural Toxins]Tu,A.编,第二卷,pp.659-678(1984)纽约:Marcel Dekker)。第三组神经毒素是抑制性昆虫选择性毒素,由于抑制钠电流,从而它基本上阻断动作电位,导致昆虫逐渐软弱麻痹(Lester等,《生物化学和生物物理学报》[Biochim.Biophys.Acta]701:370-381(1982);Zlotkin等,[Arch.Biochem.Biophys],240:877-887(1985))。第四组神经毒素是兴奋性昆虫选择性毒素,由于增加钠峰电流和延缓其失活所依赖的电压,从而诱导反复点燃其运动神经,导致昆虫即刻(击倒)的抽搐麻痹(Walther等,《昆虫生理学杂志》[J.InsectPhysiol.],22:1187-1194(1976);Pelhate等,《生理学杂志》[J.Physiol.],30:318-319(1981))。
除了蝎子和螨的毒素以外,在蜗牛、蜘蛛和若干其它节肢动物的毒液中也已经鉴定出昆虫选择性毒素。(参见Zlotkin的综述,《综合昆虫生理学、生物化学和药理学》[Comprehensive Insect Physiolopy,Biochemistry and Pharmacology],第10卷,第15章,pp.499-541(1985))。茧蜂的毒液对鳞翅目幼虫具有很高的毒性。通过在昆虫神经肌肉结合点诱发兴奋性谷氨酸能(glutaminergic)传导的前联合体间断,麦蛾茧蜂(Bracon hebetor)的毒液引起鳞翅目幼虫软弱麻痹(Piek等,Comp.Biochem.Physiol.,72c:303-309(1982))。独居蜂(solitary wasp)对很多不同目的昆虫和蜘蛛都表现出毒性(Rathmeyer,Z.Vergl.,Physiol.,45:453-462(1962))。这些毒液的一个例子是三角泥蜂(Philanthus triangulum)毒液,由于前联合体阻断神经肌肉的传输,这种毒液诱发昆虫基本软弱麻痹;它对兴奋性和抑制性传输都产生影响(May等,《昆虫生理学》[Insect Physiol),25:285-691(1979))。黑寡妇蜘蛛(Latrodectus mactans)的毒液含有的一些对昆虫有神经毒性,但对哺乳动物没有神经毒性的组分,而其它组分具有相反的选择性(Fritz等,Nature,238:486-487(1980);Ornberg等,Toxicon,14:329-333(1976))。
最近,一种称为LqhαIT的毒素,它在一级结构和电生理学作用牢固地重新装配α-毒素,已从L.quinquestriatus hebraeus的毒液分离出来并表现出主要影响昆虫(Eitan等,《生物化学》[Biochemistry],29(1990),PP.5941-5947)。
有毒动物的毒液是由各种作用于被捕获物的兴奋系统中的不同靶位点的毒素组成。比较毒素和其各自的天然毒液对鳞翅目幼虫的活性,以此数据为基础,可以清楚地看到,天然毒液的效力不能用单一毒素的活性来解释。天然毒液的高效力可能涉及到毒液中的不同毒素在下述三个方面共同协作的结果:同一离子通道不同靶位点(表3,Trainer等,JBC,268:17114-17119(1993)),同一可兴奋细胞的不同离子通道(Olivera等,《科学》[Science],249,257-263(1990)),和/或毗邻的可兴奋细胞(神经和/或肌肉)的不同结合点(Olivera等,《科学》[Science],249,257-263(1990))。
有抑制性和兴奋性作用的昆虫选择性毒素不会与α-昆虫毒素竞争其结合点(Gordon和Zlotkin,FEBS.Lett.,315,(1993)pp.125-128)。与蝗虫和蟑螂的神经膜相反,在鳞翅目幼虫的神经膜的结合点上,兴奋性毒素不替代抑制性毒素(Gordon等,《生物化学》[Biochemistry],31(1992),pp.7622-7628;Moskowitz等,《昆虫生物化学和分子生物学》[Insect Biochem.Molec.Biol.],24(1994),pp.13-19)。
近来,属于杆状病毒科的苜蓿银纹夜蛾(Autographa californica)核多角体病毒(AcNPV),已通过表达昆虫选择性毒素作了遗传上的修饰,以提高杀虫的速度。把昆虫选择性毒素引入昆虫病原病毒曾导致杀死昆虫宿主的时间减少,正如在1994年4月15日申请的美国专利申请号08/229 417中所描述的那样,上述美国专利申请是1990年12月19日申请的美国专利申请号07/629 603的接续申请,它们与此(部分)共同转让。
Tomalski等的美国专利号5 266 317,1993年11月30日公布,讨论表达昆虫捕食蜱螨的昆虫特异性麻痹神经毒素的重组杆状病毒的应用。Barton等的美国专利号5 177 308,1993年1月5日公布,在创造表达由蝎子得来的昆虫特异性毒素和/或土壤微生物毒素的转基因植物方面采用了一种不同的途径。在一未决申请(它与此共同转让),Hammock和McCutchen在1994年7月5日申请的美国专利申请号08/279956中,讨论了用重组病毒与有机杀虫剂的增效组合来进行昆虫防治。
由于大范围出现害虫对有机杀虫剂如拟除虫菊酯害虫抗性已经开始造成巨大的作物损失,因此这些新出现的使用重组的策略来进行害虫种群的防治是非常有希望的。单就棉花来说,pyr-R棉铃虫种类的出现已经导致每年数百万美元的损失。实际上,在一些案例中,拟除虫菊酯杀虫剂对棉铃虫属幼虫侵害的防治已经完全失败,结果棉花全部被毁。
发明概述
本发明的一个方面是,通过遗传工程提供的杀虫微生物的应用,提供一种防治各种害虫的方法。根据本发明防治的害虫是,例如昆虫、蜱螨和线虫类。因此,本发明可适用于鳞翅目和其它目,以及夜蛾科和其它科。这些害虫用一种或更多种重组微生物表达的毒素的增效组混合来处理(或处理其位点)。
例如,这种方法可以使用表达第一种神经毒素的第一种重组病原体与表达第二种神经毒素的第二种重组病原体组合,或者使用表达多种(如第一种和第二种)神经毒素的单一重组病毒。本发明的方法加快了用病毒杀死害虫的速率。
附表简述
在附图中,表1阐明了合成基因LqhIV的核苷酸序列,SEQ ID NO:1,它是一种实施本发明的优选毒素。
优选实施方案详述
本发明是遗传工程化的杀虫微生物组合在处理害虫如昆虫中的应用。虽然重组杆状病毒将始终作为优选微生物的例证,但本发明也可用多种微生物作为重组释放体系来实施本发明。因此,可用于本发明的微生物包括DNA和RNA病毒如杆状病毒,真菌和细菌。
大约40种核多角体病毒已从昆虫种类里分离出来。(参见例子,《无脊椎动物病毒图集》[Atlas of Invertebrate Viruses],Adams和Bonami,编辑,CRC Press,Inc.,1991)。各种杆状病毒包括那些感染如下昆虫的杆状病毒:棉铃虫(Helicoverpa zea)、烟芽夜蛾、花旗松毒蛾(Orgiapseudotsugata)、舞毒蛾(Lymantria dispar)、苜蓿银纹夜蛾、松柏锯角叶蜂(Neodiiprion sertifer)、苹果蠹卷蛾(Laspeyresia pomonella),它们已经注册为杀虫剂,所有这些来自昆虫种类的杆状病毒都适合用来实施本发明。
多数真菌都能使昆虫感染。把昆虫选择性毒素引入这些真菌的基因组会提高它们作为杀虫剂的效力。例如,蚕白僵菌(Beauvaria bassania)和Beauvaria brongniartii有很大的宿主范围,它们已被建议作为候选的微生物杀虫剂(参见Miller的综述,《科学》[Science],219:715-721,1983)。
