CN101821322A - 制备量子点掺杂的聚合物微珠的系统和方法 - Google Patents

制备量子点掺杂的聚合物微珠的系统和方法 Download PDF

Info

Publication number
CN101821322A
CN101821322A CN200880103911A CN200880103911A CN101821322A CN 101821322 A CN101821322 A CN 101821322A CN 200880103911 A CN200880103911 A CN 200880103911A CN 200880103911 A CN200880103911 A CN 200880103911A CN 101821322 A CN101821322 A CN 101821322A
Authority
CN
China
Prior art keywords
focusing
nozzle
microballon
cell
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880103911A
Other languages
English (en)
Other versions
CN101821322B (zh
Inventor
S·福涅尔比杜兹
沃伦·谢·沃·尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIO Corp
Original Assignee
FIO Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIO Corp filed Critical FIO Corp
Publication of CN101821322A publication Critical patent/CN101821322A/zh
Application granted granted Critical
Publication of CN101821322B publication Critical patent/CN101821322B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B20/00Methods specially adapted for identifying library members
    • C40B20/04Identifying library members by means of a tag, label, or other readable or detectable entity associated with the library members, e.g. decoding processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/005Beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/0054Means for coding or tagging the apparatus or the reagents
    • B01J2219/00547Bar codes
    • B01J2219/005513-dimensional
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/0054Means for coding or tagging the apparatus or the reagents
    • B01J2219/00572Chemical means
    • B01J2219/00576Chemical means fluorophore
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

在形成微珠的方法和系统中,聚合物溶液包括溶解在溶剂中的粒子和聚合物。聚合物溶液料流流入小室中。在小室中,聚焦液体与聚合物料流接触,并使聚合物料流聚焦。聚焦液体和被聚焦的聚合物料流,作为单流料流,从小室中流出。悬垂的小滴从单流料流的前端滴下形成微珠。聚焦液体与聚合物溶液反应,在微珠的表面形成用于结合生物识别分子的官能团。在该系统中,流动聚焦装置包括流动聚焦体定形形成的小室。还公开了依据本方法和系统形成的微珠。

Description

制备量子点掺杂的聚合物微珠的系统和方法
技术领域
本发明涉及一般用作诊断工具的聚合物微珠检测领域,尤其是涉及,利用直接的和可控的流体制备可识别粒子,优选纳米粒子,更优选量子点掺杂的聚合物微珠的方法和系统。
背景技术
检测和/或表征宿主中的疾病和/或病痛是一个复杂的过程,其一般包括一种或一种以上的病源(例如,病原体)的识别。也可能常常存在需要和/或期望的检测、表征和/或识别一种或更多的毒物、毒素和/或遗传表达因素。
基本上球状颗粒(又名微球体或微珠)担负着可识别标记和/或印记的作用,口语叫做“条形码微珠”,可以用于与疾病相关的指标、与毒素相关的指标、和/或与基因相关的指标的平行多元分析和/或识别。条形码微珠也可以预先共轭到用于一种或更多具体指标的生物识别分子(“BRMs”)上,例如,共轭到具有亲和能的分子上,和/或能够影响生物识别分子。不同的指标可以结合到相应的与条形码微珠共轭的生物识别分子上,以致能够进行指标的识别。
染料标记的荧光微球体早已被认为是传统的微阵列的潜在替换物,因为,它们已经允许用于多元颜色的检测且在指标选择方面检测灵活、稍改进的结合率、和/或降低了产品的成本。基于染料标记的荧光微珠阵列已经允许使用不同大小的微珠和/或不同颜色的微珠,以便使与具体的原生质有关的不同微珠粒子被分别识别成为可能。基于染料标记的荧光微珠的功能性可以,然而,在此以前严重的依赖于一种或更多的使用的微球体的性质(例如,大小、稳定性、均一性、和/或留住荧光染料的能力)。
早先,聚合物染料标记的荧光微球体已经是许多广泛使用的微球体系中的其中之一。聚合物母体有利地保护了来自外部的淬灭剂、光褪色和/或溶剂的极性的作用、pH值和/或离子强度对植入的染料的影响,也可能同时提供了用于与不同的化合物结合的表面活性官能团,且不会对该微球体的荧光性质带来过度的负面影响。
不幸的是,然而,还没有发展出任何一种简单的用于大量的制备标记的和/或印记的、具有均一定形、均一分布和/或荧光性质可控的聚合物微珠的一步制备法。
而且,在多元诊断分析中使用聚合物微珠作为探针,其中微珠是用来结合到具体的靶上,不只要求各种形式的微珠可以被检测到,而且要求它们彼此可以互相区分。这种条形码可以同时被嵌入具有纳米尺寸荧光基团的珠子中,例如量子点(QD,QDs)。
量子点是可以表现出大小可调且其组合物可调可以均匀和/或窄频带宽度发射荧光的半导体纳米粒子。量子点一般表现出通常在离散的微粒中或在成块的固体中观察不到的光学和/或电子学性质。量子点的这些性质归因于其外形大小(例如,它们一般小于激子玻尔半径)。结果,量子限制会导致量子点呈现出其某些独特的(依赖于大小的)性质。
尽管对于本发明的工作不是必要的,一般仍认为,随着量子点越来越小,带隙能量会增大,光量子放射的能量也增加。例如,发射蓝光的量子点如果不是最小也可能是发射可见光的量子点中尺寸最小的一个。相反,量子点的尺寸越大,带隙能量越小。由更大的量子点发射的荧光的颜色,因此,通常位于可见光谱的红端。
除了光学可调性以外,量子点还具有更宽的激发幅面和窄的、均匀的发射光谱。这些特点,连同其它的一起,可以使其更好的适合于光学多通道和/或用于与光学条形码技术联合。
充分表征的量子点的某些宽泛的变化在此是可用的。通常由元素周期表中IIB-VIB族、IIIB-VB族和/或IVB-IVB族的元素微粒组成。量子点的核心通常可以用来自具有比其核心的带隙能量更大的二级半导体(secondsemiconductor)的覆盖(cap)形成钝化。例如,IIB-VIB族元素的组合有时适合二级半导体。一种普遍的量子点可以由ZnS覆盖的CdSe核心组成。
与有机染料相比,量子点具有相近的和/或微低的量子收率。量子点的这个特点可以由于其某些更宽的激发幅面、更高的消光系数和/或更加低的光致褪色而被抵偿。量子点依赖于其尺寸的特点,与染料相比可以使其更好的使用,然而,使其制备更难操作。
量子点与聚合物微珠的结合,可以作为有机染料的替代物,可以创造额外的制造业难题和/或可以提高对高质量、均一的和/或稳定的聚合物珠子的需要。
相应的,需要和/或必须提供一种允许大批生产聚合物微珠的方法和/或系统。优选,上述系统和/或方法可以允许量子点的结合和/或用于控制各种参数,下述:(i)珠子的直径,(ii)单分散度,(iii)珠子的表面形态,和/或(iv)生产率,例如,高生产量。
现有技术中用于将量子点封入预先形成的聚苯乙烯微珠的方法包括使微珠在量子点存在下在有机溶剂中膨胀。用这种方式,量子点可以扩散到该聚合物基质中。微珠随后可以通过蒸发有机溶剂而缩小,从而使得量子点“陷进”内部。现有技术的方法的主要缺点包括很难控制量子点在珠子内部的密度和/或量子点在聚合物基质中的分散。
用于制备掺杂量子点的聚合物微珠的其它生产方法早先包括,例如,间歇式聚合合成。在上述技术中,聚合基本上与量子点的结合同时发生。这类方法遇到的问题包括很难控制珠子的直径和/或缺乏单分散性。
流动聚焦技术早先就已经用于制备染料标记的荧光聚合物微球体(A.M.Ganan-Calvo等,International Journal of Pharmaceutics 324(2006)19-26)。许多美国专利参考文献一般也涉及用流动聚焦技术制备染料标记的荧光聚合物微球体,包括以下文献:授权的US专利No.6,119,953(Ganan-Calvo),公开的US专利申请No.10/649,376(Ganan-Calvo),和公开的US专利申请No.11/615,732(Ganan-Calvo)。然而,在此之前,如何应用上述流动聚焦技术制造插入了纳米粒子(例如,尤其是量子点和/或磁性纳米粒子)的聚合物微珠,尤其,是用一步法制备,对于本领域普通技术人员来说并不是那么容易显而易见的。
在这一点上其本身反而存在许多问题。具体的说,考虑到需要将量子点插入到聚合物微珠中,流动聚焦方法在某些技术上迄今都是非常失败的,例如,量子点在所选的溶剂中的溶解性和稳定性,聚合物的溶解性及其与量子点/溶剂体系的兼容性。
流动聚焦技术存在的一个非常突出的缺点是其一般无法解决量子点掺杂的聚合物微珠如何被设计成随后共轭到生物识别分子上。出于该考虑,所选的聚合物不仅要可溶于量子点/溶剂系统(还不会导致量子点在溶液中沉淀析出),而且所选的聚合物必须具备能够提供形成的微珠表面具有合适的功能性,例如,能与生物识别分子共轭的结构特征。优选提供一步法得到功能性表面,以便有利于除去珠子的任何后来的在其起初合成之后另外需要的功能。
过去,已有的微珠的表面都是用羧酸官能团来功能化的,因为这些基团很容易与BRM的氨基发生耦合,以便BRM与珠子的表面形成共价键。然而,现有技术中在其重复单元存带有羧酸的聚合物,在溶解性方面有困难,因为其亲水性太强而不能溶解到溶剂中,即无法与量子点兼容。
因此,依据本发明的一个优选方式的目的是提供一种形成微珠的方法和/或系统。
依据本发明的一个优选方式的目的是提供一种形成聚合物微珠的方法和/或系统。
依据本发明的一个优选方式的目的是提供一种形成表面功能化的聚合物微珠的方法和/或系统。
依据本发明的一个优选方式的目的是提供一种形成表面功能化的条形码聚合物微珠的方法和/或系统。
依据本发明的一个优选方式的目的是提供一种形成表面功能化的纳米粒子掺杂的聚合物微珠的方法和/或系统。
依据本发明的一个优选方式的目的是提供一种形成表面功能化的量子点掺杂的聚合物微珠的方法和/或系统。
依据本发明的一个优选方式的目的是提供一种形成聚合物微珠的方法和/或系统,其可以避免和/或克服一种或多种以前与聚合物微珠的大规模制备相关的问题。
依据本发明的一个优选方式的目的是提供用于具有均一的定形、均匀的分布和/或可控的易于鉴别的性质的条形码聚合物微珠的大规模制备的一步方法和/或系统。
本发明的目的是避免或减少一个或更多的上述与现有技术有关的缺点,和/或实现一个或更多上述本发明的目的。
发明内容
依据本发明,公开了一种形成微珠的方法。该方法包括步骤(a)、(b)、(c)、(d)和/或(e)。在步骤(a)中,聚合物溶液的聚合物料流,流入到流动聚焦体的内部小室中。该聚合物溶液包括溶解在溶剂中的粒子和聚合物。在步骤(b)中,聚焦液体流入小室中。聚焦液体能够与聚合物溶液反应形成适合与生物识别分子结合的官能团。在步骤(c)中,聚焦液体被引入小室中并与聚合物料流接触,以便聚焦该聚合物料流。在步骤(d)中,该聚焦液体和聚焦的聚合物料流聚焦在一起流动,作为单流料流,从小室中流出。在步骤(e)中,悬垂的液滴从单流料流的前端部分断开从而形成微珠。每个微珠结合组合成一套的可识别粒子。该聚焦液体与聚合物溶液反应,在每个微珠的表面形成一个或更多的官能团,以便微珠适合于与生物识别分子结合。
依据本发明一个优选方式的一个方面,步骤(b)可以优选基本上与步骤(a)同时进行,但不是必需的。
依据本发明一个优选方式的一个方面,在步骤(d)中,在单流料流中,聚焦液体可以优选其基本上包裹着聚合物料流,但不是必需的。
依据本发明一个优选方式的一个方面,该方法可以优选在步骤(e)后还包括步骤(f),但不是必需的。在步骤(f)中,微珠可以优选被收集在包含液槽的容器中,但不是必需的。
依据本发明一个优选方式的一个方面,在步骤(f)中,液槽可以优选被搅拌和/或微珠可以优选允许其固化。
依据本发明一个优选方式的一个方面,该方法可以优选在步骤(e)后还括步骤(g),但不是必需的。在步骤(g)中,微珠可以优选允许其固化,但不是必需的,可以优选从液槽中回收,但不是必需的。
依据本发明一个优选方式的一个方面,在步骤(g)中,微珠可以优选通过离心作用回收,但不是必需的。
依据本发明一个优选方式的一个方面,该方法可以优选在步骤(a)之前,还包括预处理步骤,但不是必需的,优选通过将粒子和聚合物溶解在溶剂中形成聚合物溶液,但不是必需的。
依据本发明一个优选方式的一个方面,该方法可以优选在步骤(a)之前,还包括预处理步骤,但不是必需的,优选通过首先将粒子溶解在溶剂中形成聚合物溶液,但不是必需的,更优选将聚合物溶解在溶剂中,但不是必需的。
依据本发明一个优选方式的一个方面,在步骤(a)中,溶剂可以优选包括有机溶剂,但不是必需的。
依据本发明一个优选方式的一个方面,在步骤(a)中,聚合物可以优选基本上是疏水的,但不是必需的。
依据本发明一个优选方式的一个方面,在步骤(a)中,聚合物可以优选包括聚苯乙烯粉末和/或其衍生物,但不是必需的。
依据本发明一个优选方式的一个方面,在步骤(a)中,聚合物可以优选包括聚苯乙烯-酸酐共聚物,但不是必需的。
依据本发明一个优选方式的一个方面,在步骤(a)中,聚苯乙烯-酸酐共聚物可以优选包括聚苯乙烯-马来酸酐共聚物,但不是必需的。
依据本发明一个优选方式的一个方面,官能团可以优选在步骤(a)中被保护,但不是必需的。该官能团可以优选在聚焦液体与聚合物溶液反应之后被去保护,但不是必需的。
依据本发明一个优选方式的一个方面,官能团可以优选包括羧酸基,但不是必需的。
依据本发明一个优选方式的一个方面,羧酸基可以优选在步骤(a)中被保护,但不是必需的。该羧酸基可以优选在聚焦液体与聚合物溶液反应之后被去保护,但不是必需的。
依据本发明一个优选方式的一个方面,在步骤(b)中,聚焦液体可以优选包括水,但不是必需的。羧酸基可以优选通过与水的水解被去保护,但不是必需的。
依据本发明一个优选方式的一个方面,在步骤(a)中,粒子可以优选,但不是必需的,包括荧光基团。
依据本发明一个优选方式的一个方面,在步骤(a)中,粒子可以优选,但不是必需的,包括纳米粒子。
依据本发明一个优选方式的一个方面,在步骤(a)中,粒子可以优选,但不是必需的,包括量子点。
依据本发明一个优选方式的一个方面,在步骤(a)中,聚合物溶液可以优选,但不是必需的,包括一种或更多类型的量子点的组合。该量子点与每个微珠结合的组合成一套的可识别粒子可以优选,但不是必需的,适合于,在辐射后,发射出一个或更多基于颜色和/或强度的可识别的光谱信号。
依据本发明一个优选方式的一个方面,在步骤(a)中,粒子可以优选,但不是必需的,包括量子点和磁性纳米粒子的组合。
依据本发明一个优选方式的一个方面,在步骤(d)中,单流料流可以优选,但不是必需的,从小室中流出,进入聚焦喷嘴。在步骤(e)中,该单流料流可以优选,但不是必需的,从聚焦喷嘴中流出。每个微珠的湿直径(dg)可以优选,但不是必需的,直接取决于步骤(e)中聚合物料流的直径。
依据本发明一个优选方式的一个方面,每个微珠的湿直径(dg)可以优选,但不是必需的,根据下述方程决定:
dg=1.89dj
其中dj可以优选是步骤(e)中聚合物料流的直径。
依据本发明一个优选方式的一个方面,在步骤(d)中,单流料流可以优选,但不是必需的,从小室中流出,进入聚焦喷嘴。在步骤(e)中,该单流料流可以优选,但不是必需的,从聚焦喷嘴中流出。步骤(e)中聚合物料流的直径(dj)可以优选,但不是必需的,取决于步骤(e)中聚焦喷嘴的直径、步骤(a)中聚合物溶液的密度和/或流速和/或步骤(b)中聚焦液体的密度和/或流速。
依据本发明一个优选方式的一个方面,步骤(e)中聚合物料流的直径(dj)可以优选,但不是必需的,根据下述方程决定:
d j = D [ 1 + ( ρ 2 ρ 1 ) 1 / 2 ( Q 2 Q 1 ) ] - 1 / 2
其中D可以优选是步骤(e)中出口喷嘴的直径,ρ2可以优选是步骤(b)中聚焦液体的密度,ρ1可以优选是步骤(a)中聚合物溶液的密度,Q2可以优选是步骤(b)中聚焦液体的流速,和/或Q1可以优选是步骤(a)中聚合物溶液的流速。
依据本发明一个优选方式的一个方面,每个微珠的湿直径(dg)可以优选,但不是必需的,直接取决于步骤(e)中聚合物料流的直径。每个微珠的湿直径(dg)可以优选,但不是必需的,根据下述方程决定:
dg=1.89dj
其中dj是步骤(e)中聚合物料流的直径。步骤(a)中聚合物溶液的密度(ρ1),步骤(b)中聚焦液体的密度(ρ2),和步骤(e)中出口喷嘴的直径(D),可以优选预先确定,但不是必需的。当聚合物溶液流入小室的流速(Qi)约为每小时1毫升(ml/h),聚焦液体流入小室的流速(Q2)约为每小时180毫升(ml/h)时,该方法可以优选,但不是必需的,形成的微珠的直径约为6微米(μm)。
依据本发明一个优选方式的一个方面,每个微珠的湿直径(dg)可以优选,但不是必需的,直接取决于步骤(e)中聚合物料流的直径。每个微珠的湿直径(dg)可以优选,但不是必需的,根据下述方程决定:
dg=1.89dj
其中dj可以优选是步骤(e)中聚合物料流的直径。步骤(a)中聚合物溶液的密度(ρ1),步骤(b)中聚焦液体的密度(ρ2),和步骤(e)中出口喷嘴的直径(D),可以优选预先确定,但不是必需的。当聚合物溶液流入小室的流速(Q1)约为每小时0.5毫升(ml/h),聚焦液体流入小室的流速(Q2)约为每小时180毫升(ml/h)时,该方法可以优选,但不是必需的,操作形成的微珠的直径约为5微米(μm)。
依据本发明一个优选方式的一个方面,在步骤(a)之前,聚合物溶液的浓度可以优选,但不是必需的,以重量-重量百分数计约为0.04(4wt%)。
依据本发明一个优选方式的一个方面,该方法可以优选,但不是必需的,还包括,优选在步骤(a)之前,缩小聚合物料流的横截面使一级聚合物变窄的步骤。
依据本发明一个优选方式的一个方面,该方法可以优选,但不是必需的,还包括,优选在一级窄化步骤之后和优选在步骤(a)之前,进一步缩小聚合物料流的横截面使二级聚合物变窄的步骤。
依据本发明一个优选方式的一个方面,在步骤(b)中,聚焦液体可以优选,但不是必需的,流入小室进入聚焦料流中。该方法可以优选,但不是必需的,还包括,优选在步骤(b)之前,减小聚焦料流的横截面使聚焦液体变窄的步骤。
依据本发明,还公开了一种形成微珠的系统。该系统包括聚合物溶液、聚焦液体和流动聚焦装置。聚合物溶液包括溶解在溶剂中的粒子和聚合物。聚焦液体能够和聚合物溶液反应形成适合于与生物识别分子结合的官能团。流动聚焦装置包括由内部小室和出口定形限定的流动聚焦体。小室有效接收聚焦液体和聚合物溶液的聚合物料流。聚焦液体在小室中有效接触和聚焦聚合物料流,以便聚焦聚合物料流。因此,聚焦液体和聚合物料流聚焦从而有效流动,成为单流料流,通过出口离开小室。悬垂液滴从单流料流的前端部分有效脱离从而形成微珠。每个微珠都结合组合成一套的可识别粒子。聚焦液体与聚合物溶液有效反应从而在每个微珠的表面形成一个或更多的官能团,以便微珠适合于与生物识别分子结合。
依据本发明一个优选方式的一个方面,流动聚焦装置可以优选,但不是必需的,还包括聚合物供给部件。该聚合物供给部件可以优选,但不是必需的,包括一级聚合物喷嘴,其具有入口部分定形以限定入口,出口部分定形以限定末端的孔,和颈部定形以限定位于入口和末端孔之间的内部通道。聚合物料流可以优选,但不是必需的,可操作地流入入口,通过内部通道,和/或从对着小室的端孔流出。一级聚合物喷嘴可以优选,但不是必需的,适合于在通过其中时有效减小该聚合物料流的横截面。
依据本发明一个优选方式的一个方面,该聚合物供给部件可以优选,但不是必需的,另外包括二级聚合物喷嘴,优选串联在一级聚合物喷嘴之后。该聚合物料流可以优选,但不是必需的,从一级聚合物喷嘴的末端孔流出,有效流入二级聚合物喷嘴入口部分限定的入口,通过二级聚合物喷嘴的颈部限定的内部通道,和/或从二级聚合物出口部分限定的对着小室的末端孔流出。
依据本发明一个优选方式的一个方面,二级聚合物喷嘴可以优选,但不是必需的,还包括结合于二级聚合物喷嘴的出口部分的和/或从二级聚合物喷嘴的末端孔延伸出去的针状部件。该针状部件可以优选,但不是必需的,由内部针通道和/或针孔定形限定。该聚合物料流可以优选,但不是必需的,从二级聚合物喷嘴出口部分的端孔,通过针通道,和/或从的针状端孔向着小室流出。
依据本发明一个优选方式的一个方面,二级聚合物喷嘴可以优选,但不是必需的,适合于在通过其中时进一步有效减小聚合物料流的横截面积。
依据本发明一个优选方式的一个方面,流动聚焦体可以优选,但不是必需的,定形限定通入小室的聚焦液体供给口。聚合物供给部件可以优选,但不是必需的,确保接合于流动聚焦体。至少部分的聚合物供给部件可以优选,但不是必需的,确保在聚合物供给口内部接收。聚合物料流可以优选,但不是必需的,从聚合物供给部件流入小室中。
依据本发明一个优选方式的一个方面,流动聚焦装置可以优选,但不是必需的,还包括聚焦液体供给喷嘴。该聚焦液体供给喷嘴可以优选,但不是必需的,具有入口部分定形以限定入口,出口部分定形以限定末端孔,和/或颈部定形以限定位于聚焦液体供给喷嘴的入口和聚焦液体供给喷嘴的末端孔之间的内部通道。聚焦液体的聚焦料流可以优选,但不是必需的,流入聚焦液体供给喷嘴的入口,通过聚焦液体喷嘴的内部通道,和/或从对着小室的聚焦液体供给喷嘴的末端孔流出。聚焦液体供给喷嘴可以优选,但不是必需的,适合于在通过其中时减小聚焦料流横截面。
依据本发明一个优选方式的一个方面,流动聚焦体可以优选,但不是必需的,由聚焦液体供给入口通向小室来定形限定。聚焦液体供给喷嘴可以优选,但不是必需的,确保接合于流动聚焦体。聚焦液体供给喷嘴的至少部分出口可以优选,但不是必需的,确保在聚焦液体供给入口内部接收。聚焦液体料流可以优选,但不是必需的,从该聚焦液体供给喷嘴的末端孔流出,进入小室中。
依据本发明一个优选方式的一个方面,该系统优选,但不是必需的,还包括液槽和包含液槽的用于收集微珠的容器,优选从单流料流的前端脱离之后的微珠。
依据本发明一个优选方式的一个方面,液槽可以优选,但不是必需的,包含聚焦液体。
依据本发明一个优选方式的一个方面,溶剂可以优选,但不是必需的,包括有机溶剂。
依据本发明一个优选方式的一个方面,有机溶剂可以优选,但不是必需的,包括氯仿和/或二氯甲烷。
依据本发明一个优选方式的一个方面,聚合物可以优选,但不是必需的,基本上是疏水的。
依据本发明一个优选方式的一个方面,聚合物可以优选,但不是必需的,包括聚苯乙烯粉末和/或其衍生物。
依据本发明一个优选方式的一个方面,聚合物可以优选,但不是必需的,包括聚苯乙烯-酸酐共聚物。
依据本发明一个优选方式的一个方面,聚苯乙烯-酸酐的共聚物可以优选,但不是必需的,包括聚苯乙烯-马来酸酐共聚物。
依据本发明一个优选方式的一个方面,在聚合物溶液中官能团可以优选,但不是必需的,在聚焦液体与聚合物溶液有效反应之前被保护起来。官能团可以优选,但不是必需的,在聚焦液体和聚合物溶液有效反应之后被去保护。
依据本发明一个优选方式的一个方面,在聚合物溶液中官能团可以优选,但不是必需的,包括羧酸基团,优选至少在聚焦液体与聚合物溶液有效反应之后。
依据本发明一个优选方式的一个方面,在聚合物溶液中羧酸基团可以优选,但不是必需的,在聚焦液体与聚合物溶液有效反应之前被保护起来。羧酸基团可以优选,但不是必需的,在聚焦液体和聚合物溶液有效反应之后被去保护。
依据本发明一个优选方式的一个方面,聚焦液体可以优选,但不是必需的,包括水。羧酸基团可以优选,但不是必需的,通过与水的水解被去保护。
依据本发明一个优选方式的一个方面,聚焦液体可以优选,但不是必需的,包括水。
依据本发明一个优选方式的一个方面,粒子可以优选,但不是必需的,包括荧光基团。
依据本发明一个优选方式的一个方面,粒子可以优选,但不是必需的,包括纳米粒子。
依据本发明一个优选方式的一个方面,纳米粒子可以优选,但不是必需的,包括半导体纳米粒子、磁性纳米粒子、金属导体纳米粒子、金属氧化物纳米粒子、和/或荧光纳米粒子。
依据本发明一个优选方式的一个方面,粒子可以优选,但不是必需的,包含量子点。
依据本发明一个优选方式的一个方面,聚合物溶液可以优选,但不是必需的,包含一种或更多类型的量子点的组合。利用每个微珠结合的该组合成一套的可识别的量子点可以优选,但不是必需的,适合于,辐射之后,产生一种或更多的基于颜色和/或强度的可识别光谱信号。
依据本发明一个优选方式的一个方面,粒子可以优选,但不是必需的,包括量子点和磁性纳米粒子的组合。
依据本发明一个优选方式的一个方面,流动聚焦装置进一步可以优选,但不是必需的,还包括由通过其的聚焦喷嘴定形限定的聚焦口。该聚焦口可以优选,但不是必需的,基本上阻拦了流动聚焦体的出口。该聚焦喷嘴可以优选,但不是必需的,起始于小室。单流料流可以优选,但不是必需的,通过聚焦喷嘴从小室中有效流出。该单流料流可以优选,但不是必需的,从聚焦喷嘴中有效流出。
依据本发明一个优选方式的一个方面,聚焦液体可以优选,但不是必需的,基本上包裹着聚合物料流形成单流料流流过,和/或从聚焦喷嘴流出。
依据本发明一个优选方式的一个方面,每个微珠的湿直径(dg)可以优选,但不是必需的,直接取决于从聚焦喷嘴流出的聚合物料流的直径。
依据本发明一个优选方式的一个方面,每个微珠的湿直径(dg)可以优选,但不是必需的,根据下述方程决定:
dg=1.89dj
其中dj可以优选是从聚焦喷嘴流出的聚合物料流的直径。
依据本发明一个优选方式的一个方面,从聚焦喷嘴流出的聚合物料流的直径(dj)可以优选,但不是必需的,取决于当聚合物料流脱离聚焦喷嘴时的直径;进入小室的聚合物溶液的密度和/或流速;进入小室的聚焦液体的密度和/或流速。
依据本发明一个优选方式的一个方面,从聚焦喷嘴流出的聚合物料流的直径(dj)可以优选,但不是必需的,根据下述方程决定:
d j = D [ 1 + ( ρ 2 ρ 1 ) 1 / 2 ( Q 2 Q 1 ) ] - 1 / 2
其中D可以优选是当聚合物料流出聚焦喷嘴时的直径,ρ2可以优选是进入小室的聚焦液体的密度,ρ1可以优选是进入小室的聚合物溶液的密度,Q2可以优选是进入小室的聚焦液体的流速,和/或Q1可以优选是进入小室的聚合物溶液的流速。
依据本发明一个优选方式的一个方面,每个微珠的湿直径(dg)可以优选,但不是必需的,直接取决于流出聚焦喷嘴的聚合物料流的直径(dj)。每个微珠的湿直径(dg)可以优选,但不是必需的,根据下述方程决定:
dg=1.89dj
进入小室的聚合物溶液的密度(ρ1),进入小室的聚焦液体的密度(ρ2),和/或当聚合物流出聚焦喷嘴的直径(D),可以优选预先确定,但不是必需的。当聚合物溶液流入小室的流速(Q1)约为每小时1毫升(ml/h),聚焦液体流入小室的流速(Q2)约为每小时180毫升(ml/h)时,该系统可以优选,但不是必需的,形成微珠的直径约为6微米(μm)。
依据本发明一个优选方式的一个方面,每个微珠的湿直径(dg)可以优选,但不是必需的,直接取决于从聚焦喷嘴流出的聚合物料流的直径(dj)。每个微珠的湿直径(dg)可以优选,但不是必需的,根据下述方程决定:
dg=1.89dj
进入小室的聚合物溶液的密度(ρ1),进入小室的聚焦液体的密度(ρ2),和/或当聚合物流出聚焦喷嘴的直径(D),可以优选预先确定,但不是必需的。当聚合物溶液流入小室的流速(Q1)约为每小时0.5毫升(ml/h),聚焦液体流入小室的流速(Q2)约为每小时180毫升(ml/h)时,该系统可以优选,但不是必需的,操作形成的微珠的直径约为5微米(μm)。
依据本发明一个优选方式的一个方面,聚合物溶液的浓度可以优选,但不是必需的,以重量-重量百分数计约为0.04(4wt%)。
依据本发明,还公开了依据上述任意方法和/或系统形成的微珠。
依据本发明一个优选方式的一个方面,该微珠可以优选,但不是必需的,适合于与抗体或抗原有效结合作为生物识别分子。
依据本发明一个优选方式的一个方面,该微珠(与抗体或抗原有效结合)可以优选,但不是必需的,适合于在检测一种或更多的疾病的多元诊断性试验中作为探针。
依据本发明一个优选方式的一个方面,该疾病可以优选,但不是必需的,是HIV、肝炎B、肝炎C、疟疾、登革热病毒、和/或禽流感(H5N1)。
依据本发明一个优选方式的一个方面,该微珠(与生物识别分子有效结合)可以优选,但不是必需的,适合于在检测一种或更多的基因表达因素的多元诊断性试验中作为探针。
本发明其它的优点、性质和/或特征,与操作方法和/或与该方法和系统的要素相关的功能,和/或步骤的组合,生产的要素和/或经济性,将根据以下的详细说明和依据附图附加的权利要求变得显而易见,后者将在下文中简要描述。
附图说明
依据本发明的系统和方法的特点是其新颖性,关于其构造、结构、应用和操作方法,与其进一步的目的和其优点,将从下面的附图中更好的理解,其中本发明优选的方式将通过实施例进行说明。然而,很容易理解附图说明和描述的目的并不是为了限定本发明。在附图中:
图1是依据本发明的优选方式用于形成微珠系统的流动聚焦装置的剖面主视图;
图2是显示于图1中的系统的流动聚焦装置完全组合的主视图,与液槽和容器一起使用;
图3是显示于图1中的流动聚焦装置的前视图的图解部分,在剖视图的轮廓部分显示出3A区域;
图3A是图3中3A区域的放大图;和
图4是依据本发明的优选方式共轭和结合微珠的直观显示。
具体实施方式
现在参考附图中的图1-3A,显示了依据本发明的系统的优选方式中使用的流动聚焦装置10。从图2中可以更好的看到,流动聚焦装置10包括聚合物供给管46,聚合物供给部件20,聚焦流体供给管86,聚焦流体供给喷嘴70,流动聚焦体100,聚焦口114,和容器150。优选,该系统还包括聚合物溶液200,聚焦液体300(能够与聚合物溶液200反应),和液槽306,从图3A中可以更好的看到且将在下文中更加详细的描述。
从图1中可以更好的看到,聚合物供给部件20优选包括一级和二级聚合物喷嘴,分别为30和50。
一级聚合喷嘴30包括入口部分32,颈部38,和出口部分40。一级喷嘴30的入口部分32由入口34定形限定(从图3中可以更好的看到)。从图1和2中可以更好的看到,入口部分(可替换的称为抓手构件)32优选还适合于用于扣紧一级聚合物喷嘴30。
一级聚合物喷嘴30的出口部分40由端孔42定形限定(更好的从图1和3中看到),颈部38由运行在一级聚合物喷嘴30的入口34和端孔42之间的内部通道36定形限定(显示于图3中)。优选,聚合物供给管46延伸通到一级聚合物喷嘴30的入口34处。从那儿,聚合物供给管46延伸入内部通道36中,基本上与一级聚合物喷嘴30的端孔42相连接。
二级聚合物喷嘴50优选串联在一级聚合物喷嘴30的后面。二级聚合物喷嘴50包括入口部分52定形以限定入口54(从图1可以更好的看到)。入口部分52也可以用于紧扣二级聚合物喷嘴50(以便入口部分52可选的被称为抓手构件52)。
二级聚合物喷嘴50也包括由端孔62(在图1和3中更好的看到)定形限定的出口部分60,和由运行在二级聚合物喷嘴50的入口54和端孔62之间限定的内部通道56定形限定的颈部58(显示于图3中)。
二级聚合物喷嘴50还额外包括接合出口部分60的构件64,其从二级聚合物喷嘴50的端孔62中延伸出来。针状构件64由针状的端孔68和内部的针通道66定形限定。
优选,一级聚合物喷嘴30的颈部38和出口部分40延伸至二级聚合物喷嘴50的入口54处。从那儿,一级聚合物喷嘴30的出口部分40延伸至内部通道56中,基本上与二级聚合物喷嘴50的针状构件64连接(显示于图3中)。
从图1可以更好的看到,一级聚合物喷嘴30的颈部38优选是螺纹的(因此其也可被称为一级聚合物喷嘴30的螺纹部分38)。可以从图1和图2中更好的看到,二级聚合物喷嘴50的入口部分52优选配备了相应的螺纹(没有显示)连接入口54,以便与一级聚合物喷嘴30的螺纹部分38紧密配合,因此,可以确保一级聚合物喷嘴30和二级聚合物喷嘴50彼此啮合(显示于图2中)。
流动聚焦体100包括入口部分102,颈部108和出口部分110。入口部分102由聚合物供给入口104A和聚焦液体供给入口104B定形限定。出口部分110由出口112定形限定。入口部分102和颈部108优选一起由延伸至聚合物供给入口104A、聚焦液体供给入口104B、和出口112的内部小室106定形限定。
优选,二级聚合物喷嘴50的颈部58、出口部分60和针状构件64延伸到流动聚焦体100的聚合供给入口104A处,从那儿,二级聚合物喷嘴50的针状构件64延伸至小室106,基本上与流动聚焦体的出口112相连(显示在图3中)。
由图1可以更好的看到,二级聚合物喷嘴50的颈部58优选有螺纹(因此其也可被称为二级聚合物喷嘴50的螺纹部分58)。可以从图1和图2中更好的看到,流动聚焦体100的入口部分102可以优选配备相应的螺纹(没有显示)连接聚合物供给入口104A,以便与二级聚合物喷嘴50的螺纹部分58紧密配合,因此,可以确保聚合物供给部件20和流动聚焦体100彼此啮合(显示于图2中)。
聚焦液体供给喷嘴70包括入口部分72、颈部78、和出口部分80。聚焦流体供给喷嘴70的入口部分72由入口74定形限定(从图3中可以更好的看到)。从图1和2中可以更好的看到,入口部分(也可选的被称为“抓手构件”)72优选适合于可以紧扣聚焦液体喷嘴70。
聚焦液体供给喷嘴70的出口部分80由端孔82(从图1和3中可以更好的看到)定形限定,颈部78由运行在聚焦液体供给喷嘴70的入口74和端孔82之间的内部通道76定形限定(显示于图3中)。优选,聚焦液体供给管86延伸至聚焦液体供给喷嘴70的入口74处。从那儿,聚焦液体供给喷嘴86延伸到内部通道76中,基本上与该聚焦液体供给喷嘴70的端孔82相连接。
优选,聚焦液体供给喷嘴70的颈部78和出口80延伸至流动聚焦体100的聚焦液体供给入口104B处。从那儿,聚焦液体供给喷嘴70的出口部分80延伸至内部小室106中,基本上与流动聚焦体100的出口112相连(显示于图3中)。
从图1中可以更好的看出,聚焦液体喷嘴70的颈部78优选有螺纹(因此其也可被称为聚焦液体喷嘴70的螺纹部分78)。可以从图1和图2中更好的看到,流动聚焦体100的入口部分102可以优选配备相应的螺纹(没有显示)连接聚合物供给入口104B,以便与聚焦液体供给喷嘴70的螺纹部分78紧密配合,因此,可以确保聚焦液体供给喷嘴70和流动聚焦体100彼此啮合(显示于图2中)。
优选,聚焦口114由其中的聚焦喷嘴116定形限定。聚焦口114基本上阻挡了流动聚焦体100的出口112。聚焦喷嘴116优选从流动聚焦体100的内部小室106引出。聚焦喷嘴116包括喷嘴入口末端118A和喷嘴出口部分118B。
简单的,依据本发明的优选方式,涉及掺杂量子点的聚合物微珠形成方法,使用流动聚焦装置10。当然,依据本发明,应该理解下面描述的方法可以单独使用上文描述的流动聚焦装置10。
目前,该方法优选包括预处理步骤,一级聚合物窄化步骤,二级聚合物窄化步骤,聚焦液体窄化步骤,步骤(a),步骤(b),步骤(c),步骤(d),步骤(e),步骤(f)(在步骤(e)之后),步骤(g)(在步骤(e)之后)。
在预处理步骤中,可以选择量子点506加入聚合物微珠500中(由图4中可以看到),以便制备特定的且可识别的条形码。该特定的条形码、色码和/或发射特性可以优选通过由不同大小的量子点506A、506B加入到微珠500的内部而预制得到。(值得一提的是,作为旁白,那些参考数字506、506A和506B一般表示微珠500中的量子点,例如,从聚合物溶液200中加入之后)。因为量子点506A、506B的不同大小会直接关系到其特殊的荧光光谱、因此可以选择特定的组合。通常,在微珠500内包裹的量子点506A、506B的不同组合会给出特定的且容易识别的发射特性。
此外,和/或可选的,选择颜色特性和/或条形码、荧光强度可用于判别不同的检测信号。当两个或更多的量子点编码的微珠500发射基本上一样的光谱,微珠500内部的量子点506的浓度是可调的,能发射可变强度的荧光信号。如果条形码带有单一的强度(未显示),不同微珠中的强度的差异优选大于一般与荧光峰强度相关的测量误差。
设置好条形码之后,可以优选于此开始制备微珠。
然而,还是在预处理步骤中,量子点206优选首先溶解在合适的有机溶剂例如氯仿或二氯甲烷中,形成两种不同颜色的量子点溶液。然后,需要颜色的量子点溶液以适当的比率混合产生需要的条形码发射光谱。例如,在图3A中描写的制备聚合物溶液200的过程中,两种不同的颜色量子点溶液首先被混合,其分别包括不同类型的量子点206A、206B。(值得一提的是,作为旁白,那些参考数字206、206A和206B一般表示聚合物溶液200中的量子点,例如,在加入任何微珠500之前)。其后,聚合物粉末(例如聚苯乙烯粉末和/或一种或更多其衍生物)优选溶解到加入了量子点的溶液中制成成品聚合物溶液200。加入到聚合物溶液200中的聚合物的量是可变的,其依赖于需要的微珠500的直径。
也是在预处理步骤中,优先选择能够与聚合物溶液反应的聚焦液体。依据本发明优选的一实施方式,聚焦液体是水。考虑及此,在步骤(b)后,优选的聚焦液体300(例如,水)能够与聚合物溶液200在聚合物料流202A中反应,形成一种或更多的能够与生物识别分子600结合的官能团504是重要的。
依据本发明利用流动聚焦制备方法制备的量子点掺杂的聚合物微珠500,打算用作各种疾病,包括疟疾、HIV、肝炎B、肝炎C、登革热、和/或禽流感(H5N1)的多元诊断测试的探针。条形码微珠500的表面502必需被官能化使其结合必要的BRMs600。由于本发明的目的,需要的BRMs600可以包括抗体、抗原、核苷酸序列、DNA/RNA碎片、和能与毒物和/或毒素(例如,在一定程度上可存在于生物系统中的上述毒物和/或毒素,诸如,例如,在生态系统中)结合的分子。首先,条形码微珠500可以首先被合成(例如,不使用流动聚焦技术)和,然后微珠的表面502可以被附加的羧基官能团官能化。这些羧基官能团的存在可以使得BRMs600的伯胺与微珠500的表面502以共价键结合,通过使用偶联剂例如EDC(1-乙基-3-(3-二甲胺基丙基)碳化二亚胺)。然而,依据本发明使用的方法和系统,该额外设置的形成官能化的步骤可以被省略掉。
在该预处理步骤中,可以优选制备聚合物溶液200,以便包含,尤其是,包括羧酸基官能团504的结构的聚合物。相应的,产生于上述聚合物的微珠500可以掺杂量子点,在其表面502上已经携带了羧酸基官能团504,准备与BRMs600共轭。
下一步,一级聚合物窄化步骤,可以更好的从图1和3中理解,聚合物溶液200通过聚合物供给管46,并通过入口34和一级聚合物喷嘴30的内部通道36,流入聚合物料流202。从那儿,聚合物料流202从端孔42流出,通常流向内部小室106。
在一级聚合物窄化步骤中,可以更好的从图1理解,在通过一级聚合物喷嘴30的过程中,聚合物料流202的横截面被减小。可选的,聚合物料流202的横截面可以在从一级聚合物喷嘴30流出后减小(例如,例如可以参考图3理解)。
在二级聚合物窄化步骤中,可以更好的从图1和3理解,聚合物料流202A流过通道56和二级聚合物喷嘴50的针状通道66。在二级聚合物窄化步骤中,可以更好的从图1和3理解,聚合物料流202A的横截面在通过二级聚合物喷嘴50的过程中进一步减少。其后,聚合物料流202A从针状端孔68中流出,然后流入内部小室106。
一级和二级聚合物窄化步骤优选在步骤(a)之前进行。聚焦液体窄化步骤优选在步骤(b)之前进行。
在聚焦液体窄化步骤中,可以更好的从图1和3理解,聚焦液体300通过聚焦液体供给管86,并通过入口74和聚焦液体供给喷嘴70的内部通道76,流入聚合物料流中。从那儿,聚焦料流从端孔82流出,然后流向内部小室106。在聚焦液体窄化步骤中,可以更好的从图1理解,聚焦液体料流的横截面在通过聚焦液体供给喷嘴70的过程中减小。
图3A描述了聚合物溶液200和聚焦液体300通过各个步骤分别形成聚合物料流202A、202C、202D、202E,以及聚焦液体料流302C、302D。
参照图3A,在步骤(a)中,聚合物料流202A通过二级聚合物喷嘴50的针孔68流入流动聚焦体100的小室106。依据本发明一些优选的方式,如图3A所示,聚合物料流202A可以优选包含两种不同类型的量子点206A、206B的组合。
优选,步骤(b)基本上与步骤(a)同时进行。在步骤(b)中,聚焦液体300从聚焦液体供给喷嘴70中流出,然后流向内部小室106(可以更好的从图3中领会)。
在步骤(c)中,在聚焦料流302C中的聚焦液体300与聚合物料流202C在聚焦体100的内部小室106中直接接触,以便将聚合物料流202C聚焦到聚焦喷嘴116的入口尾部118A中。
然后,在步骤(d)中,聚焦液体300(在聚焦料流302D中)和聚合物料流202D因此聚焦在一起,作为单流料流402,从内部小室106流出,并流入聚焦喷嘴116的入口尾部118A。
在该点上,在单流料流402中聚合物料流302D基本上包裹着聚合物料流202D。然后,在聚焦喷嘴116的内部,单流料流402流向出口末端118B。
在步骤(e)中,单流料流402从聚焦喷嘴116出口末端部分118B流出。悬垂的液滴406从单流料流402的前端部分404处脱落,以便形成被聚焦液体300包裹的微珠500(仍然是湿的)。
在步骤(f)中,可以从图2中更好的领会,微珠500被收集于包含液槽306的容器150的底部152。随后,微珠500被固化和/或干燥。在依据本发明优选的方式中,可以更好的从图2和3A中看出,聚焦喷嘴116浸入液槽306中。优选,液槽306还包含聚焦液体300,例如,优选为水溶液。可以优选,液槽306在微珠500固化的过程中维持搅拌状态(没有显示)。
在步骤(g)中,可以允许微珠500在从液槽306中回收之前被进一步固化。依据本发明的一个实施方式,微珠500可以通过离心作用收集和/或回收(没有显示)。
一旦微珠干燥后,依据本发明制备的湿微珠500的直径(dg)(例如,显示在图3A中)会给出关于合成的微珠500的大小的重要信息。参见,例如L.Martin-Banderas等,Adv.Mater.2006,18,559-564,和A.M.Ganan-Calvo,Physical Review Letters 1998,80(2),285。湿微珠500的直径(dg)不会直接给出干珠的实际直径。尽管,其对于本发明的工作或许并不重要,一般认为干燥的微珠直径与湿微珠直径(dg)有关,如下所示:干微珠直径=dg*(wt%/聚合物的密度)1/3。例如,利用上述的关系,用预处理过的密度为1.05、重量-重量百分数(wt%)为4%(或0.04)的聚苯乙烯,干微珠的直径大约为湿微珠直径(dg)的1/3。在这种情形下,因此,干微珠500的直径会永远小于湿微珠500的直径(dg)(显示于图3A中)。认为湿微珠的直径(dg)提供了干微珠500大小的上限。
优选,每个微珠500的湿直径(dg)直接取决于步骤(e)中聚合物料流202E的直径(dj)。微珠500的湿直径(dg)由下述的方程决定:
dg=1.89dj
步骤(e)中聚合物料流202E的直径(dj)取决于:步骤(e)中聚焦喷嘴116的直径(D)、步骤(a)中聚合物料流202A的流速(Q1)和密度(ρ1)和步骤(b)中聚焦液体300的流速(Q2)和密度(ρ2)。
相应的,步骤(e)中聚合物料流202E的直径(dj)取决于下述的方程:
d j = D [ 1 + ( ρ 2 ρ 1 ) 1 / 2 ( Q 2 Q 1 ) ] - 1 / 2
其它的都是常数,改变流速Q2和Q1会直接影响聚合物料流202E的大小,和后续的微珠500的湿直径(dg)。
为了需要的微珠湿直径(dg)尝试优化Q2和Q1,可以通过保持Q2/Q1的比率为常数并相应提高的Q2和Q1的值,成功达到收率的提高(例如,单位时间内微珠的数量)。例如,如果需要的流速是Q2=180ml/h且Q1=1ml/h,Q2/Q1的比值为180。为了提高收率,优选,Q2和Q1都提高以便Q2/Q1的值维持固定为180。
以下方程突出显示的某些其它参数可以,依次,影响聚焦液体的流速Q1和聚合物料流的流速Q2
Q 2 = ( 1.89 Weσ 8 ρ 2 d g ) 1 / 2 π [ D 2 - ( D g 1.89 ) 2 ]
Q 1 = Q 2 ( ρ 2 ρ 1 ) 1 / 2 [ ( 1.89 D d g ) 2 - 1 ] - 1
其中,We是韦伯数,
ρ2是步骤(b)中聚焦液体的密度,
ρ1是步骤(a)中聚合物溶液的密度,
σ是聚合物料流和聚焦液体之间的界面张力,
D是步骤(e)中出口的直径,和
dg是微珠的湿直径。
韦伯数We进一步由下述的方程定义,其中V2是聚焦液体300的速度,另一个术语如先前定义:
We = ( ρ 2 V 2 2 d j 2 σ )
聚焦液体300的速度(V2)与Q2相关,依据下述的方程:
V 2 = 4 Q 2 π ( D 2 - d j 2 )
利用描述于此的流动聚焦技术制备特定直径的聚合物微珠500可以优选需要考虑到的几个参数。这些参数可以优选包括一个或更多以下的参数:(i)流速,(ii)聚合物的浓度,(iii)聚合物的类型,和(vi)聚合物溶剂(聚焦相)。这些参数中的每一个都将于下文详细描述。
如前所述,被引入到流动聚焦体100的内部小室106的聚合物料流202A[在步骤(a)中]的流速Q1与聚合物料流300[在步骤(b)中]的流速Q2的是很关键的。这些流速影响步骤(e)中聚合物料流202E的直径dj。在本发明的一个实施方式中,聚合物溶液200从聚合物供给部件20中,以1ml/h的速度引入,聚焦液体300(例如,水)以180ml/h的速度引入以制备直径为6微米的珠子。当使用的流速分别为0.5ml/h和180ml/h时,获得的珠子的直径为5微米。可以优选,调整聚合物溶液200和聚焦液体300的流速从而制备出需要大小和收率的微珠500。
在聚合物溶液200中使用的聚合物的浓度以及使用的聚合物的类型,会影响到湿微珠500干燥并固化后湿直径(dg)减少多少。可以优选聚合物溶液形成的浓度为约0.04的重量-重量百分数(4wt%)。可以认为,尽管其对于该发明的工作不重要,聚合物的分子量和浓度越大,微珠的直径越大。
微珠500的干燥速率(其本身取决于聚合物料流202的蒸气压和其在聚焦液体300中的溶解性)可能严重影响形成的微珠500的最终大小相对于起始微珠500的湿直径(dg),并影响微珠表面502的光滑性。此外,虽然其对本发明的工作或许不重要,通常认为聚合物料流202的蒸气压和溶解性越大,生成的微珠的大小和表面粗糙度越大。
本发明优选方式的方法会描述在下述的实施例中。
实施例1:为了产生需要的条形码的发射光谱为520nm,580nm和630nm的比率为1∶2∶3,通过以适当的比率混合不同颜色的量子点/氯仿溶液来设计条形码。在氯仿混合物中,溶解了工业级的聚(苯乙烯-共-马来酸酐),异丙基苯封端粉末(来自Aldrich)(或衍生物)得到4%的聚合物溶液。然后,使用喷射泵(SP100I来自World Precision Instruments)以1ml/h的速度将合成溶液,使用数字齿轮泵(Cole Parmer InstrumentCompany)以180ml/h的速度将作为聚焦液体的水,一起引入生产喷嘴(Avant-1来自Ingeniatrics)。在反应期间,在搅拌下将喷嘴浸入水溶液中。通过整夜的搅拌使珠子硬化,并通过离心作用来进行收集。
实施例2:在本实施例中,使用以下的基于量子点的条形码:555nm、580nm、605nm相应的强度比为1∶2∶1。使用与实施例1相同规程,利用聚(苯乙烯-共-马来酸酐)制备溶液。
实施例3:与在实施例1中使用相同的规程,然而,量子点被磁铁矿纳米粒子(来自Ferrotec Corporation)代替溶解到氯仿中。本实施例产生的顺磁性微珠被吸引到磁铁上,并且除去磁场其会失去磁性。
实施例4:与在实施例1中使用相同的规程,然而,使用选定的量子点与磁铁矿的比率,形成量子点与磁铁矿纳米粒子的混合物。本实施例产生的微珠联合了来自实施例1和2的荧光性和实施例3的顺磁性。
参照图4,描述了包含依据本发明的优选方式制备的微珠500的轭合物800。微珠500包含组合成一套的粒子506,更优选,组合成一套的粒子含两种类型量子点506A、506B的506,包封在微珠500的内部。微珠500的表面502具有与生物识别分子600结合的官能团504,该生物识别分子600自身与靶分子700结合。
该组合成一套的粒子含506A、506B量子点的可识别的506适合,辐射后,制备一种或更多的基于颜色和/或强度的可识别光谱信号。
其它的修改和改变可以应用于依据本发明的其它实施方式的设计和制备,其不会脱离本发明的精神范围,其仅仅由本申请补充的权利要求限定。
在上下文中已经介绍的量子点的上述方法,同样适用于其它的纳米粒子。依据本发明的方法和体系能够使用结合的纳米粒子的类型,但不局限于,硬质纳米粒子、聚合物纳米粒子、磁性纳米粒子、金属导体纳米粒子、金属氧化物纳米粒子、荧光纳米粒子。
而且,在上下文中已经介绍的显示结构和溶解性的聚合物的方法,需要构造官能化的表面,量子点掺杂的珠子,该方法同样适用于基本上疏水的聚合物,和包含被保护的可以经由水解被去保护的羧酸基团的聚合物。上述聚合物可以聚苯乙烯-酸酐共聚物为例,更具体的,以聚苯乙烯-马来酸酐共聚物为例。这些聚合物可以溶于更适合量子点的溶剂中(例如二氯甲烷和氯仿),并可以与水接触在其上产生需要的羧酸基团,在本发明优选的实施方式中,其为聚焦液体300。
上文已经介绍的说明书是为了解释说明,而不是意欲穷举或限制本发明以形成精确形式的说明。许多的修改和变化都可能是根据上述的教导,其对本领域技术人员来说是显而易见的。本发明的范围不是由说明书来限定,而是由权利要求限定。

Claims (78)

1.一种形成微珠的方法,包括步骤:
(a)使聚合物溶液的聚合物料流流入流动聚焦体的内部小室中,该聚合物溶液包含溶解在溶剂中的粒子和聚合物;
(b)使聚焦液体流入小室中,聚焦液体能够与聚合物溶液反应形成适合与生物识别分子结合的官能团;
(c)使聚焦液体直接在小室中与聚合物料流接触,以便聚焦该聚合物料流;
(d)使聚焦液体和聚合物料流聚焦在一起流动,从而作为单流料流从小室中流出;和
(e)使悬垂的液滴从单流料流的前端部分断开以便形成微珠;
其中,每个微珠结合组合成一套可识别粒子;和
其中,聚焦液体与聚合物溶液反应,在每个微珠的表面形成一个或更多的官能团,以便微珠适合于与生物识别分子结合。
2.根据权利要求1的方法,其中步骤(b)实质上与步骤(a)同时进行。
3.根据权利要求1和2中任一项的方法,其中在步骤(d)中,在单流料流中,聚焦液体基本上包裹着聚合物料流。
4.根据权利要求1-3中任一项的方法,在步骤(e)后进一步包括步骤(f),其中微珠被收集在包含液槽的容器中。
5.根据权利要求4的方法,在步骤(f)中,搅拌液槽且微珠固化。
6.根据权利要求4的方法,在步骤(e)后还括步骤(g),其中微珠固化并从液槽中回收。
7.根据权利要求6的方法,在步骤(g)中,微珠通过离心作用回收。
8.根据权利要求4-7中任一项的方法,其中液槽包含聚焦液体。
9.根据权利要求1-8中任一项的方法,其中在步骤(a)之前,进一步包括预处理步骤,通过将粒子和聚合物溶解在溶剂中形成聚合物溶液。
10.根据权利要求1-8中任一项的方法,其中在步骤(a)之前,进一步包括预处理步骤,通过首先将粒子溶解在溶剂中,然后将聚合物溶解在其中,形成聚合物溶液。
11.根据权利要求1-10中任一项的方法,其中在步骤(a)中,溶剂包括有机溶剂。
12.根据权利要求11的方法,其中有机溶剂包括氯仿和二氯甲烷。
13.根据权利要求1-12中任一项的方法,其中在步骤(a)中,聚合物基本上是疏水的。
14.根据权利要求1-13中任一项的方法,其中在步骤(a)中,聚合物包括聚苯乙烯粉末或其衍生物。
15.根据权利要求1-13中任一项的方法,其中在步骤(a)中,聚合物包括聚苯乙烯-酸酐共聚物。
16.根据权利要求15的方法,其中在步骤(a)中,聚苯乙烯-酸酐共聚物包括聚苯乙烯-马来酸酐共聚物。
17.根据权利要求1-16中任一项的方法,其中官能团在步骤(a)中被保护,并且其中在聚焦液体与聚合物溶液反应之后所述官能团被去保护。
18.根据权利要求1-16中任一项的方法,其中官能团包括羧酸基。
19.根据权利要求18的方法,其中羧酸基在步骤(a)中被保护,并且其中在聚焦液体与聚合物溶液反应之后所述羧酸基被去保护。
20.根据权利要求19的方法,其中在步骤(b)中,聚焦液体是水,并且其中羧酸基通过与水的水解被去保护。
21.根据权利要求1-19中任一项的方法,其中聚焦液体是水。
22.根据权利要求1-21中任一项的方法,其中在步骤(a)中,粒子包括荧光基团。
23.根据权利要求1-21中任一项的方法,其中在步骤(a)中,粒子包括纳米粒子。
24.根据权利要求23的方法,其中纳米粒子包括半导体纳米粒子、磁性纳米粒子、金属导体纳米粒子、金属氧化物纳米粒子或荧光纳米粒子。
25.根据权利要求1-21中任一项的方法,其中在步骤(a)中,粒子包括量子点。
26.根据权利要求25的方法,其中在步骤(a)中,聚合物溶液包括一种或更多类型的量子点的组合,且其中与每个微珠结合的组合成一套可识别量子点适合于,在辐射后发射出一个或更多基于颜色和/或强度的可识别的光谱信号。
27.根据权利要求1-21中任一项的方法,其中在步骤(a)中,粒子包括量子点和磁性纳米粒子的组合。
28.根据权利要求1-27中任一项的方法,其中在步骤(d)中,单流料流从小室中流出,进入聚焦喷嘴;其中在步骤(e)中,单流料流从聚焦喷嘴中流出;并且其中每个微珠的湿直径(dg)直接取决于步骤(e)中聚合物料流的直径。
29.根据权利要求28的方法,其中每个微珠的湿直径(dg)根据以下的方程决定:
                    dg=1.89dj
其中dj是步骤(e)中聚合物料流的直径。
30.根据权利要求1-27中任一项的方法,其中在步骤(d)中,单流料流从小室中流出,进入聚焦喷嘴;其中在步骤(e)中,单流料流从聚焦喷嘴中流出;其中步骤(e)中聚合物料流的直径(dj)取决于步骤(e)中聚焦喷嘴的直径、步骤(a)中聚合物溶液的密度和流速和步骤(b)中聚焦液体的密度和流速。
31.根据权利要求30的方法,其中步骤(e)中聚合物料流的直径(dj)根据下述方程决定:
d j = D [ 1 + ( ρ 2 ρ 1 ) 1 2 ( Q 2 Q 1 ) ] - 1 2
其中D是步骤(e)中出口喷嘴的直径,
ρ2是步骤(b)中聚焦液体的密度,
ρ1是步骤(a)中聚合物溶液的密度,
Q2是步骤(b)中聚焦液体的流速,和
Q1是步骤(a)中聚合物溶液的流速。
32.根据权利要求31的方法,其中每个微珠的湿直径(dg)直接取决于步骤(e)中聚合物料流的直径,并根据下述方程决定:
                     dg=1.89dj
其中dj是步骤(e)中聚合物料流的直径;和
其中步骤(a)中聚合物溶液的密度(ρ1),步骤(b)中聚焦液体的密度(ρ2),和步骤(e)中出口喷嘴的直径(D),是预先确定的,以便当聚合物溶液流入小室的流速(Q1)约为每小时1毫升(ml/h),聚焦液体流入小室的流速(Q2)约为每小时180毫升(ml/h)时,该方法形成的微珠的直径约为6微米(μm)。
33.根据权利要求31的方法,其中每个微珠的湿直径(dg)直接取决于步骤(e)中聚合物料流的直径,并根据下述方程决定:
                     dg=1.89dj
其中dj是步骤(e)中聚合物料流的直径;和
其中步骤(a)中聚合物溶液的密度(ρ1),步骤(b)中聚焦液体的密度(ρ2),和步骤(e)中出口喷嘴的直径(D),是预先确定的,以便当聚合物溶液流入小室的流速(Q1)约为每小时0.5毫升(ml/h),聚焦液体流入小室的流速(Q2)约为每小时180毫升(ml/h)时,该方法形成的微珠的直径约为5微米(μm)。
34.根据权利要求32和33中任一项的方法,其中在步骤(a)之前,聚合物溶液的浓度,以重量-重量百分数计约为0.04(4wt%)。
35.根据权利要求1-34中任一项的方法,进一步包括,在步骤(a)之前,减小聚合物料流的横截面使一级聚合物变窄。
36.根据权利要求35的方法,进一步包括,在一级窄化步骤之后和步骤(a)之前,进一步缩小聚合物料流的横截面使二级聚合物变窄。
37.根据权利要求1-36中任一项的方法,其中在步骤(b)中,聚焦液体流入小室进入聚焦料流中;并进一步包括,在步骤(b)之前,缩小聚焦料流的横截面使聚焦液体变窄。
38.根据权利要求1-37任一项的方法形成的微珠。
39.根据权利要求38形成的微珠,适合于与作为生物识别分子的抗体或抗原有效结合。
40.根据权利要求39形成的微珠,其中该微珠,与抗体或抗原有效结合,适合于在检测一种或更多疾病的多元诊断性试验中作为探针。
41.根据权利要求40的微珠,其中疾病是HIV、肝炎B、肝炎C、疟疾、登革热病毒、和/或禽流感(H5N1)。
42.根据权利要求38形成的微珠,其中微珠,与生物识别分子有效结合,适合于在检测一种或更多的基因表达因素的多元诊断性试验中作为探针。
43.一种形成微珠的系统,包括:
(a)聚合物溶液,包括溶解在溶剂中粒子和聚合物;
(b)聚焦液体,能够和聚合物溶液反应形成适合于与生物识别分子结合的官能团;
(c)流动聚焦装置,包括由内部小室和出口定形限定的流动聚焦体,其小室有效接收聚焦液体和聚合物溶液的聚合物料流,聚焦液体与聚合物料流在小室中有效接触,以便聚焦聚合物料流,聚焦液体和聚合物料流聚焦从而有效流动,成为单流料流,通过出口离开小室;
其中悬垂液滴从单流料流的前端部分有效脱离从而形成微珠;
其中每个微珠都结合组合成一套可识别的粒子,和
其中聚焦液体与聚合物溶液有效反应从而在每个微珠的表面形成一个或更多的官能团,以便微珠适合于与生物识别分子结合。
44.根据权利要求43的系统,其中流动聚焦装置进一步包括聚合物供给部件,该聚合物供给部件包括一级聚合物喷嘴,其具有进入部分定形以限定入口、出口部分定形以限定末端孔和颈部定形以限定位于入口和末端孔之间的内部通道;其中聚合物料流有效流入入口,通过内部通道,从对着小室的端孔流出;其中一级聚合物喷嘴适合于在通过其中时有效缩小该聚合物料流的横截面。
45.根据权利要求44的系统,其中聚合物供给部件另外包括串联在一级聚合物喷嘴之后的二级聚合物喷嘴;其中聚合物料流来自一级聚合物喷嘴的末端孔,有效流入二级聚合物喷嘴入口部分限定的入口,通过二级聚合物喷嘴的颈部限定的内部通道,从二级聚合物喷嘴的出口部分限定的对着小室的端孔流出。
46.根据权利要求45的系统,其中二级聚合物喷嘴包括结合于二级聚合物喷嘴的出口部分并从二级聚合物喷嘴的末端孔延伸出去的针状部件;该针状部件由内部针通道和针孔定形限定;其中聚合物料流来自二级聚合物喷嘴出口部分的端孔,通过针通道,从对着小室的针状端孔流出。
47.根据权利要求45和46中任一项的系统,其中二级聚合物喷嘴适合于在通过其中时进一步有效缩小聚合物料流的横截面。
48.根据权利要求44-47中任一项的系统,其中流动聚焦体定形限定通入小室的聚合物供给口;其中聚合物供给部件确保接合于流动聚焦体;至少部分的聚合物供给部件确保接纳在聚合物供给口内部,使得聚合物料流从聚合物供给部件流入小室中。
49.根据权利要求43-48中任一项的系统,其中流动聚焦装置进一步包括聚焦液体供给喷嘴,其具有入口部分定形以限定入口,出口部分定形以限定末端孔,颈部定形以限定位于聚焦液体供给喷嘴的入口和聚焦液体供给喷嘴的末端孔之间的内部通道,其中聚焦液体的聚焦料流流入聚焦液体供给喷嘴的入口,通过聚焦液体喷嘴的内部通道,从对着小室的聚焦液体供给喷嘴的末端孔流出;其中聚焦液体供给喷嘴适合于在通过其中时有效减小聚焦料流横截面。
50.根据权利要求49的方法,其中流动聚焦体定形限定通向小室的聚焦液体供给入口;其中聚焦液体供给喷嘴确保接合于流动聚焦体,聚焦液体供给喷嘴的至少出口部分确保接纳于聚焦液体供给入口中,以便聚焦液体料流从聚焦液体供给喷嘴的末端孔有效流出进入小室中。
51.根据权利要求43-50中任一项的系统,进一步包括液槽和容器,所述容器包含液槽用于有效收集从单流料流的前端脱离之后的微珠。
52.根据权利要求51的系统,其中液槽包含聚焦液体。
53.根据权利要求43-52中任一项的系统,其中溶剂包括有机溶剂。
54.根据权利要求53的系统,其中有机溶剂包括氯仿或二氯甲烷。
55.根据权利要求43-54中任一项的系统,其中聚合物基本上是疏水的。
56.根据权利要求43-55中任一项的系统,其中聚合物包括聚苯乙烯粉末或其衍生物。
57.根据权利要求43-55中任一项的系统,其中聚合物包括聚苯乙烯-酸酐共聚物。
58.根据权利要求57的系统,其中聚苯乙烯-酸酐共聚物包括聚苯乙烯-马来酸酐共聚物。
59.根据权利要求43-58中任一项的系统,其中在聚合物溶液中官能团在聚焦液体与聚合物溶液有效反应之前被保护起来,且其中官能团在聚焦液体和聚合物溶液有效反应之后被去保护。
60.根据权利要求43-58中任一项的系统,其中至少在聚焦液体与聚合物溶液有效反应之后,聚合物溶液中官能团包括羧酸基团。
61.根据权利要求60的系统,其中在聚合物溶液中,羧酸基团在聚焦液体与聚合物溶液有效反应之前被保护起来,且其中羧酸基团在聚焦液体和聚合物溶液有效反应之后被去保护。
62.根据权利要求61的系统,其中聚焦液体是水,其中羧酸基团通过与水的水解被去保护。
63.根据权利要求43-61中任一项的系统,其中聚焦液体是水。
64.根据权利要求43-63中任一项的系统,其中粒子包括荧光基团。
65.根据权利要求43-63中任一项的系统,其中粒子包括纳米粒子。
66.根据权利要求65的系统,其中纳米粒子包括半导体纳米粒子、磁性纳米粒子、金属导体纳米粒子、金属氧化物纳米粒子、或荧光纳米粒子。
67.根据权利要求43-63中任一项的系统,其中粒子包括量子点。
68.根据权利要求67的系统,其中聚合物溶液包括一种或更多类型量子点的组合,且其中利用每个微珠结合的组合成一套的可识别的量子点适合于,在辐射之后产生一种或更多的基于颜色和/或强度的可识别光谱信号。
69.根据权利要求43-63中任一项的系统,其中粒子包括量子点和磁性纳米粒子的组合。
70.根据权利要求43-69中任一项的系统,其中流动聚焦装置进一步包括聚焦口定形以限定通过其的聚焦喷嘴,该聚焦口基本上阻拦了流动聚焦体的出口,并由该聚焦喷嘴从小室导出,以便单流料流从小室中有效流出穿过聚焦喷嘴,以便单流料流从聚焦喷嘴中有效流出。
71.根据权利要求70的系统,其中聚焦液体基本上包裹着聚合物料流形成单流料流通过并从聚焦喷嘴流出。
72.根据权利要求70和71中任一项的系统,其中每个微珠的湿直径(dg)直接取决于从聚焦喷嘴流出的聚合物料流的直径。
73.根据权利要求72的系统,其中每个微珠的湿直径(dg),根据下述方程决定:
                        dg=1.89dj
其中dj是从聚焦喷嘴流出的聚合物料流的直径。
74.根据权利要求70和71中任一项的系统,其中从聚焦喷嘴流出的聚合物料流的直径(dj)取决于当聚合物料流流出时聚焦喷嘴的直径、进入小室的聚合物溶液的密度和流速以及进入小室的聚焦液体的密度和流速。
75.根据权利要求74的系统,其中从聚焦喷嘴流出的聚合物料流的直径(dj)根据下述方程决定:
d j = D [ 1 + ( ρ 2 ρ 1 ) 1 2 ( Q 2 Q 1 ) ] - 1 2
其中D是当聚合物料流出聚焦喷嘴时的直径,ρ2是进入小室的聚焦液体的密度,ρ1是进入小室的聚合物溶液的密度,Q2是进入小室的聚焦液体的流速,Q1是进入小室的聚合物溶液的流速。
76.根据权利要求75的系统,其中每个微珠的湿直径(dg)直接取决于流出聚焦喷嘴的聚合物料流的直径(dj),并且其根据下述方程决定:
                       dg=1.89dj
其中进入小室的聚合物溶液的密度(ρ1),进入小室的聚焦液体的密度(ρ2),和当聚合物流出聚焦喷嘴的直径(D),是预先确定的,以便当聚合物溶液流入小室的流速(Q1)约为每小时1毫升(ml/h),聚焦液体流入小室的流速(Q2)约为每小时180毫升(ml/h)时,系统有效形成微珠的直径约为6微米(μm)。
77.根据权利要求75的系统,其中每个微珠的湿直径(dg)直接取决于流出聚焦喷嘴的聚合物料流的直径(dj),并且其根据下述方程决定:
                       dg=1.89dj
其中进入小室的聚合物溶液的密度(ρ1),进入小室的聚焦液体的密度(ρ2),和当聚合物流出聚焦喷嘴的直径(D),是预先确定的,以便当聚合物溶液流入小室的流速(Q1)约为每小时0.5毫升(ml/h),聚焦液体流入小室的流速(Q2)约为每小时180毫升(ml/h)时,系统有效形成微珠的直径约为5微米(μm)。
78.根据权利要求76和77中任一项的系统,其中聚合物溶液的浓度,以重量-重量百分数计约为0.04(4wt%)。
CN200880103911XA 2007-06-22 2008-06-23 制备量子点掺杂的聚合物微珠的系统和方法 Expired - Fee Related CN101821322B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US94572407P 2007-06-22 2007-06-22
US60/945,724 2007-06-22
PCT/CA2008/001204 WO2009000084A1 (en) 2007-06-22 2008-06-23 Systems and methods for manufacturing quantum dot-doped polymer microbeads

Publications (2)

Publication Number Publication Date
CN101821322A true CN101821322A (zh) 2010-09-01
CN101821322B CN101821322B (zh) 2012-12-05

Family

ID=40185143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880103911XA Expired - Fee Related CN101821322B (zh) 2007-06-22 2008-06-23 制备量子点掺杂的聚合物微珠的系统和方法

Country Status (6)

Country Link
US (1) US8597729B2 (zh)
EP (1) EP2162486A4 (zh)
JP (1) JP2010530912A (zh)
CN (1) CN101821322B (zh)
CA (1) CA2692259C (zh)
WO (1) WO2009000084A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254950A (zh) * 2018-02-09 2018-07-06 京东方科技集团股份有限公司 一种量子点小球喷洒设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9039273B2 (en) 2005-03-04 2015-05-26 President And Fellows Of Harvard College Method and apparatus for forming multiple emulsions
EP2209549A4 (en) * 2007-10-12 2014-03-05 Fio Corp FLOW FOCUSING SYSTEM AND SYSTEM FOR FORMING CONCENTRATED VOLUMES OF MICRO BEADS AND FURTHER MICRO BEADS
CN101998497B (zh) * 2009-08-19 2013-03-27 中兴通讯股份有限公司 一种非周期上报信道状态信息的方法及装置
US20120211084A1 (en) 2009-09-02 2012-08-23 President And Fellows Of Harvard College Multiple emulsions created using jetting and other techniques
ES2445709T3 (es) 2010-12-31 2014-03-04 Progenika Biopharma, S.A. Método para la identificación por técnicas moleculares de variantes genéticas que no codifican antígeno D (D-) y codifican antígeno C alterado (C+W)
WO2014031902A2 (en) * 2012-08-23 2014-02-27 The Regents Of The University Of California Spectrally encoded microbeads and methods and devices for making and using same
CN105121593A (zh) * 2013-02-15 2015-12-02 多伦多大学理事会 金属纳米壳包被的条码
US10632479B2 (en) * 2015-05-22 2020-04-28 The Hong Kong University Of Science And Technology Droplet generator based on high aspect ratio induced droplet self-breakup
US10137090B2 (en) * 2016-12-14 2018-11-27 Metal Industries Research & Development Centre Nozzle, apparatus, and method for producing microparticles

Family Cites Families (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244630A (en) 1988-04-22 1993-09-14 Abbott Laboratories Device for performing solid-phase diagnostic assay
ATE117829T1 (de) 1988-05-24 1995-02-15 Anagen Uk Ltd Magnetisch anziehbare teilchen und herstellungsverfahren.
DE4105400A1 (de) 1991-02-21 1992-08-27 Behringwerke Ag Definierte beschichtung mit rekombinanten fusionsproteinen aus konstantem fusionspartner und variablem antigenanteil in diagnostischen testsystemen
ES2231773T3 (es) 1993-05-05 2005-05-16 Common Services Agency Virus de la hepatitis c de tipo 4, 5 y 6.
US6103379A (en) 1994-10-06 2000-08-15 Bar-Ilan University Process for the preparation of microspheres and microspheres made thereby
US6340588B1 (en) 1995-04-25 2002-01-22 Discovery Partners International, Inc. Matrices with memories
US6022500A (en) 1995-09-27 2000-02-08 The United States Of America As Represented By The Secretary Of The Army Polymer encapsulation and polymer microsphere composites
AU7398996A (en) 1995-10-11 1997-04-30 Luminex Corporation Multiplexed analysis of clinical specimens apparatus and method
US5837442A (en) 1995-11-29 1998-11-17 Roche Molecular Systems, Inc. Oligonucleotide primers for amplifying HCV nucleic acid
US5885470A (en) 1997-04-14 1999-03-23 Caliper Technologies Corporation Controlled fluid transport in microfabricated polymeric substrates
ES2140998B1 (es) 1996-05-13 2000-10-16 Univ Sevilla Procedimiento de atomizacion de liquidos.
US6405936B1 (en) 1996-05-13 2002-06-18 Universidad De Sevilla Stabilized capillary microjet and devices and methods for producing same
US6197835B1 (en) 1996-05-13 2001-03-06 Universidad De Sevilla Device and method for creating spherical particles of uniform size
US5800690A (en) 1996-07-03 1998-09-01 Caliper Technologies Corporation Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces
US6582921B2 (en) 1996-07-29 2003-06-24 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses thereof
US5714390A (en) 1996-10-15 1998-02-03 Bio-Tech Imaging, Inc. Cartridge test system for the collection and testing of blood in a single step
US5817458A (en) 1996-10-15 1998-10-06 The Avriel Group, Amcas Division Inc. Reagent system for detecting HIV-infected peripheral blood lymphocytes in whole blood
US5786219A (en) 1996-10-28 1998-07-28 Molecular Probes, Inc. Microspheres with fluorescent spherical zones
US5959291A (en) 1997-06-27 1999-09-28 Caliper Technologies Corporation Method and apparatus for measuring low power signals
US6066243A (en) 1997-07-22 2000-05-23 Diametrics Medical, Inc. Portable immediate response medical analyzer having multiple testing modules
US6881537B1 (en) 1997-08-08 2005-04-19 Biomerieux, B.V. Nucleic acid sequences that can be used as primers and probes in the amplification and detection of all subtypes of HIV-1
US6699723B1 (en) 1997-11-25 2004-03-02 The Regents Of The University Of California Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
EP0919568A1 (en) 1997-12-01 1999-06-02 Sorin Diagnostics S.r.l. Escape mutant of the surface antigen of hepatitis B virus
US6430512B1 (en) 1997-12-30 2002-08-06 Caliper Technologies Corp. Software for the display of chromatographic separation data
US6394952B1 (en) 1998-02-03 2002-05-28 Adeza Biomedical Corporation Point of care diagnostic systems
US6100541A (en) 1998-02-24 2000-08-08 Caliper Technologies Corporation Microfluidic devices and systems incorporating integrated optical elements
US7117188B2 (en) 1998-05-01 2006-10-03 Health Discovery Corporation Methods of identifying patterns in biological systems and uses thereof
CA2268997C (en) 1998-05-05 2005-03-22 National Research Council Of Canada Quantum dot infrared photodetectors (qdip) and methods of making the same
WO1999058955A1 (en) 1998-05-14 1999-11-18 Luminex Corporation Multi-analyte diagnostic system and computer implemented process for same
US7077328B2 (en) 1998-07-31 2006-07-18 Abbott Laboratories Analyte test instrument system including data management system
US6263286B1 (en) 1998-08-13 2001-07-17 U.S. Genomics, Inc. Methods of analyzing polymers using a spatial network of fluorophores and fluorescence resonance energy transfer
ATE389030T1 (de) 1998-09-24 2008-03-15 Univ Indiana Res & Tech Corp Wasserlösliche lumineszente quantum-dots sowie deren biokonjugate
US6498497B1 (en) 1998-10-14 2002-12-24 Caliper Technologies Corp. Microfluidic controller and detector system with self-calibration
US6319607B1 (en) 1998-11-10 2001-11-20 Bio-Pixels Ltd. Purification of functionalized fluorescent nanocrystals
US6576155B1 (en) 1998-11-10 2003-06-10 Biocrystal, Ltd. Fluorescent ink compositions comprising functionalized fluorescent nanocrystals
US6114038A (en) 1998-11-10 2000-09-05 Biocrystal Ltd. Functionalized nanocrystals and their use in detection systems
AU1717600A (en) 1998-11-10 2000-05-29 Biocrystal Limited Methods for identification and verification
US6261779B1 (en) 1998-11-10 2001-07-17 Bio-Pixels Ltd. Nanocrystals having polynucleotide strands and their use to form dendrimers in a signal amplification system
US6309701B1 (en) 1998-11-10 2001-10-30 Bio-Pixels Ltd. Fluorescent nanocrystal-labeled microspheres for fluorescence analyses
US6333110B1 (en) 1998-11-10 2001-12-25 Bio-Pixels Ltd. Functionalized nanocrystals as visual tissue-specific imaging agents, and methods for fluorescence imaging
ATE556149T1 (de) 1999-02-23 2012-05-15 Caliper Life Sciences Inc Manipulation von mikropartikeln in mikrofluidischen systemen
US7166475B2 (en) 1999-02-26 2007-01-23 Cyclacel Ltd. Compositions and methods for monitoring the modification state of a pair of polypeptides
US20010055764A1 (en) 1999-05-07 2001-12-27 Empedocles Stephen A. Microarray methods utilizing semiconductor nanocrystals
ATE439452T1 (de) 1999-05-07 2009-08-15 Life Technologies Corp Verfahren zum nachweis von analyten mit hilfe von halbleiternanokrystallen
JP3815969B2 (ja) 1999-05-12 2006-08-30 アクララ バイオサイエンシーズ, インコーポレイテッド 微量流体デバイスにおける多重方式蛍光検出
EP1179087B1 (en) 1999-05-17 2019-03-27 Caliper Life Sciences, Inc. Focusing of microparticles in microfluidic systems
US6592821B1 (en) 1999-05-17 2003-07-15 Caliper Technologies Corp. Focusing of microparticles in microfluidic systems
US6544732B1 (en) 1999-05-20 2003-04-08 Illumina, Inc. Encoding and decoding of array sensors utilizing nanocrystals
US20020051971A1 (en) 1999-05-21 2002-05-02 John R. Stuelpnagel Use of microfluidic systems in the detection of target analytes using microsphere arrays
US20060169800A1 (en) 1999-06-11 2006-08-03 Aradigm Corporation Aerosol created by directed flow of fluids and devices and methods for producing same
US6811668B1 (en) 1999-06-22 2004-11-02 Caliper Life Sciences, Inc. Apparatus for the operation of a microfluidic device
US6353475B1 (en) 1999-07-12 2002-03-05 Caliper Technologies Corp. Light source power modulation for use with chemical and biochemical analysis
AU6779200A (en) 1999-08-17 2001-03-13 Luminex Corporation Encapsulation of fluorescent particles
WO2001017797A1 (en) 1999-09-10 2001-03-15 Caliper Technologies Corp. Microfabrication methods and devices
US20040267568A1 (en) 1999-09-15 2004-12-30 Mark Chandler Creation of a database of biochemical data and methods of use
US6978212B1 (en) 1999-11-01 2005-12-20 Smiths Detection Inc. System for portable sensing
US7037416B2 (en) 2000-01-14 2006-05-02 Caliper Life Sciences, Inc. Method for monitoring flow rate using fluorescent markers
AU2001236491A1 (en) 2000-01-18 2003-09-16 Quantom Dot Corporation Oligonucleotide-tagged semiconductor nanocrystals for microarray and fluorescence in situ hybridization
US20020004246A1 (en) 2000-02-07 2002-01-10 Daniels Robert H. Immunochromatographic methods for detecting an analyte in a sample which employ semiconductor nanocrystals as detectable labels
US20030099940A1 (en) 2000-02-16 2003-05-29 Empedocles Stephen A. Single target counting assays using semiconductor nanocrystals
CA2399199A1 (en) 2000-02-23 2001-08-30 Ring-Ling Chien Multi-reservoir pressure control system
CA2403708A1 (en) 2000-03-22 2001-09-27 Quantum Dot Corporation Methods of using semiconductor nanocrystals in bead-based nucleic acid assays
US6773812B2 (en) 2000-04-06 2004-08-10 Luminex Corporation Magnetically-responsive microspheres
US6734420B2 (en) 2000-04-06 2004-05-11 Quantum Dot Corporation Differentiable spectral bar code methods and systems
US6548264B1 (en) 2000-05-17 2003-04-15 University Of Florida Coated nanoparticles
US7351376B1 (en) 2000-06-05 2008-04-01 California Institute Of Technology Integrated active flux microfluidic devices and methods
US6494830B1 (en) 2000-06-22 2002-12-17 Guidance Interactive Technologies, Inc. Handheld controller for monitoring/using medical parameters
JP2002000271A (ja) 2000-06-28 2002-01-08 Sanyo Electric Co Ltd 微生物分析システム及び方法並びにデータベース
WO2002007064A2 (en) 2000-07-17 2002-01-24 Labnetics, Inc. Method and apparatus for the processing of remotely collected electronic information characterizing properties of biological entities
CA2314398A1 (en) 2000-08-10 2002-02-10 Edward Shipwash Microarrays and microsystems for amino acid analysis and protein sequencing
US20020182609A1 (en) 2000-08-16 2002-12-05 Luminex Corporation Microsphere based oligonucleotide ligation assays, kits, and methods of use, including high-throughput genotyping
US6934408B2 (en) 2000-08-25 2005-08-23 Amnis Corporation Method and apparatus for reading reporter labeled beads
US20020048425A1 (en) 2000-09-20 2002-04-25 Sarnoff Corporation Microfluidic optical electrohydrodynamic switch
AU2002224348A1 (en) 2000-10-04 2002-04-15 The Board Of Trustees Of The University Of Arkansas Synthesis of colloidal nanocrystals
US6649138B2 (en) 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
US6937323B2 (en) 2000-11-08 2005-08-30 Burstein Technologies, Inc. Interactive system for analyzing biological samples and processing related information and the use thereof
US6573128B1 (en) 2000-11-28 2003-06-03 Cree, Inc. Epitaxial edge termination for silicon carbide Schottky devices and methods of fabricating silicon carbide devices incorporating same
US6778724B2 (en) 2000-11-28 2004-08-17 The Regents Of The University Of California Optical switching and sorting of biological samples and microparticles transported in a micro-fluidic device, including integrated bio-chip devices
US20020083888A1 (en) 2000-12-28 2002-07-04 Zehnder Donald A. Flow synthesis of quantum dot nanocrystals
CN1152055C (zh) 2001-03-20 2004-06-02 清华大学 磁性微球的表面包覆和基团功能化修饰方法及所得微球及其应用
WO2002078512A2 (en) 2001-04-02 2002-10-10 Therasense, Inc. Blood glucose tracking apparatus and methods
JP2002311027A (ja) 2001-04-09 2002-10-23 Hitachi Software Eng Co Ltd ビーズ、ビーズ製造方法、フローサイトメータ及びプログラム
US20020164271A1 (en) 2001-05-02 2002-11-07 Ho Winston Z. Wavelength-coded bead for bioassay and signature recogniton
US6845327B2 (en) 2001-06-08 2005-01-18 Epocal Inc. Point-of-care in-vitro blood analysis system
US6905885B2 (en) 2001-06-12 2005-06-14 The Regents Of The University Of California Portable pathogen detection system
US20030148544A1 (en) 2001-06-28 2003-08-07 Advanced Research And Technology Institute, Inc. Methods of preparing multicolor quantum dot tagged beads and conjugates thereof
EP1270073B1 (de) 2001-06-28 2005-02-16 Agilent Technologies, Inc. (a Delaware corporation) Mikrofluid-System mit Regler
WO2003092043A2 (en) 2001-07-20 2003-11-06 Quantum Dot Corporation Luminescent nanoparticles and methods for their preparation
US7060227B2 (en) 2001-08-06 2006-06-13 Sau Lan Tang Staats Microfluidic devices with raised walls
GB2378949B (en) 2001-08-16 2005-09-07 Morten Steen Hanefeld Dziegiel Recombinant anti-plasmodium falciparum antibodies
EP1432786B1 (en) 2001-09-06 2009-07-22 Genomic Profiling Systems, Inc. Rapid detection of replicating cells
US7214428B2 (en) 2001-09-17 2007-05-08 Invitrogen Corporation Highly luminescent functionalized semiconductor nanocrystals for biological and physical applications
US7205048B2 (en) 2001-09-17 2007-04-17 Invitrogen Corporation Functionalized fluorescent nanocrystal compositions and methods of making
US7195913B2 (en) 2001-10-05 2007-03-27 Surmodics, Inc. Randomly ordered arrays and methods of making and using
US6966880B2 (en) 2001-10-16 2005-11-22 Agilent Technologies, Inc. Universal diagnostic platform
US7457731B2 (en) 2001-12-14 2008-11-25 Siemens Medical Solutions Usa, Inc. Early detection of disease outbreak using electronic patient data to reduce public health threat from bio-terrorism
US7252928B1 (en) 2002-03-12 2007-08-07 Caliper Life Sciences, Inc. Methods for prevention of surface adsorption of biological materials to capillary walls in microchannels
DE60222734T2 (de) 2002-03-15 2008-07-17 Alrise Biosystems Gmbh Mikropartikel und Verfahren zur deren Herstellung
US20030194350A1 (en) 2002-04-11 2003-10-16 Siemens Information And Communication Networks Public health threat surveillance system
JP2004035446A (ja) * 2002-07-02 2004-02-05 Tendou Seiyaku Kk 微小球体の製造方法およびその製造装置
DE50308422D1 (de) 2002-08-02 2007-11-29 Capsulution Nanoscience Ag Farbkodierte layer-by-layer mikrokapseln als kombinatorische analysebibliotheken und als spezifische optische sensoren
US7267799B1 (en) 2002-08-14 2007-09-11 Detekt Biomedical, L.L.C. Universal optical imaging and processing system
WO2004030512A2 (en) 2002-08-19 2004-04-15 Stout Solutions, Llc. Bio-surveillance system
JP4230741B2 (ja) 2002-08-30 2009-02-25 日立ソフトウエアエンジニアリング株式会社 半導体ナノ粒子の精製方法
GB2393729A (en) 2002-10-04 2004-04-07 Nanomagnetics Ltd Semiconductor nanoparticles
US20040096363A1 (en) 2002-11-18 2004-05-20 Larry Porter Point-of-care assay reader and analyzer
TWI220162B (en) 2002-11-29 2004-08-11 Ind Tech Res Inst Integrated compound nano probe card and method of making same
ATE534748T1 (de) 2002-12-12 2011-12-15 Nanosphere Inc Direkter snp-nachweis mit nichtamplifizierter dna
US7613510B2 (en) 2002-12-12 2009-11-03 Razvan Rentea Biofeedback device displaying results on a cellular phone display
AU2003294602A1 (en) 2002-12-13 2004-07-09 Aclara Biosciences, Inc. Closed-loop control of electrokinetic processes in microfludic devices based on optical readings
JP4073323B2 (ja) 2003-01-23 2008-04-09 日立ソフトウエアエンジニアリング株式会社 機能性ビーズ、その読み取り方法および読み取り装置
US20040176704A1 (en) 2003-03-04 2004-09-09 Stevens Timothy A Collection device adapted to accept cartridge for point of care system
US20050014134A1 (en) 2003-03-06 2005-01-20 West Jason Andrew Appleton Viral identification by generation and detection of protein signatures
WO2005022120A2 (en) 2003-03-11 2005-03-10 Nanosys, Inc. Process for producing nanocrystals and nanocrystals produced thereby
BRPI0408967B8 (pt) 2003-03-31 2021-07-27 Hoffmann La Roche kit e métodos para detecção de um ácido nucléico de vários membros do sorogrupo do vírus da encefalite japonesa em uma amostra biológica sob condições de hibridização rigorosas
WO2004111260A2 (en) 2003-06-12 2004-12-23 Bioarray Solutions, Ltd. Immobilization of bead-displayed ligands on substrate surfaces
US7115230B2 (en) 2003-06-26 2006-10-03 Intel Corporation Hydrodynamic focusing devices
AU2003270759A1 (en) 2003-08-04 2005-03-07 Emory University Porous materials embedded with nanospecies
US7069191B1 (en) 2003-08-06 2006-06-27 Luminex Corporation Methods for reducing the susceptibility of a peak search to signal noise
US7298478B2 (en) 2003-08-14 2007-11-20 Cytonome, Inc. Optical detector for a particle sorting system
US8346482B2 (en) 2003-08-22 2013-01-01 Fernandez Dennis S Integrated biosensor and simulation system for diagnosis and therapy
US20050071199A1 (en) 2003-09-30 2005-03-31 Riff Kenneth M. Aggregating patient information for use in medical device programming
US7118627B2 (en) 2003-12-04 2006-10-10 Hines Margaret A Synthesis of colloidal PbS nanocrystals with size tunable NIR emission
WO2005067485A2 (en) 2003-12-12 2005-07-28 Quantum Dot Corporation Preparation of stable, bright luminescent nanoparticles having compositionally engineered properties
WO2005061095A1 (ja) * 2003-12-24 2005-07-07 Mg Pharmacy Inc. 微小球体の製造方法およびその製造装置
US20050227370A1 (en) 2004-03-08 2005-10-13 Ramel Urs A Body fluid analyte meter & cartridge system for performing combined general chemical and specific binding assays
EP1753611A4 (en) 2004-05-10 2011-09-14 Evident Technologies III-V SEMICONDUCTOR NANOCRYSTAL COMPLEXES AND METHODS OF MAKING
US7335345B2 (en) 2004-05-24 2008-02-26 Drexel University Synthesis of water soluble nanocrystalline quantum dots and uses thereof
US7276720B2 (en) 2004-07-19 2007-10-02 Helicos Biosciences Corporation Apparatus and methods for analyzing samples
US7229690B2 (en) 2004-07-26 2007-06-12 Massachusetts Institute Of Technology Microspheres including nanoparticles
TWI281691B (en) 2004-08-23 2007-05-21 Ind Tech Res Inst Method for manufacturing a quantum-dot element
US7524672B2 (en) 2004-09-22 2009-04-28 Sandia Corporation Microfluidic microarray systems and methods thereof
US7534489B2 (en) 2004-09-24 2009-05-19 Agency For Science, Technology And Research Coated composites of magnetic material and quantum dots
US7405434B2 (en) 2004-11-16 2008-07-29 Cornell Research Foundation, Inc. Quantum dot conjugates in a sub-micrometer fluidic channel
DE102004062573A1 (de) * 2004-12-24 2006-07-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dreidimensionale nano- und mikrostrukturierte Träger
ES2257968B1 (es) * 2005-01-28 2007-07-01 Universidad De Sevilla Procedimiento y dispositivo para la obtencion de particulas de tamaño micro y nanometrico.
US20060173715A1 (en) 2005-02-01 2006-08-03 Hao Wang Health information system and method
US20070031283A1 (en) 2005-06-23 2007-02-08 Davis Charles Q Assay cartridges and methods for point of care instruments
US20070081920A1 (en) 2005-10-12 2007-04-12 Murphy R S Semi-disposable optoelectronic rapid diagnostic test system
US9492805B2 (en) * 2005-11-01 2016-11-15 Massachusetts Institute Of Technology Initiated chemical vapor deposition of vinyl polymers for the encapsulation of particles
JP4997522B2 (ja) * 2006-01-13 2012-08-08 財団法人生産技術研究奨励会 単一直径アルギン酸マイクロビーズの製造方法及びその製造装置
EP2209549A4 (en) * 2007-10-12 2014-03-05 Fio Corp FLOW FOCUSING SYSTEM AND SYSTEM FOR FORMING CONCENTRATED VOLUMES OF MICRO BEADS AND FURTHER MICRO BEADS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254950A (zh) * 2018-02-09 2018-07-06 京东方科技集团股份有限公司 一种量子点小球喷洒设备
CN108254950B (zh) * 2018-02-09 2021-01-08 京东方科技集团股份有限公司 一种量子点小球喷洒设备

Also Published As

Publication number Publication date
CA2692259A1 (en) 2008-12-31
EP2162486A4 (en) 2014-03-12
US20120156490A1 (en) 2012-06-21
CA2692259C (en) 2012-07-31
WO2009000084A1 (en) 2008-12-31
JP2010530912A (ja) 2010-09-16
US8597729B2 (en) 2013-12-03
CN101821322B (zh) 2012-12-05
EP2162486A1 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
CN101821322B (zh) 制备量子点掺杂的聚合物微珠的系统和方法
Wang et al. Watching silica nanoparticles glow in the biological world
Rajdev et al. Fluorescence resonance energy transfer (FRET): a powerful tool for probing amphiphilic polymer aggregates and supramolecular polymers
Ji et al. On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system
Leng et al. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection
US7235361B2 (en) Biological applications of quantum dots
CN102791827B (zh) 官能化发色聚合物点及其生物共轭体
US20080242774A1 (en) Multiphasic nano-components comprising colorants
CN105324667B (zh) 生物体分子染色用的荧光纳米粒子及其制造方法
CN101787163B (zh) 一种磁性荧光微球及其制备方法
US20040203170A1 (en) Methods for identification and verification
CN101918833A (zh) 生物探针、制备该生物探针的方法以及使用该生物探针的分析仪器和方法
US9284188B2 (en) Cytosolic delivery of materials with endosome-disrupting colloids
EP1535070A4 (en) OPTICAL FLUORESCENT MARKINGS IN THE NANOMASS STAB AND USES THEREOF
CN113337271A (zh) 包覆金属纳米壳层的荧光编码微球的制备方法
CN101019019A (zh) 表面强化的光谱学活性复合纳米颗粒
Sun et al. Preparation of quantum dots encoded microspheres by electrospray for the detection of biomolecules
CN101812506A (zh) 多色量子点组合微球编码的液体芯片及其制备方法和检测方法
CN103205257A (zh) 一种多层保护超稳定水溶性单个荧光量子点和荧光微球的合成新方法
WO2010007117A1 (de) Verfahren und vorrichtung zur herstellung metallhaltiger organischer verbindungen
CN100400677C (zh) 荧光量子点标记的dna生物探针的制备方法
Trzepiński et al. Dendrimers for fluorescence‐based bioimaging
Warnement et al. Fluorescent imaging applications of Quantum Dot probes
US10308869B2 (en) Liquid containing polymer marker, use of a polymer marker as authentication tool, and method and device for detecting a polymer marker dissolved in a liquid
US20040126901A1 (en) Clamped value beads

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121205

Termination date: 20180623