CN104096271B - 可生物降解的内置假体结构及其制造方法 - Google Patents

可生物降解的内置假体结构及其制造方法 Download PDF

Info

Publication number
CN104096271B
CN104096271B CN201410347826.5A CN201410347826A CN104096271B CN 104096271 B CN104096271 B CN 104096271B CN 201410347826 A CN201410347826 A CN 201410347826A CN 104096271 B CN104096271 B CN 104096271B
Authority
CN
China
Prior art keywords
biodegradable
polymer
copolymer
tubular body
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410347826.5A
Other languages
English (en)
Other versions
CN104096271A (zh
Inventor
郑小霞
J·严
V·巴塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elixir Medical Corp
Original Assignee
Elixir Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39636746&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN104096271(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Elixir Medical Corp filed Critical Elixir Medical Corp
Publication of CN104096271A publication Critical patent/CN104096271A/zh
Application granted granted Critical
Publication of CN104096271B publication Critical patent/CN104096271B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/823Stents, different from stent-grafts, adapted to cover an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/825Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having longitudinal struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0036Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article

Abstract

提供了由具有所需的可生物降解特性的无定形聚合物形成的可生物降解的内置假体。通过改性以提高结晶度来提高这种无定形聚合物的强度,同时不显著增加生物降解时间。

Description

可生物降解的内置假体结构及其制造方法
本申请是2008年1月18日提交的发明名称为“可生物降解的内置假体结构及其制造方法”的第200880006680.0号中国专利申请的分案申请。
发明背景
1.发明领域
本发明一般涉及医疗装置及其制造方法。具体说,本发明涉及植入后强度提高且持久性受控的可生物降解的内置假体,例如支架的制造。
支架通常为管形装置,用于使血管或体内其他管腔,例如冠状动脉、颈动脉、隐静脉移植物或股动脉的一部分保持打开或得到增强。它们也适用于支承和阻止可能阻塞体腔的切开的动脉内衬,以稳定斑块,或支承生物瓣。支架可由各种材料制成,尤其是聚合和/或金属材料,可以是非降解的、可生物降解的、或者同时由可降解和非生物性组件构成。通常采用导管将支架递送至体内管腔中的目标区域。对于球囊扩张式支架,将支架安装到球囊导管上,引导至适当区域,使球囊膨胀来扩张支架。自扩张式支架可递送至目标区域,释放并扩张至所需的直径以治疗疾病。支架也可溶出各种药物或药理学试剂。
本发明尤其感兴趣的可生物降解的支架及其他内置假体通常由聚合物形成,所述聚合物在血管或其他管腔环境中随时间通过水解或其他反应机制而降解。通常,所要求的是内置假体在体内管腔完成所需支承功能后能够完全降解。通常,完全降解所要求的是植入后不到2年,常常不到1年,通常在几个月内降解。然而,许多可生物降解的内置假体维持的时间比要求的更长,常常在支承或药物递送功能结束后长时间留在原处。许多可生物降解的内置假体之所以滞留时间延长,常常是因为希望提高其强度。人们常常对聚合物构建材料进行加固,例如通过掺入具有较高结晶性的材料,使其具有所需的支承作用,但降解时间比所要求的要长。
出于这些原因,希望提供改良的内置假体及其制造方法,所述内置假体具有受控的强度和持久性。具体说,希望能够提高某些可生物降解的材料的强度,使其在被引入支架和其他内置假体时具有提高的强度而其降解持续时间不会显著延长。而且,希望能够在制造过程中控制降解持续时间,从而制备在保持强度提高的同时具有不同降解持续时间的内置假体。下面描述的本发明满足了这些目标中的至少一些。
2.背景技术
支架中采用的纤丝和其他组件的热焖火处理和其他处理方式参见US5,980,564、US6,245,103和US6,626,939。聚合物支架涂层的热处理在指定美国的共同拥有、共同待批的申请PCT/US07/81996中有描述。
发明概述
本发明提供了改良的可生物降解的内置假体及其制造方法。该内置假体由无定形可生物降解的聚合物形成。之所以使用无定形聚合物是有利的,是因为它们能提供相对较短的生物降解持续时间,通常不到2年,常常不到1年,经常不到9个月,有时不到6个月,或者甚至更短。本发明依赖于对无定形聚合物进行改性,以引入所需的结晶度。发明人已发现,将结晶性引入无定形聚合物能提高聚合物的强度,使其适合用作内置假体而不会显著增加植入后的生物降解持续时间。
所述高度无定形聚合物的结晶度在改性前低于10%。改性后,相对于无定形材料最初的结晶度,结晶度通常增加至少20%,优选至少100%,更优选至少1000%。目前优选的聚合物材料在改性后的结晶度为10%-20%,如下文所述。本文所用术语“结晶度”表示聚合物基质内结构的有序度或完美度。
结晶度可通过差示扫描量热法进行测量(Reading,M.等,用调制温度差示扫描量热法测定聚合物的结晶度(Measurementofcyrstallinityinpolymersusingmodulatedtemperaturedifferentialscanningcalorimetry),《动态和调制热分析技术对材料的表征》(MaterialCharacterizationbyDynamicandModulatedThermalAnalyticalTechniques),ASTMSTP1402,Riga,A.T.等编著,(2001)第17-31页)。
本发明制造可生物降解的假体的方法包括:提供具有一定初始直径的管状体,所述管状体至少部分地由基本无定形的可生物降解的聚合物组成。将管状体加热至超过其玻璃化转变温度但低于其熔点的温度。然后使管状体冷却以提高聚合物的结晶度。在焖火处理工艺之前或之后,使管状体图案化,形成能够径向收缩和扩张的结构,以提供支架或其他内置假体。
通常,管状体的制造也是本发明方法的一部分。制造过程可通过各种常规过程进行,例如挤压、模塑、浸渍等。优选的制造过程包括将溶解在溶剂中的聚合物喷射到圆柱形心轴或其他结构上。任选地,将诸如强度增加材料、药物等添加剂与聚合物一起溶解到溶剂中,使得该材料可与内置假体管一体成形或整体成形。或者,该方法可依赖于从供应商处或其他外部来源获得预先成形的聚合物管。
聚合物管状体通常形成基本连续的圆筒,没有洞或其他不连续结构。一般,管状体的外径为2-10毫米,厚度为0.01-0.5毫米,可切割成适合单个内置假体的长度,通常为5-40毫米。
