CN1083374C - 在倾斜轨道上的卫星蜂窝电话和数据通信系统 - Google Patents

在倾斜轨道上的卫星蜂窝电话和数据通信系统 Download PDF

Info

Publication number
CN1083374C
CN1083374C CN95191722A CN95191722A CN1083374C CN 1083374 C CN1083374 C CN 1083374C CN 95191722 A CN95191722 A CN 95191722A CN 95191722 A CN95191722 A CN 95191722A CN 1083374 C CN1083374 C CN 1083374C
Authority
CN
China
Prior art keywords
satellite
earth
satellites
crosspoint
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN95191722A
Other languages
English (en)
Other versions
CN1141617A (zh
Inventor
格雷戈里·巴顿·瓦特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CDC intellectual property company
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of CN1141617A publication Critical patent/CN1141617A/zh
Application granted granted Critical
Publication of CN1083374C publication Critical patent/CN1083374C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1007Communications satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1085Swarms and constellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/195Non-synchronous stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18521Systems of inter linked satellites, i.e. inter satellite service

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种改进的卫星蜂窝电话和数据通信系统便于双卫星覆盖地球的至少百分之八十五。这个改进的系统允许与手持和移动安装的蜂窝电话机(120)通信。这个改进的系统允许在地球上或其上方直到地球上空几百至高于上千公里的特定高度的任何地方双向通信。该系统使用在轨道上绕地球运行的许多低地球轨道卫星(12)。卫星(12)以30°和90°度之间的一个角度倾斜。从卫星提供的直接到用户(120)的链路(102)经过公共交换电话网(20)到其他用户。卫星(12)通过绕地球的环结构中的链路互连。交换是由每个卫星(12)执行的。

Description

在倾斜轨道上的卫星蜂窝电话和数据通信系统
本发明涉及移动通信,特别涉及改进的卫星蜂窝电话和数据通信系统。
在一些常规的卫星通信系统中,卫星或节点在极地轨道中绕地球运行,即卫星在跨越北极和南极的轨道中绕地球运行。虽然在极地轨道中的卫星提供整个地球的覆盖,但是存在两个问题。
第一,极地轨道卫星产生一个反向旋转缝(Counter-rotatingseam)。反向旋转缝是由卫星在相反方向中运行产生的。例如,假定卫星从南极向北极运行,一旦它们通过了北极,该卫星则向相反的方向运行,亦即这时卫星从北极向南极(即轨道的另一半)运行。在通过南极之后,该卫星又向上朝着北极方向运行,因此在一些在轨道的一半中运行的卫星超越轨道的另一半中运行的其它卫星时产生反向旋转缝。反向旋转缝产生了如何建立和保持在相反方向中运行的卫星之间的通信的问题。
第二,虽然多个极地轨道卫星覆盖比单个卫星覆盖优化了对整个地球的覆盖,但是双波束覆盖可能要求双倍的卫星数量或者要求这些卫星本身增加更多的能力。然而,双倍的卫星数量和对卫星增加更多的能力显著地增加系统的费用,而且每当增加能力时通常卫星总是要增加更多的重量。
据此,本发明的目的是提供一种低地球轨道的多卫星蜂窝通信系统,该系统消除了反向旋转缝并且提供覆盖大部分地球的连续双通信。
图1表示本发明可构成其一部分的基于卫星通信系统的高度简化图;
图2是表示卫星交换单元与其相关的移动用户的互相连接和互连到公共交换电话网的简化方框图;
图3表示由地面蜂窝卫星交换星座服务的区域上双波束覆盖范围;
图4表示星座的几何图形,用于确定相同轨道平面中的卫星之间和不同轨道平面中的卫星之间的间隔;
图5~6表示根据本发明优选实施例的卫星星座的卫星点和时间序列;
图7表示卫星蜂窝通信系统的数据库设置方框图。
参见图1,图中示出一种改进的卫星蜂窝电话通信系统的高度简化的卫星配置。在这个配置中示出在一个低地球轨道中的多个卫星。多个卫星放置在每个轨道平面中,该轨道以约60°倾斜角并对除了北极和南极附近的少数地区外的地球的大部分地区提供连续的双卫星交换覆盖。这些卫星直接在多个蜂窝电话和配备了数据传输的用户之间接口,还将这些用户接口到公共交换电话网(PSTN)。
这个卫星蜂窝结构有点类似于目前的蜂窝移动电话系统。目前,基于地面的蜂窝系统、蜂窝站址是固定的,而用户是移动的。当用户从一个网孔站地移动到另一个网孔站址时,他的电话呼叫从一个蜂窝交换单元越区切换到另一个交换单元。
在本发明中,在任何给定时间用户是相对固定的,而作为网孔的卫星是连续地移动。对于手持的或移动安装的蜂窝电话机来说与图1所示的卫星交换机之一的连接是直接从手持移动安装的或远端固定的电话机到最接近的卫星交换机之一的连接。每个卫星绕地球运动。在开始起着特定用户的交换单元作用的卫星离开该交换机的网孔时,该用户的呼叫被“越区切换”到适当的相邻网孔。相邻网孔可能是在一个卫星范围内的网孔或者位于一个特定轨道平面或相邻轨道平面中的其它卫星的网孔。用户可“漫游”,但是与卫星交换机的移动距离相比这个漫游距离相当小。
与蜂窝移动电话系统类似,卫星蜂窝通信系统提供频谱效率。这意味着相同的频率可由不同的卫星交换机同时使用。频谱效率由卫星交换机和用户之间的空间分集提供。
用户可位于纬度小于低地球轨道卫星高度的大片陆地、水中或空中的任何地方。例如,在一大片陆地上的一个人可呼叫在另一片陆地上的一个人、在船上的一个人或在飞机中的一个人。
低功率手持移动安装的或固定的无线电话机可用于这个系统中。利用本技术功率要求小于10瓦。
在这个系统中,所示的每个卫星是一个交换单元。大多数常规卫星通信系统主要起着中继站或“弯管”的作用,亦即,它们提供固定的点对点通信或者通过卫星从地球上的一点到地球上的另一点的通信。常规的卫星通信系统没有与相同轨道平面或另一轨道平面中的另一个卫星通信的能力。在本发明中,每个轨道卫星都具备交换功能,以便卫星能够与相同轨道平面的卫星和不同轨道平面中的卫星通信。
如前所述,在优选的实施例中,每个卫星轨道平面以60°角倾斜。轨道运行卫星平面具有较高和较低的倾斜是可行的。通过减少或增加相对于倾斜角的轨道平面高度,可保证对地球大部分地区的连续双卫星覆盖。以优选的60°倾斜角绕地球运行的卫星在地球的大部分地区提供连续的双卫星覆盖。在北极和南极地区覆盖是时有时无或者是不存在的,或在纬度80-85°以上是不保证的。
在优选的实施例中已经证明连续双卫星覆盖可以用81个低地球轨道运行卫星实现。这些卫星可安排在九个60°倾斜的轨道平面中,每个平面安排几个卫星。其它的配置也可使用,如八乘八或七乘七配置。但是,卫星的高度必须调整以计算出比优选的九乘九卫星星座具有少些或多些卫星的星座的不同网孔尺寸。
每个卫星包含一个卫星交换单元、合适的天线11(例如,用于上行/下行链路的螺旋天线和交叉链路的透镜)和折叠展开的太阳能电池阵列12以及连接到为该交换单元提供电源的太阳能电池的蓄电池组(未示出)。卫星运载舱或运载工具本身是诸如商业化的低地球轨道运行卫星。这些卫星由发射运载工具送入轨道。在轨道中时,太阳能电池阵列开启,因而交换单元工作。然后经过标准遥测、跟踪和控制信道(TT&C),将这些卫星单个地联机在线以形成网络。
如图1所示,携带手持电话机的用户A摘机,由特定的卫星1接收该信道请求。频率信道分配给该用户,然后通过该系统发送呼叫者所希望的号码。每个卫星是一个分布式本地处理器并确定该呼叫的交换如何发生。卫星1把呼叫转接到其自身网孔组(cell complement)内的适当网孔或适当的卫星网孔组。路径由每个卫星交换单元确定直到由卫星2收到呼叫为止。然后卫星2发送这个呼叫到图1中所示的特定手持用户B。
虽然示出两个手持用户,但用户可以在水上、在移动车辆中、飞机上或是PSTN的一部分,在该PSTN中链路是通过一个网关器的。每个卫星是一个本地处理器。该系统确定呼叫被转接到那个合适的卫星或网孔。每个卫星确定从其本身到下一个合适卫星的优选路径。这些确定的根据是被叫用户电话号码的局代码部分。
典型地,每个卫星投射到地球上至少4个或更多个波瓣并包括用于转换的至少4个或更多个相应网孔。这些覆盖波瓣通过具有与波瓣数相当的固定波束宽度的天线(典型地为螺旋形)取得。重叠网孔将使用目前的蜂窝技术区别。每个卫星确定从它到下一个卫星的最佳路径,通过该路径发送特定呼叫或数据传输。这些卫星交换机对数据分组进行操作,因此可发送数字话音或数据。在FDM基础上接收下行链路和上行链路数据/数字话音,进行解调,然后分组用于卫星对卫星通信。
图2示出卫星的一个平面的一部分的互连,还示出了卫星到该卫星相应移动用户和到公共交换电话网的连接。图2示出三个卫星:卫星40、卫星50和卫星60。卫星40由链路i接到卫星50。卫星50由链路i+1接到卫星60。卫星60经链路i+2接到该平面的下一个后续的卫星(未示出)。卫星40经过链路i-1接到下一个在先卫星(未示出)。卫星的每个平面形成围绕地球的连接卫星的环。
如前所述,图2示出了一个卫星平面。另外,每个卫星经过无线电或光通信与其它轨道平面中的一个或多个卫星联络。即,每个卫星与其运行轨道平面中的前一个和后一个卫星以及在其它运行轨道平面中的一个或多个卫星联络。
卫星间的链路如链路i-1、链路i等可通过微波束上的数据传输或激光束的数据传输来实现。现有技术目前提供这种数据传输。
例如,卫星与其移动用户之间的联络是利用波束j-1和j+1实现的。这些波束相应于图3所示的波瓣和上述的交换单元。这些波束通过卫星上行/下行链路天线获得,通过用户全向天线向用户提供通信。一个特定卫星在一个时间可处理的用户数的限制取决于分配的带宽加上在卫星上可得到的功率。典型地这个数目可以是每个卫星50000用户。
卫星40被表示为经过波束i-1连接到中继站或网关器10。任何卫星,如卫星40,都能够发送和接收来自网关器(如网关器10)的数据。这个网关器链路可使用分组数据实现,类似于卫星到卫星链路。
网关器10包括互连到公共电话交换网(PSTN)20的单元。所有公共交换电话网用户30都连接到公共交换电话网20。由于卫星40通过网关器10连接到PSTN20,故经过波束直接到一个卫星的卫星蜂窝系统的移动用户可通过卫星结构(经过相应链路从卫星到卫星)通过网关器10、通过公共交换电话网20向选定的PSTN30的用户发送话音或数据,反之亦然。
每个卫星提供几个数据传输波束。对于根据优选实施例的九乘九轨道星座,这些数据传输波束投射图3中所示的覆盖波瓣。这些卫星以60°倾斜在1118km的高度上具有10°仰角在轨道上运行。
如图2所示的,卫星可使用其一个或几个波束提供到网关器的接口。建立每个网关器和卫星之间链路至少需要一个波束。典型地一个卫星只链接一个网关器。一个网关器提供足够的中继,  以互连多个移动用户到公共交换电话网20。
每个卫星在其波束或网孔之间执行内部交换。这类似于常规电信系统的局内交换。例如,卫星和其移动用户或网关器之间的上行/下行链接装置通过波束可在约2.1至3.9GHz的范围中发送和接收数据。本技术和频段可用性使它为一个优选的数据传输范围。但是,本发明的范围不限于仅在这个范围内的数据传输。
如前所述,数据(数字话音或数据)以分组形式发送,因此通过卫星系统可实现高速数据传输以及话音数据传输。给定目前可用的带宽的数据传输速率至少1200波特。但是,利用扩展的带宽和利用这个系统实际上可获得较高的数据速率。
图3表示根据本发明的优选实施例,在九乘九卫星星座地面上的双卫星覆盖。根据优选的实施例,卫星倾斜60°且在1118km的高度。其它的倾斜角也可使用,除了取得双卫星覆盖之外,卫星的高度也必须改变。卫星还具有最小10°仰角的复盖区。
如图3所示,卫星覆盖图案显示出没有反向旋转缝。没有反向旋转缝意味着建立和维持在相反方向移动的卫星之间的无线电或光通信的问题最小。此外,如图所示的,存在着更多的卫星摆动。
卫星星座建立在三角几何关系上,例如可以是一个等边三角形。四个卫星彼此以平行四边形几何关系相关。这个配置允许卫星以提供必要覆盖的方法分组。在由三角形几何表示的三个卫星的交点满足最小仰角(在优选实施例中为10°)。
图4表示根据本发明的优选实施例,在倾斜角30°至90°(同方向运行)或90°至150°(逆运行)之间的卫星,在相同平面中的卫星和在另一个轨道平面中的卫星之间的间隔的星座几何图形。卫星A1和A2在相同轨道平面中,而卫星B1和B2在相同轨道平面中。在相同轨道平面中卫星之间的间隔由下式得出:
Ss=360/Ns                 (1)式中Ns=在平面中卫星的数量
Ss=卫星间隔(度)
在不同轨道平面中的卫星之间的间隔由下式得出: R = 3 ( S s ) ÷ 2 sin i - - - ( 2 ) S p = S s [ 0.5 - ( 3 ÷ 2 t an i ) ] - - - ( 3 ) L = 3 ( S s ) ÷ 2 sin ( i + 30 ) - - - ( 4 ) 式中i=卫星倾斜角(度)
R=RAAN间隔(度)
Sp=卫星定相(phasing)(度)
L=纬度间隔(度)
利用式(1)~(4),星座中的卫星彼此具有三角的几何关系。如图4所示,卫星A1、A2和B 1彼此具有三角的关系。类似地,卫星A2、B1和B2具有三角几何关系。
双覆盖也由三角形的几何状确定。对于任何卫星星座,围绕三角几何形状是优化的设计。双卫星覆盖可通过多个卫星加密星座(次优化)或在较高的高度上飞越星座可保证低于纬度60°。
共同旋转卫星都保持相同的关系,因此交叉链路不受影响。如果交叉链路网络是基于三角的几何形状,则交叉链路与卫星倾斜无关。换句话说,只要保持几何关系,动态特性是相同的。
代之以东-西交叉链路出现跨越不同的轨道平面和具有极地轨道的卫星那样跨越缝,东-西交叉链路基本上停留在相同轨道平面。这是由于卫星以60°倾斜角(或以一些其它的角度)绕地球运行。此外,交叉链路缝动态特性最小化或消除了跨越缝的通信。
根据优选的实施例,图5和6表示在九乘九卫星星座中81个卫星的每个卫星相对运动的子卫星点和六个一分钟步长向时间序列。卫星的每个轨道在1118km的高度上以60°角倾斜并具有10°的仰角复盖区。
图7表示经过波束102直接接到移动用户120的一个卫星交换单元100。卫星100经过波束104与数据库计算机110联络。卫星100还经过波束106与数据库计算机130联络。这个联络可如图7所示的经过波束106直接到或者通过其它的卫星间接与数据库计算机130联络。
移动用户可在归属区中“漫游”或移动。归属区可以是一个市如纽约、洛杉机等。数据库计算机110含有与其每个移动用户相关的所有信息。只要特定的移动用户在他们归属区操作,与该用户相关的所有可用信息在本地归属区数据库计算机都是可用的。
例如,如果在洛杉机市的一个归属区用户旅行到纽约市并且试图使用他的卫星蜂窝电话进行通信,则在纽约市用户的新区中的数据库计算机不知道该用户存在。如果数据库计算机110是在移动用户的归属区洛杉机,则数据库计算机110具有该特定移动用户的所有信息。为此,移动用户不被允许发出呼叫,因为他不被他的归属区的数据库计算机识别。
为了克服这个问题,由该系统周期地询问每个移动用户以确定其位置,以便在他摘机时其业务呼叫可被识别和发送。但是,由于特定用户的数据库经过卫星系统存储在他的归属区数据库计算机中,故卫星系统首先询问归属区,以确定他不再在那里,并获得该用户的交换信息。当作出决定时,新的归属区的数据库计算机可被更新,以便包括这个“漫游”用户。结果,就允许这个用户在他的新区中始发和接收呼叫。因为卫星系统询问用户的归属数据库计算机来确定他的位置,故可在整个卫星系统中寻找该用户。因此,本系统提供寻找“漫游”用户并与他们建立通信的能力。
为了便于跟踪每个移动用户,每个移动电话机提供被周期地监视的控制信号,以便在用户始发呼叫时,最接近的卫星可跟踪他并通过卫星网络询问他的归属数据库计算机以确定他的适当的用户信息。移动电话机可自动地向卫星网络显示一个新位置用以更新数据库计算机。这个控制信号允许“漫游”用户的来话呼叫通过链接到归属区的数据库计算机的卫星对卫星进行确认。
卫星蜂窝通信系统中的每个卫星是自导航的。即,它使用全球定位卫星系统(GPS)或时间及天体位置推算数据,由该数据计算它的位置信息。另外,从全球定位系统或其它运载工具的固定位置,每个卫星可确定其位置和因此修改其过程而停留在其合适的轨道内,同时提供交换业务。
每个卫星可在卫星内(特定交换单元或网孔内)交换呼叫或者可通过微波或激光链路(链路i、i+1等)把该呼叫连接到在其平面内或平面外(相邻)的另一个卫星。每个卫星可区别特定的电话号码并确定该号码是在其本身呼叫区内还是在另一个卫星的区域内。如果是在另一个卫星的区域内,则呼叫交叉链接到下一个合适的卫星或进行相同确定的网孔,直到到达服务该电话号码的卫星。该卫星下行链接到试图被呼叫的特定移动用户。由于这个结构而使卫星网络提供分布节点交换能力。每个卫星是特定区域的本地交换机,但是该区是不断地变化的。为此,当卫星移出特定电话机用户的范围时,呼叫被越区切换。
各种多路复用技术(即FDMA、TDM、CDMA等)可用于增强图2所示链路上的各个卫星之间的传输能力。
由于这个系统的交换单元是绕地球运行和相当保密而不致窜改,故这个系统利用本领域公知的数据加密和解密技术提供支持安全话音和数据传输的能力。由于交换单元享受在地球上空几百公里的安全,故该系统还适用于军事通信应用。
如上所述,以60°角倾斜的卫星星座提供优于极地轨道的多种好处和优点。改进的卫星星座消除反向旋转缝以及与跨缝通信有关的问题。改进的卫星星座确保双卫星至少覆盖地球的85%面积。因双卫星覆盖,故减少了网关器水平(horizon)干扰。卫星星座增加通信的可靠性,同时改善功率管理和具体性能。而且,对于建立与卫星星座大多数网孔中的用户单元的通信来说存在较少的延迟时间。另一个优点是改善了地理位置。还有一个优点是改善了负荷平衡和资源分配。

Claims (3)

1.一种改进的卫星蜂窝通信系统,该系统类型是具有多个卫星交换单元和一个把用户连到至少一个所述卫星交换单元的链路装置,每个所述卫星交换单元与相邻的卫星交换单元通信,其特征在于,所做的改进包括:
所述卫星交换单元放置在以大约30°与90°之间的倾斜角在低地球轨道中围绕地球运行。
2.根据权利要求1的改进卫星蜂窝通信系统,其特征在于,所述卫星交换单元彼此以三角几何状形关系放置。
3.根据权利要求1的改进卫星蜂窝通信系统,其特征在于,所述卫星交换单元以60°倾斜角在大约1118公里的高度上的低地球轨道中围绕地球放置。
CN95191722A 1994-12-27 1995-11-13 在倾斜轨道上的卫星蜂窝电话和数据通信系统 Expired - Lifetime CN1083374C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/363,797 1994-12-27
US08/363,797 US5641134A (en) 1994-12-27 1994-12-27 Satellite cellular telephone and data communication system at an inclined orbit

Publications (2)

Publication Number Publication Date
CN1141617A CN1141617A (zh) 1997-01-29
CN1083374C true CN1083374C (zh) 2002-04-24

Family

ID=23431775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95191722A Expired - Lifetime CN1083374C (zh) 1994-12-27 1995-11-13 在倾斜轨道上的卫星蜂窝电话和数据通信系统

Country Status (12)

Country Link
US (1) US5641134A (zh)
EP (1) EP0746498B1 (zh)
CN (1) CN1083374C (zh)
AR (1) AR000353A1 (zh)
BR (1) BR9506890A (zh)
CA (1) CA2180142A1 (zh)
DE (1) DE19581504T1 (zh)
GB (1) GB2301511B (zh)
MX (1) MX9603047A (zh)
MY (1) MY115455A (zh)
RU (1) RU2158480C2 (zh)
WO (1) WO1996020112A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894590A (en) * 1995-07-31 1999-04-13 Motorola, Inc. Independent satellite-based communications systems sharing common frequency spectrum and method of operation thereof
US6223019B1 (en) 1996-03-14 2001-04-24 Sirius Satellite Radio Inc. Efficient high latitude service area satellite mobile broadcasting systems
US5926758A (en) * 1996-08-26 1999-07-20 Leo One Ip, L.L.C. Radio frequency sharing methods for satellite systems
US5822680A (en) * 1996-11-07 1998-10-13 Teledesic Llc Frequency sharing for satellite communication system
US5911389A (en) * 1996-12-20 1999-06-15 Lockheed Martin Corp. Wave based satellite constellation
US6023616A (en) * 1998-03-10 2000-02-08 Cd Radio Inc. Satellite broadcast receiver system
US6695259B1 (en) * 1997-05-21 2004-02-24 Hitachi, Ltd. Communication system, communication receiving device and communication terminal in the system
JP3153496B2 (ja) * 1997-05-21 2001-04-09 株式会社日立製作所 天頂方向での滞在時間が長い人工衛星を用いた通信サービス提供方法
US5982323A (en) * 1997-05-24 1999-11-09 Oerlikon Contraves Ag Satellite navigation system
US6019318A (en) * 1997-06-16 2000-02-01 Hugehs Electronics Corporation Coordinatable system of inclined geosynchronous satellite orbits
US6118998A (en) * 1997-09-17 2000-09-12 Lockheed Martin Corporation Spacecraft cellular communication system with spot beam pairing for reduced updates
US6007027A (en) * 1997-11-14 1999-12-28 Motorola, Inc. Method and apparatus for early service using phased satellite depolyment
US20030189136A1 (en) * 1998-05-20 2003-10-09 Toshihide Maeda Communication system, communication receiving device and communication terminal in the system
US6257526B1 (en) 1998-11-09 2001-07-10 Hughes Electronics Corporation Satellite system and method of deploying same
US6327523B2 (en) 1999-01-21 2001-12-04 Hughes Electronics Corporation Overhead system of inclined eccentric geosynchronous orbitting satellites
US6511020B2 (en) * 2000-01-07 2003-01-28 The Boeing Company Method for limiting interference between satellite communications systems
US7184761B1 (en) * 2000-03-27 2007-02-27 The Directv Group, Inc. Satellite communications system
US6603957B1 (en) * 2000-03-31 2003-08-05 Motorola, Inc. Static and dynamic partnering schemes for satellite cross-links
US6546259B1 (en) 2000-06-20 2003-04-08 Lockheed Martin Corporation Method and system for autonomous two-way radio frequency communication
FR2818056A1 (fr) * 2000-07-27 2002-06-14 Cit Alcatel Procede et systeme de telecommunication par satellites et terminal pour un tel systeme
US6859652B2 (en) 2000-08-02 2005-02-22 Mobile Satellite Ventures, Lp Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
CA2381811C (en) 2000-08-02 2007-01-30 Mobile Satellite Ventures Lp Coordinated satellite-terrestrial frequency reuse
US7369809B1 (en) 2000-10-30 2008-05-06 The Directv Group, Inc. System and method for continuous broadcast service from non-geostationary orbits
US7792488B2 (en) 2000-12-04 2010-09-07 Atc Technologies, Llc Systems and methods for transmitting electromagnetic energy over a wireless channel having sufficiently weak measured signal strength
US6502790B1 (en) 2001-11-20 2003-01-07 Northrop Grumman Corporation Inclined non-uniform planar spaced constellation of satellites
US7454272B1 (en) * 2005-08-25 2008-11-18 Raytheon Company Geostationary stationkeeping method
US8090312B2 (en) * 2006-10-03 2012-01-03 Raytheon Company System and method for observing a satellite using a satellite in retrograde orbit
US8800932B2 (en) * 2010-07-26 2014-08-12 Lockheed Martin Corporation Medium earth orbit constellation with simple satellite network topology
US9048927B2 (en) * 2011-10-04 2015-06-02 Glynntech, Inc. Solar powered mobile phone
US9847828B2 (en) * 2013-12-18 2017-12-19 X Development Llc Adjusting beam width of air-to-ground communications based on distance to neighbor balloon(s) in order to maintain contiguous service
RU2591006C2 (ru) * 2014-09-04 2016-07-10 Открытое акционерное общество "Спутниковая система "Гонец" Способ управления космической системой связи
US9647749B2 (en) * 2014-09-30 2017-05-09 Google Inc. Satellite constellation
DE102016121919B4 (de) 2016-11-15 2018-10-31 Tesat-Spacecom Gmbh & Co.Kg Kommunikationssatellit für eine Satellitenkonstellation
US11075689B1 (en) 2020-01-27 2021-07-27 Microsoft Technology Licensing, Llc Satellite data transmission clustering with dynamic clusters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3340531A (en) * 1964-10-05 1967-09-05 Martin Marietta Corp Satellite communication system
US4502051A (en) * 1981-02-28 1985-02-26 Siemens Aktiengesellschaft Telecommunication system with satellites positioned in geostationary positional loops
US4809935A (en) * 1985-07-31 1989-03-07 Analytic Services, Inc. Satellite continuous coverage constellations
US4943808A (en) * 1988-03-02 1990-07-24 Centre National D'etudes Spatiales Communications system with moving bodies with the aid of satellites
US5471641A (en) * 1992-09-15 1995-11-28 France Telecom Telecommunications network having switching centers for linking satellites

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497807A (en) * 1966-08-31 1970-02-24 Us Navy Multipurpose satellite system
US4854527A (en) * 1985-07-19 1989-08-08 Draim John E Tetrahedral multi-satellite continuous-coverage constellation
IL91529A0 (en) * 1988-10-28 1990-04-29 Motorola Inc Satellite cellular telephone and data communication system
US5365520A (en) * 1992-03-27 1994-11-15 Motorola, Inc. Dynamic signal routing
US5343512A (en) * 1992-03-27 1994-08-30 Motorola, Inc. Call setup method for use with a network having mobile end users

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3340531A (en) * 1964-10-05 1967-09-05 Martin Marietta Corp Satellite communication system
US4502051A (en) * 1981-02-28 1985-02-26 Siemens Aktiengesellschaft Telecommunication system with satellites positioned in geostationary positional loops
US4809935A (en) * 1985-07-31 1989-03-07 Analytic Services, Inc. Satellite continuous coverage constellations
US4943808A (en) * 1988-03-02 1990-07-24 Centre National D'etudes Spatiales Communications system with moving bodies with the aid of satellites
US5471641A (en) * 1992-09-15 1995-11-28 France Telecom Telecommunications network having switching centers for linking satellites

Also Published As

Publication number Publication date
GB2301511A (en) 1996-12-04
EP0746498A4 (en) 1997-05-07
AR000353A1 (es) 1997-06-18
RU2158480C2 (ru) 2000-10-27
WO1996020112A1 (en) 1996-07-04
CN1141617A (zh) 1997-01-29
US5641134A (en) 1997-06-24
AU690395B2 (en) 1998-04-23
GB2301511B (en) 1999-07-14
EP0746498B1 (en) 1999-10-06
CA2180142A1 (en) 1996-07-04
BR9506890A (pt) 1997-08-19
DE19581504T1 (de) 1997-12-11
EP0746498A1 (en) 1996-12-11
MY115455A (en) 2003-06-30
MX9603047A (es) 1997-08-30
AU4153296A (en) 1996-07-19
GB9617584D0 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
CN1083374C (zh) 在倾斜轨道上的卫星蜂窝电话和数据通信系统
CN1032563C (zh) 卫星蜂窝状电话和数据通信系统
US5604920A (en) Satellite cellular telephone and data communication system
Pratt et al. An operational and performance overview of the IRIDIUM low earth orbit satellite system
Fossa et al. An overview of the IRIDIUM (R) low Earth orbit (LEO) satellite system
US5408237A (en) Earth-fixed cell beam management for satellite communication system
EP0935349A2 (en) Satellite communication system
Del Re A coordinated European effort for the definition of a satellite integrated environment for future mobile communications
JP2706600B2 (ja) 中間地球高度のサテライトをベースとするセル式遠隔通信システム
US6047161A (en) Satellite communication system and method thereof
AU690395C (en) Satellite communication system at an inclined orbit
Tuck et al. The Calling Network: a global telephone utility
Tuck et al. The Calling^ S^ M Network: a global telephone utility
Pullman et al. Meeting the challenge of applying cellular concepts to LEO satcom systems
CA1340967C (en) Satellite cellular telephone and data communication system
Patterson Network control issues for the Calling network
Negoda et al. LEOPACK the integrated services communications system based on LEO satellites
Lomer Telephoning on the move—Dick Tracy to Captain Kirk
Duncombe et al. PCS for tactical applications
SI8912082A (sl) Satelitski celični telefon in komunikacijski sistem podatkov
Gumbert et al. ICO-An attractive source of narrowband satcom services for the Navy
Al-Hanafy Teletraffic Analysis of the Next-Generation Integrated Terrestrial/Satellite Mobile Radio Networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: TUOSUO ER TECHNOLOGY GROUP CO., LTD.

Free format text: FORMER OWNER: MOTOROLA INC.

Effective date: 20100830

COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: ILLINOIS, UNITED STATES TO: DELAWARE, UNITED STATES

TR01 Transfer of patent right

Effective date of registration: 20100830

Address after: Delaware

Patentee after: Tuosuoer technology Refco Group Ltd

Address before: Illinois Instrunment

Patentee before: Motorola Inc.

ASS Succession or assignment of patent right

Owner name: CDC INTELLECTUAL PROPERTY CO., LTD.

Free format text: FORMER OWNER: TOSOL TECHNOLOGY GROUP CO., LTD.

Effective date: 20110216

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: STATE OF DELAWARE, THE USA TO: PARIS, FRANCE

TR01 Transfer of patent right

Effective date of registration: 20110216

Address after: France

Patentee after: CDC intellectual property company

Address before: Delaware

Patentee before: Tuosuoer technology Refco Group Ltd

CX01 Expiry of patent term

Granted publication date: 20020424

EXPY Termination of patent right or utility model