Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN104868706 B
Publication typeGrant
Application numberCN 201510308409
Publication date18 Jul 2017
Filing date5 Jun 2015
Priority date5 Jun 2015
Also published asCN104868706A
Publication number201510308409.4, CN 104868706 B, CN 104868706B, CN 201510308409, CN-B-104868706, CN104868706 B, CN104868706B, CN201510308409, CN201510308409.4
Inventors卜刚, 方芳
Applicant南京航空航天大学
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
一种电荷泵dc‑dc转换器自动增益跳变控制方法 One kind of charge pump dc-dc converter automatic gain control method of hopping translated from Chinese
CN 104868706 B
Abstract  translated from Chinese
电荷泵型开关电源具有低电磁干扰、高效率、体积小等优点,是电源管理系统的重要组成部分,本发明提出了一种面向多电压转换比电荷泵的自动增益跳变控制方法。 Switching power supply having a charge pump type low electromagnetic interference, high efficiency, small size, etc., is an important part of the power management system, the present invention proposes a method for controlling a multi-jump voltage conversion ratio of the automatic gain charge pump. 该方法针对开关频率调制输出稳压的电荷泵,控制电路根据当前振荡器的控制电压Vcon与飞跨电容充放电的电压差ΔV的乘积估算负载电流值,当振荡器控制电压超过上限值V_conmax时,增加电压转换比,而当振荡器的控制电压上限值V_conmax与下一级电压转换比飞跨电容充放电的电压差ΔVn的乘积大于当前负载估值Vcon×ΔV0时,减小电压转换比,从而在保证电荷泵驱动能力的同时提高系统效率。 The method for frequency modulating the output of the switching regulator charge pump control circuit in accordance with the product of the current value of the load current and the control voltage Vcon flying across the oscillator capacitor charge and discharge voltage difference ΔV estimates, when the oscillator control voltage exceeds the upper limit V_conmax , the voltage conversion ratio increases, and when the voltage difference between the product of the voltage controlled oscillator and the lower limit value V_conmax a voltage conversion ratio across the flying capacitor charging and discharging is larger than ΔV0 ΔVn estimate the current load Vcon ×, reduced voltage converter ratio, thereby enhancing the efficiency of the system at the same time to ensure that the charge pump drive capability.
Claims(3)  translated from Chinese
1.一种电荷栗DC-DC转换器自动增益跳变控制方法,针对使用开关频率调制的输出稳压方式,其特征在于,当前输出电压与参考电压间的误差电压值经误差放大器放大后的Vcon,除了用来控制开关频率外,控制电路还根据放大后的误差电压判断当前转换比是否需要增加以提高负载驱动能力,或者是否需要减小以提高转换器效率; 在当前电压转换比不是最大值时,放大后的误差电压Vcon大于预先设定的最大值V— conmax时,增益向高电压转换比跳转; 在当前电压转换比不是最低值时,比较当前电压转换比下经放大后的输出电压与参考电压间的误差电压Vcon与当前飞跨电容经一次充放电其上电压的变化值△ v〇及系数K的乘积VconX AVqXK,与放大后误差电压值的上限V_conmax与在低一级电压转换比时飞跨电容经一次充放电其上电压的变化值A Vn及系数K的乘积V_conmaxX A VnXK A DC-DC converter charge Li automatic gain control method of hopping, the regulator for the output mode switching using frequency modulation, characterized in that the current value of the output error voltage between a voltage and a reference voltage is amplified by the error amplifier VCON, in addition to controlling the switching frequency, the control circuit further determines whether the current conversion ratio needs to be increased to increase the load driving capability, whether or reduced to improve the efficiency of the converter according to the amplified error voltage; the current maximum voltage conversion ratio is not when the value of the error voltage Vcon amplified V- conmax greater than the maximum pre-set gain to the high voltage conversion ratio jump; when a current voltage conversion ratio than the minimum value, comparing the current-voltage conversion ratio was amplified V_conmax upper limit voltage value Vcon error after error voltage between the reference voltage and the output voltage of the flying capacitor via a current charge and discharge and the coefficient of variation value △ v〇 voltage thereon K product VconX AVqXK, and amplifies a low when the voltage conversion ratio of the fly capacitor across which the charge and discharge through a change in the voltage value a Vn and the product of the coefficient K V_conmaxX a VnXK 当后者的值大于等于前者时,允许向低一级电压转换比跳转。 When the latter value is equal to greater than the former, allowing to lower a voltage conversion ratio jumps.
2.根据权利要求1所述的一种电荷栗DC-DC转换器自动增益跳变控制方法,其特征在于,系数K取为Kf,即输出电压Vout经电阻心和心分压后得到的反馈电压Vf与输出电压Vout 的比值,并且输入电压Vin经过分压与参考电压Vref求差,得到当前和低一级电压转换比下飞跨电容经一次充放电其上电压的变化值与Kf乘积的估算A VoXKf和A VnXKf。 2. A charge Li of the DC-DC converter as claimed in claim 1, the automatic gain control method for hopping, characterized in that, taken as Kf of coefficient K, i.e. the output voltage Vout after the feedback voltage dividing resistors heart and heart obtained voltage Vf ratio of the output voltage Vout and the input voltage Vin after dividing the reference voltage Vref and differencing to obtain a low current and a voltage conversion ratio by a flying capacitor charging and discharging the voltage on the product and the change value of Kf A VoXKf estimates and A VnXKf.
3.根据权利要求2所述的一种电荷栗DC-DC转换器自动增益跳变控制方法,其特征在于,输入电压Vin经分压与参考电压Vref求差,为输入电压Vin的分压比为转换器的电压转换比Gain与Kf的乘积GainXKf,其中Kf为反馈电压Vf与输出电压Vout的比值。 3. A charge the Li 2 DC-DC converter as claimed in claim hopping automatic gain control method wherein, by dividing the input voltage Vin with the reference voltage Vref differencing, the input voltage Vin dividing ratio a voltage converter for the conversion ratio of the product of Gain and Kf GainXKf, wherein Kf is the ratio of the feedback voltage Vf and the output voltage Vout.
Description  translated from Chinese