管状体可由具有所需降解特征的任何无定形聚合物形成,其中聚合物可根据本发明方法改性以具有所需的强度特征。示例性的无定形聚合物包括:聚-DL-丙交酯、聚丙交酯-共-乙丙交酯(glycolactide);聚丙交酯-共-聚己酸内酯、聚(L-丙交酯-共-1,3-丙二醇碳酸酯)[poly(L-lactide-co-trimethylenecarbonate)]、聚1,3-丙二醇碳酸酯(polytrimethylenecarbonate)和共聚物;聚羟基丁酸酯和共聚物;聚羟基戊酸酯和共聚物;聚原酸酯和共聚物;聚酐和共聚物;聚亚氨基碳酸酯和共聚物,等等。尤其优选的聚合物包括L-丙交酯和乙交酯的共聚物,优选重量比为85%L-丙交酯与15%乙交酯。
焖火处理工艺的加热阶段通常持续1分钟到3小时,冷却通常至环境温度或更低。然而,下面的发明详述中也描述了其他合适的温度和时间。
使管状体图案化,形成合适的内置假体结构,通常通过激光切割或其他常规过程进行。通常在焖火处理过程之后进行图案化,但也可在焖火处理过程之前进行。可选地,可能希望在进行图案化之前或之后都进行管状体的焖火处理,在一些情况下可进行额外的焖火处理步骤,使得支架在制造过程期间经历三次、四次或更多次焖火处理步骤。
内置假体图案可以是常规内置假体中采用的任何合适的图案类型。各种示例性的图案在与本申请同日提交的共同拥有的、共同待批的申请11/______(律师案卷号022265-000510US)中描述,其全部内容被纳入本文作为参考。
除制造方法之外,本发明还提供了可生物降解的假体,假体包括至少部分地由基本无定形的可生物降解降的聚合物构成的管状体。可生物降解的聚合物经处理以在无定形聚合物中产生球晶,在初始结晶度的基础上将结晶度提高至少20%。假体的其他优选方面已结合制造方法在上文中描述。
附图简要说明
图1是本发明方法主要步骤的框图。
图2A和2B显示了可用本发明方法制造的示例性的支架结构。
图3显示了具有径向扩张构型的图2A和2B的支架。
图4显示了本发明实施例中采用的支架图案。
发明详述
无定形可生物降解的聚合物(结晶度小于10%)比结晶聚合物降解更快,但强度不如结晶聚合物,因而通常不适合用于需要足够的强度以为血管提供支撑的血管植入体,例如支架。本发明提供了对无定形聚合物材料的改性方法,使其适合用于可生物降解的支架及其他内置假体。适用于根据本发明进行改性的无定形材料包括但不限于:聚-DL-丙交酯、聚丙交酯-共-乙丙交酯(glycolactide);聚丙交酯-共-聚己酸内酯、聚(L-丙交酯-共-1,3-丙二醇碳酸酯)、聚1,3-丙二醇碳酸酯和共聚物;聚羟基丁酸酯和共聚物;聚羟基戊酸酯和共聚物;聚原酸酯和共聚物;聚酐和共聚物;聚亚氨基碳酸酯和共聚物,等等。示例性的支架由无定形材料85/15聚(L-丙交酯-共-乙交酯)的共聚物制成,经加工使其结晶度比最初的结晶度提高至少20%,优选至少100%,更优选至少1000%。在一个实施方式中,可生物降解的支架不到2年,优选不到1年,更优选不到9个月即基本降解。
根据本发明,无定形可生物降解的聚合物材料经加工以提高其结晶度。结晶度增加可增加聚合物支架材料的强度、储存寿命和水解稳定性。通过在材料中成核和/或使小尺寸球晶生长来引发该过程和/或提高聚合物材料的结晶度。由于在生物学环境中,改性的聚合物的无定形区域倾向于通过水解或酶降解而受到破坏,改性的无定形可生物降解的聚合物在加工后,其结晶度提高且材料强度提高。结晶度的提高可通过本发明的“改性”部分所述的过程来实现,包括加热、冷却、加压、加入添加剂、交联和其他步骤中的至少一个步骤。
聚合物材料可通过喷射、挤出、模塑、浸渍或其他工艺由选定的无定形共聚物制成管子。无定形聚合物管任选地抽真空到至少-25in.Hg.,焖火处理并骤冷以提高结晶度。在一个实施方式中,在环境温度下将管子抽真空至1托或以下,以去除水分和溶剂。然后通过加热至超过聚合物材料的玻璃化转变温度但低于其熔点来进行焖火处理。优选地,焖火处理温度比玻璃化转变温度(Tg)高至少10℃,更优选高至少20℃,甚至更优选比Tg高至少30℃。焖火处理温度通常比熔点(Tm)低至少5℃,优选低至少20℃,甚至更优选比聚合物材料的熔点低至少30℃。焖火处理时间介于1分钟到10天的范围内,优选从30分钟到3小时,更优选从1.5小时到2.5小时。
在一个实施方式中,通过在1秒到1小时,优选1分钟到30分钟,更优选5分钟到15分钟的时间内,从焖火处理温度快速冷却至等于或低于环境温度来骤冷经焖火处理的管子。在另一实施方式中,通过在1小时到24小时,优选4小时到12小时,更优选6小时到10小时的时间内,从焖火处理温度缓慢冷却至等于或低于环境温度来骤冷经焖火处理的管子。在一些情况下,在1分钟到96小时,更优选24小时到72小时的时间内,使经过热处理的管子冷却至低于环境温度的温度,以稳定结晶和/或终止结晶作用。这种焖火处理和骤冷工艺引发并促进聚合物中的结晶成核,提高材料机械强度。可控制最初的焖火处理温度和冷却速率,以优化结晶大小和材料区段。在另一实施方式中,使未经焖火处理处理和/或经焖火处理处理的管子曝露于电子束或γ辐射,单剂量或多剂量为5kGy到100kGy,更优选10kGy到50kGy的辐射。
对支架材料的管子进行图案化,形成具有“扩张”直径的支架或其他内置假体,然后卷曲成较小直径,安装到递送导管的气囊上。支架通常通过激光切割形成图案,管直径约为目标展开直径的1-1.3倍,优选1.1-1.5倍,更优选1.15-1.25倍。例如,将切割成3.5mm×18mm外径的支架卷曲到3.0mm×18mm的支架递送导管上。在另一实施方式中,使未经焖火处理和/或经焖火处理的支架曝露于电子束或γ辐射,单剂量或多剂量为5kGy到100kGy,更优选从10kGy到50kGy的辐射。
支架切割期间支架材料可能损失一些结晶度。在这种情况下,支架在切割后焖火处理和/或进行第二次焖火处理以使聚合物重结晶至较高的结晶度。因此,经切割的支架可进行第二次如上文所述的焖火处理。如上所述焖火处理后冷却的过程可重复一次或多次,以进一步提高结晶度。在另一实施方式中,将经热处理的支架冷却至环境温度以下,以锁定结晶或终止结晶作用1分钟到96小时,更优选24小时到72小时。
经处理的支架或其他内置假体可采用包括楔的机械卷缩机,例如福迪米迪的MS公司(MachineSolutions,Fortimedix)生产的卷缩机,卷曲到递送气囊上。支架卷曲也可采用以下过程:将支架置于收缩管中,以0.1-2英寸/分钟,更优选0.2-0.5英寸/分钟的速率缓慢拉伸收缩管直到支架被卷曲成所需的卷曲直径。卷曲期间,支架被加热至比Tg低20℃到比Tg高10℃的温度持续30分钟,更优选加热至比Tg低10℃到Tg的温度,最优选加热至支架材料的Tg。该过程有利于或能使支架维持最终的卷曲直径。卷曲后,通过在将支架固定成卷曲直径的同时使其曝露于比Tg低20℃到比Tg高10℃的温度持续30分钟,更优选曝露于比Tg低10℃到Tg的温度,最优选曝露于支架材料的Tg,持续1分钟到24小时,更优选15分钟到1小时,以进一步提高支架保持卷曲直径的能力。保持在该卷曲温度之后,优选在使直径固定在卷曲直径的同时保持等于或低于环境温度直到进一步加工处理(即灭菌)。支架可以在支架递送导管的气囊上卷曲,或者先单独卷曲然后滑到导管气囊上。在另一实施方式中,将卷曲的支架冷却至环境温度以下,以锁定结晶或终止结晶作用1分钟到96小时,更优选24小时到72小时。
在优选实施方式中,将导管上最终卷曲的支架通过25-30kGy剂量的电子束进行灭菌,通常用单剂量30kGy或用多个较小的剂量(例如3×10kGy)。用多个较小剂量灭菌之前、期间和/或之后,支架系统通常保持在环境温度以下。经包装和灭菌的支架也可进行如上所述的热处理。在一个实施方式中,在支架扩张期间,大约在可生物降解的支架材料的Tg下加热可生物降解的聚合物支架。扩张期间的温度可以从比Tg高10℃到比Tg低10℃。
这种支架展开后,所述工艺提供了在从卷曲状态扩张至扩张状态之后使支架反冲最小至不到10%的方法。
内置假体中可加入添加剂以影响强度、反冲或降解速率或它们的组合。添加剂也可影响可生物降解的支架材料的加工处理、辐射不透性或表面粗糙度,等等。添加剂可以是可生物降解或非生物降解的。添加剂可通过掺混、挤出、注塑、涂覆、表面处理、化学处理、机械处理、冲压、或其他方式、或它们的组合掺入可生物降解的支架或聚合物材料中。掺入可生物降解的聚合物材料之前,添加剂可经过化学改性。
在一个实施方式中,添加剂的重量百分比从0.01%到25%,优选0.1%到10%,更优选1%到5%。
在一个实施方式中,添加剂至少包括纳米粘土、纳米管、纳米颗粒、片状剥落物(exfoliate)、纤维、须状物(whisker)、小片状物(platelet)、纳米粉、富勒烯(fullerene)、纳米球、沸石、聚合物或其他或其组合。
纳米粘土的例子包括:蒙脱土、蒙脱石、滑石粉、片状颗粒(platelet-shapedparticle)、改性的粘土或其他或其组合。粘土可为内插或片状剥落的。粘土的例子包括CloisiteNA、93A、30B、25A、15A、10A或其他或其组合。