已经作为昆虫防治剂的细菌(除苏云金芽孢杆菌(Bacillusthuringiensis)之外),包括日本甲虫芽孢杆菌(Baciilus popilliae)、缓病芽孢杆菌(B.lentimorbus)和球状芽孢杆菌(B.sph2ericus)。通过把昆虫选择性毒素引入这些细菌的基因组来改善它们的效力从而提高它们作为杀虫剂的潜力。
本发明的实施涉及两种在防治昆虫方面有增效作用的毒素的组合应用。这两种毒素可通过其中已引入两种毒素基因的单一重组微生物的方式来表达,或者可以通过制备两种重组微生物来实施,所述的二种重组衍生物各可以通过把一个编码各自的昆虫毒素的基因克隆入基因组来完成构建。选择的毒素对的组合可以通过几种方法来确定。如将在下文进行描述的(如通过实施例6的筛选技术描述的),优选选择作用于同一细胞通道(典型的是钠通道)但作用于非叠加位点的毒素,正如将在下文所进一步描述的那样。
在前面提到,用来实施本发明的优选微生物是杆状病毒。用“杆状病毒”是指杆状病毒科(Baculoviridae)的任何杆状病毒,如核多角体病毒(NPV)。杆状病毒是一大组进化上相关的病毒,只感染节肢动物;实际上,有些杆状病毒只感染那些有重要经济意义的农业和林业作物的害虫,而其它的杆状病毒已知专门感染其它害虫。因为杆状病毒只感染节肢动物,因而对人类、植物和环境很少或没有危害。
在适合的DNA病毒中,除了杆状病毒科(Baculoviridae)之外是昆虫痘病毒外(EPV),如西方五月鳃角金龟子(Melolontha melonotha)痘病毒、桑灯蛾(Amsacta moorei)痘病毒、亚洲飞蝗(Locusta migratotia)痘病毒、血黑蝗(Melanoplus sanguinipes)痘病毒、沙漠蝗(Schistocercagregaria)EPV、埃及伊蚊(Aedes aogypti)痘病毒和淡色摇蚊(Chironomusluridus)痘病毒。其它适合的DNA病毒是颗粒体病毒(GV)等。适合的RNA病毒包括披膜病毒科、黄病毒属、小RNA病毒、质多角体病毒及类似的病毒。双链DNA病毒Eubaculovirinae的亚科有两个属,NPVs和GVs,它们在生物防治中特别有用是因为它们在其生命周期中产生包含体。GVs的例子包括苹果蠹蛾(Cydia pomonella)颗粒体病毒,大菜粉蝶(Pierisbrassicae)颗粒体病毒,粉纹夜蛾(Trichoplusia ni)颗粒体病毒,Artogeia rapae GV和印度谷螟(Plodia interpunctella)颗粒体病毒。
用来实施本发明的适合的杆状病毒可以是包含的或不包含的。核多角体病毒(“NPV”)是杆状病毒亚组的一种,是“包含”的。那就是说,NPV组的一个特有特征是很多病毒粒子嵌在晶状蛋白的基质间,这就是所指的“包含体”。NPV的例子包括舞毒蛾(Lymantria dispar)NPV、苜蓿银纹夜蛾NPV、芹菜夜蛾(Anagragha falcifera)NPV,斜纹夜蛾(Spodopteralitturalis)NPV、草地贪夜蛾(Spodoptera frugiperda)NPV、棉铃虫(Heliothis armigera)NPV、甘蓝夜蛾(Mamestra brassicae)NPV、枞色卷蛾(Choristoneura fumiferana)NPV、粉纹夜蛾(Trichoplusia ni)NPV、Helicoverpa zea NPV、刺金翅夜蛾(Rachiplusia ou)NPV。在田间经常优先使用包含病毒是由于它们较好的稳定性,因为病毒的多角体蛋白外衣给包含入的感染核衣壳提供很好的保护。
在例证中,在实施本发明中有用的杆状病毒是得自下列害虫的杆状病毒:芹菜夜蛾(Anagrapha falcifera)、黎豆夜蛾(Anticarsiagemmatalis)、油桐尺蠖(Buzura suppressuria)、苹果蠹蛾(Cydiapomonella)、Helicoverpa zea、棉铃虫(Heliothis armigera)、甘蓝夜蛾(Manestia brassicae)、小菜蛾(Plutella xylostella)、甜菜夜蛾(Spodoptera exigua)、海灰翅夜蛾(Spodoptera littoralis)和斜纹夜蛾(Spodoptera litura)。用来实施本发明的一个特别有用的“NPV”是AcNPV,是来自苜蓿银纹夜蛾(Autographa californica)的核多角体病毒。对苜蓿银纹夜蛾(Autographa californica)有特别的兴趣,是因为在斜纹夜蛾属(Spodoptera)、Trichoplusia和棉铃虫属(Heliothis)中多种主要害虫种类对此病毒敏感。
表达的杀虫毒素特别是来自或类似于节肢动物或其它无脊椎动物毒素的神经毒素,如蝎毒、黄蜂毒、蜗牛毒、螨毒或蜘蛛毒。一种有用的蝎毒如来自撒哈拉蜂蝎(Androctonus australis)的AaIT。Zlotkin等,《生物化学》[Biochimie],53,1073-1078(1971)。一种有用的蜗牛毒来自蜗牛Conus querciones的毒液,用嘴释放出来,蜗牛毒中的某些个别的毒素对节肢动物包括昆虫有选择性。参见例如,Olivera等,“Diversity ofConus Neuropeptides”,《科学》[Science],249:257-263(1990)。
甚至是通常出现在昆虫生命发育期间的多肽可以也作为一种杀虫毒素,且可依据本发明使用。例如,保幼激素酯酶(JHE)的早熟特征会减少宿主昆虫保幼激素的滴度,这样会不可逆转地结束取食阶段,试图蛹化,而使害虫死亡。JHE的氨基酸序列已知,且基因已被克隆。本发明优选的实施方案包括表达保幼激素酯酶(JHE)突变的重组微生物,制备这种JHE突变或缺失的示范方法,几种有用的JHE突变和在昆虫防治中使用的重组表达载体(含有JHE或突变的JHE编码序列)。正如在1994年2月17日公布的发明人为Hammock等的WO94/03588中所描述的,该文并入本文作为参考。
在Hammock等的WO 94/03588中描述的两个突变体是双赖氨酸突变体(K29R,K522R),其中在JHE位置29和位置522通过定点诱变用精氨酸代替普通赖氨酸。所描述的另一个突变体为其中丝氨酸201变成甘氨酸,该突变体被称为“S201G”。JHE的催化缺陷S201G突变体的杀虫活性与试验昆虫对蝎毒的50%死亡率在时间上相近(当用AcNPV基因工程处理时)。因此,自然产生的JHE昆虫蛋白,一般没有毒性,可以通过如定点诱变(或其它)而修饰为有毒的媒介物。除了氨基酸残余物的改变,其它JHE突变体可以通过例如缺失N-末端的19个氨基酸(它们是新合成蛋白质进入分泌通道的信号序列)而制备,变成糖基化,然后离开细胞。
同JHE一样,来自撒哈拉蜂蝎的兴奋性毒素(AaIT)的氨基酸序列已经确定,该序列已经发表(Darbon 1982),AaIT基因已被克隆且插入表达载体用来防治昆虫。(参见WO 92/11363,1992年7月9日公布,发明人Belagaje等)。AaIT毒素对昆虫表现出毒性,而对等足类和哺乳动物没有毒性。
实施本发明的另一种适合的毒素作用于昆虫钠通道,它与α-毒素作用于哺乳动物的钠通道的方式非常相似。这种神经毒素是从一种黄蝎(Leuirus quinquestriatus hebraeus)得到,该神经毒素在此称为LqhαIT。这种毒素的鉴别和纯化在(“一种使钠电流失活的麻痹昆虫的蝎子神经毒素:纯化、一级结构和作用方式”,Eitan等,《生物化学》[Biochemistry],29:5941-5947(1990))一文中作了描述。
实施本发明的两种优选的分离和纯化的形式的毒素是新颖的,并在下文作较为详细的描述。简而言之,这两种毒素被称为“LqhIV”和“LqhVI”。这两种毒素产生于(Leuirus quinquestriatus hebraeus)的毒液中,在天然形式的混合物中这种毒液包含大量的个别毒素。LqhIV毒素是一种很有效力的鳞翅目毒素,当注入鳞翅目幼虫体内时,它与其它蝎毒共同表现出正协同性,对哺乳动物没有或有很弱的毒性。在图1中阐明LqhIV毒素的合成基因,SEQ ID NO:1。