一种电荷泵DC-DC转换器自动增益跳变控制方法 One kind of charge pump DC-DC converter automatic gain control method of hopping

技术领域: FIELD:

[0001]本发明专利涵盖电荷栗DC—DC转换器原理、多电压转换比电荷_C_DC转换器、自动增ii跳变控制方法、频率调制输出稳压方法。 [0001] The present invention encompasses Patent charge Li DC-DC converter principle, multi-charge voltage conversion ratio _C_DC converter, automatic gain control method ii hopping, frequency modulation output regulation method.

背景技术: Background technique:

[0002]随着集成电路技术的不断发展,便携式移动终端的大量出现,尤其是近几年,智能手机、平板电脑、GPS等产品的普及,电子系统对供电电源也提出了更多的要求,例如:便携性、低功耗、输出稳定、高效率等,推动了便携式电子设备电源技术的发展。 [0002] With the continuous development of integrated circuit technology, the emergence of a large number of portable mobile terminals, especially in the last few years, smart phones, tablet PCs, GPS and other popular products, electronic systems for the power supply also made more demands, For example: portability, low power consumption, stable output, high efficiency, promote the development of a portable electronic device power technology. 电子系统通常不能由电池或电源适配器为其直接供电,而需要一个电压调制器将不稳定的直流电压转换为稳定的系统供电电源。 For electronic systems generally can not be directly powered by a battery or power supply adapter, and requires a voltage modulator unstable DC voltage into a stable power supply system. 目前,DC-DC转换器主要分为两类:线性稳压器和开关电源调制器。 At present, DC-DC converter is divided into two categories: linear regulators and switching power supply modulator. 线性稳压器具有低纹波、低噪声、设计简单等优点,广泛应用于对噪声敏感的场合,但其也有效率较低和只能实现降压等缺点。 Linear regulator with low ripple, low noise, simple design, etc., are widely used in applications sensitive to noise, but it can also have a lower efficiency and step-down and other shortcomings. 开关电源又分为电感型和电容型。 Switching power supply is divided into inductive and capacitive type. 其中,电感型开关电源储能元件为电感,优点是转换效率高,缺点是在输出端具有纹波干扰,并且有电磁干扰(EMI)问题;电容型(又称电荷泵型)开关电源使用电容作为储能元件,大大降低了EMI,转换效率也较高,缺点是输出端纹波噪声较大。 Wherein the inductive energy storage element is an inductor switching power supply, the advantages of high conversion efficiency, a disadvantage of having interference ripple at the output end, and electromagnetic interference (EMI) problems; capacitance type (also known as a charge pump type) switching power supply using capacitor as the energy storage element and greatly reduce the EMI, the conversion efficiency is higher, the disadvantage is the output ripple noise is large. t〇〇〇3]模拟和射频电路对噪声敏感,通常采用线性稳压源供电,这虽然避免了电源的噪声干扰,但系统效率较低。 t〇〇〇3] analog and RF circuits sensitive to noise, power supply voltage source is generally linear, although it avoids the noise power, but the system efficiency is low. 传统电荷泵型开关电源一般采用固定转换比和固定开关频率线性控制电荷泵的充放电,具有低噪声,高EMI抑制的优点,但其转换效率低,尤其工作在低负载的转换效率较低。 