纤维的例子包括:纤维素纤维如亚麻、棉花、人造丝、乙酸酯;蛋白质纤维如羊毛或丝;植物纤维;玻璃纤维;碳纤维;金属纤维;陶瓷纤维;可吸收纤维如聚乙醇酸、聚乳酸、聚葡糖酸酯或其他。
须状物的例子包括:羟基磷灰石须状物、磷酸三钙须状物或其他。
在另一实施方式中,添加剂至少包括改性淀粉、大豆、透明质酸、羟基磷灰石、三碳酸酯磷酸酯(tricarbonatephosphate)、阴离子和阳离子表面活性剂如十二烷基硫酸钠、三亚乙基苄基氯化铵(triethylenebenzylammoniumchloride)、降解助剂(pro-degradant)如D2W(来自SP技术公司(SymphonyPlasticTechnologies))、光致降解添加剂如UV-H(来自WRP公司(WillowRidgePlastics))、氧化性添加剂如PDQ(来自WRP公司(WillowRidgePlastics))、TDPA、聚乳酸及其无规或嵌段共聚物家族或其他。
在另一实施方式中,添加剂包括电致活化或电解质聚合物、吸湿性聚合物、干燥剂或其他。
在一个实施方式中,添加剂是氧化剂,例如酸、高氯酸盐、硝酸盐、高锰酸盐、盐或其他或其组合。
在一个实施方式中,添加剂是可生物降解的聚合物支架材料单体。例如,乙醇酸是聚乙醇酸或其共聚物支架材料的添加剂。
在一个实施方式中,添加剂可以是水排斥性单体、低聚物或聚合物,例如蜂蜡、低MW聚乙烯或其他。
在另一实施方式中,添加剂可以是水吸引性单体、低聚物或聚合物,例如聚乙烯醇、聚环氧乙烷、甘油、咖啡因、利多卡因或其他。
在一个实施方式中,添加剂可能影响可生物降解的聚合物支架材料的结晶度。PLLA的纳米粘土添加剂的例子影响其结晶度。
在另一实施方式中,可生物降解的聚合物支架材料曝露于诸如γ或电子束的辐射时交联而导致结晶度增加。累积辐射剂量从1kGray到1000KGray,优选5到100KGray,更优选10到30KGray。
在一个实施方式中,在37℃的水中,可生物降解的聚合物支架材料的屈服强度是最终强度的至少50%,优选最终强度的至少75%,更优选最终强度的至少90%。
在一个实施方式中,可生物降解的金属支架的弹性模量至少为50GPa,优选至少100GPa,更优选至少150GPa。
在另一实施方式中,在37℃的水中,可生物降解的聚合物支架材料的弹性模量至少为0.5GPa,优选至少0.75GPa,更优选至少1GPa。
在一个实施方式中,在37℃的水中,可生物降解的聚合物支架材料的屈服应变不超过10%,优选不超过5%,更优选不超过3%。
在一个实施方式中,在37℃的水中,可生物降解的聚合物支架材料的塑性应变为至少20%,更优选至少30%,甚至更优选至少40%。
在一个实施方式中,在水37℃的中,发生应变的可生物降解的聚合物支架材料的弹性回复率至多15%,优选至多10%,更优选至多5%。
在一个实施方式中,可生物降解的支架材料在2年内,优选1年内,更优选9个月内基本降解。
在一个实施方式中,生理学条件下至少1个月后扩张的可生物降解的支架保留至少25%,优选至少40%,更优选至少70%的强度或反冲。
在一个实施方式中,可生物降解的聚合物支架材料至少通过整体溶蚀、表面溶蚀或其组合而降解。
在一个实施方式中,可生物降解的聚合物支架材料至少通过水解降解、酶降解、氧化降解、光致降解、生理学环境下降解或其组合而降解。
可生物降解的聚合物支架材料具有各种分子构造,例如线性、支化、交联、高度支化或树状。
本发明中可生物降解的聚合物支架材料的分子量为10KDa到10,000KDa,优选100KDa到1000KDa,更优选300KDa到600KDa。
在另一实施方式中,通过牵拉、加压和/或加热支架材料,提高可生物降解的支架材料中聚合物链在径向和/或纵向方向上的取向,以提高可生物降解的支架材料的结晶度。在另一实施方式中,牵拉、加压和/或加热支架材料同时或相继进行。
在一个实施方式中,将可生物降解的支架材料放置成至少一个表面抵靠非变形性表面并加压至200psi,优选至少300psi,更优选至少500psi。在另一实施方式中,将可生物降解的支架材料加压至至少200psi,优选至少300psi,更优选至少500psi。
在一个实施方式中,将可生物降解的支架材料管子放置在直径较大的非变形性管子中并加压至至少200psi,优选至少300psi,更优选至少500psi。在另一实施方式中,将可生物降解的支架材料管子加压至至少200psi,优选至少300psi,更优选至少500psi。
在一个实施方式中,至少通过将可生物降解的支架材料加热至超过其玻璃化转变温度(Tg)且低于其熔点温度来提高聚合物链的取向,以增加可生物降解的支架材料的结晶度。
在一个实施方式中,通过将可生物降解的支架材料加热至比其Tg高至少10℃,优选高至少20℃,更优选比可生物降解的支架材料的Tg高至少30℃的温度来提高可生物降解的支架材料的结晶度。
在一个实施方式中,牵拉、加热和/或加压以及在真空或非真空下、在升高的温度进行焖火处理后,可生物降解的支架材料的结晶度提高。在一个实施方式中,焖火处理温度低于使可生物降解的支架材料中的聚合物链定向所采用的温度。在另一实施方式中,焖火处理温度比使可生物降解的支架材料中的聚合物链定向所采用的温度低至多20℃,优选至多低15℃,更优选至多低10℃。
在一个实施方式中,在可生物降解的支架材料的Tg以下,优选比可生物降解的支架材料的Tg低至少25℃,更优选比Tg低至少50℃,对焖火处理后的可生物降解的支架材料进行骤冷。
在一个实施方式中,采用溶剂组合来提高可生物降解的聚合物支架材料的结晶度,其中一种溶剂的溶解度参数在聚合物溶解度参数的10%之内,而另一种溶剂的溶解度参数与聚合物溶解度参数之间的差异至少为10%.
在一个实施方式中,可生物降解的聚合物支架材料的结晶度大于10%,优选大于25%,更优选大于50%。
本发明还提供了改善可生物降解的聚合物支架材料的强度、反冲或降解速率的一致性的方式。
实施例:
通过喷射无定形共聚物聚(L-丙交酯-共-乙交酯)制备管子,其中含丙交酯85%和乙交酯15%。将聚合物和雷帕霉素类似物溶解在溶剂中,一起喷射以将雷帕霉素引入聚合物支架中。将一心轴置于超声喷嘴(纽约ST的带有超声雾化喷嘴喷射器的微量薄雾系统(MicromistSystemwithUltrasonicAtomizingNozzleSprayer,Sono-Tek,NY))下方,以80rpm的速率旋转并以0.050英寸/分钟的速率纵向移动。心轴上是聚(L-丙交酯-共-乙交酯)和雷帕霉素类似物比例为11∶1的溶液。所得管子厚度为0.17mm。将管子在45℃加热约60小时,在90℃焖火处理2小时,10秒内冷却至环境温度或室温。然后用UV激光将焖火处理的管子切割成图4所示的设计(以其卷曲状态显示)。经切割的支架在90℃焖火处理并在8小时内从焖火处理温度缓慢冷却至环境温度。然后将支架递送系统包装到小袋中并通过γ辐射灭菌。
经热处理的支架具有比未处理支架更高的径向强度(表1)。
表1:经处理和未经处理的支架的径向强度的比较
类型 未经热处理 经热处理
激光切割支架后的径向强度 7Psi 14Psi
卷曲支架后的径向强度 6Psi 9Psi
30kGy电子束灭菌后的径向强度 3Psi 8Psi
在Tg扩张时的径向强度 n/a 12.5Psi
因此,如图1所示,本发明方法首先提供了由无定形聚合物组成的管状体,其中管状体可通过挤出、模塑、浸渍等方式形成,但优选通过喷射到心轴上形成。管状体可焖火处理以提高结晶度和强度,通常通过上述加热和冷却过程进行。然后,可使管状体图案化,形成支架或其他内置假体,通常通过激光切割进行,并且通常在至少一次焖火处理之后进行。任选地,可以在图案化之前和之后都处理管状体,可以在图案化之前和之后都不止一次进行焖火处理。
现在参考图2A和2B,适合利用本发明改性的支架10具有基本图案,包括由轴向连杆14连接的多个相邻的蛇形环12。如图所示,支架10包括六个相邻的蛇形环12,其中每个环包括六个蛇形区段,各蛇形区段包括在一端由铰链样冠状件18连接的一对轴向支杆16。所述环和区段的数目可在宽范围内变化,取决于支架的所需尺寸。根据本发明,支承件20位于相邻的轴向支杆16之间,其连接方式使其能够随支杆沿周向扩张,通常是伸长,如图3所示。扩张前,支承件20通常是封闭的U形构型,如图2A和2B所示,在蛇形环12径向扩张期间随着轴向支杆16围绕冠状件18的打开而打开形成浅V形,如图3所示。支承件20能提高支架沿径向扩张后的环向强度,扩张完成后帮助抵抗反冲,并提供附加面积,用于支承血管或其他管腔壁,并且任选地将药物输送到管腔壁内。
虽然上述内容完整描述了本发明的优选实施方式,但也可使用各种可选形式、改进形式和等价形式。因此,上述内容不应视作对本发明范围的限制,本发明的范围由所附权利要求书限定。

Claims (19)

1.一种制造可生物降解的可植入医疗假体的方法,所述方法包括:
提供具有初始直径的管状体,其中所述管状体至少部分地由无定形的可生物降解的聚合物构成;
其中所述管状体通过挤出、模塑、浸渍或喷射形成;
其中所述管状体经历改性从而所述聚合物结晶度在10重量%至30重量%的范围内;以及
其中所述改性包括加热、冷却、加压、交联和加入添加剂中的至少一种。
2.如权利要求1所述的方法,其中在改性前或改性后使所述管状体图案化,形成能够径向收缩或扩张的结构。
3.如权利要求1所述的方法,其中所述改性包括将所述管状体加热至超过所述聚合物的玻璃化转变温度且低于所述聚合物的熔点的温度。
4.如权利要求1所述的方法,其中所述可生物降解的假体是可从卷曲的直径扩张的气囊。
5.如权利要求1所述的方法,其中所述可生物降解的假体是支架。
6.如权利要求1所述的方法,其中所述可生物降解的假体在低于Tg的温度下可扩张为扩张的状态,并且在从卷曲状态扩张至扩张状态之后反冲不到10%。
7.如权利要求1所述的方法,其中所述可生物降解的假体还包括0.01重量%至25重量%的添加剂。
8.如权利要求7所述的方法,其中所述添加剂是单体,所述单体是所述可生物降解的聚合物的单体。
9.如权利要求1所述的方法,其中所述可生物降解的聚合物的弹性模量至少是0.5GPa。
10.如权利要求1所述的方法,其中所述聚合物的结晶度在改性后相对于初始结晶度提高至少20%。
11.如权利要求1所述的方法,其中所述喷射包括将溶解在溶剂中的所述聚合物喷射到圆柱形结构上。
12.如权利要求1所述的方法,其中所述聚合物选自聚-DL-丙交酯、聚丙交酯-共-乙丙交酯;聚丙交酯-共-聚已酸内酯、聚(L-丙交酯-共-碳酸三亚甲基酯)、聚碳酸三亚甲基酯和共聚物;聚羟基丁酸和共聚物;聚羟基戊酸和共聚物;聚原酸酯和共聚物;聚酐和共聚物;聚亚氨基碳酸酯和共聚物;以及聚乳酸和共聚物。
13.如权利要求1所述的方法,其中将所述管状体加热到比玻璃化转变温度高至少10℃、比熔化温度低至少5℃的温度,并持续介于1分钟到3小时的时间。
14.如权利要求1所述的方法,其中通过激光切割使所述管状体图案化。
15.如权利要求14所述的方法,其中所述经切割的管状结构包括多个轴向连接的蛇形环。
16.如权利要求1所述的方法,其中所述可生物降解的假体还包含一种物质。
17.如权利要求16所述的方法,其中所述物质包括被选择用于抑制血管再狭窄的药物。
18.如权利要求16所述的方法,其中所述物质是选择用于提高假体强度的添加剂。
19.如权利要求1所述的方法,其中所述聚合物包括L-丙交酯和乙交酯的共聚物。
CN201410347826.5A 2007-01-19 2008-01-18 可生物降解的内置假体结构及其制造方法 Active CN104096271B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US88570007P 2007-01-19 2007-01-19
US60/885,700 2007-01-19
CN200880006680A CN101621971A (zh) 2007-01-19 2008-01-18 可生物降解的内置假体结构及其制造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200880006680A Division CN101621971A (zh) 2007-01-19 2008-01-18 可生物降解的内置假体结构及其制造方法

Publications (2)

Publication Number Publication Date
CN104096271A CN104096271A (zh) 2014-10-15
CN104096271B true CN104096271B (zh) 2015-12-30

Family

ID=39636746

Family Applications (7)

Application Number Title Priority Date Filing Date
CN201410172099.3A Active CN104042375B (zh) 2007-01-19 2008-01-18 具有支承件的内置假体结构
CN201610065690.8A Pending CN105616044A (zh) 2007-01-19 2008-01-18 可生物降解的内置假体结构及其制造方法
CN201610065786.4A Pending CN105534627A (zh) 2007-01-19 2008-01-18 可生物降解的内置假体结构及其制造方法
CN200880006660.3A Active CN101636126B (zh) 2007-01-19 2008-01-18 具有支承件的内置假体结构
CN201410347826.5A Active CN104096271B (zh) 2007-01-19 2008-01-18 可生物降解的内置假体结构及其制造方法
CN200880006680A Pending CN101621971A (zh) 2007-01-19 2008-01-18 可生物降解的内置假体结构及其制造方法
CN201410343171.4A Pending CN104127270A (zh) 2007-01-19 2008-01-18 可生物降解的内置假体结构及其制造方法

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CN201410172099.3A Active CN104042375B (zh) 2007-01-19 2008-01-18 具有支承件的内置假体结构
CN201610065690.8A Pending CN105616044A (zh) 2007-01-19 2008-01-18 可生物降解的内置假体结构及其制造方法
CN201610065786.4A Pending CN105534627A (zh) 2007-01-19 2008-01-18 可生物降解的内置假体结构及其制造方法
CN200880006660.3A Active CN101636126B (zh) 2007-01-19 2008-01-18 具有支承件的内置假体结构

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN200880006680A Pending CN101621971A (zh) 2007-01-19 2008-01-18 可生物降解的内置假体结构及其制造方法
CN201410343171.4A Pending CN104127270A (zh) 2007-01-19 2008-01-18 可生物降解的内置假体结构及其制造方法

Country Status (7)

Country Link
US (6) US8182890B2 (zh)
EP (3) EP2109416A4 (zh)
JP (8) JP5489725B2 (zh)
CN (7) CN104042375B (zh)
BR (2) BRPI0806617A2 (zh)
ES (1) ES2605731T3 (zh)
WO (2) WO2008089434A2 (zh)

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US9517149B2 (en) 2004-07-26 2016-12-13 Abbott Cardiovascular Systems Inc. Biodegradable stent with enhanced fracture toughness
US8597716B2 (en) 2009-06-23 2013-12-03 Abbott Cardiovascular Systems Inc. Methods to increase fracture resistance of a drug-eluting medical device
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US20150174864A1 (en) * 2011-10-14 2015-06-25 Midsun Group Inc. Self-fusing carbon fiber silicone perforated tape
EP1834606B1 (en) * 2006-03-16 2013-04-24 CID S.p.A. Stents
US8460362B2 (en) 2006-07-20 2013-06-11 Orbusneich Medical, Inc. Bioabsorbable polymeric medical device
US7846361B2 (en) 2006-07-20 2010-12-07 Orbusneich Medical, Inc. Bioabsorbable polymeric composition for a medical device
US7959942B2 (en) 2006-10-20 2011-06-14 Orbusneich Medical, Inc. Bioabsorbable medical device with coating
US8814930B2 (en) * 2007-01-19 2014-08-26 Elixir Medical Corporation Biodegradable endoprosthesis and methods for their fabrication
US8182890B2 (en) 2007-01-19 2012-05-22 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US20130150943A1 (en) 2007-01-19 2013-06-13 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8002817B2 (en) * 2007-05-04 2011-08-23 Abbott Cardiovascular Systems Inc. Stents with high radial strength and methods of manufacturing same
WO2009018475A1 (en) * 2007-08-01 2009-02-05 Prescient Medical, Inc. Expandable prostheses for treating atherosclerotic lesions including vulnerable plaques
US8252215B2 (en) * 2008-03-31 2012-08-28 Abbott Cardiovascular Systems Inc. Method for fabricating a stent with nucleating agent
US20090269480A1 (en) * 2008-04-24 2009-10-29 Medtronic Vascular, Inc. Supercritical Fluid Loading of Porous Medical Devices With Bioactive Agents
US8206635B2 (en) * 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US10898620B2 (en) 2008-06-20 2021-01-26 Razmodics Llc Composite stent having multi-axial flexibility and method of manufacture thereof
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8765040B2 (en) 2008-08-11 2014-07-01 Abbott Cardiovascular Systems Inc. Medical device fabrication process including strain induced crystallization with enhanced crystallization
US8372332B2 (en) * 2008-08-11 2013-02-12 Abbott Cardiovascular Systems Inc. Fabricating an implantable medical device from an amorphous or very low crystallinity polymer construct
US8394317B2 (en) 2008-08-11 2013-03-12 Abbott Cardiovascular Systems Inc. Method of improving fracture toughness of implantable medical devices through annealing
US8337739B2 (en) * 2008-08-12 2012-12-25 Abbott Cardiovascular Systems Inc. Improving fracture toughness of medical devices with a stereocomplex nucleating agent
US9572692B2 (en) * 2009-02-02 2017-02-21 Abbott Cardiovascular Systems Inc. Bioabsorbable stent that modulates plaque geometric morphology and chemical composition
WO2010096654A1 (en) 2009-02-21 2010-08-26 Tyco Healthcare Group Lp Medical devices having activated surfaces
US8147744B2 (en) 2009-04-10 2012-04-03 Abbott Cardiovascular Systems Inc. Method of making a stent formed from crosslinked bioabsorbable polymer
WO2010132899A1 (en) * 2009-05-15 2010-11-18 Orbusneich Medical, Inc. Bioabsorbable polymeric compositions and medical devices
US9265633B2 (en) * 2009-05-20 2016-02-23 480 Biomedical, Inc. Drug-eluting medical implants
US9889238B2 (en) * 2009-07-21 2018-02-13 Abbott Cardiovascular Systems Inc. Biodegradable stent with adjustable degradation rate
US8889823B2 (en) 2009-07-21 2014-11-18 Abbott Cardiovascular Systems Inc. Method to make poly(L-lactide) stent with tunable degradation rate
US8119704B2 (en) * 2009-07-21 2012-02-21 Abbott Cardiovascular Systems Inc. Implantable medical device comprising copolymer of L-lactide with improved fracture toughness
US8207240B2 (en) * 2009-09-14 2012-06-26 Abbott Cardiovascular Systems Inc Method to minimize molecular weight drop of poly(L-lactide) stent during processing
PL2477583T3 (pl) * 2009-09-16 2015-08-31 Bentley Innomed Gmbh Stent wyposażony w element rozciągalny
US20110288223A1 (en) 2010-01-22 2011-11-24 Kannan Rangaramanujam M Supercritical Carbon-Dioxide Processed Biodegradable Polymer Nanocomposites
US8568471B2 (en) 2010-01-30 2013-10-29 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US8808353B2 (en) * 2010-01-30 2014-08-19 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds having a low crossing profile
TWI407942B (zh) * 2010-02-09 2013-09-11 Univ Nat Taiwan 具預防血管狹窄之心血管支架
US20130211489A1 (en) * 2010-02-10 2013-08-15 Apertomed L.L.C. Methods, Systems and Devices for Treatment of Cerebrospinal Venous Insufficiency and Multiple Sclerosis
US8685433B2 (en) 2010-03-31 2014-04-01 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
US8613880B2 (en) 2010-04-21 2013-12-24 Abbott Cardiovascular Systems Inc. Post electron beam conditioning of polymeric medical devices
WO2012015825A2 (en) 2010-07-27 2012-02-02 Incept, Llc Methods and apparatus for treating neurovascular venous outflow obstruction
EP2415489B1 (de) * 2010-08-03 2016-07-06 Biotronik AG Polylactid-beschichtetes Implantat aus einer biokorrodierbaren Magnesiumlegierung
US8539663B2 (en) 2010-08-23 2013-09-24 Abbott Cardiovascular Systems Inc. Reducing crimping damage to polymer scaffold
US20120059451A1 (en) 2010-09-08 2012-03-08 Qiang Zhang Method of Manufacturing a Polymeric Stent Having Reduced Recoil
US8920867B2 (en) * 2010-10-19 2014-12-30 Covidien Lp Methods of forming self-supporting films for delivery of therapeutic agents
US20120158123A1 (en) * 2010-12-15 2012-06-21 Biotronik Ag Polymer stent
US9296174B2 (en) 2011-01-12 2016-03-29 Compagnie Chomarat Composite laminated structures and methods for manufacturing and using the same
US8545546B2 (en) * 2011-05-13 2013-10-01 Abbott Cardiovascular Systems Inc. Bioabsorbable scaffolds made from composites
US8487017B2 (en) 2011-06-27 2013-07-16 Covidien Lp Biodegradable materials for orthopedic devices based on polymer stereocomplexes
WO2013003644A1 (en) * 2011-06-30 2013-01-03 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8726483B2 (en) 2011-07-29 2014-05-20 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US9839537B2 (en) 2012-03-07 2017-12-12 Abbott Cardiovascular Systems Inc. Bioresorbable polymer scaffold treatment of coronary and peripheral artery disease in diabetic patients
WO2013136965A1 (ja) * 2012-03-15 2013-09-19 テルモ株式会社 生体内留置用ステントおよびステントデリバリーシステム
KR101231197B1 (ko) * 2012-09-20 2013-02-07 썬텍 주식회사 고분자 스텐트
GB2512016A (en) 2012-09-24 2014-09-24 Arterius Ltd Methods
US9724219B2 (en) 2012-10-04 2017-08-08 Abbott Cardiovascular Systems Inc. Method of uniform crimping and expansion of medical devices
US10143574B2 (en) * 2013-03-14 2018-12-04 Vactronix Scientific, Llc Monolithic medical devices, methods of making and using the same
TWI510225B (zh) * 2013-06-25 2015-12-01 Univ Nat Cheng Kung Stent
US9364350B2 (en) 2013-07-09 2016-06-14 Abbott Cardiovascular Systems Inc. Stent with eased corner feature
CN105142688B (zh) 2014-02-04 2018-01-19 艾博特心血管系统公司 具有基于novolimus和丙交酯的涂层使得novolimus与涂层具有最小键合量的药物递送支架或支撑件
CN103948459B (zh) * 2014-05-27 2016-05-25 辽宁生物医学材料研发中心有限公司 一种低回弹高支撑冠状动脉可降解支架
US9480588B2 (en) 2014-08-15 2016-11-01 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9259339B1 (en) 2014-08-15 2016-02-16 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9855156B2 (en) 2014-08-15 2018-01-02 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9730819B2 (en) 2014-08-15 2017-08-15 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9381103B2 (en) * 2014-10-06 2016-07-05 Abbott Cardiovascular Systems Inc. Stent with elongating struts
JP2016077354A (ja) 2014-10-10 2016-05-16 住友ゴム工業株式会社 プレフィルドシリンジ用ガスケット
US10617847B2 (en) 2014-11-04 2020-04-14 Orbusneich Medical Pte. Ltd. Variable flexibility catheter support frame
WO2016073563A1 (en) 2014-11-04 2016-05-12 Orbusneich Medical, Inc. Progressive flexibility catheter support frame
US9931231B2 (en) 2014-12-29 2018-04-03 Cook Medical Technologies Llc Support structures for prostheses with branching portions
CN105641751B (zh) * 2016-03-09 2018-11-30 山东中恒碳纤维科技发展有限公司 一种三维编织复合材料假肢及其制备方法
US11622872B2 (en) 2016-05-16 2023-04-11 Elixir Medical Corporation Uncaging stent
EP3861961A1 (en) 2016-05-16 2021-08-11 Elixir Medical Corporation Uncaging stent
US11478348B2 (en) 2016-06-23 2022-10-25 Poly-Med, Inc. Medical implants having managed biodegradation
WO2018039444A1 (en) * 2016-08-25 2018-03-01 Mico Innovations, Llc Neurovascular stent
US10660773B2 (en) 2017-02-14 2020-05-26 Abbott Cardiovascular Systems Inc. Crimping methods for thin-walled scaffolds
US10966849B2 (en) 2017-03-08 2021-04-06 Yamaguchi University Indwelling medical device having bistable structure in lumen organ
RU2668131C9 (ru) * 2017-03-09 2018-11-21 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Ножка эндопротеза тазобедренного сустава
RU2668132C9 (ru) * 2017-03-09 2018-11-19 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Головка эндопротеза тазобедренного сустава
RU2669352C9 (ru) * 2017-03-09 2018-11-21 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Имплантат для замещения костных дефектов
RU2668130C2 (ru) * 2017-03-09 2018-09-26 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Чашка эндопротеза тазобедренного сустава
EP3605206A4 (en) * 2017-04-17 2020-03-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DISPLAY DEVICE, ELECTRONIC EQUIPMENT, AND PRODUCTION METHOD FOR A DISPLAY DEVICE
CN107137168B (zh) * 2017-06-21 2019-07-05 青岛容商天下网络有限公司 可降解可收回4d打印线型有机人体支架及其使用方法
JP7220201B2 (ja) 2017-08-11 2023-02-09 エリクシアー メディカル コーポレイション 離脱式ステント
US10555825B2 (en) 2017-11-09 2020-02-11 Abbott Cardiovascular Systems Inc. Rotation of a medical device during crimping
CN117481869A (zh) 2018-01-25 2024-02-02 爱德华兹生命科学公司 在部署后用于辅助置换瓣膜重新捕获和重新定位的递送系统
US10500078B2 (en) * 2018-03-09 2019-12-10 Vesper Medical, Inc. Implantable stent
KR102328579B1 (ko) * 2018-06-11 2021-11-18 주식회사 삼양홀딩스 열 안정성이 향상된 체내 삽입용 생분해성 의료용 장치 및 그 제조 방법
US10967556B2 (en) 2018-06-11 2021-04-06 Abbott Cardiovascular Systems Inc. Uniform expansion of thin-walled scaffolds
US10702407B1 (en) * 2019-02-28 2020-07-07 Renata Medical, Inc. Growth stent for congenital narrowings
WO2020185851A1 (en) * 2019-03-11 2020-09-17 The Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Anastomosing stent and methods of use
KR102487321B1 (ko) * 2019-04-29 2023-01-10 메디컬 앤드 파마슈티컬 인더스트리 테크놀로지 앤드 디벨럽먼트 센터 의료용 임플란트
RU2707551C1 (ru) * 2019-08-02 2019-11-28 Федеральное государственное бюджетное учреждение науки Институт органического синтеза им. И.Я. Постовского Уральского отделения Российской академии наук Способ изготовления биоразлагаемого лакопротеза
CN117618160B (zh) * 2024-01-11 2024-04-09 北京迈迪顶峰医疗科技股份有限公司 瓣膜支架、瓣膜支架的加工方法和人工瓣膜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034940A2 (en) * 2001-10-25 2003-05-01 Scimed Life Systems, Inc. Balloon expandable polymeric stent with reduced elastic recoil
CN1131074C (zh) * 2001-08-10 2003-12-17 中国人民解放军总医院 一种用于微创快速血管吻合技术的速溶支架的制备方法
CN1569270A (zh) * 2004-04-29 2005-01-26 上海瑞邦生物材料有限公司 一种表面设有药物涂层的心血管支架的制备方法

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867190A (en) * 1971-10-18 1975-02-18 American Cyanamid Co Reducing capillarity of polyglycolic acid sutures
WO1991017724A1 (en) 1990-05-17 1991-11-28 Harbor Medical Devices, Inc. Medical device polymer
NL9001984A (nl) 1990-09-10 1992-04-01 Stamicarbon Werkwijze voor het produceren van een voorwerp van een copolymeer van lactide en epsilon-caprolacton voor medische toepassingen.
CA2060635A1 (en) 1991-02-12 1992-08-13 Keith D'alessio Bioabsorbable medical implants
US5441483A (en) * 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
US5741329A (en) 1994-12-21 1998-04-21 Board Of Regents, The University Of Texas System Method of controlling the pH in the vicinity of biodegradable implants
FI98136C (fi) * 1995-09-27 1997-04-25 Biocon Oy Kudosolosuhteissa hajoava materiaali ja menetelmä sen valmistamiseksi
US6241760B1 (en) * 1996-04-26 2001-06-05 G. David Jang Intravascular stent
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5922020A (en) * 1996-08-02 1999-07-13 Localmed, Inc. Tubular prosthesis having improved expansion and imaging characteristics
US20030093143A1 (en) * 1999-03-01 2003-05-15 Yiju Zhao Medical device having surface depressions containing nitric oxide releasing compound
US5911732A (en) 1997-03-10 1999-06-15 Johnson & Johnson Interventional Systems, Co. Articulated expandable intraluminal stent
US6033433A (en) * 1997-04-25 2000-03-07 Scimed Life Systems, Inc. Stent configurations including spirals
DE29825178U1 (de) * 1997-04-25 2005-10-06 Boston Scientific Ltd., St. Michael Verbesserte Stentkonfigurationen
US6610764B1 (en) 1997-05-12 2003-08-26 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
DE19722384A1 (de) * 1997-05-28 1998-12-03 Gfe Ges Fuer Forschung Und Ent Flexible expandierbare Gefäßstütze
CA2241558A1 (en) * 1997-06-24 1998-12-24 Advanced Cardiovascular Systems, Inc. Stent with reinforced struts and bimodal deployment
US6245103B1 (en) 1997-08-01 2001-06-12 Schneider (Usa) Inc Bioabsorbable self-expanding stent
US5980564A (en) * 1997-08-01 1999-11-09 Schneider (Usa) Inc. Bioabsorbable implantable endoprosthesis with reservoir
US5964798A (en) * 1997-12-16 1999-10-12 Cardiovasc, Inc. Stent having high radial strength
US6626939B1 (en) 1997-12-18 2003-09-30 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
US6293967B1 (en) * 1998-10-29 2001-09-25 Conor Medsystems, Inc. Expandable medical device with ductile hinges
EP1020166A1 (en) * 1999-01-12 2000-07-19 Orbus Medical Technologies, Inc. Expandable intraluminal endoprosthesis
US6248363B1 (en) * 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US6224803B1 (en) 1999-04-28 2001-05-01 Advanced Cardiovascular Systems, Inc. Method of forming a thin walled member by extrusion and medical device produced thereby
US6540774B1 (en) * 1999-08-31 2003-04-01 Advanced Cardiovascular Systems, Inc. Stent design with end rings having enhanced strength and radiopacity
CN1427698A (zh) * 2000-03-09 2003-07-02 迪赛罗医疗发展有限公司 具有薄膜连接器的支架
CA2373961C (en) 2000-03-13 2009-06-02 Keiji Igaki Wire rods for vascular stents and vascular stents with the use of the same
DE10012460A1 (de) 2000-03-15 2001-09-20 Biotronik Mess & Therapieg Stent
US6527801B1 (en) 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6602282B1 (en) 2000-05-04 2003-08-05 Avantec Vascular Corporation Flexible stent structure
WO2001095834A1 (en) * 2000-06-13 2001-12-20 Scimed Life Systems, Inc. Disintegrating stent and method of making same
US20020161168A1 (en) * 2000-10-27 2002-10-31 Shalaby Shalaby W. Amorphous polymeric polyaxial initiators and compliant crystalline copolymers therefrom
US20030033007A1 (en) 2000-12-22 2003-02-13 Avantec Vascular Corporation Methods and devices for delivery of therapeutic capable agents with variable release profile
US6607548B2 (en) 2001-05-17 2003-08-19 Inion Ltd. Resorbable polymer compositions
US6585755B2 (en) 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
CN2517403Y (zh) * 2001-07-27 2002-10-23 微创医疗器械(上海)有限公司 非均一波形结构的冠状动脉支架
US6997944B2 (en) * 2001-08-13 2006-02-14 Advanced Cardiovascular Systems, Inc. Apparatus and method for decreasing stent gap size
DK1435877T3 (da) * 2001-10-15 2009-08-03 Hemoteq Ag Overtrækning af stents for at forhindre restenose
US20030088307A1 (en) * 2001-11-05 2003-05-08 Shulze John E. Potent coatings for stents
US6866805B2 (en) * 2001-12-27 2005-03-15 Advanced Cardiovascular Systems, Inc. Hybrid intravascular stent
US7029493B2 (en) 2002-01-25 2006-04-18 Cordis Corporation Stent with enhanced crossability
US7354450B2 (en) * 2002-01-30 2008-04-08 Boston Scientific Scimed, Inc. Stent with wishbone connectors and serpentine bands
CN2532867Y (zh) * 2002-03-22 2003-01-29 维科医疗器械(苏州)有限公司 零短缩结构冠状动脉扩张支架
AU2003222660A1 (en) 2002-04-18 2003-11-03 Robert S. Langer Biodegradable shape memory polymeric sutures
US7261734B2 (en) 2002-04-23 2007-08-28 Boston Scientific Scimed, Inc. Resorption-controllable medical implants
JP2006500997A (ja) * 2002-09-27 2006-01-12 メドロジックス デバイス コーポレイション 端部を改変された移植可能なステント
US7223283B2 (en) * 2002-10-09 2007-05-29 Boston Scientific Scimed, Inc. Stent with improved flexibility
JP3988619B2 (ja) * 2002-10-31 2007-10-10 東レ株式会社 ポリ乳酸系樹脂組成物およびそれからなる成形品
US20040098090A1 (en) * 2002-11-14 2004-05-20 Williams Michael S. Polymeric endoprosthesis and method of manufacture
US20050187615A1 (en) 2004-02-23 2005-08-25 Williams Michael S. Polymeric endoprostheses with enhanced strength and flexibility and methods of manufacture
US20040111144A1 (en) * 2002-12-06 2004-06-10 Lawin Laurie R. Barriers for polymeric coatings
US6863757B1 (en) 2002-12-19 2005-03-08 Advanced Cardiovascular Systems, Inc. Method of making an expandable medical device formed of a compacted porous polymeric material
US7316710B1 (en) * 2002-12-30 2008-01-08 Advanced Cardiovascular Systems, Inc. Flexible stent
US6932930B2 (en) 2003-03-10 2005-08-23 Synecor, Llc Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same
GB0310300D0 (en) 2003-05-06 2003-06-11 Univ Belfast Nanocomposite drug delivery composition
US7112216B2 (en) * 2003-05-28 2006-09-26 Boston Scientific Scimed, Inc. Stent with tapered flexibility
US6979348B2 (en) * 2003-06-04 2005-12-27 Medtronic Vascular, Inc. Reflowed drug-polymer coated stent and method thereof
CA2527975C (en) * 2003-06-13 2011-08-09 Mnemoscience Gmbh Biodegradable stents comprising a shape memory polymeric material
AU2004246998A1 (en) * 2003-06-16 2004-12-23 Nanyang Technological University Polymeric stent and method of manufacture
CN1835723B (zh) 2003-06-16 2011-06-22 洛马林达大学医学中心 可展开的多功能止血剂
DE602004014380D1 (de) * 2003-07-18 2008-07-24 Boston Scient Ltd Medizinische vorrichtungen
US8029755B2 (en) 2003-08-06 2011-10-04 Angstrom Medica Tricalcium phosphates, their composites, implants incorporating them, and method for their production
US7247166B2 (en) * 2003-09-29 2007-07-24 Advanced Cardiovascular Systems, Inc. Intravascular stent with extendible end rings
US7377939B2 (en) 2003-11-19 2008-05-27 Synecor, Llc Highly convertible endolumenal prostheses and methods of manufacture
US8157855B2 (en) * 2003-12-05 2012-04-17 Boston Scientific Scimed, Inc. Detachable segment stent
CN1242818C (zh) * 2003-12-08 2006-02-22 华中科技大学 一种可降解的复合支架材料及其制备方法
US7258697B1 (en) * 2003-12-22 2007-08-21 Advanced Cardiovascular Systems, Inc. Stent with anchors to prevent vulnerable plaque rupture during deployment
DE10361940A1 (de) 2003-12-24 2005-07-28 Restate Patent Ag Degradationssteuerung biodegradierbarer Implantate durch Beschichtung
US7709570B2 (en) 2004-04-02 2010-05-04 Alps South, LLC Surface modification of triblock copolymer elastomers
WO2005096992A1 (en) * 2004-04-02 2005-10-20 Arterial Remodelling Technologies, Inc. Polymer-based stent assembly
JP2005298617A (ja) * 2004-04-09 2005-10-27 Mitsubishi Plastics Ind Ltd 射出成形体
US8007737B2 (en) * 2004-04-14 2011-08-30 Wyeth Use of antioxidants to prevent oxidation and reduce drug degradation in drug eluting medical devices
US20050261757A1 (en) * 2004-05-21 2005-11-24 Conor Medsystems, Inc. Stent with contoured bridging element
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8268228B2 (en) 2007-12-11 2012-09-18 Abbott Cardiovascular Systems Inc. Method of fabricating stents from blow molded tubing
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
CN2768714Y (zh) * 2004-11-22 2006-04-05 微创医疗器械(上海)有限公司 一种柔软的血管支架
JP4820551B2 (ja) * 2005-01-14 2011-11-24 テルモ株式会社 生体内留置物
WO2006084141A2 (en) 2005-02-03 2006-08-10 Intarcia Therapeutics, Inc Suspension formulation of interferon
US8420113B2 (en) * 2005-02-10 2013-04-16 Cordis Corporation Biodegradable medical devices with enhanced mechanical strength and pharmacological functions
US20060193891A1 (en) * 2005-02-25 2006-08-31 Robert Richard Medical devices and therapeutic delivery devices composed of bioabsorbable polymers produced at room temperature, method of making the devices, and a system for making the devices
US7291166B2 (en) * 2005-05-18 2007-11-06 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US7622070B2 (en) 2005-06-20 2009-11-24 Advanced Cardiovascular Systems, Inc. Method of manufacturing an implantable polymeric medical device
US20070043427A1 (en) * 2005-08-19 2007-02-22 Medlogics Device Corporation Lumen-supporting stents
US20070132155A1 (en) 2005-12-13 2007-06-14 Robert Burgermeister Polymeric stent having modified molecular structures in selected regions of the hoops and method for increasing elongation at break
US20070200271A1 (en) 2006-02-24 2007-08-30 Vipul Dave Implantable device prepared from melt processing
US20070225798A1 (en) * 2006-03-23 2007-09-27 Daniel Gregorich Side branch stent
US20070233233A1 (en) * 2006-03-31 2007-10-04 Boston Scientific Scimed, Inc Tethered expansion columns for controlled stent expansion
US7594928B2 (en) * 2006-05-17 2009-09-29 Boston Scientific Scimed, Inc. Bioabsorbable stents with reinforced filaments
US20070290412A1 (en) 2006-06-19 2007-12-20 John Capek Fabricating a stent with selected properties in the radial and axial directions
EP2051673A2 (en) * 2006-06-23 2009-04-29 Boston Scientific Limited Bifurcated stent with twisted hinges
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US20080001330A1 (en) 2006-06-28 2008-01-03 Bin Huang Fabricating polymer stents with injection molding
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US9089627B2 (en) 2006-07-11 2015-07-28 Abbott Cardiovascular Systems Inc. Stent fabricated from polymer composite toughened by a dispersed phase
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US9265866B2 (en) 2006-08-01 2016-02-23 Abbott Cardiovascular Systems Inc. Composite polymeric and metallic stent with radiopacity
US20080033540A1 (en) 2006-08-01 2008-02-07 Yunbing Wang Methods to prepare polymer blend implantable medical devices
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
WO2008051867A2 (en) 2006-10-20 2008-05-02 Elixir Medical Corporation Luminal prostheses and methods for coating thereof
US20080103584A1 (en) * 2006-10-25 2008-05-01 Biosensors International Group Temporal Intraluminal Stent, Methods of Making and Using
US8182890B2 (en) 2007-01-19 2012-05-22 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8002817B2 (en) 2007-05-04 2011-08-23 Abbott Cardiovascular Systems Inc. Stents with high radial strength and methods of manufacturing same
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7666342B2 (en) 2007-06-29 2010-02-23 Abbott Cardiovascular Systems Inc. Method of manufacturing a stent from a polymer tube
US7824601B1 (en) 2007-11-14 2010-11-02 Abbott Cardiovascular Systems Inc. Process of making a tubular implantable medical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1131074C (zh) * 2001-08-10 2003-12-17 中国人民解放军总医院 一种用于微创快速血管吻合技术的速溶支架的制备方法
WO2003034940A2 (en) * 2001-10-25 2003-05-01 Scimed Life Systems, Inc. Balloon expandable polymeric stent with reduced elastic recoil
CN1569270A (zh) * 2004-04-29 2005-01-26 上海瑞邦生物材料有限公司 一种表面设有药物涂层的心血管支架的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Viscoelastic memory and self-expansion of self-reinforced bioabsorbable stents;T. V.alimaa,et.al;《Biomaterials》;20021231;第23卷;3575-3582 *

Also Published As

Publication number Publication date
JP2014195734A (ja) 2014-10-16
EP2124816A2 (en) 2009-12-02
JP2016221352A (ja) 2016-12-28
BRPI0806617A2 (pt) 2011-09-20
CN104127270A (zh) 2014-11-05
EP2124816A4 (en) 2013-01-23
CN105534627A (zh) 2016-05-04
JP5355420B2 (ja) 2013-11-27
US8182890B2 (en) 2012-05-22
EP2109416A2 (en) 2009-10-21
JP2013188588A (ja) 2013-09-26
CN104042375B (zh) 2016-08-24
US8323760B2 (en) 2012-12-04
EP2109416A4 (en) 2014-06-11
JP2015071056A (ja) 2015-04-16
EP2783710B1 (en) 2018-08-29
CN101621971A (zh) 2010-01-06
US20140350659A1 (en) 2014-11-27
WO2008089446A2 (en) 2008-07-24
US20080177373A1 (en) 2008-07-24
JP2010516347A (ja) 2010-05-20
JP5762486B2 (ja) 2015-08-12
CN105616044A (zh) 2016-06-01
EP2783710A1 (en) 2014-10-01
JP2017035511A (ja) 2017-02-16
WO2008089434A3 (en) 2008-10-09
US20120226345A1 (en) 2012-09-06
JP5489725B2 (ja) 2014-05-14
US20160067389A1 (en) 2016-03-10
EP2124816B1 (en) 2016-09-28
JP2014014698A (ja) 2014-01-30
BRPI0806623A2 (pt) 2011-09-13
US20080177374A1 (en) 2008-07-24
CN104042375A (zh) 2014-09-17
WO2008089434A2 (en) 2008-07-24
EP2124816B2 (en) 2019-08-14
US20120187606A1 (en) 2012-07-26
JP2010516348A (ja) 2010-05-20
CN104096271A (zh) 2014-10-15
CN101636126B (zh) 2014-06-04
ES2605731T3 (es) 2017-03-16
WO2008089446A3 (en) 2008-10-09
CN101636126A (zh) 2010-01-27
JP5749296B2 (ja) 2015-07-15

Similar Documents

Publication Publication Date Title
CN104096271B (zh) 可生物降解的内置假体结构及其制造方法
US8267990B2 (en) Controlled degradation of stents
US7923022B2 (en) Degradable polymeric implantable medical devices with continuous phase and discrete phase
KR100617375B1 (ko) 맥관용 스텐트
US9522503B2 (en) Methods of treatment with stents with enhanced fracture toughness
US8747878B2 (en) Method of fabricating an implantable medical device by controlling crystalline structure
US9931431B2 (en) Implantable medical devices fabricated from branched polymers
US8961862B2 (en) Method of improving fracture toughness of implantable medical devices through annealing
WO2007143030A2 (en) Method of fabricating an implantable medical device to reduce chance of late inflammatory response
JP2009532087A (ja) 連続相及び不連続相を有する分解性ポリマーの埋込み型医療デバイス
WO2009076350A1 (en) Method of fabricating a stent from blow molded tubing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant