CN103683873B - 降低电力变流器中噪声的方法及控制系统 - Google Patents

降低电力变流器中噪声的方法及控制系统 Download PDF

Info

Publication number
CN103683873B
CN103683873B CN201310359439.9A CN201310359439A CN103683873B CN 103683873 B CN103683873 B CN 103683873B CN 201310359439 A CN201310359439 A CN 201310359439A CN 103683873 B CN103683873 B CN 103683873B
Authority
CN
China
Prior art keywords
switching device
ratio
switching
configuration
switching cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310359439.9A
Other languages
English (en)
Other versions
CN103683873A (zh
Inventor
西蒙·大卫·哈特
Original Assignee
Nidec Control Techniques Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Control Techniques Ltd filed Critical Nidec Control Techniques Ltd
Publication of CN103683873A publication Critical patent/CN103683873A/zh
Application granted granted Critical
Publication of CN103683873B publication Critical patent/CN103683873B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents

Abstract

本发明提供了一种根据调制方案控制电力变流器中的开关装置从而降低电力变流器中噪声的方法和控制系统,另外还提供了一种开关电力变流器。其中,所述开关装置与直流电源耦合并在特定的切换频率提供交流输出;所述方法包括如下步骤:在每个切换周期内,在提供有限电压输出的活跃配置与提供零电压输出的非活跃配置之间切换所述开关装置;其中,在每个切换周期内,开关装置处于活跃配置的总时长与处于非活跃配置的总时长之间的比率相同,且该比率由所需的交流输出电压决定;在每个切换周期内,开关装置至少有两个处于非活跃配置的时间段,且其在所述至少两个时间段之间的比率在每个切换周期都不同。

Description

降低电力变流器中噪声的方法及控制系统
技术领域
本发明涉及一种通过调制电力变流器开关装置内的开关信号来降低电力变流器中噪声的方法、控制系统以及开关电力变流器。
背景技术
图1为众所周知的三相电力逆变器100,用于将直流电源101转换为交流输出103。图1中逆变器100包括三个独立的相:200、300和400。每一相都包括两个串联的开关:相200包括串联的开关200a和200b,相300包括串联的开关300a和300b,相400包括串联的开关400a和400b。开关200a、300a和400a与正轨105相连,开关200b、300b和400b与负轨107相连。图1中所示的每个开关都是绝缘栅双极型晶体管(IGBT)。当然,也可使用任何其它具有快速切换功能的开关。
通过对上述六个开关的开关状态的结合,可以在交流输出103上产生正弦输出电流。但是,必须对逆变器100进行控制,以避免同一相的两个开关同时处于打开状态,由此确保直流电源101不会发生短路现象。因此,当200a处于打开状态时,200b应处于关闭状态,反之亦然;当300a处于打开状态时,300b应处于关闭状态,反之亦然;当400a处于打开状态时,400b应处于关闭状态,反之亦然。由此可知,有八个开关矢量可供逆变器选择,如表1所示。表1中的矢量值分别为三个上层开关200a、300a和400a的状态及与之相对的三个下层开关200b、300b和400b的状态,其中上层开关的状态与下层开关的状态相反,以避免直流电源发生短路现象。
表1
图2以逆变器电压开关六边形描绘了表1所示的六个非零矢量和两个零电压矢量。本领域技术人员都熟知三相系统的矢量表示法,因此将不再对其进行详细说明。但一般而言,任何三相系统都可用旋转矢量VS唯一地表示,如图2所示。旋转矢量VS包括表1和图2所示的六个非零矢量的分量。可通过脉宽调制(PWM)技术更改零电压矢量V0和V7与非零矢量VS(包括V1至V6的分量)(调制指数)之间的比率,以改变交流输出103的电压。
图3显示了现有技术中,在一个切换周期内,对空间矢量脉宽进行调制的示例。每个开关200a、300a、400a的开关函数都表现为时间波形:开关处于打开状态时,取值为1;开关处于关闭状态时,取值为0。如图3所示,在第一个周期t0/2中,三个开关200a、300a、400a全都处于关闭状态(取值为0),因此产生了表1所示的矢量V0。V0是零电压矢量,因此该周期是非活跃期。在第二个周期t1中,开关200a取值为1而开关300a和400a取值为0,因此产生了非零矢量V1。在第三个周期t2中,开关200a和300a取值为1而开关400a取值为0,因此产生了非零矢量V2。最后,在第四个周期t0/2中,三个开关200a、300a、400a全都处于打开状态(取值为1),因此产生了表1所示的零电压矢量V7。因此,t1和t2属于活跃期,而t0属于非活跃期。总活跃期(即本例中的t1+t2)与总非活跃期(即本例中的t0/2+t0/2=t0)的比率决定了交流输出的输出电压。
由此产生的交流输出的波形通常具有大小为基频的整数倍的频谱分量。很大一部分可辨别的逆变器开关噪声便是由这些切换频率的分量产生的。如果输出电压存在周期性分量,则应更加重视这个问题。谐波分量也可产生机械共振,因而可能影响机械系统的正常运转。
由于上述问题及其它问题,对开关变流器的控制便成为了倍受关注的课题。为解决逆变器开关噪声问题,先后已采用多种技术。例如,使用扫描、限带白噪声或随机加权,使每个切换周期不同。这种方法是通过扩展频率来降低切换频率基本分量的峰值。但是,这种方法需在闭环电流控制系统内使用复杂的脉冲宽度调制器并不断地校正电流测量或增益。另一种方法是在较高的单式切换频率下使用注入期。在这种方法中,每隔几个标称的切换频率周期模式,具有较高切换频率的周期模式就会被交换为标称的切换频率周期模式。但是,这种方法的不足之处在于其周期通常比注入周期缓慢,因而逆变器热模型的准确度被降低。
发明内容
本发明的目的是提供一种降低电力变流器中噪声的方法、控制系统及开关电力变流器。
一方面,本发明提供了一种降低电力变流器中噪声的方法,所述方法包括控制所述电力变流器的开关装置的步骤;其中,所示开关装置与直流电源耦合并在指定的切换频率提供交流输出。该步骤包括:在每个切换周期内,在提供有限电压输出的活跃配置与提供零电压输出的非活跃配置之间切换所示开关装置;其中,在每个切换周期内,所述开关装置处于活跃配置的总时长与处于非活跃配置的总时长之间的比率相同,且该比率由所需的交流输出电压决定;其中,在每个切换周期内,所述开关装置至少有两个处于非活跃配置的时间段,且在所述至少两个时间段内的比率在每个切换周期都不同。
上述开关装置在每个切换周期处于非活跃配置的至少两个时间段之间的比率根据每个切换周期生成的随机序列改变;所述随机序列包含256个元素。
上述电力变流器包含三相电力逆变器;所述三相电力逆变器的开关装置中至少一个是绝缘栅双极型晶体管(IGBT)。
上述开关装置处于非活跃配置的至少两个时间段之间的比率倾向于其中选定开关在三相电力逆变器的每一相均打开的配置。
第二方面,本发明提供了一种降低电力变流器开关装置中噪声的控制系统,所述电力变流器包括开关装置,所述开关装置与直流电源耦合并在设定的切换频率提供交流输出,所述控制系统包含:控制器,所述控制器被配置为在每个切换周期内,在提供有限电压输出的活跃配置与提供零电压输出的非活跃配置之间切换所述开关装置;其中,在每个切换周期内,所述开关装置处于活跃配置的总时长与处于非活跃配置的总时长之间的比率相同,且该比率由所需的交流输出电压决定;以及其中,在每个切换周期内,所述开关装置至少有两个处于非活跃配置的时间段,且其在所述至少两个时间段之间的比率在每个切换周期都不同。
上述开关装置在每个切换周期处于非活跃配置的至少两个时间段之间的比率根据每个切换周期生成的随机序列不同而变化;所述随机序列包含256个元素。
上述电力变流器包含三相电力逆变器;所述三相电力逆变器的开关装置中至少一个是绝缘栅双极型晶体管(IGBT)。
上述开关装置处于非活跃配置的至少两个时间段之间的比率倾向于其中选定开关在所述三相电力逆变器的每一相均打开的配置。
第三方面,本发明还提供了一种开关电力变流器,包含开关装置,所述开关装置与直流电源耦合且在设定的切换频率提供交流输出;以及控制器,所述控制器根据调制方案切换所述开关装置,所述控制器被配置为在每个切换周期内,在提供有限电压输出的活跃配置与提供零电压输出的非活跃配置之间切换所述开关装置;其中,在每个切换周期内,所述开关装置处于活跃配置的总时长与处于非活跃配置的总时长之间的比率相同,且该比率由所需的交流输出电压决定;和其中,在每个切换周期内,所述开关装置至少有两个处于非活跃配置的时间段,且其在所述两个时间段之间的比率在每个切换周期都不同。
上述开关装置在每个切换周期处于非活跃配置的至少两个时间段之间的比率根据每个切换周期生成的随机序列不同而变化;所述随机序列包含256个元素。
上述开关电力变流器包含三相电力逆变器;所述三相电力逆变器的开关装置中至少一个是绝缘栅双极型晶体管(IGBT)。
上述开关装置处于非活跃配置的至少两个时间段之间的比率倾向于其中选定开关在所述三相电力逆变器的每一相均打开的配置。
本发明所述的方法改变了调制方案的非活跃(零电压)部分时长。根据所需的输出电压,在所有切换周期内,总非活跃时长与总活跃时长之间的比率相同。在每个切换周期内,尽管总非活跃时长一致,但所述至少两个非活跃时间段之间的比率不同。而此时切换频率的噪声峰值有所降低,并且不需要改变切换周期,也不需要交换切换频率。这种方法不需要使用复杂的脉宽调制器,不需要不断地校正电流测量或增益,也不会发生现有技术方法经常遇到的不精准问题。
本发明所述的方法尤其适用于输出电压较低的情况,这是因为开关装置处于活跃配置的总时长与处于非活跃配置的总时长之间的比率由所需的输出电压决定,而所需的输出电压又在很大程度上取决于直流母线与所需交流的峰值之间的比率。开关装置所需的输出电压越高,其处于非活跃配置的时长越短;开关装置所需的输出电压越低,其处于非活跃配置的时长越长。处于非活跃配置的时间越长,所述至少两个非活跃期之间的比率变化越大,因而该方法越有效。如果总非活跃期比总活跃期短(即电压偏高的情况),则该方法的有效性会降低。所需的交流电压通常取决于机器速度或扭矩。在全扭矩半速或低扭矩全速的情况下(如在风机、泵和传送装置中),所需的输出电压较低。
所述开关装置在每个切换周期处于非活跃配置的至少两个时间段之间的比率可能根据每个切换周期生成的随机序列改变。随机序列的有利之处在于其可减少变化的周期内容。对称调制方法(即至少在两个时间段内开关装置处于非活跃配置的时长相同)具有一定的优势,因为在第一个非活跃配置和第二个非活跃配置之间的电流(及其产生的热量)可能被平衡。使用随机序列来确定所述至少两个当开关装置处于非活跃配置的时间段之间的比率,可在不使用对称调制的情况下实现同样的平衡。
优选地,随机序列包括256个元素。由于256个元素序列的长度是2的幂,因此可在软件中轻松控制。而大于256个元素的序列会产生收益递减且需要更加显著的处理能力。当然,也可采用其他序列长度,但所选的序列长度应适合系统,具体取决于切换频率、资源和热平衡。可使用随机序列数据或频率有界白噪声数据确定指定切换周期中所述至少两个处于非活跃时间段之间的比率。
优选地,开关电力变流器包括三相电力逆变器。三相电力逆变器的开关装置包括三个相,每个相包括两个串联的开关。每个相中的一个开关与正轨相连,另一个开关与负轨相连,而输出被连接至每个相的两个开关之间。但是,电力逆变器也可不包括三相电力逆变器,本发明适用于任何多电平逆变器。
优选地,该方法采用空间矢量调制方案来控制开关电力变流器开关装置。该方法的有利之处在于其能够产生较大范围的输出电压。然而,本发明也适用于单相脉宽调制(PWM)方案。
优选地,三相电力逆变器的开关装置中至少有一个是绝缘栅双极型晶体管(IGBT)。更优选地,所有开关均是绝缘栅双极型晶体管(IGBT)。绝缘栅双极型晶体管(IGBT)具有快速切换的功能且效率极高。此外,如果使用256个元素的随机序列来确定所述至少两个当开关装置处于非活跃配置的时间段之间的比率,则在2kHz时,256个元素的序列可在128毫秒内完成。因此,每个相中上层开关和下层开关的非活跃配置之间的电流将在约每128毫秒内实现平衡,多个绝缘栅双极型晶体管(IGBT)升温也大约需要相同的时间。不仅仅是三相电力逆变器,任何逆变器都可包含绝缘栅双极晶体管(IGBT)。
在一个实施例中,开关装置处于非活跃配置的至少两个时间段之间的比率倾向于其中选定开关在三相电力逆变器的每一相均打开的配置,这是因为可通过三相电力逆变器下层(或上层)开关来测量串联电路的相电流。在这种情况下,为了提供足够的测量电流的时间,应将这些开关置于打开状态并保持一段时间。为实现此目的,比率倾向于这些开关均打开(而不是关闭)的配置。通过将随机序列设定为倾向于开关均打开(而不是关闭)的配置,即可实现上述目的。可选地,也可通过设定开关均打开的配置中的时间最小(非零)值来实现上述目的。所述倾向提供了足够的测量相电流的时间。
本发明提供的控制系统改变了调制方案的非活跃(零电压)部分。根据所需的输出电压,在所有的切换周期内,总非活跃时长与总活跃时长之间的比率都保持相同。尽管保持总非活跃时长一致,但在每个切换周期内,所述至少两个处于非活跃期的时间段之间的比率不同。此时切换频率的噪声峰值有所降低,并且不需要改变切换周期,也不需要交换切换频率。本发明采用的控制系统尤其适用于输出电压较低的情况。
上述开关装置处于非活跃配置的至少两个时间段之间的比率在每个开关周期内可能不同,具体取决于每个开关周期内生成的随机序列。随机序列的有利之处在于其可减少变化的周期内容并能实现电流平衡。优选地,随机序列包括256个元素。优选地,开关电力变流器应包括三相电力逆变器。三相电力逆变器包括三个相,每个相包括两个串联的开关。每个相中的一个开关与正轨相连,另一个开关与负轨相连,而输出被连接至每个相的两个开关之间。但是,所述开关电力变流器也可不包括三相电力逆变器,本发明适用于任何多电平逆变器。
优选地,三相电力逆变器的开关装置中至少有一个是绝缘栅双极型晶体管(IGBT)。优选地,所有开关全都是绝缘栅双极型晶体管(IGBT)。不仅仅是三相电力逆变器,任何开关装置都可采用绝缘栅双极型晶体管(IGBT)。
在一个实施例中,开关装置处于非活跃配置的至少两个时间段之间的比率倾向于其中选定开关在三相电力逆变器的每一相均打开的配置,这是因为通过三相电力逆变器的下层(或上层)开关来测量与之串联的相电流。在这种情况下,为提供充分的测量电流的时间,应将这些开关置于打开状态并保持一段时间。为实现此目的,比率应倾向于这些开关均打开(而不是关闭)的配置。通过将随机系列设定为倾向于这些开关均打开(而不是关闭)的配置,即可实现上述目的。可选地,也可通过在这些开关均打开的配置中设定其打开时间的最小(非零)值来实现上述目的。所述倾向提供了充分的相电流测量时间。
根据本发明第三方面提供的开关电力变流器中的控制器改变了调制方案的非活跃时长,根据所需的输出电压,在所有切换周期内,总非活跃时长与总活跃时长之间的比率都相同。但在每个切换周期内,所述至少两个非活跃期之间的比率不同。此时产生的切换频率对应的噪声峰值有所降低,并且无需改变切换周期,也无需交换切换频率,尤其适用于输出电压较低的情况。
开关装置在每个切换周期中处于非活跃配置的至少两个时间段之间的比率根据每个切换周期生成的随机序列不同而改变。随机序列的有利之处在于其可减少变化的周期内容并能实现电流平衡。随机序列可包括256个元素。
上述开关电力变流器可包括三相电力逆变器。但是,本发明也适用于任何多电平逆变器。
三相电力逆变器的开关中可能至少有一个是绝缘栅双极型晶体管(IGBT)。更优选地,所有开关全都是绝缘栅双极型晶体管(IGBT)。不仅仅是三相电力逆变器,任何开关装置都可采用绝缘栅双极型晶体管(IGBT)。
在一个实施例中,上述开关装置处于非活跃配置的至少两个时间段之间的比率倾向于其中选定开关在三相电力逆变器的每一相均打开的配置,这是因为可通过三相电力逆变器的下层(或上层)开关来测量与其串联的相电流。在这种情况下,为提供充分的时间测量电流,应将这些开关置于打开状态并保持一段时间。
与本发明某一方面相关的特点和优点也适用于本发明的其他方面。
附图说明
以下参考附图1至3,对现有技术进行了详细介绍,其中:
图1显示了现有技术中的三相电力逆变器;
图2显示了图1所示的三相电力逆变器的电压开关六边形;
图3显示了现有技术中,在一个切换周期内,空间矢量调制的示例。
进一步地,参考附图4至8,通过举例对本发明进行详细说明,其中:
图4显示了根据本发明一个实施例在一个切换周期内的空间矢量调制示例。
图5a显示了使用标准不对称调制技术在2kHz切换周期内输出电压的频谱组成;
图5b显示了使用本发明实施例的不对称调制在2kHz切换周期内输出电压的频谱组成;
图6a显示了使用标准不对称调制技术在3kHz切换周期内输出电压的频谱组成;
图6b显示了使用本发明实施例的不对称调制在3kHz切换周期内输出电压的频谱组成;
图7a显示了使用标准不对称调制技术在4kHz切换周期内输出电压的频谱组成;
图7b显示了使用本发明实施例的不对称调制在4kHz切换周期内输出电压的频谱组成;
图8a显示了使用标准不对称调制技术在6kHz切换周期内输出电压的频谱组成;及
图8b显示了使用本发明实施例的不对称调制在6kHz切换周期内输出电压的频谱组成。
具体实施方式
下面对优选实施方式的描述仅仅是示范性的,而绝不是对本发明及其应用或用法的限制。在各个附图中采用相同的附图标记来表示相同的部件,因此相同部件的构造将不再重复描述。
以下结合附图以及具体实施方式对本发明的技术方案做进一步说明。
如图3所示的对称调制方法,将非活跃期t0分为两个相等的部分,一半t0/2置于活跃期之前,另一半t0/2置于活跃期之后。如此一来,即可保证在每个切换周期都有一个对称切换模式。然而,本发明的发明人发现使用特定的不对称切换模式可以减少因切换周期的周期性引起的噪声。
图4显示了根据本发明一个实施例在一个切换周期内脉冲宽度空间矢量调制的示例。同样地,每个开关200a、300a、400a的切换函数都表现为时间波形:开关处于打开状态时,取值为1;开关处于关闭状态时,取值为0。如图4所示,总活跃期依然为t1+t2、而总非活跃期依然为t0。但是,在如图4所示的调制方案中,总非活跃期t0包含在活跃期前的ta和在活跃期后的tb,而ta+tb=t0。然而,ta和tb并不需要相等,因此开关模式可能不对称。改变ta与tb的比率可以降低噪声。
发明人发现在每个切换周期改变ta与tb的比率(同时确保ta+tb=t0以生成所需的输出电压)能够降低逆变器切换噪声。这一点对于低输出电压来说尤其有利,原因在于低输出电压要求较大的非活跃期t0,因而其允许ta和tb之间存在较大的差异。
对于给定的切换周期,基于256个元素的随机序列设定ta与tb的优选比率。也就是说,一个切换周期内256个元素随机二进制信号中1:0的比率确定了该切换周期内ta:tb的比率。随机序列的优势在于其可减少变化的周期内容。如图3所示的对称调制方法,将非活跃期t0分为两个相等的部分,一半t0/2置于活跃期之前,另一半t0/2置于活跃期之后。这一方法的优点是上层开关(200a,300a,400a)和下层开关(200b,300b,400b)之间可实现电流平衡。本发明这一实施例的随机序列在256个元素序列中获得ta:tb≈1:1的比率。因此在没有对称调制的情况下,这平衡了上层开关和下层开关之间的电流。
由于256个元素序列的长度是2的幂,因此其可在软件中轻松控制。而大于256个元素的序列会产生收益递减且需要更加显著的微处理器容量。此外在2kHz时,256个元素序列可在128毫秒内完成。因此,上层开关和下层开关之间的电流将在约每128毫秒实现平衡。因为这是多数绝缘栅双极型晶体管(IGBT)升温所需要的时间,所以这成为了256个元素序列的进一步优点。
尽管如此,也可以使用其他长度的序列。可选择地,使用与随机序列数据或频率有界白噪声数据确定给定切换周期中ta:tb的比率。此举的目的是减少周期内容,同时更好地实现电流平衡。
此外,通常会通过与下层开关(200b、300b、400b)串联的分流器测量相电流,因此仅可在打开下层开关(可为绝缘栅双极晶体管IGBT)时测量相电流。在如图4所示的空间矢量调制方案中,当上层开关关闭时,下层开关打开,即在ta期间而不是tb期间。因此在一些实施例中,优选ta与tb的比率权重偏重于ta。通过将随机序列设置为偏重于ta,即在256个元素序列中ta:tb≠1:1,而是偏重于ta,即可完成操作。如此一来,即可更大幅度地降低切换频率噪声。可选地,为ta设置最小值(非零)以确保可通过与下层开关串联的分流器测量相电流。这样可以保证在每个切换周期都能有良好的电流测量。无论采用哪种方式,ta与tb的比率在每个切换周期中都将不同,且不会平均为1:1,而是偏重于ta以确保可通过分流器测量电流。
图5a显示了使用标准不对称调制技术在2kHz切换周期内的输出电压;在如图5a、图6a、图7a和图8a所示的标准不对称调制技术中,为ta设定限值以保证其始终不低于通过与绝缘栅双极型晶体管串联的分流电阻来测量电流所需的时间长。如果需要的输出电压较高,那么可将tb的长度缩短至低于ta的长度,以使调制不对称。但与本发明不同,ta:tb的比率是固定的,而不是在每个切换周期都改变,且会选择性地响应随机序列。图5b显示了使用本发明一个实施例的不对称调制在2kHz切换周期内的输出电压;同样地,图6a显示了使用上述标准不对称调制技术在3kHz切换周期内的输出电压,而图6b显示了使用本发明一个实施例的不对称调制在3kHz切换周期内的输出电压。同样地,图7a显示了使用上述标准不对称调制技术在4kHz切换周期内的输出电压,而图7b显示了使用本发明一个实施例的不对称调制在4kHz切换周期内的输出电压。图8a显示了使用上述标准不对称调制技术在6kHz切换周期内的输出电压,而图8b显示了使用本发明一个实施例的不对称调制在6kHz切换周期内的输出电压。
如图5a至8b中所示,设定了一个200V的交流驱动器,其具有20Hz需求并为230V、370W的4极感应电机供电。利用Tektronix2024对图5a至图8b中产生的相位间输出进行测量和分析。示波器使用具有2048个点的矩形快速傅里叶变换(FFT)滤波器。在示波器中对输入电压进行滤波前,对其进行采样,但不用20MHz频宽的输入滤波器进行平均。图5至图8中所示的波集中在切换频率上,其中图5a和5b为2kHz、图6a和6b为3kHz、图7a和7b为4kHz、图8a和8b为6kHz。
通过分别比较图5a和图5b、6a和图6b、图7a和图7b、图8a和图8b,可发现与标准不对称调制技术相比,本发明实施例的不对称调制技术的效果在于降低切换频率的幅度并扩展切换频率的频谱。通常,切换频率基波分量的大小降低了50%(从35.5VRMS降至17.8VRMS)。效果在很大程度上取决于调制指数,即影响的强度取决于活跃时长和非活跃时长之间的比率,所述活跃时长和非活跃时长的比率可确定输出电压。如前所述,在低电压输出时作用效果较大,这是因为低电压输出具有可改变的较大的非活跃时长。此外,切换频率的二次谐波几乎不变。由此可知,与现有技术相比,本发明可降低切换频率的噪声峰值,且无需改变切换周期或在切换频率间进行交换。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (12)

1.一种降低电力变流器中噪声的方法,其特征在于,所述方法包括控制所述电力变流器的开关装置的步骤;所述开关装置与直流电源耦合,并在设定的切换频率提供交流输出,该步骤包括:
在每个切换周期内,在提供有限电压输出的活跃配置与提供零电压输出的非活跃配置之间切换所述开关装置;
其中,在每个切换周期内,所述开关装置处于活跃配置的总时长与处于非活跃配置的总时长之间的比率相同,且该比率由所需的交流输出电压决定;
其中,在每个切换周期内,所述开关装置至少有两个处于非活跃配置的时间段,且在所述两个处于非活跃配置的时间段之间的比率在每个切换周期都不同。
2.根据权利要求1所述的方法,其特征在于,所述开关装置在每个切换周期处于非活跃配置的至少两个时间段之间的比率根据每个切换周期生成的随机序列改变;所述随机序列包含256个元素。
3.根据权利要求1或2所述的方法,其特征在于,所述电力变流器包含三相电力逆变器;所述三相电力逆变器的开关装置中至少一个是绝缘栅双极型晶体管IGBT。
4.根据权利要求3所述的方法,其特征在于,所述开关装置处于非活跃配置的至少两个时间段之间的比率倾向于其中选定开关在三相电力逆变器的每一相均打开的配置。
5.一种降低电力变流器开关装置中噪声的控制系统,所述开关装置与直流电源耦合并在设定的切换频率提供交流输出,所述控制系统包含:控制器,所述控制器被配置为在每个切换周期内,在提供有限电压输出的活跃配置与提供零电压输出的非活跃配置之间切换所述开关装置;
其中,在每个切换周期内,所述开关装置处于活跃配置的总时长与处于非活跃配置的总时长之间的比率相同,且该比率由所需的交流输出电压决定;以及,
其中,在每个切换周期内,所述开关装置至少有两个处于非活跃配置的时间段,且其在所述两个处于非活跃配置的时间段之间的比率在每个切换周期都不同。
6.根据权利要求5所述的控制系统,其特征在于,所述开关装置在每个切换周期处于非活跃配置的至少两个时间段之间的比率根据每个切换周期生成的随机序列不同而变化;所述随机序列包含256个元素。
7.根据权利要求5或6所述的控制系统,其特征在于,所述电力变流器包含三相电力逆变器;所述三相电力逆变器的开关装置中至少一个是绝缘栅双极型晶体管IGBT。
8.根据权利要求7所述的控制系统,其特征在于,所述开关装置处于非活跃配置的至少两个时间段之间的比率倾向于其中选定开关在所述三相电力逆变器的每一相均打开的配置。
9.一种开关电力变流器,包含:
开关装置,所述开关装置与直流电源耦合且在设定的切换频率提供交流输出;以及
控制器,所述控制器根据调制方案切换所述开关装置,所述控制器被配置为在每个切换周期内,在提供有限电压输出的活跃配置与提供零电压输出的非活跃配置之间切换所述开关装置;
其中,在每个切换周期内,所述开关装置处于活跃配置的总时长与处于非活跃配置的总时长之间的比率相同,且该比率由所需的交流输出电压决定;和
其中,在每个切换周期内,所述开关装置至少有两个处于非活跃配置的时间段,且其在所述两个处于非活跃配置的时间段之间的比率在每个切换周期都不同。
10.根据权利要求9所述的开关电力变流器,其特征在于,所述开关装置在每个切换周期处于非活跃配置的至少两个时间段之间的比率根据每个切换周期生成的随机序列不同而变化;所述随机序列包含256个元素。
11.根据权利要求9或10所述的开关电力变流器,其特征在于,所述开关电力变流器包含三相电力逆变器;所述三相电力逆变器的开关装置中至少一个是绝缘栅双极型晶体管IGBT。
12.根据权利要求11所述的开关电力变流器,其特征在于,所述开关装置处于非活跃配置的至少两个时间段之间的比率倾向于其中选定开关在所述三相电力逆变器的每一相均打开的配置。
CN201310359439.9A 2012-08-20 2013-08-16 降低电力变流器中噪声的方法及控制系统 Expired - Fee Related CN103683873B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1214860.7A GB2505189B (en) 2012-08-20 2012-08-20 Modulation of switching signals in power converters
GB1214860.7 2012-08-20

Publications (2)

Publication Number Publication Date
CN103683873A CN103683873A (zh) 2014-03-26
CN103683873B true CN103683873B (zh) 2016-07-20

Family

ID=47017072

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201310359439.9A Expired - Fee Related CN103683873B (zh) 2012-08-20 2013-08-16 降低电力变流器中噪声的方法及控制系统
CN201320503259.9U Withdrawn - After Issue CN203574532U (zh) 2012-08-20 2013-08-16 降低电力变流器中噪声的控制系统及开关电力变流器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201320503259.9U Withdrawn - After Issue CN203574532U (zh) 2012-08-20 2013-08-16 降低电力变流器中噪声的控制系统及开关电力变流器

Country Status (4)

Country Link
US (1) US8958222B2 (zh)
CN (2) CN103683873B (zh)
GB (1) GB2505189B (zh)
IN (1) IN2013MU02213A (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2505189B (en) * 2012-08-20 2020-01-15 Nidec Control Techniques Ltd Modulation of switching signals in power converters
US9407561B2 (en) 2013-06-19 2016-08-02 Huawei Technologies Co., Ld. Systems and methods for traffic engineering in software defined networks
GB2516683B (en) * 2013-07-30 2016-03-02 Control Tech Ltd Modulation of switching signals in power converters
US9537427B2 (en) * 2014-05-30 2017-01-03 Hamilton Sundstrand Corporation Pulse-width modulation control of paralleled inverters
CN107623477B (zh) * 2017-08-22 2021-01-08 长虹华意压缩机股份有限公司 一种降低变频驱动器噪声的方法
GB2601163B (en) 2020-11-20 2023-02-08 Yasa Ltd Method and apparatus for generating a three-phase voltage
GB2605557B (en) 2020-12-23 2023-05-24 Yasa Ltd A method and apparatus for generating a three-phase voltage
GB2602338B (en) * 2020-12-23 2023-03-15 Yasa Ltd A Method and Apparatus for Cooling One or More Power Devices
GB2608996A (en) 2021-07-15 2023-01-25 Yasa Ltd Cooling apparatus
GB2616645A (en) 2022-03-16 2023-09-20 Yasa Ltd A voltage converter and method of converting voltage
GB2620578A (en) 2022-07-11 2024-01-17 Yasa Ltd A voltage converter and method of converting voltage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204649B1 (en) * 2000-03-16 2001-03-20 Micrel Incorporated PWM regulator with varying operating frequency for reduced EMI
US6972534B1 (en) * 2004-09-03 2005-12-06 General Motors Corporation Delay compensation for stable current regulation when using variable-delay random PWM switching
CN1860674A (zh) * 2004-08-27 2006-11-08 三菱电机株式会社 3相pwm信号发生装置
CN102332815A (zh) * 2011-09-14 2012-01-25 深圳航天科技创新研究院 一种抑制模数转换噪声的方法及电路
CN203574532U (zh) * 2012-08-20 2014-04-30 控制技术有限公司 降低电力变流器中噪声的控制系统及开关电力变流器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043996A (en) * 1999-02-03 2000-03-28 General Electric Company Method and apparatus for reducing monotonic audible noise in a power conversion system
JP2002291284A (ja) * 2001-03-26 2002-10-04 Toshiba Kyaria Kk 電動機の電流検出方法及び制御装置
US6600669B2 (en) * 2001-06-27 2003-07-29 The Board Of Regents Of The University And Community College System Of Nevada, On Behalf Of The University Of Nevada At Reno Random pulse width modulation method and device
US6819078B2 (en) * 2002-10-15 2004-11-16 International Rectifier Corporation Space vector PWM modulator for permanent magnet motor drive
WO2006001169A1 (ja) * 2004-06-25 2006-01-05 Matsushita Electric Industrial Co., Ltd. インバータ装置およびこれを搭載した車両用空調装置
ATE476779T1 (de) * 2006-01-23 2010-08-15 Abb Oy Verfahren zum starten von pulsbreitmodulation
JP4696146B2 (ja) * 2008-06-27 2011-06-08 株式会社日立製作所 断線検出方法および電力変換装置
JP4390010B1 (ja) * 2008-07-01 2009-12-24 ダイキン工業株式会社 直接形変換装置及びその制御方法
US7738267B1 (en) * 2009-01-07 2010-06-15 Rockwell Automation Technologies, Inc. Systems and methods for common-mode voltage reduction in AC drives
IT1394448B1 (it) * 2009-05-11 2012-06-15 Ansaldo Energia Spa Dispositivo e metodo di pilotaggio di una macchina elettrica per l'abbattimento e il mascheramento di emissioni acustiche distintive
WO2011003220A1 (en) * 2009-07-09 2011-01-13 Texas Instruments Incorporated Inverter current measurement using shunt resistor
JP4671000B1 (ja) * 2009-09-28 2011-04-13 ダイキン工業株式会社 相電流検出装置、及びそれを用いた電力変換装置
JP5116785B2 (ja) * 2010-02-25 2013-01-09 株式会社日立製作所 交流電動機の駆動装置及び電動機車両
JP5045799B2 (ja) * 2010-08-27 2012-10-10 株式会社デンソー 電力変換装置、駆動装置、及び、これを用いた電動パワーステアリング装置
US8503207B2 (en) * 2010-09-29 2013-08-06 Rockwell Automation Technologies, Inc. Discontinuous pulse width drive modulation method and apparatus for reduction of common-mode voltage in power conversion systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204649B1 (en) * 2000-03-16 2001-03-20 Micrel Incorporated PWM regulator with varying operating frequency for reduced EMI
CN1860674A (zh) * 2004-08-27 2006-11-08 三菱电机株式会社 3相pwm信号发生装置
US6972534B1 (en) * 2004-09-03 2005-12-06 General Motors Corporation Delay compensation for stable current regulation when using variable-delay random PWM switching
CN102332815A (zh) * 2011-09-14 2012-01-25 深圳航天科技创新研究院 一种抑制模数转换噪声的方法及电路
CN203574532U (zh) * 2012-08-20 2014-04-30 控制技术有限公司 降低电力变流器中噪声的控制系统及开关电力变流器

Also Published As

Publication number Publication date
GB2505189B (en) 2020-01-15
IN2013MU02213A (zh) 2015-06-19
GB2505189A (en) 2014-02-26
GB201214860D0 (en) 2012-10-03
US20140049999A1 (en) 2014-02-20
CN103683873A (zh) 2014-03-26
CN203574532U (zh) 2014-04-30
US8958222B2 (en) 2015-02-17

Similar Documents

Publication Publication Date Title
CN103683873B (zh) 降低电力变流器中噪声的方法及控制系统
US8363433B2 (en) Hybrid conditioner for a power system
Sabarad et al. Comparative analysis of SVPWM and SPWM techniques for multilevel inverter
US20150036400A1 (en) Modulation Of Switching Signals In Power Converters
CN110323991A (zh) 向多相负载提供多相电流的功率模块和方法
US11646676B2 (en) Method and apparatus for generating a three-phase voltage
EP2936671A1 (en) Auxiliary resonant commutated pole converter with voltage balancing circuit
Dahono et al. Input ripple analysis of five-phase pulse width modulated inverters
CN103929080A (zh) 多电平逆变器
Guo et al. Modulation scheme for delta-type current source rectifier to reduce input current distortion
Zhang Investigation of switching schemes for three-phase four-leg voltage source inverters
Profumo et al. Space vector and sinusoidal PWM techniques comparison keeping in account the secondary effects
CN112313863A (zh) 用于有源谐波滤波器的单级两电平脉冲宽度调制策略
Shankar et al. Performance analysis of three phase voltage source inverter using PWM and SPWM techniques
CN106033947B (zh) 驱动三相交流电机的三相逆变电路及其矢量调制控制方法
Arvindan et al. Investigation of harmonic distortion in line and load currents of the sinusoidal pulse-width modulated single-phase AC chopper
Yang et al. Individual DC voltage balancing method at zero current mode for cascaded H-bridge based static synchronous compensator
Eltamaly et al. Performance evaluation of three-phase induction motor under different ac voltage control strategies’ Part II’
Rahman et al. Implementation of programmed modulated carrier HCC based on analytical solution for uniform switching of voltage source inverters
Jussila Comparison of space-vector-modulated direct and indirect matrix converters in low-power applications
Vivek et al. A novel approach on power quality improvement by multi-carrier multilevel inverter topology
Patin Power Electronics Applied to Industrial Systems and Transports, Volume 2: Power Converters and their Control
Jacobina et al. Reduced switch count multi-motor drive systems
Chitra et al. Bus clamping PWM for three level neutral point clamped inverters
Harish et al. Analysis of Five Leg Voltage Source Inverter Fed Dual Motor Drive System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: British Powys

Patentee after: Nideke Control Technology Co. Ltd.

Address before: British Powys

Patentee before: Control Tech Ltd

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160720

Termination date: 20200816