Usually conventional charge pump type switching power supply with a fixed conversion ratio and a fixed switching frequency charging and discharging of the linear control of the charge pump has the advantages of low noise, high EMI suppression, but its low efficiency, especially in the low load low work efficiency. 为了提高效率和减小输出纹波,可采用通过调整开关频率来稳定输出电压的频率调制多电压转换比模式的电容栗,这就带来了多电压转换比间协调工作的问题。 To improve the efficiency and reduce the output ripple, frequency modulation may be used to stabilize the output voltage of the multi-mode voltage conversion ratio by adjusting the capacitance of the switching frequency chestnut, which poses a problem among multiple voltage conversion ratio coordination.

[0004] 多电压转换比电荷泵型开关电源增益跳变方式主要有两种:一种是不采用状态机,直接用组合逻辑电路进行模式控制,另一种是采用状态机控制。 [0004] Multi-voltage converter has a gain ratio of the charge pump type power hopping mode switching are mainly two: one is not using a state machine, the mode control performed directly by a combinational logic circuit, the other is a state machine controlled. 直接用组合逻辑控制的优点是逻辑简单、响应速度快,其缺点就是两种调制机制之间容易产生竞争,从而导致输出震荡,输出电压纹波较大。 The advantage of directly controlling the combinational logic is a logic simple, fast response, the drawback is likely to occur between the two competition modulation scheme, resulting in oscillation output, a large output voltage ripple. 采用状态机控制可以避免模式间的竞争,目前已发表的控制流程为:当输出电压高于高门限电压时,电荷栗处于等待状态(即脉冲跳跃调制模式PSM),此时由输出电容给负载放电,输出电压降低;当输出电压降低到高门限电压以下,但仍高于低门限电压时,开关电容阵列开始以低增益向输出电容和负载放电,此时如果负载持续增大,输出电压低于低门限电压时,电荷栗变回跳到一个高增益模式放电,直到高于低门限电压,之后回到低增益模式。 State machine to avoid competition between control modes, control flow has been published as follows: when the output voltage is higher than the high threshold voltage, the charge Li in a wait state (i.e., the PSM pulse skip modulation mode), this time to the load by the output capacitor discharge, the output voltage decreases; when the output voltage is reduced to the threshold voltage of a high threshold or less, but still higher than the low threshold voltage, the switched capacitor array starts to discharge to a low gain output capacitor and load, if the load continues to increase at this time, the low output voltage when the low threshold voltage, a charge Li back to the high gain mode jump discharged until above the low threshold voltage, then back to the low gain mode. 这种控制方法是固定开关频率,通过在两个转换比之间来回跳转,使输出保持在额定值范围内,逻辑简单,但在某些负载条件下,会因为转换比的频繁跳转而导致输出纹波较大。 This control method is a fixed switching frequency, by jumping back and forth between the two conversion ratio, so that the output remains within the rated value, the logic is simple, but in some load conditions, because the conversion ratio jumps and frequent resulting in larger output ripple.

[0005] 脉冲频率调制(PFM)能够提高系统转换效率特别是轻载效率,同时一定程度上控制输出电压纹波,其原理是使开关频率随负载电流的变化而变化,当负载电流的下降,开关频率减小,而负载电流上升,开关频率则增大。 [0005] The pulse frequency modulation (PFM) system can improve efficiency in particular light load efficiency while controlling the output voltage ripple to a certain extent, the principle is that the switching frequency varies with the change in load current, when the load current drops, the switching frequency is reduced, and the load current increases, the switching frequency is increased. 若负载电流和开关频率成线性关系,无论负载如何变化,纹波大小相等。 If the load current and switching frequency is linear, regardless of the load change, the ripple is equal. 除了在纹波方面有较大优势外,系统效率也优于固定频率的电荷泵。 In addition to greater advantage in terms of ripple, the system efficiency is better than a fixed frequency pump. 当负载较轻时,降低开关频率可以减小开关损耗,从而提高系统效率。 When the load is light, the switching frequency to reduce switching losses can be reduced, thereby improving the system efficiency.

[0006]电荷泵的驱动能力除了正比于开关频率和飞跨电容的乘积外,还由电源电压乘以电压转换比后与输出电压的差决定,差值越大驱动能力越大,但系统效率却随着差值的增加而减小。 After [0006] In addition to the driving capability of the charge pump is proportional to the cross product of the capacitance and the switching frequency of flying, but also multiplied by the voltage conversion ratio determined by the supply voltage and the output voltage difference, the greater the difference the greater driving capability, but the system efficiency it increases as the difference decreases. 因而,在特定电压转化比下,系统效率和驱动能力的大小是矛盾的,其为了满足重载的驱动能力要求,必然要牺牲轻载时的效率。 Thus, at a particular voltage conversion ratio, the size of the system efficiency and drive capability are contradictory, that in order to meet the requirements of heavy-duty drive capability, is bound to sacrifice efficiency at light load. 解决这个矛盾的办法是采用多电压转换比,重载时用大的转换比以提高驱动能力,轻载时用小的转换比以提高效率,从而提高系统平均效率。 The solution to this paradox is multi-voltage conversion ratio, with a heavy load of large conversion ratio to improve driving ability, with a small conversion ratio at light loads to improve efficiency, thereby enhancing the average efficiency of the system. 对于特定负载,如何判断采用哪种转换比,既满足驱动能力的要求又保证效率, 是实现上述方案的关键技术。 For specific load, how to determine which conversion ratio adopted, both to meet the requirements of driving ability and ensure efficiency, it is a key technology to achieve the above scheme.

[0007]本发明提出了一种针对开关频率调制的自动增益跳变控制方法,其根据当前vco 控制电压Vcon是否高于上限值V_COnmax来判断当前电压转换比是否有足够的驱动能力;同时,比较当前飞跨电容充放电电压差A Vo和压控振荡器(VCO)的控制电压Vcon的乘积值AV〇XVcon,与低一级电压转换比下飞跨电容充放电电压差A vjPVCO控制电SV_conmax的乘积值AVnXV_C〇nmaX的大小,判断是否可以用低一级电压转换比驱动当前负载以提高系统效率。 [0007] The present invention provides a method for controlling jump to a variant the automatic gain switching for frequency modulation, based on whether the current control voltage Vcon vco than the upper limit V_COnmax current voltage conversion ratio is determined whether there is sufficient driving capacity; the same time, comparing the current charging and discharging the flying capacitor a voltage difference between a Vo and a voltage controlled oscillator (VCO) control voltage Vcon value AV〇XVcon product, and a low voltage across the switched capacitor charge ratio difference a vjPVCO fly discharge voltage control circuit SV_conmax AVnXV_C〇nmaX value of the product size, determines whether a low current load driving voltage conversion ratio to improve system efficiency. 该技术通过自动选择合适的电压转换比,在保证负载驱动能力的同时实现较高转换效率。 The technique automatically selects the appropriate voltage conversion ratio, to achieve high conversion efficiency at the same time ensure that the load drive capability.