因此,这两种优选毒素的基因可以合成(由于肽的序列大小足够的小,使得合成DNA成为可能)。此外,这些基因可以被克隆,之后编码序列可以被克隆入一个转移载体,如在下文中将进一步举例说明的。
我们已经在丽蝇幼虫和棉铃虫幼虫两者体内,用毒素AaIT和LqhαIT增效组合证明了本发明的各个方面。这些昆虫选择性神经毒素组合使用时的杀虫活性增加5-10倍。说明本发明的其它组合和实验细节将在下文详细讨论。
各种其它蝎毒(例如钳蝎类(Buthoid scorption)也可以为增效组合使用,如LqqIT2,是一种来自Leiurus quinquestriatus quinquestriatus的抑制性昆虫毒素。获得这种神经毒素的纯化方法由Zlotkin等发表于(《生物化学和生物物理档案》[Archives of Biochem.Biophys],240:877-887(1985))中。
BjIT2是另一种来自钳蝎(Buthotus judaicus)的抑制性昆虫毒素。纯化方法已经由Lester等发表,《生物物理学报》[Biochim.Biophys.Acta),701:370-381(1982)。BjIT2存在于位置15上的氨基酸序列不同的两个同种型中。形态1在此位置为异亮氨酸,形态2在此位置为缬氨酸。
LqhIT2是另一种来自Leuirus quinquestriatus hebraeus的抑制性昆虫毒素,用反相HPLC进行纯化。
此外,从chactoid蝎子(Scorpio maurus palmatus)的毒液纯化的其它毒素也可以使用。例如,SmpIT2,来自chactoid蝎子(Scorpio mauruspalmatus),是一种抑制性昆虫毒素。它的纯化方法由Lazarovici等发表于《生物和化学杂志》[J.Biol.Chem.],257:8397-8404(1982)。
还可以从chactoid蝎子(Scorpio maurus palmatus)的毒液纯化得到的其它毒素是SmpCT2和SmpCT3,和crustacean毒素,其纯化方法已经在耶路撒冷希伯来大学的Lazarovici博士在其博士论文(1980)“Studies onthe Composition and Action of the Venom of the Scorpion Scorpio mauruspalmatus(Scorpionidae)”中描述。
表1中列出实施本发明的优选毒素以及其纯化方法和鉴别的引证。
                          表1引证的         参考文献毒素AaIT           Zoltkin等,《生物化学》[Biochim.],53,1075-1078
           (1971).AaIT1         Loret等,《生物化学》[Biochem.],29,1492-1501
           (1990).AaIT2         Loret等,《生物化学》[Biochem.],29,1492-1501
           (1990).LqqIT1        Zlotkin等,《生物化学和生物物理档案》[Arch.f
           Biochem.& Biophys.],240,877-887(1985).BjIT1         Lester等,《生物化学生物物理学报》[Biochem.
           Biophys.Acta.],701,370-387(1982).LqhIT2        Zlotkin等,《生物化学》[Biochem.],30,4814-4821
           (1991).LqqIT2        Zlotkin等,《生物化学和生物物理档案》[Arch.f
           Biochem.&Biophys.],240,877-887(1985).BjIT2         Lester等,《生物化学生物物理学报》[Biochem.
           Biophys.Acta.],701,370-387(1982).LqhαIT        Eitan等,《生物化学》[Biochem.],29,5941-5947
           (1990).TsVII         Bechis等,《生物化学生物物理研究》[Biochem.
           Biophys.Res.Comm.],122,1146-1153(1984).螨毒素         Tomalski等,《毒素》[Toxicon],27,1151-1167
           (1989).α-芋螺毒素    Gray等,(JBC),256,4734-4740(1981);Gray等,
           《生物化学》[Biochem.],23,2796-2802(1984).μ-芋螺毒素    Gruz等,(JBC),260,9280-9288(1989);Grus等,
           《生物化学》[Biochem.],28,3437-3442(1989).chlorotoxin    Debin等,《美国生理学杂志》[Am.J.Physiol.],264,
           361-369(1993).ω-芋螺毒素    Olivera等,《生物化学》[Biochem.],23,5087-5090
           (1984);Rivier等,(JBC),262,1194-1198(1987).PLTX1            Branton等,《神经科学协会文摘》[Soc.Neurosci.
             Abs.],12,176,(1986).PLTX2            Branton等,《神经科学协会文摘》[Soc.Neurosci.
             Abs.],12,176(1986).PLTX3            Branton等,《神经科学协会文摘》[Soc.Neurosci.
             Abs.],12,176,(1986).Ag1              Kerr等,《神经科学协会文摘》[Soc.Neurosci.Abs.],
             13,182(1987);Sugimori等,《神经科学协会文摘》
             [Soc.Neurosci.Abs.],13,228,(1987).Ag2              Kerr等,《神经科学协会文摘》[Soc.Neurosci.Abs.],
             13,182(1987);Jackson等,《神经科学协会文摘》
             [Soc.Neurosci.Abs.],13,1078(1987)。ω-Agatoxin      Adams等,JBC,265,861-867,(1990).μ-Agatoxin      Adams等,JBC,265,861-867,(1990).Ho1              Bowers等,PNAS,84,3506-3510(1987).α-Laterotoxin   Grasso等,《神经化学中的神经毒素》[Neurotoxins in
             Neurochemistry),Dolly编辑,67-79(1988)Steatoda毒素     Cavalieri等,《毒素》[Toxicon],25,965-974
             (1987).Bom III          Vargas等,《欧洲生物化学杂志》[Eur.J.Biochem.],
             162,589-599(1987).
表1的说明性毒素可由之纯化的许多生物体的cDNA库可按下列文献中的描述得到:Zilberberg等(1992),《昆虫生物化学分子生物学》[InsectBiochem.Molec.Biol.],22(2),199-203(Leiurus quinquestriatushebraeus);Gurevitz等,(1990)Febs Lett.,269(1),229-332(Buthus judaicus);Bougis等(1989),JBC,264(32),19259-19256(Androctonus australis);Martin-Euclaire等(1992)Febs Lett.,302(3),220-222(Tityus serrulatus);Woodward等(1990)EMBO J.,9(4),1015-1020(Conus textile);和Colledge等(1992),《毒素》[Toxicon],30(9),1111-11116(Conus geographus)。对于其它的毒素,用类似于实施例7所示范的方式,可以构建编码这些毒素的合成基因。
在前面曾提到,适合实施本发明的两种分离和纯化形态的毒素是新颖的。其中之一称为“LqhIV”,具有氨基酸序列SEQ ID NO:2:GVRDAYIADDKNCVYTCGAN SYCNTECTKN GAESGYCQWF GKYGNACWCI KLPDKVPIRI PGKCR。SEQID NO:2的65个氨基酸的肽将在实施例5中进一步描述。
另一个新颖的毒素,称为“LqhVI”,具有氨基酸序列SEQ ID NO:3:GVRDGYIAQP ENCVYHCFPG SPGCDTLCKG DGASSGHCGF KEGHGLACWC NDLPDKVGIIVEGEKCH。这个67个氨基酸的肽也将在实施例5中进一步描述。
毒素,如表1所列出的或是SEQ ID NOS:2和3优选的毒素,通过首先将具有不同药理的毒素实验性组合可以非常容易地被选择来形成增效的组合。例如,AaIT是一种兴奋性昆虫毒素,而LghIT2是一种抑制性毒素。通过常规结合方案(参见Gordon等,《生物化学生物物理学学报》[Biochim.Biophys.Acta.],778 349-358(1984),对于AaIT、BjIT1和BjIT2而言,用亚洲飞蝗(Locusta migratoria)膜小泡),可以筛选出对感兴趣的昆虫在同一通道但非重叠位点上的活性。这是因为,正如本领域所知,各种昆虫的神经膜有可变性。例如,最近有几篇论文报导,与蝗虫或蟑螂的神经膜不同,鳞翅目幼虫神经膜可以在同一时间与抑制性和兴奋性昆虫毒素结合。
在前面提到的AaIT和LghαIT增效组合的例子中,该组合对于丽蝇幼虫增效效力是对棉铃虫(Heliothis)幼虫的两倍。相反,AaIT和LghIT2的组合,应用于棉铃虫(Heliothis)幼虫时,是一个增效组合(5倍的效力),但当单独使用任何一种毒素对丽蝇幼虫效力都没有增加,这些毒素的组合可以用于在昆虫种群中以提高选择性。
为了生产重组微生物,如杆状病毒,为防治昆虫的目的,优选包含一个的分泌信号序列。分泌信号序列可以从细菌、酵母菌、真菌或高级真核生物(包括所有动物和植物)的蛋白质提取(如参见Watson,Nucl.Ac.Res.12:5145-5164(1984))。更优选的是来自昆虫源蛋白的分泌信号序列,如那些来自Hyalophora cecropia的杀菌肽B(van Hofster等,PNAS,82:2240-2243(1985)),来自烟草天蛾(Manduca sexta)的蜕壳激素(Horodyski等,PNAS,86:8123-8127(1989))。同样优选的是与蝎毒自然关联的分泌信号序列,这可以通过mRNA,cDNA或基因DNA的分析来确定。更优选的是AaIT的天然分泌信号序列(Bougis等,《生物学化学杂志》[J.Biol.Chem.],264:19259-19265(1989))。
重组微生物毒素可以被表示为毒素的功能衍生物。毒素的“功能衍生物”是一种具有生物活性的化合物(或是功能上的或是结构上的),大体上与毒素的生物活性相似。术语“功能性衍生物”意指包括分子的“片段”、“变体”、“相似物”或“化学衍生物”。如毒素的分子的“片段”就是指分子的任何多肽子集合。如毒素的分子的“变体”就是指在结构和功能上不是与整个分子就是与它的片段大体上相似的一种分子。如果两个分子在结构上大体相似或如果两个分子拥有相似的生物活性,那么就说这个分子与另一个分子大体上相似。因此,只要两个分子具有相似的活性,在此就把它们当作那个术语变体使用,即使一种分子的结构不能在另一个分子中找到,或即使氨基酸残余的序列不相同。如毒素的分子的“相似物”就是指分子在功能上不是与整个分子就是与它的片段大体上相似。在此处使用时,当分子包含不是正常分子的一部分的额外化学部分时,该分子被说成是另一个分子的“化学衍生物”。
这个部分可以改善分子的溶解性、吸附性、生物半衰期等。能够调节这些效果的部分公开于Remington′s Pharmaceutical Sciences(1980)中。耦联这个部分到一个分子的步骤在技术上是众所周知的。
通常,毒素(或这些毒素)的表达包括足以指导RNA合成开始的启动子区。一个杆状病毒启动子基因是编码多角体蛋白的基因,因为多角体蛋白质是已知的高度表达的真核生物基因,不过也可以使用其它启动子和杂合启动子的序列,例如p10。
表达一个毒素的重组杆状病毒可以通过本领域已知的方案来制备(例如Tomalski等,美国专利号5,266,317,由来自昆虫寄生螨的神经毒素的作例证;McCutchen等,《生物学技术》[Bio/Technology),9,848-854(1991)和Maeda等,“重组杆状病毒表达的昆虫特异性神经毒素的杀虫效果”,《病毒学》[Virology],184,777-780(1991),说明了表达AaIT的重组杆状病毒的构建)。
能够表达两个不同的毒素的单一杆状病毒的制备,可以通过类似于下列的方案来完成:Belayev和Roy,《核酸研究》[Nucleic Acid Research],21:5,1219-1223(1993);Wang等,《基因》[Gene],100,131-137(1991),作适当的改进。实施例1阐明了这一类似的方案。
                        实施例1
使用标准分子克隆技术可以把两个昆虫毒素基因克隆入转移载体如PacUW51P2中。这种转移载体是苜蓿银纹夜蛾(AcNPV)多角体蝗虫基的载体,该载体包含一前一后插入的AcNPV p10启动子和SV40转录终止信号的拷贝。该拷贝在多角体基因启动子的上游,但是以相反的方向。这会有利于在多角体启动子控制下在Bam HI位点维持一个外来基因编码区域,以及在p10启动子控制下在BglII克隆位点维持第二个外来基因编码区域。因此,产生的重组病毒表达两个外来蛋白质。由此制备的重组AcNPV可以通过繁殖草地贪叶蛾(Spodoptera frugiperda)细胞(Sf21)而分离,而Sf21是通过钙沉淀而与重组质粒共转染的。多角体感染的细胞可以在感染后被鉴别和收集,重组病毒噬斑可以通过筛选纯化。通过标准方案纯化重组病毒,得到的结果进行纯的重组培养并贮存,如在4℃和-80℃。标准方案例如描述于O′Reilly,Miller和Luckow的《杆状病毒表达载体,实验室手册》[Baculovirus Expression Vectors,A Laboratory Manual)。
                         实施例2
四种不同昆虫毒素对两种不同昆虫和小鼠的活性已经测定(因为从们喜欢使用对哺乳动物作用很小或没有影响的昆虫毒素)。通过已确立的方法,这些毒素已从各自原生毒液中纯化出来。通过Reed和Muench的方法(1938)已经测定它们对老鼠、丽蝇幼虫和鳞翅目昆虫的毒性。
表2表明毒素对昆虫和小鼠的活性,以50%终点计(各自的麻痹或致死剂量PU50,LD50)。毒素对于丽蝇幼虫的PU50值与以前已经发表过的结果一致(Zlotkin等,《生物化学》[Biochim.],53,1075-1078(1971);和Eitan等,《生物化学》[Biochem.],29,5941-5947(1990))。这些毒素对于鳞翅目烟芽夜蛾幼虫的毒性和它们对海灰翅夜蛾幼虫的毒性相差不大。LqhαIT对小鼠(Swiss Webster)表现较高的毒性,但其它毒素对哺乳动物无毒性(3μg/g b.w注入皮下没有效果,与哺乳动物毒素AaHII的LD50-0.018μg/20g b.w相反(DeLima等,1986)。毒素LqhIV和LqhVI是值得考虑的,因为LqhIV是从蝎毒中分离出来的至今最有效力的鳞翅目毒素而毒素LqhVI有微弱的哺乳动物毒素。
                                 表2
毒素   对Sarcophagafatculata幼虫的PU50(μg/100mgb.w.)a 对烟芽夜蛾幼虫的PU50(μg/100mgb.w.)b 对Swiss Webster小鼠的LD50(μg/20g b.w.)c