发明内容: SUMMARY:

[0008]本发明针对开关频率调制的电荷泵型开关电源,提出了一种多电压转换比的自动增益跳变控制方法,应用该技术的电荷栗系统原理图见附图1。 [0008] The present invention is directed to a charge pump type power switch switching frequency modulation, proposed a multi-AGC voltage conversion ratio jump control method, the principle of charge-Li system application of this technique, see FIG. 1 to FIG. 附图1的系统由状态控制电路、开关电容阵列、误差放大器、带隙基准电路、压控振荡器、多相时钟产生电路等模块组成。 The system of Figure 1 by a state control circuit, the switched capacitor array, an error amplifier, a bandgap reference circuit, a voltage controlled oscillator, a multiphase clock generating circuit modules. 附图1中的系统对输出的调制采用了开关频率调制,减小轻载时的开关损耗的同时控制输出纹波。 1 of the drawings the system uses a modulated output switching frequency modulation, reduce switching losses at light loads while controlling output ripple.

[0009]实现开关频率调制的原理框图如图2所示,输出电压与参考电压的误差电压,经误差放大器放大后驱动压控振荡器,这样就实现了开关频率随负载变化:当负载电流上升时, 误差电压增大,开关频率增大,提高驱动能力;而当负载电流下降时,误差电压减小,开关频率降低,减小开关损耗,提高效率。 [0009] The realization of the principle block diagram FIG switching frequency modulation, an error voltage of the output voltage and a reference voltage shown in FIG. 2, the drive voltage controlled oscillator amplified error amplifier, thus achieving the switching frequency varies with the load: if the load current rises when the error voltage increases, the switching frequency is increased, to enhance the driving capability; when the load current decreases, the error voltage decreases, the switching frequency is lowered to reduce switching losses and improve efficiency.

[0010]本发明中电压转换比(即增益)的自动控制包括了两部分:1)为提高驱动能力,由低电压转换比跳转到高电压转换比;2)为提高效率,由高电压转换比跳转到低电压转换比。 [0010] In the present invention, the voltage conversion ratio (i.e., gain) of the automatic control comprises two parts: 1) to enhance the driving capability of a low voltage to a high voltage conversion ratio conversion ratio jump; 2) to improve efficiency, a high voltage Jump to a low voltage conversion ratio conversion ratio. [0011]提高电压转换比的判断方式为,当VC0的控制电压Vcon (即放大后的误差电压)超过设定的最大值乂-⑶⑽狀时,也就是开关频率超出最高频率时,说明当前转换比的驱动能力不足,则切换到高一级转换比。 [0011] increase the voltage conversion ratio is determined in a manner that, when the maximum value qe -⑶⑽ shaped control voltage Vcon is VC0 (i.e., the amplified error voltage) exceeds the set, i.e. when the switching frequency exceeds the maximum frequency, the current conversion described insufficient driving capability ratio is switched to a high conversion ratio.

[0012]由高电压转换比切换到低转换比的判断原理为,比较当前负载大小与低一级电压转换比下电荷泵的最大负载驱动能力,如果后者大于前者,说明低一级的转换比能够驱动当前负载,则切换到低一级转换比。 [0012] by a high voltage conversion ratio to a lower conversion ratio is determined in principle, for comparing the current size of the load and a low load driving capability maximum voltage conversion ratio of the charge pump, if the former is larger than the latter, indicating a low conversion capable of driving a current load ratio, switching to a lower conversion ratio. 电荷泵的驱动能力除了正比于开关频率,还正比于飞跨电容充放电电压的差值,即电源电压乘以电压转换比后与输出电压的差,如公式(D。 In addition to the driving capability of the charge pump is proportional to the switching frequency, is also proportional to the charging and discharging the flying capacitor voltage difference, i.e., the supply voltage multiplied by the difference between the voltage conversion ratio of the output voltage, as shown in equation (D.

[0013] IL〇cKX (VinXGain-Vout) Xfsw=KX AVXfsw (1) [0013] IL〇cKX (VinXGain-Vout) Xfsw = KX AVXfsw (1)

[0014]其中,IL为负载电流,Vin为输入电源电压,Gain电压转换比,Vout为输出电压,AV 为飞跨电容的充放电电压差,fsw为开关频率,K为比例系数。 [0014] wherein, IL is the load current, Vin is the input supply voltage, Gain conversion ratio of the voltage, Vout is the output voltage, AV is the charge and discharge voltage difference between the flying capacitor, fsw is the switching frequency, K is a proportionality factor.

[0015] 在电何杲正常工作时,输出电压Vout经电阻Ri和R2分压后得到的反馈电压Vf约等于参考电压Vref,如果公式(1)中的K等于反馈电压Vf与输出电压Vout的比值Kf, [0015] When the electric He Gao working properly, the output voltage Vout by the resistance Ri and R2 are obtained by dividing the feedback voltage Vf is approximately equal to the reference voltage Vref, if the formula (1) K is equal to the feedback voltage Vf and the output voltage Vout ratio Kf,

[0016] Kf = Vf/Vout = R2/(Rl+R2), ⑵ [0016] Kf = Vf / Vout = R2 / (Rl + R2), ⑵

[0017] 则公式⑴中KX AV可用VinXGainXKf与Vref求差估算,即 [0017] In the formula KX AV ⑴ available VinXGainXKf differencing estimated to Vref, i.e.,

[0018] Kf X (VinXGain-Vout) ~Kf XVinXGain-Vref。 [0018] Kf X (VinXGain-Vout) ~ Kf XVinXGain-Vref.

[0019] 另外,对于开关频率调制的输出稳压方式,开关频率f sw由VCO的控制电压Vcon决定,如果设计VC0的频率变化范围,使fsw近似正比于Vcon,则综合公式(1)和(3)后,负载电流为: [0019] Further, the output regulation mode switching frequency modulation, the switching frequency f sw control voltage Vcon is determined by the VCO, if the design frequency range VC0, so Vcon is approximately proportional to fsw, the synthesis equation (1) and ( 3), the load current is:

[0020] ILocKf X △ VXfsw〇c (Kf XVinXGain—Vref) XVcon。 [0020] ILocKf X △ VXfsw〇c (Kf XVinXGain-Vref) XVcon.

[0021]当前负载大小可由当前转换比下的Kfx A Vo与当前的Vcon的乘积估算;而低一级电压转换比下电荷栗的驱动能力可由该转换比下的KfX AVn与预先设定的V_conmax的乘积估算。 [0021] The current size of the load may be lower than the current conversion Kfx A Vo Estimation Vcon of the product of the current; a low voltage converter V_conmax KfX AVn in the conversion ratio with a preset lower charge than the driving capability may be Li product estimates.

[0022] 一种针对四电压转换比的增益跳转判决电路原理框图如图3所示,图中的加法器实现了减法的功能,并且图中V_one、V_2third、V_half和V_lthird为电压转换比分别为X 1、X2/3、X 1/2和X 1/3时的Kf XGainXVin的值。 [0022] A block diagram illustrating the principle of the gain for the voltage conversion ratio of four jump decision circuit shown in FIG. 3, FIG adder implements subtraction function, and FIG V_one, V_2third, V_half and voltage conversion ratios V_lthird as X, X2 / 3, and the value X 1/2 X Kf XGainXVin time of 1 1/3. 图3中显示的是当前电压转换比为x 1时判决电路的状态。 Figure 3 shows the current voltage conversion ratio is x 1 state when the deciding circuit.

附图说明: BRIEF DESCRIPTION OF:

[0023]附图1 一种开关频率调制的多电压转换比电荷泵DC-DC转换器系统框图; [0023] A multi-frequency modulated reference voltage switching transition diagram of the charge pump than the DC-DC converter system;

[0024] 附图2频率调制输出稳压原理框图; [0024] Figure 2 block diagram of a frequency modulated output of the regulator;

[0025]附图3降低电压转换比跳转判决电路原理框图; [0025] Figure 3 a block diagram of the principle of reducing the voltage conversion ratio jump decision circuit;

具体实施方式: detailed description:

[0026] 针对开关频率调制的电荷栗DC-DC自动增益跳变控制的实施步骤包括: [0026] The switching frequency modulation for DC-DC charge Li hopping automatic gain control embodiment comprises the step of:

[0027] 1)系统开始工作时,初始电压转换比可以选择从低电压转换比开始,也可以选择从高电压转换比开始,或者通过检测输入电压,选择经转换后最接近目标输出电压的转换比。 When [0027] 1) system to work, the initial voltage conversion ratio can be selected from a low start voltage conversion ratio can also be selected from higher than the start voltage conversion, or by detecting the input voltage, select converted converted closest to the target output voltage ratio.

[0028] 2)输出电压经分压后的电压Vf与参考电压的差值经误差放大器放大后得到Vcon, 驱动振荡器VC0,控制VC0的震荡频率,输出电压过高时降低震荡频率,反之则增加频率。 [0028] 2) After the output voltage divided by the voltage Vf and the voltage difference between the reference voltage Vcon is obtained by the error amplifier, an oscillator driving VC0, the oscillation frequency control VC0, the output voltage is too high when the oscillation frequency decreases, and vice versa increased frequency. [0029] 3)系统实时检测在当前负载与开关频率下采用的电压转换比,若VC0控制电压Vcon高于上限值V_conmax,开关频率超出工作范围,则选择高一级电压转换比;Vcon低于V_ conmax时,系统根据降低电压转换比跳转判决电路的判决结果决定是否向低一级电压转换比跳变,结果是可跳转时选择低一级电压转换比,否则保持当前电压转换比不变。 [0029] 3) real-time detection system employed in the voltage conversion ratio of the current load and switching frequency, when the control voltage Vcon VC0 than the upper limit V_conmax, the switching frequency over the operating range, a high voltage is selected conversion ratio; lower Vcon when in V_ conmax, the system jumps over determination result determined by the decision circuit if the voltage converter to reduce the voltage conversion ratio a low jump, the result is a low select voltage conversion ratio jump, or hold the current voltage conversion ratio constant.

[0030] 4)降低电压转换比跳转判决电路通过比较当前电压转换比下飞跨电容的充放电电压差△ V。 [0030] 4) reduce the voltage conversion ratio jump decision circuit by comparing the current voltage conversion ratio of the flying capacitor charge-discharge voltage difference △ V. 与VC0控制电压Vcon和比例系数K的乘积值A Vo X Vcon XK,与低一级电压转换比下飞跨电容的充放电电压差控制电压的上限值V_conmax和比例系数K的乘积值A VnX V_conmax XK的大小,当后者的值大于前者时,允许跳转,否则保持当前电压转换比。 And the control voltage Vcon VC0 proportional coefficient K and value of the product A Vo X Vcon XK, V_conmax upper limit scale factor and the difference between the discharge voltage ratio is low flying capacitor a voltage conversion control of voltage multiplication value K A VnX V_conmax XK size, when the value of the latter larger than the former, allowing the jump, or hold the current voltage conversion ratio.

[0031] 5)输出电压Vout经电阻心和办分压后得到的反馈电压Vf与输出电压Vout的比值为Kf,步骤4)乘积项中的K取为Kf,飞跨电容的充放电电压差AV与Kf的乘积值用Vin XGain X Kf 与Vref 求差VinXGainXKf-Vref 进行估算。 [0031] 5) the ratio of the feedback voltage Vf and the output voltage Vout of the output voltage Vout through the resistor core and do it after the partial pressure Kf, Step 4) product terms of K taken as Kf, flying capacitor charging and discharging a voltage difference AV product with Kf values estimated using Vref and Vin XGain X Kf differencing VinXGainXKf-Vref. 1 〜少跑5)中VinXGainXKf用电源分压电路实现。 1 to less run 5) VinXGainXKf power supply voltage dividing circuit implementation.

[0033]附图标记列表: [0033] List of reference numerals:

[0034] Vin 输入电馳压 [0034] Vin input voltage Chi

[0035] Vout 输出电压_6] Vf 反馈电压 [0035] Vout output voltage _6] Vf feedback voltage

[0037] Vref 参考电压 [0037] Vref reference voltage

[0038] Vcon 误差放大器输出电压,同时也是压控振荡器控制电压 [0038] Vcon error amplifier output voltage, but also the voltage controlled oscillator control voltage

[0039] Rl 输出分压电阻1 [0039] Rl output voltage dividing resistor 1

[_] R2 输出分压电阻2 _1] Rl 负载电阻 [_] Output voltage dividing resistor R2 2 _1] Rl load resistance

[0042] Cl 负载电容 [0042] Cl load capacitance

[0043] CLK 时钟信号 [0043] CLK clock signal

[0044] Kf 反馈电压Vf与输出电压Vout的比值 [0044] Kf ratio feedback voltage Vf and the output voltage Vout

[0045] Gain_down 低增益跳转判决信号 [0045] Gain_down low gain Jump decision signal

[0046] V_c〇nmax 误差放大器输出电压上限值 [0046] The upper limit of the error amplifier output voltage V_c〇nmax

[0047] V—one 增益为X 1转换比时输入电压Vin与电压转换比和系数Kf的乘积 Input voltage Vin and the voltage conversion coefficients Kf and the ratio X 1 when the conversion ratio [0047] V-one product of gain

[0048] V_2third 增益为X 2/3转换比时输入电压Vin与电压转换比和系数Kf的乘积 [0048] V_2third gain of the input voltage Vin and the voltage conversion ratio and the coefficient Kf conversion ratio when the product X 2/3

[0049] V—half 增益为X 1/2转换比时输入电压Vin电压转换比和系数Kf的乘积 Product of the input voltage Vin and the voltage conversion ratio when the coefficient Kf [0049] V-half gain conversion ratio X 1/2

[0050] V-lthird 增益为X 1/3转换比时输入电压Vin电压转换比和系数Kf的乘积 Product of the input voltage Vin and the voltage conversion ratio when the coefficient Kf [0050] V-lthird gain conversion ratio X 1/3

[0051] Kf X AV0 当前电压转换比下飞跨电容的充放电电压差AVg与系数Kf的乘积 [0051] Kf X AV0 current voltage conversion ratio across the flying capacitor charging and discharging the product of the voltage difference between the coefficient Kf of AVg

[0052] KfX AVn 低一级电压转换比下飞跨电容的充放电电压差AVn与系数Kf的乘积 [0052] KfX AVn low flying at a voltage conversion ratio of the product of the capacitance charging and discharging a voltage across the differential coefficient Kf of AVn

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
CN1477772A *31 Jan 200325 Feb 2004精工电子有限公司Inrush current limiting circuit for pulse frequency modwlation to control charge pump
CN101990736A *20 Nov 200823 Mar 2011代表亚利桑那大学的亚利桑那校董会Adaptive-gain step-up/down switched-capacitor dc/dc converters
CN102255497A *17 May 201023 Nov 2011华邦电子股份有限公司Control circuit of charge pump circuit
CN102761244A *7 Feb 201231 Oct 2012瑞昱半导体股份有限公司Charge pump feedback control device and method using the same
US6055168 *28 May 199925 Apr 2000National Semiconductor CorporationCapacitor DC-DC converter with PFM and gain hopping
*US2013257176 Title not available
Classifications
International ClassificationH02M3/07, H02M1/14
Legal Events
DateCodeEventDescription
26 Aug 2015C06Publication
23 Sep 2015EXSBDecision made by sipo to initiate substantive examination
18 Jul 2017GR01