 AaIT     0.0025     2.5     >60
 LqhIT3     0.050     2.5     >60
 LqhIT2     0.025     2.5     >60
 LqhαIT     0.0025     2.5′     8.0
 LqhIV     0.1     0.5     12
 LqhVI     0.006     3.0     >60
a.25-40只丽蝇幼虫分别被注入每一种毒素(三次重复)并测定PU50。当注射后立即导致收缩性麻痹时测定兴奋性毒素AaIT、LqhVI和LqhIT3的PU50。在注射后软弱麻痹5分钟时测定抑制性毒素LqhIT2的PU50。在注射后延迟和维持收缩性麻痹5分钟时测定α昆虫毒素LqhαIT和LqhIV的PU50
b.25-40只鳞翅目幼虫分别被注入每一种毒素(三次重复),并测定经注射后24小时没有能力移动或当掀翻它没有能力翻转回来时的PU50
c.8只老鼠(两次重复)皮下注射,在注射后24小时测定对小鼠的LD50
                         实施例3
同时注入毒素的组合,并测定毒性,结果概括于表3中。毒性组合包括相应于每种毒素的一个PU50单位的量及其稀释度。不在同一结合点相互竞争且在其药理学上有差异的一对毒素是增效的。如表3中所示,协同的程度不仅取决于毒素的组合,而且取决于试验动物。
                                 表3
毒素 对Sarcophagafatculata幼虫的PU50(μg/100mg b.w.)a 对烟芽夜蛾幼虫的PU50(μg/100mg b.w.)b 对Swiss Webster小鼠的LD50(μg/20g b.w.)c
剂量             效力的变化* 剂量            效力的变化* 剂量        效力的变化*
AaIT+LqhIT2 0.0025(AaIT)      0.5X0.025(LqhIT2) 0.25(AaIT)      5X+0.25(LqhIT2) 60(AaIT)     无效果+60(LqhIT2)
AaIT+LqhαIT 0.000125(AaIT)    10X0.000125(LqhαIT) 0.25(AaIT)      5X+0.25(LqhαIT) 60(AaIT)     8.0+8.0(LqhαIT)
LqhIT3+LqhIT2 未测定 0.25(LqhIT3)    5X+0.25(LqhIT2) 60(LqhIT3)  无效果+60(LqhIT2)
LqhIT3+LqhαIT 0.005(LqhIT3)     5X0.00025(LqhαIT) 0.25(LqhIT3)    5X+0.25(LqhαIT) 60(LqhIT3)   8.0+8.0(LqhαIT)
a.25-40只丽蝇幼虫每一只被注入组合毒素(三次重复),在注射后一分内幼虫迅速萎缩时测定PU50
b.25-40只鳞翅目幼虫每一只被注入组合毒素(三次重复),并测定经注射后24小时没有能力移动或当掀翻它没有能力翻转回来时的PU50
c.8只小鼠(两次重复)皮下注射,在注射后24小时测定对小鼠的LD50。*由一定数量的毒素蛋白(以各种稀释度使用1∶1比率的毒素)所产生的效果与每一种毒素单独的PU50相比较来评价效力。
如表3中阐明的,大于单一效力的组合是大于增强的剂量反应。因此,这些组合增加了杀虫率,也阐明了本发明优选的实施方案。
                        实施例4
实施本发明时,要防治的害虫是用表达这些重组杆状病毒来处理(和/或处理其地点)。在这个例子中,表达两种不同组合的毒素的两种病毒的组合施用,与应用每一个病毒单独施用相比较,显示出减少杀死昆虫宿主所需的时间。因此,如表4所示,组合施用重组AcAaIT和重组AcLqhαIT会大大减少杀死时间。
                          表4
重组体的应用 LT10 LT50 LT90
AcLqhαIT(单独) 62 73 87
AcAaIT(单独) 55 68 82
AcAaIT+AcLqhαIT(组合,发明的实施方案) 45 60 80
致死时间(LT)是在三龄烟芽夜蛾幼虫对AcAaIT(10000PIB′S)、AcLqhαIT(10000PIB′S)和AcAaIT(5000PIB′S)与AcLqhαIT(5000PIB′s)的组合施用的响应的基础上获得的。将小的食物塞分别放置于微量滴定盘的各个小孔中,同时接入任何一种相应的病毒。把三龄烟芽夜蛾幼虫加到盘上并保持27℃。每隔5-10分种记录死亡率。用概率分析程序分析致死时间。
因此,表4的数据是用致死时间(LT)表示的对杀死速率的研究,且类似的方法可以用来确定致死剂量,而致死剂量大概会有主要的经济重要性。例如,有了50%幼虫死亡的致死时间,可见,实施本发明方法中的毒素组合与施用单个重组体相比,大约减少12%-18%杀死宿主幼虫所需要的时间。当人们认为与野生型AcNPV相比较,使用重组AcAaIT的处理代表大约减少40%杀死宿主幼虫所需要的时间时,可见,本发明的实施造成基本上减少昆虫取食损害且明显减少被损伤的植物。另外,用重组微生物感染的幼虫,典型的是在死亡前数小时,开始显示麻痹特征且停止取食。这就进一步增加了本发明方法的实际杀虫效果。
                          实施例5 LqhIV和LqhVI的纯化
蝎子(L.quinqestriatus hebraeus)的毒液是从Sigma(USA)获得的。
冻干的L.quinqestriatus hebraeus毒液(50mg)于2ml 10mM pH=6.4的乙酸铵中悬浮并匀浆。在27000g下离心20分钟去除不溶物质。收集上清液并且将粒状沉淀重新悬浮于另外的2ml 10mM pH=6.4的乙酸铵中,匀浆并再次离心。此提取法做4次,以期最大量地从毒液中提取蛋白质。把所有离心过程的上清液收集起来,装在阳离子交换柱上(10ml的CM-52)并用线性梯度为0.01-0.5M pH=6.4的乙酸铵在流速为10ml/hr下洗脱。在280nm监测吸光度且相应地收集峰值。来自阳离子交换色谱的级分CM-III和CM-VI进一步在RP-HPLC的Vydac C4柱上纯化。从CM-VI上纯化LqhIV可依照以下步骤:缓冲液A是5%的ACN和0.1%的TFA,缓冲液B是95%的ACN和0.1%的TFA。柱子用缓冲液A平衡,并用线性梯度为0-60%的缓冲液B洗脱70分种,流速为0.6毫升/分种。在214nm监测吸光度且相应地收集峰值,从CM-III纯化LqhVI可依照以下步骤:缓冲液A是5%的ACN和0.1%的HFBA,缓冲液B是95%的ACN和0.1%的HFBA。柱子用缓冲液A平衡并用线性梯度为0-90%的缓冲液B洗脱105分种,流速为0.6毫升/分种。在214nm监测吸光度且相应地收集峰值。收集洗脱的级分,并测试其活性(表2)和纯度。毒素的纯度
LqhIV和LqhVI的均一性和纯度用Free Solution CapillaryElectrophoresis测试(Applied Biosystems Model 270A)。用20mM pH=2.9的柠檬酸钠使毛细管平衡且使用真空装载样品(0.02mg/ml蛋白质)2秒钟。流动缓冲液是20mM pH=2.9的柠檬酸钠,电压力为20KV。序列测定
使用已经确立的方法(Fernandez等,《蛋白质化学的技术》[Techniquesin Protein Chemistry],第5卷,第215页),把每种毒素20μg还原和羧甲基化。使用HP序列分析仪,通过自动化Edman降解,测定N-末端的序列。使用内蛋白酶Asp-N消化还原的和羧甲基化的LqhIV,产生肽。在使用聚合柱的微孔HPLC(Ultrafast Microprotein分析仪-MichromBioResources Inc.)上分离消化的肽。缓冲液A是5%的ACN和0.1%的TFA,缓冲液B是95%的ACN和0.1%的TFA。柱子用缓冲液A平衡,并用线性梯度为0-50%的缓冲液B洗脱50分种,流速为0.05毫升/分种。在214nm监测吸光度且相应地收集峰值。为了确定这种毒素的完整氨基酸序列,对肽P2进行测序。
                          实施例6 结合方案 昆虫神经元膜的制备
昆虫神经元组织的所有解剖和制备都是在如下组份的冷缓冲液中进行的:0.25M甘露醇、10mM pH=7.4的EDTA、5mM HEPES(用Tris调至pH为7.4)、50μg/ml苯甲基磺酰氟、1μM胃蛋白酶抑制剂A、1mM碘乙酰胺和1mM 1,10-菲咯啉(1,10-phenantroline)。昆虫神经组织在冰冷缓冲液中解剖和匀浆,碎片通过1000g离心分离10分钟去除。上清液在27000g下离心45分钟并收集膜(P2)。P2悬浮于缓冲液中且调节至10%Ficoll(在缓冲液中),并在10000g离心75分钟。收集所产生的代表富含突触体碎片的漂浮表皮,接着用低渗透压介质(5nM Tris-HCl pH=7.4、1mM EDTA、50μg/ml苯甲基磺酰氟、1μM胃蛋白酶抑制剂A、1mM碘乙酰胺和1mM 1,10-菲咯啉)处理,形成膜小泡。这种膜小泡在使用前经27000g离心分离45分钟后,收集在少量解剖缓冲液内,并在-80℃贮藏。毒素的放射性碘标记
毒素由用0.5毫居里无载体Na125I(-0.3nmol)(Amersham)和5毫克(~0.7nmol)毒素的iodogen(Pierce Chemical Co.,Rockville,MD)碘化。此单碘化毒素在使用Beckman Ultrapore C3 RPSC柱(4.6×75毫米)的HPLC上纯化,得到的级分用流速为0.5毫升/分钟,梯度为10-80%的溶剂B(溶剂A=0.1%TFA,溶剂B=50%ACN,50%2-丙醇和0.1%TFA)洗脱。单碘化毒素的洗脱在天然毒素的峰(大约28%的溶剂B)之后为放射性蛋白质的第一个峰(大约30%的溶剂B)。依据125I的特异放射性估计放射性同位素标记的毒素的浓度和相应于2424dpm/fmol单碘化毒素。结合试验
竞争结合试验是在标记毒素的恒定浓度存在下,在平衡的条件下使用增加未标记毒素浓度来进行。所有结合试验的分析是使用迭代计算机程序LIGAND(P.J.Munson和D.Rodbard,由G.A.McPherson改进,1985)进行、的。昆虫膜小泡悬浮于含有0.13M胆碱盐酸盐、1mM EDTA pH=7.4、20mMHEPES/Tris pH=7.4和5mg/ml BSA的结合介质中。接着与毒素温育一小时,此反应混合物用2ml冰冷洗涤缓冲液(150mM胆碱盐酸盐、5mMHEPES/Tris pH=7.4、1mM EDTA pH=7.4和5mg/ml BSA)稀释并在真空下用GF/F过滤器(Whatman,U.K.)过滤,接着每一次用2ml的洗涤缓冲液再冲洗过滤器两次。在1μM未标记的毒素存在下,测定非特异性毒素结合。
                            实施例7 合成基因的构建(图1,SEQ ID NO:1)
采用一个杆状病毒的优选密码子使用把一个毒素的蛋白质序列变换成一个核苷酸序列。毒素基因与前导序列的核苷酸序列(家蚕素,天然前导序列或其它)和适当的限制酶位点被用来设计和合成寡核苷酸的5个互补对。通过使用外部寡核苷酸作为引物的PCR,使寡核苷酸被磷酸化、退火、连接和扩增。PCR产品被平端连接入PCRscript质粒,并通过测序证实正确的序列。BamHI限制片断在一个杆状病毒启动子作用下,从此克隆入一个杆状病毒转移载体的质粒中获救(P10,多角体蛋白,Basic,IE1等)。一个包括基因的正确序列和前导序列的质粒通过测序确定。使用产生的转移载体和标准的程序构建出一个表达毒素的重组病毒。表达AaIT和LqhIV的病毒的构建
家蚕素的前导序列和编码毒素LqhIV的基因如上所述被设计和合成。确定正确序列,并将基因克隆入已包含AaIT基因的双表达的转移载体。pAcUW51P2转移载体是一有两个克隆位点的多角体蛋白阳性载体,BglII位点和有家蚕素的前导序列的LqhIV基因克隆入BamHI位点。使用Lipofectin程序,将Sf21细胞用所得的转移载体和传染病毒颗粒共转染。重组病毒在标准噬菌斑试验中被选作一个多角体蛋白阳性表现型。依据标准程序将Sf21细胞用重组病毒AcAaLq接种。从病毒感染细胞中得到的蛋白质提取液在15%SDS-PAGE凝胶上分离并随后电洗脱到硝化纤维素膜上。膜用AaIT和LqhIV抗体探查,结合的抗体使用兔子IgG HRP共轭体检测。
综上所述,依据本发明生产出来的遗传工程处理过的杀虫微生物,可应用于防治各种害虫。在此运作中,可以应用单一的表达许多种神经毒素的重组病毒。通过选择作用在相同细胞通道(典型的钠通道)但在非重叠位点上的毒素来决定毒素的组合。此外,可采用两种(或更多)各表达不同毒素的重组杀虫微生物。再者,几种表达的毒素如已描述的已被选择出。这些表达的毒素的组合加速杀死害虫的速率,其效果远非简单的“加合”所能比。例如,毒素AaIT和LqhαIT的组合使用使丽蝇幼虫和棉铃虫属幼虫的致死率增加5-10倍。另外毒素的组合可用于增加对昆虫组群的选择性。
重组微生物的常规施用方法(喷雾、弥雾、喷粉、撒施和浇泼)可采用以下剂型如粉剂、粉尘、颗粒,以及如在聚合物中的胶囊。为了使用表达杀虫毒素的增效组合的重组微生物,组合物典型地包括惰性载体如粘土、乳糖、脱脂大豆粉和类似的应用辅助剂。
本发明上面描述的关于优选的特别实施方案应理解为,描述和实施例意欲说明和而不限制发明范围,其发明范围是由所附权利要求书来限定。

Claims (9)

1.一种重组杆状病毒,它已被改造而包含并且在用其感染的选定昆虫的昆虫细胞中表达多种毒素基因,每种毒素基因以纯毒素蛋白形式表达,每种毒素在相对于其它一种或多种毒素的非叠加结合位点处结合到同一膜离子通道上,而且每种毒素对选定昆虫的昆虫细胞具有杀虫效力,多种毒素一起对选定昆虫的昆虫细胞的杀虫效力高于每种毒素各自效力的加合效果所能达到的效力。
2.根据权利要求1的重组杆状病毒,其中杆状病毒是核多角体病毒(nuclear polyhedrosis virus)。
3.根据权利要求1的重组杆状病毒,其中杆状病毒来源于苜蓿银纹夜蛾(Autographa californica)。
4.根据权利要求1的重组杆状病毒,其中膜离子通道是钠离子通道。
5.根据权利要求3或4的重组杆状病毒,其中毒素之一是LqhIV或LqhVI。
6.根据权利要求3或4的重组杆状病毒,其中毒素之一是AaIT。
7.根据权利要求3的重组杆状病毒,其中毒素包括AaIT和选自LqhαIT、LqhIT2、LqhIV或LqhVI的任一种。
8.根据权利要求1或3的重组杆状病毒,其中至少一种毒素是蝎、黄蜂、蜗牛、螨或蜘蛛毒液的一种成分。
9.一种杀虫组合物,它包括:
第一重组杆状病毒,它已被改造而包含并且表达产生第一毒素的第一毒素基因;和
第二重组杆状病毒,它已被改造而包含并且表达产生第二毒素的第二毒素基因,
其中第一和第二毒素两者结合到同一离子通道上但在非叠加位点处,第一毒素和第二毒素一起对可选的昆虫种类的杀虫效力高于每种毒素各自效力的加合效果所能达到的效力。
CN96194239A 1995-05-08 1996-04-30 用复合毒素防治昆虫 Expired - Fee Related CN1112105C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/435,040 1995-05-08
US08/435,040 US5756340A (en) 1995-05-08 1995-05-08 Insect control with multiple toxins

Publications (2)

Publication Number Publication Date
CN1185718A CN1185718A (zh) 1998-06-24
CN1112105C true CN1112105C (zh) 2003-06-25

Family

ID=23726718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96194239A Expired - Fee Related CN1112105C (zh) 1995-05-08 1996-04-30 用复合毒素防治昆虫

Country Status (11)

Country Link
US (2) US5756340A (zh)
EP (1) EP0838999A2 (zh)
JP (1) JPH11501521A (zh)
KR (1) KR100253766B1 (zh)
CN (1) CN1112105C (zh)
AU (1) AU710774B2 (zh)
BR (1) BR9608474A (zh)
IN (1) IN185147B (zh)
NZ (1) NZ308294A (zh)
TR (1) TR199701319T1 (zh)
WO (1) WO1996036221A2 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667156B2 (en) * 1995-12-27 2003-12-23 Uab Research Foundation Diagnosis and treatment of neuroectodermal tumors
US5905027A (en) * 1995-12-27 1999-05-18 Uab Research Foundation Method of diagnosing and treating gliomas
US6042843A (en) * 1996-11-25 2000-03-28 The United States Of America As Represented By The Secretary Of Agriculture Baculovirus for the control of insect pests
CA2341062A1 (en) * 1998-10-23 2000-05-04 E.I. Du Pont De Nemours And Company Scorpion toxins
AR024435A1 (es) * 1999-06-22 2002-10-02 Du Pont Toxinas de escorpion
US6768002B1 (en) 1999-06-22 2004-07-27 E. I. Du Pont De Nemours And Company Scorpion toxins
US6326193B1 (en) 1999-11-05 2001-12-04 Cambria Biosciences, Llc Insect control agent
GB0005124D0 (en) * 2000-03-03 2000-04-26 Cellpep Sa Maurocalcin,analogues thereof and their therapeutical uses
GB0021306D0 (en) * 2000-08-30 2000-10-18 Zeneca Mogen B V Control of crop pests and animal parasites through direct neuronal uptake
CA2494451A1 (en) * 2002-05-31 2003-12-11 Transmolecular, Inc. Treatment of cell proliferative disorders with chlorotoxin
US20060088899A1 (en) * 2002-05-31 2006-04-27 Alvarez Vernon L Combination chemotherapy with chlorotoxin
EP2029157A4 (en) 2006-05-19 2009-11-18 Georgia Tech Res Inst LIGAND OF CARRIERS ABC
EP2300045A1 (en) 2008-05-15 2011-03-30 Transmolecular, Inc. Treatment of metastatic tumors
KR101923235B1 (ko) 2010-02-04 2018-11-28 에이자이 아이엔씨. 클로로톡신 폴리펩티드 및 그의 접합체 및 용도
CA2799169C (en) 2010-05-11 2019-07-23 Fred Hutchinson Cancer Research Center Chlorotoxin variants, conjugates, and methods for their use
BR112012032126A2 (pt) 2010-06-16 2017-10-17 Futuragene Israel Ltd Empresa Isralense polinucleotídeo isolado, estrutura de ácido nucléico, sistema de estrutura de ácido nucléico, polipeptídeo isolado, planta, composição inseticida, e método para controlar ou exterminar um inseto
WO2014093406A1 (en) 2012-12-10 2014-06-19 Fred Hutchinson Cancer Research Center Methods for screening
US11559580B1 (en) 2013-09-17 2023-01-24 Blaze Bioscience, Inc. Tissue-homing peptide conjugates and methods of use thereof
EA025657B1 (ru) * 2014-03-28 2017-01-30 Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" ШТАММ ВИРУСА ЯДЕРНОГО ПОЛИЭДРОЗА ХЛОПКОВОЙ СОВКИ HELICOVERPA ARMIGERA Hbn И ИНСЕКТИЦИДНЫЙ ПРЕПАРАТ НА ЕГО ОСНОВЕ
CN104430538A (zh) * 2014-11-18 2015-03-25 江西天人生态股份有限公司 苹果蠹蛾颗粒体病毒杀虫悬浮剂及其工厂化生产工艺
CN106962409A (zh) * 2017-05-12 2017-07-21 青岛金尔农化研制开发有限公司 一种活化动物激素制杀虫型生物农药的制造方法
WO2021062057A1 (en) * 2019-09-25 2021-04-01 Codiak Biosciences, Inc. Exogenous loading of exosomes via lyophilization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374753A2 (de) * 1988-12-19 1990-06-27 American Cyanamid Company Insektizide Toxine, Gene, die diese Toxine kodieren, Antikörper, die sie binden, sowie transgene Pflanzenzellen und transgene Pflanzen, die diese Toxine exprimieren
EP0431829A1 (en) * 1989-11-29 1991-06-12 Agracetus, Inc. Insecticidal toxins in plants

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2074868A (en) * 1980-03-13 1981-11-11 Univ Cardiff Molluscicidal compositions
FR2532522B1 (fr) * 1982-09-03 1986-02-28 Agronomique Inst Nat Rech Procede de lutte biologique contre les insectes ravageurs des cultures et compositions insecticides
US4745051A (en) * 1983-05-27 1988-05-17 The Texas A&M University System Method for producing a recombinant baculovirus expression vector
JPS61178907A (ja) * 1985-01-18 1986-08-11 Kao Corp 殺生剤の生物効力を増強する殺生方法及び殺生剤用生物効力増強剤
EP0222412B1 (en) * 1985-11-14 1992-11-19 Daiichi Pharmaceutical Co., Ltd. Method of producing peptides
JPH0615447B2 (ja) * 1985-12-02 1994-03-02 進 前田 ウイルスを利用した殺虫剤及びその調製法
US5266314A (en) * 1985-12-02 1993-11-30 Susumu Maeda Insecticide making use of viruses and preparation process thereof
DE3545786A1 (de) * 1985-12-21 1987-06-25 Schering Ag Pyrazolinderivate, ihre herstellung und ihre verwendung als mittel mit insektizider wirkung
US5071748A (en) * 1986-09-09 1991-12-10 Genetics Institute, Inc. Mixed baculovirus compositions and uses thereof
US4870023A (en) * 1987-03-16 1989-09-26 American Biogenetic Sciences, Inc. Recombinant baculovirus occlusion bodies in vaccines and biological insecticides
US4929718A (en) * 1987-12-14 1990-05-29 Universidad Nacional Autonoma De Mexico Synthetic noxiustoxin related peptides
US5643776A (en) * 1988-11-01 1997-07-01 The Regents Of The University Of California Insect diagnostic and control compositions
US5098706A (en) * 1988-11-01 1992-03-24 The Regents Of The University Of California Juvenile hormone esterase for insect control
US5162308A (en) * 1988-12-05 1992-11-10 American Cyanamid Company Pyrrole carbonitrile and nitropyrrole insecticidal, acaricidal and molluscicidal agents and methods for the preparation thereof
US5180581A (en) * 1989-06-29 1993-01-19 University Of Georgia Research Foundation, Inc. Biological insect control agents and methods of use
DE4030223A1 (de) * 1990-09-25 1992-03-26 Bayer Ag Pyrethroid-wirkstoffkombinationen enthaltend benfluthrin und prallethrin
US5266317A (en) * 1990-10-04 1993-11-30 University Of Georgia Research Foundation, Inc. Insect-specific paralytic neurotoxin genes for use in biological insect control: methods and compositions
US5238724A (en) * 1990-12-13 1993-08-24 Colorado State University Research Foundation Arthropodicidal use of 6-methoxy-2-benzoxazolinone combined with insecticides and/or biocontrol agents
GB9106185D0 (en) * 1991-03-22 1991-05-08 Wellcome Found Biological control agents
US5457178A (en) * 1993-07-07 1995-10-10 Fmc Corporation Insecticidally effective spider toxin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374753A2 (de) * 1988-12-19 1990-06-27 American Cyanamid Company Insektizide Toxine, Gene, die diese Toxine kodieren, Antikörper, die sie binden, sowie transgene Pflanzenzellen und transgene Pflanzen, die diese Toxine exprimieren
EP0431829A1 (en) * 1989-11-29 1991-06-12 Agracetus, Inc. Insecticidal toxins in plants

Also Published As

Publication number Publication date
IN185147B (zh) 2000-11-25
TR199701319T1 (xx) 1998-02-21
KR100253766B1 (ko) 2000-04-15
US5756340A (en) 1998-05-26
AU5788796A (en) 1996-11-29
EP0838999A2 (en) 1998-05-06
WO1996036221A3 (en) 1997-04-17
BR9608474A (pt) 1999-10-13
NZ308294A (en) 1998-05-27
US6162430A (en) 2000-12-19
CN1185718A (zh) 1998-06-24
WO1996036221A2 (en) 1996-11-21
KR19990008424A (ko) 1999-01-25
JPH11501521A (ja) 1999-02-09
AU710774B2 (en) 1999-09-30

Similar Documents

Publication Publication Date Title
CN1112105C (zh) 用复合毒素防治昆虫
CN1161458C (zh) 重组杆状病毒及其构建方法,以及含该病毒的杀虫组合物
Wood et al. Genetically engineered baculoviruses as agents for pest control
CA2093335C (en) Insect-specific paralytic neurotoxin genes for use in biological insect control: methods and composition
Hammock et al. Development of recombinant viral insecticides by expression of an insect‐specific toxin and insect‐specific enzyme in nuclear polyhedrosis viruses
CN1119933C (zh) 用遗传工程生物杀虫剂控制昆虫的方法
Nalcacioglu et al. Enhanced insecticidal activity of Chilo iridescent virus expressing an insect specific neurotoxin
Mishra Baculoviruses as biopesticides
AU743526B2 (en) Transgenic virus
KR20010043627A (ko) 재조합 바큐로바이러스에 기초한 살충제
US6090379A (en) Stable pre-occluded virus particle for use in recombinant protein production and pesticides
RU2200394C2 (ru) Инсектицидная смесь для регулирования численности насекомых и способ регулирования численности насекомых
AU684762B2 (en) Biological control agents containing mollusc toxins
Possee et al. Genetically engineered viral insecticides: New insecticides with improved phenotypes
US5593669A (en) Stable pre-occluded virus particle
MXPA97008495A (en) Insect control with multip toxins
Leisy et al. Natural and engineered viral agents for insect control
AU720082B2 (en) Heterologous signal sequences for secretion of insect controlling toxins
MXPA98000646A (en) Transgen virus
MXPA00010981A (es) Insecticidas con base en basculovirus recombinantes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee