CN101668345A - 通信设备 - Google Patents

通信设备 Download PDF

Info

Publication number
CN101668345A
CN101668345A CN200910170518A CN200910170518A CN101668345A CN 101668345 A CN101668345 A CN 101668345A CN 200910170518 A CN200910170518 A CN 200910170518A CN 200910170518 A CN200910170518 A CN 200910170518A CN 101668345 A CN101668345 A CN 101668345A
Authority
CN
China
Prior art keywords
communication station
beacon
transmission
activity level
sta0
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910170518A
Other languages
English (en)
Other versions
CN101668345B (zh
Inventor
迫田和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN101668345A publication Critical patent/CN101668345A/zh
Application granted granted Critical
Publication of CN101668345B publication Critical patent/CN101668345B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/244Connectivity information management, e.g. connectivity discovery or connectivity update using a network of reference devices, e.g. beaconing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • H04W84/20Master-slave selection or change arrangements

Abstract

本发明公开了一种通信设备。为了解决在例如无线LAN系统的通信系统中进行发送时出现发送端上的累积,接收端上的延迟等等问题,网络中的每个通信站发送其中写入了针对网络的信息的信标,并且设置这样一状态,其中当通过检测从包含多个通信站的网络中的另一个站点发送的信号来执行访问控制,以使分组的通信定时不与另一个站点的分组通信定时相冲突时,在发送信标信号前、后的时间段内执行接收操作。通过执行这种处理,能够在发送和接收数据未存在于网络中的每个通信站中时,基于发送和接收操作的最小水平来形成系统,并且通过基于发送和接收数据的波动量转变发送和接收状态,使用发送和接收操作的最小必要水平中尽可能小的等待时间执行数据传送。

Description

通信设备
本申请是申请日为2004年2月3日、申请号为200480006125.X、发明名称为“通信方法、通信设备及计算机程序”发明专利申请的分案申请。
技术领域
本发明涉及适于应用于例如执行数据通信等等的无线LAN(局域网:本地信息和通信网络)系统的通信方法和通信设备。本发明尤其涉及这样的通信方法和通信设备,其适于应用于在没有配置控制站的情况下操作在主站和从站之间不具有控制和被控制关系的自主分布型网络的情况。
更详细地,本发明涉及无线通信方法和无线通信设备,以及计算机程序,其中以这样的方式形成自主分布型无线网络,使得每个通信站以预定帧周期相互通知其中写入有网络信息等等的信标,并且尤其涉及无线通信方法和无线通信设备,以及计算机程序,其中在每个通信站避免相互发送的信标的冲突的同时形成自主分布型无线网络。
背景技术
过去,把根据IEEE(电气电子工程师协会)802.11方法定义的访问控制等等通称为无线LAN系统的介质访问控制。IEEE 802.11方法的详细资料在International Standard ISO/IEC 8802-11:1999(E)ANSI/IEEE Std 802.11,1999 Edition,Part 11:Wireless LAN MediumAccess Control(MAC)and Physical Layer(PHY)Specifications等等中描述。IEEE 802.11方法中的联网基于BSS(基本服务集)的概念。存在两种BSS,一种是通过基础设施模式定义的BSS,其中存在例如接入点:AP的主控制站,另一种是通过只包含多个终端站:MT(移动终端)的专用模式定义的IBSS(独立BSS)。
使用图27解释在基础设施模式时IEEE 802.11中的操作。在基础设施模式的BSS中,存在无线通信系统中执行协同的接入点,并且在接入点和此接入点周围存在的终端站MT之间执行通信。接入点以适当时间间隔发送称作信标的控制信号,并且能够接收此信标的终端站MT识别在附近存在接入点,并且还建立与此接入点的连接。图27A到27C描述了图27A中示出的通信站STA1是一个接入点以及图27B中示出的通信站STA0是一个终端站MT的情况。通信站STA1以如图27A到27C所示的固定时间间隔发送信标。
通过称作目标信标发送时间(TBTT)的参数在信标中通知下一个信标的发送时间,并且接入点在时间变成TBTT时操作信标发送过程。此外,由于邻近终端站MT能够通过接收信标以及解码其内部TBTT字段来识别下一个信标发送时间,所以还存在这样的情况,其中关闭接收单元的电源直到下次的TBTT或接着的多次的TBTT,并且站MT在认为不必与接入点通信的时间段内进入休眠状态(称作间歇接收操作)。当信标中包含寻址到指定通信站的信息时,在信标中定义传递其影响到有关通信站的字段,并且已经接收信标的终端站MT能够了解当前接入点是否保留寻址到该终端站MT的信息。
在图27A到27C中,示出一个情况以作为例子,其中通信站STA0每两次接收一次通信站STA1的信标。图27C示出通信站STA0中接收单元的状态,其中高电平示出接收操作期间的状态,以及低电平示出接收中止期间的状态。在通信站STA1发送信标B1-0的定时上,通信站STA0操作接收单元。然而,当完成信标的接收时,由于没有在信标B1-0中描述包含寻址到此的信息,所以通信站STA0停止接收单元的操作。当发送下一个信标B1-1时,通信站STA0不操作接收单元,并且预定在发送信标B1-1之后的下一个信标B1-2的时间操作接收单元。在图27A到27C中,以这样的情况为例,其中在此信标B1-2中通知包含有寻址到通信站STA0的信息。
通信站STA0(已经通过接收信标B1-2识别出包含寻址到此的信息)基于预定发送过程发送PS-轮询(PS-Poll)分组,以便通知通信站STA1识别出该信息并且接收单元保持操作。在识别出通信站STA0已经开始操作接收设备之后,基于预定发送过程,已经接收分组的通信站STA1发送寻址到通信站STA0的信息分组。当无误地接收了信息分组时,通信站STA0发送作为接收确认信号的ACK。此时,把指示当前通信站STA1中没有包含更多信息的信息写入通信站STA0接收的信息分组中,并且已经识别上述情况的通信站STA0再次停止接收单元的操作,并且转换到间歇接收操作。
此外,当接入点发送广播信息时,接入点执行递减计数以判定将来何时发送广播消息,并且通知信标中的计数值。例如,当在图27A到27C中的信标B1-2之后立即发送广播信息时,在信标B1-0中写入计数值2,在信标B1-1中写入计数值1并且在信标B1-3中写入计数值0,并且无需每次接收信标信号,终端站MT能够通过参照相关计数值并且在计数值变成零的时间点上操作接收设备来接收广播信息。
接着,使用图28A到28C解释在专用模式时的IEEE 802.11的操作。在专用模式的IBSS中,终端站(通信站)MT当在多个通信站MT中间执行协商之后自主定义IBSS。当定义IBSS时,通信站组将TBTT设置在协商之后的固定间隔上。当通过参照其自身的内部时钟识别TBTT时,在识别出还没有任何一方发送信标的情况下,每个通信站MT在延迟随机时间之后发送信标。在图28A到28C中,示出一个情况作为一个例子,其中两个MT,即通信站STA0和通信站STA1形成IBSS。图28A示出通信站STA1发送和接收的分组,图28B示出通信站STA0发送和接收的分组,并且图28C示出通信站STA0的接收单元的操作状态(高电平为接收操作状态和低电平为接收中止状态)。针对这种情况下的信标,属于IBSS的通信站STA0或者通信站STA1的通信站MT,在每次TBTT来临时发送信标。
在IBSS中,还存在通信站MT关闭发送接收单元的电源并且根据需要进入休眠状态的情况。当在IBSS中应用休眠模式时,从TBTT开始某个时间的时间段被定义成IEEE 802.11中的ATIM(公告传输指示消息)窗口。所有属于IBSS的通信站MT在ATIM窗口时间段内操作接收单元,并且基本上在休眠模式中操作的通信站MT能在此时间段内进行接收。
当每个通信站MT保留寻址到另一个站点的信息时,通过在发送信标之后的ATIM窗口的时间段内向上述另一个站点发送ATIM分组,把站点保留寻址到上述另一个站点的信息的事实通知给接收端。已经接收ATIM分组的通信站MT或已经发送信标的通信站MT使接收单元保持操作直到下一个TBTT。
在图28A到28C中,当变成第一个TBTT时,STA0和STA1的每个通信站MT在监视介质状态一段随机时间的同时操作补偿(back-off)定时器。在图28A到28C的例子中示出通信站STA0的定时器最早结束计数并且通信站STA0发送信标的情况。由于通信站STA0已经发送信标,所以已经接收此信标的通信站STA1不发送信标。此外,由于STA0已经发送信标,所以通信站STA0使接收单元保持操作,直到发送下一个信标。
在下一个TBTT上,通信站STA1基于随机补偿过程发送信标。此时,尽管通信站STA0在ATIM窗口定义的时间段内操作接收单元,然而站点STA0在此时间段内没有从另一个站点接收信息,并且因而通信站STA0在ATIM窗口的时间段结束之后立即停止接收单元,并且转换到休眠状态,直到下一个TBTT。即使在下一个TBTT上,通信站STA1基于随机补偿过程再次发送信标。此时,由于通信站STA0从通信站STA1接收ATIM消息同时保持接收设备在ATIM窗口定义的时间段内操作,通信站STA0使接收单元在ATIM窗口的时间段结束之后保持操作,并且接收从通信站STA1发送的信息。由于响应ATIM消息接收ACK(即接收确认),通过在确认通信站STA0识别接收之后激活从ATIM窗口结束的时间点开始的随机补偿的过程,通信站STA1尝试发送数据分组。在那之后,通信站STA1和STA0保持接收单元操作,直到下一个信标的发送。
如上所述,在相关领域的无线通信系统(无线LAN等等)中,没有信息要接收的通信站关闭发送接收单元的电源,直到下一个TBTT,并且能够降低功耗。
在公开的日本专利申请No.H8-98255中公开了在相关领域中使用这种信标的无线通信处理的例子。
当执行上述通信控制时,下面问题存在。
·发送端出现数据堆积
在图29A到29E中示出在相关领域的系统中出现分组发送延迟的情况。
图29A是从通信站STA1的上层发送的分组,图29B是通过通信站STA1的MAC层发送和接收的分组(包括信标),图29C是通过通信站STA1的MAC层发送和接收的分组,并且图29D是通过通信站STA1接收并且发送到上层的分组。此外,图29E示出通信站STA1的接收单元中的接收操作状态。一旦终止接收单元,通信站不操作接收单元,直到下一个信标发送时间。因此,当从通信站STA1向通信站STA0传送数据时,并且在从通信站STA1的上层周期性地向下传递信息的情况下,已经使接收单元停止的通信站STA0操作接收单元的下一时间是通信站STA1发送信标的时间,并且在此时间段内从通信站STA1的上层传递的从D1到D5的数据在通信站STA1内累积,例如如图29A到29E所示。发送和接收单元内数据的累积使得应用程序层上接收和发送单元之间的往返时间(RTT)增加(等待时间增加),并且当执行使用滑动窗口的ARQ时出现吞吐率达到最高限度的问题。此外,为了避免溢出,需要缓冲器足够大,以便能够承受在通信站STA1(即发送站)内的数据累积,这导致关硬件的限制的问题。
·接收端出现空闲接收时间段的增加
接着,使用图30A到30F解释出现在接收端上的空闲接收时间段。图30A至30E与图29A至29E相同,并且图30F示出空闲周期。
此外,尽管在相关领域中使用即使接收信息之后仍然使接收单元保持操作的方法以便解决上述问题,然而接收单元在例如如图30A到30F所示的这种情况下变得总是进行操作。尽管确实解决了发送站STA1中数据的累积,但是在通信站STA0(即接收端)无用地操作接收单元,并且由于尽管接收单元保持操作,然而仍存在其中实际未执行数据接收的若干空闲周期(图30F中用箭头示出的时间段),所以从功耗的角度看,仍然存在问题。
·广播信息的等待时间
此外,尽管即使在通信站MT在若干次中仅接收一次信标信息的情况下也能传送在基础设施模式中发送和接收的广播信息,但是当接入点AP试图广播从上层传递的数据时,有必要使广播信息的发送从数据被从上层传递的时刻进行等待,直到结束递减计数,并且出现直到实际发送广播信息为止的延迟变得更大的问题。
考虑上述问题而提出本发明,并且本发明旨在解决当在例如无线LAN系统的通信系统中进行发送时例如发送端上的累积和接收端上的延迟的问题。
发明内容
在本发明中,在包含多个通信站的网络中执行的通信中,其中通过检测从另一个站点发送的信号来执行访问控制以便使得分组的通信定时不与另一个站点的分组通信定时冲突,网络中的每个通信站发送其中写入了针对网络的信息的信标,并且设置这样一种状态,其中在信标信号的发送之前和之后的时间段内执行接收操作。
基于本发明,当发送和接收数据未存在于网络中的每个通信站中时,例如,基于最少发送和接收操作形成系统,并且通过基于发送和接收数据的波动量转变发送和接收操作状态,能够在所需的最少发送和接收操作中以尽可能小的等待时间执行数据传送。因此,可以提供极好的通信方法和通信设备,并且计算机程序。
附图说明
图1的说明性图例示出了基于本发明的实施例的通信设备的布置的例子;
图2的模块图示出了基于本发明的实施例的通信设备的结构的例子;
图3的模块图详细示出了基于本发明的实施例的通信设备的结构的例子;
图4的说明性图例基于本发明的实施例示出了信标发送间隔的例子;
图5的说明性图例基于本发明的实施例示出了信标发送定时的例子;
图6的说明性图例基于本发明的实施例示出了写入信标中的部分信息;
图7的说明性图例基于本发明的实施例示出了NBOI和NBAI处理过程的例子;
图8的说明性图例基于本发明的实施例示出了未许可发送时间段的定义的例子;
图9的说明性图例基于本发明的实施例示出了发送优先时间段的例子;
图10的说明性图例基于本发明的实施例示出了超级帧的结构的例子;
图11的时序图基于本发明的实施例示出了通信站中通信状态的例子;
图12的说明性图例基于本发明的实施例示出了邻近站点列表的例子;
图13A和13B的说明性图例基于本发明的实施例示出了活动等级的转变的例子;
图14A到14D的时序图基于本发明的实施例示出了活动等级0上发送和接收过程的例子;
图15A到15D的时序图基于本发明的实施例示出了活动等级1上发送和接收过程的例子;
图16A到16D的时序图基于本发明的实施例示出了转变到活动等级2的过程的例子;
图17A到17E的时序图基于本发明的实施例示出了活动等级2上发送和接收过程的例子;
图18A到18E的时序图基于本发明的实施例示出了转变到活动等级1的过程的例子;
图19A到19E的时序图基于本发明的实施例示出了转变到活动等级3的过程的例子;
图20A到20E的时序图基于本发明的实施例示出了转变到活动等级2的过程的例子;
图21A到21C的说明性图例基于本发明的实施例示出了广播信号发送状态的例子;
图22的说明性图例基于本发明的实施例示出了广播信号的发送和接收过程的例子;
图23的说明性图例基于本发明的实施例示出了广播信号发送和接收时的邻近站点列表的转变;
图24的说明性图例基于本发明的实施例示出了写入信标信号中的部分信息;
图25的说明性图例基于本发明的实施例示出了活动等级上载的事务处理;
图26的说明性图例基于本发明的实施例示出了活动等级下载的事务处理;
图27A到27C的时序图示出了相关领域中无线通信系统的基础设施模式中的发送和接收状态的例子;
图28A到28C的时序图示出了相关领域中无线通信系统的专用模式中的发送和接收状态的例子;
图29A到29E的时序图示出了相关领域中无线通信系统中分组发送延迟的例子;并且
图30A到30F的时序图示出了相关领域中无线通信系统中接收空闲时间的例子。
具体实施方式
此后,参照图1至25解释本发明的实施例。
在这个实施例中,假设通信的无线传播路径,并且其中使用单个传输介质在多个设备间形成网络(不是基于频率信道分离链路的情况)。然而,即使多个频率信道作为传输介质而存在,本发明同样适用。此外,假设存储转发型传输作为在这个实施例中的通信,并且以分组为单元传送信息。
图1中示出了基于本发明的实施例的构成无线通信系统的通信设备的布置的例子。在此无线通信系统中,未布置特定控制站,每个通信设备以自主分布方式操作,并且形成所谓的专用网络。此图图解了在相同空间中分布有从#0到#6的通信设备的情形。
此外,在此图中通过虚线示出每个通信设备的通信范围,并且该范围不仅被定义为其中可以与存在于该范围内的其它通信设备相互通信的范围,而且定义为其中从每个站点发送的信号相互干扰的范围。具体地,通信设备#0存在于能够与存在在附近的通信设备#1和#4通信的范围内,通信设备#1存在于能够与存在在附近的通信设备#0,#2以及#4通信的范围内,通信设备#2存在于能够与存在在附近的通信设备#1,#3以及#6通信的范围内,通信设备#3存在于能够与存在在附近的通信设备#2通信的范围内,通信设备#4存在于能够与存在在附近的通信设备#0,#1以及#5通信的范围内,通信设备#5存在于能够与存在在附近的通信设备#4通信的范围内,并且通信设备#6存在于能够与存在在附近的通信设备#2通信的范围内。
当在某些指定通信设备之间执行通信时,存在被称作隐藏终端的这种通信终端,其能够被变成通信方的一侧的通信设备收听,但是不能被其它通信设备收听。
图2的模块图示出了构成应用于此实施例的系统的通信站的无线发送和接收设备的结构的例子。在这个例子中,天线1通过天线共享设备2连接到接收处理单元3和发送处理单元4,并且接收处理单元3和发送处理单元4连接到基带单元5。例如,针对接收处理单元3中的接收处理方法以及发送处理单元4中的接收处理方法,可应用于无线LAN并且适于比较短程的通信的各种通信方法能够被应用。具体地,能够应用UWB(超宽带)方法,OFDM(正交频分多路复用)方法,CDMA(码分多址)方法等等。
基带单元5包含接口单元6,MAC(介质访问控制)单元7,DLC(数据链路控制)单元8,等等,并且在相应处理单元中执行安装在此通信系统上的访问控制方法中的每个层中的处理。
图3更详细地基于本发明的实施例示出了充当通信网络中通信站的无线通信设备的功能结构。在其中不配置控制站的自主分布型通信环境下,此图中示出的无线通信设备能够通过在相同无线系统内有效执行信道访问,同时避免冲突的方式形成网络。
如图中所示,无线通信设备100包含接口101,数据缓冲器102,中央控制单元103,信标产生单元104,无线发送单元106,定时控制单元107,天线109,无线接收单元110,信标分析单元112,以及信息存储单元113。
接口101与连接到无线通信设备100的外部设备(例如,个人计算机(图中未示出),等等)交换各种信息集合。
数据缓冲器102用于暂时存储通过接口101从连接的设备发送的数据,以及通过无线发送路径,在通过接口101发送之前接收的数据。
中央控制单元103单一地执行信息发送和接收处理的系列管理以及无线通信设备100中的发送路径的访问控制。例如,在中央控制单元103中执行例如在信标冲突时冲突避免处理的操作控制。
信标产生单元104产生周期性与存在于附近的无线通信设备交换的信标信号。为了使无线通信设备100操作无线网络,定义其信标发送位置,来自邻近站点的信标接收位置等等。信息被存储在信息存储单元113中,并且同时写入信标信号中,并且把其通知给附近的无线通信设备。稍后描述信标信号的结构。由于无线通信设备100在发送帧周期的开始处发送信标,所以通过信标间隔定义无线通信设备100使用的信道中的发送帧周期。
无线发送单元106执行预定的调制处理以便无线发送数据以及暂时存储在数据缓冲器102中的信标信号。此外,无线接收单元110执行例如信息的信号,以及在预定时间从另一个无线通信设备发送的信标的接收处理。
例如,可应用于无线LAN并且适于比较短程的通信的各种通信方法能够被应用为无线发送单元106和无线接收单元110中的无线发送和接收方法。具体地,能够使用UWB(超宽频带)方法,OFMD(正交频分多路复用)方法,CDMA(码分多址)方法等等。
天线109在预定频率信道上无线发送寻址到另一个无线通信设备的信号,或收集从另一个无线通信设备发送的信号。在这个实施例中,假定提供单个天线并且不能一起并行执行发送和接收。
定时控制单元107对定时执行控制以发送和接收无线信号。例如,控制在发送帧周期的开始处的自身信标发送定时,从其它通信设备进行接收的信标接收定时,针对另一个通信设备的数据发送定时以及从另一个通信设备进行接收的数据接收定时,扫描操作周期等等。
信标分析单元112分析从邻近站点接收的信标信号,并且分析附近的无线通信设备的存在等等。例如,例如邻近站点中的信标的接收定时以及邻近信标接收定时的信息被存储在信息存储单元113中以作为邻近设备信息。
信息存储单元113存储在中央控制单元103中执行的系列访问控制操作等等的执行过程命令(程序,其中描述冲突避免处理过程等等),并且存储从分析接收的信标的结果中获得的邻近设备信息等等。
在基于此实施例的自主分布型网络中,每个通信站在预定信道上以预定时间间隔通知信标信息,并且因而使得存在于附近的(具体地,在通信范围内)另一个通信站知道其存在,并且通知该网络配置的另一个站点。因此,信标发送周期被定义成超级帧,并且例如,被假设为80ms。
在通过扫描操作从邻近站点收听信标信号的同时,新进入的通信站检测已经进入通信范围的通信站,并且能够通过解码写入信标中的信息来了解网络配置。此外,在与信标的接收定时逐渐同步的同时将其信标发送定时设置到不从邻近站点发送信标的定时上。
接着,解释在包含基于此实施例的多个通信设备的无线网络中执行的通信处理操作。
在这个实施例中假设的无线通信系统是这样一个情况的例子,其中每个通信站使用所准备的发送路径以固定时间间隔发送信标信号,并且把其存在通知其它通信站。此外,在这个实施例中期望的效果在通常通过时分方式共享发送路径的无线通信系统中也是有效的。
图4示出此实施例的无线通信系统中的信标发送间隔的例子。在图4的例子中,其中存在STA0,STA1,STA2以及STA3的4个通信站的情况被用作一个例子。参与网络的每个通信站周期性地以超级帧间隔发送信标以便使邻近站知道该通信站的存在。此时,假定一个周期是80[毫秒],并且此后使用其中每80[毫秒]发送信标的情况进行解释,但是周期不必限于80[毫秒]。如果通过信标发送的信息是100字节,则发送所需要的时间变成18[微秒]。由于每80[毫秒]执行一次发送,所以一个通信站的信标的介质占用率是足够小的1/4444。由于即使在发送信号没有到达站点的情况下也发送信标,所以信标看上去无意义,但是由于发送时速是1/4444并且足够小的原因,未变成大问题。
每个通信站在接收和确认从存在于附近的通信站发送的信标的同时逐渐同步。当通信站新出现在网络中时,新通信站设置其信标发送定时为未从存在于附近的通信站发送信标的定时。如上所述,并且也由于如图中所示每个通信站的信标发送定时相互偏移,所以在接收邻近信标的同时控制其信标发送定时,使得信标信号不相互重叠。
图5示出了能够在超级帧中放置的信标发送定时的配置的例子。在此图中示出的例子中,象其中时针顺时针沿圆环移动的时钟那样,图解了在由80毫秒构成的超级帧中的时间的流逝。
在图5示出的例子中,总共16个的位置0到F被形成为“时隙”,其中能够布置可执行信标发送的时间,即,信标发送定时。如参考图2所解释的,假定基于这样的算法执行信标的配置,使得新进入的站的信标发送定时被顺序设置在接近已经由现有通信站设置的信标间隔的中央的定时上。当Bmin被定义成5毫秒时,能够被配置的信标的数量在每个超级帧中最大为16。具体地,能够进入网络的通信站的数量最大为16。
尽管在图4和5中未明确图解,但是在有意相对TBTT(目标信标发送时间)偏移某个时间的时间,即每个信标发送时间,发送每个信标。此被称作“TBTT偏移”。事先定义其中设置有TBTT偏移的TBTT偏移指示符序列(TOIS)字段。指示此时与TBTT比较的信标发送的有意偏移量的信标发送偏移值被写入TOIS中。在这个实施例中,通过伪随机数确定TBTT偏移值。通过伪随机序列TOIS(TBTT偏移指示序列)确定此伪随机数,其中该数被唯一确定,并且在每个超级帧周期更新TOIS。
通过提供TBTT偏移,即使在两个通信站已经在超级帧上的相同时隙配置信标发送定时的情况下,也可以使两个通信站的实际信标发送时间具有偏移,并且由于每个通信站能够在另一个超级帧周期中相互收听彼此的信标(或者,存在于附近的通信站能够收听两个信标),即使在某个超级帧周期中信标彼此冲突,所以能够识别其信标的冲突的出现。通信站向邻近站点通知TOI,其在每个超级帧周期中被设置并且其被包含在信标信息中。
此外,在这个实施例中,当未执行数据的发送和接收时,致使每个通信站在发送信标之前和之后执行接收操作。此外,即使在未执行数据的发送和接收时,也致使其通过每若干秒一次地在一个超级帧上连续操作接收设备来执行扫描操作(在此说明书中这个时间间隔被定义成“T_SCAN”),并且确认邻近信标的存在是否存在任何变化,或每个邻近站点的TBTT是否存在偏移。此外,当确认TBTT存在偏移时,基于由站点识别的TBTT组,具有在-Bmin/2毫秒内的偏移的TBTT被定义为“超前的”,并且具有在+Bmin/2毫秒内的偏移的TBTT被定义为“延迟的”,并且遵从最大延迟的TBTT来调整时间。
·NBOI字段
此外,图6示出了说明邻近信标偏移信息(NBOI)字段(作为通过信标发送的一段信息)的例子。在NBOI中,通过相对于有关站的信标位置(发送时间)的相对位置(相对时间),在位映射中写入该有关站能够接收的信标位置(接收时间)。在图6示出的例子中,尽管其中最小间隔为Bmin=5[毫秒]并且仅16种信标发送位置能够存在的情况被作为一个例子,并且因此NBOI字段长度变成16位,但是长度不必限于16位。
图6示出NBOI字段的例子,其中图5中的通信站[#0]通知“来自通信站[#1]和通信站[#9]的信标能够被接收”。针对对应于可以接收的信标相对位置的位,在接收信标时分配一标记,并且在未接收信标时分配一空白。在图6的例子中标记了第0位,第1位和第9位。在第0位中的标记表示有关站点的信标被发送,并且第1位中的标记表示在从此信标的TBTT延迟Bmin*1的定时处接收信标。类似地,在第9位中的标记表示在从此信标的TBTT延迟Bmin*9的定时处接收信标。
这里,对于除上述之外的目的,例如,例如发送补充信标的情况,可以针对对应于未接收信标的定时的位分配标记,尽管稍后描述细节。
·NBAI字段
此外,这里将类似于NBOI字段的邻近信标活动信息(NBAI)定义为类似地通过信标发送的信息。在NABI字段中,在相对于有关站的信标位置的相对位置通过位映射写入该有关站实际接收的信标位置(接收时间)。具体地,NBAI字段表示站点处于能够接收的活动状态。此外,通过上述NBOI和NBAI的两个信息提供站点在超级帧中的指定信标位置接收信标的信息。即,由包含在信标中的NBOI和NBAI字段向每个通信站通知以下2位信息。
  NBAI   NBOI   说明
  0   0   此时未识别信标的存在。
  0   1   此时识别信标的存在。
  1   0   此时处于活动状态。
  1   1   此时正执行信标的接收。
·取得NBOI/NBAI的或的处理
图7示出了直到新进入的通信站A基于由通过扫描操作从邻近站点接收的信标获得的每个信标的NBOI设置其TBTT之前的视图。
假定通信站能够通过扫描操作接收超级帧内从0至2的三个站点接收信标。
邻近站点的信标接收时间被看作相对于扫描站点的普通信标的相对位置,并且通过位映射形式在NBOI字段中描述(如上所述)。接着,在通信站A中,基于每个信标的接收时间偏移已经从邻近站点接收的三个信标的NBOI字段,并且当位的相应位置在时间轴上对齐之后,通过取得每个定时的NBOI位的或来集成NBOI以供参考。其具体过程解释如下,根据信标0的发送定时在三个时隙的延迟中接收信标1。通信站在存储器等等中保留此信息。此外,在包含在信标1中的NBOI字段之后的三个时隙被偏移到前面之后,在存储器等等中保留此信息(图7中的第二层)。也在信标2上执行类似处理(图7中的第三层)。
作为在邻近站点的NBOI字段的集成之后的参考结果而获得的序列是通过图7中的“NBOI的或”示出的“1101,0001,0100,1000”。标记1指示已经在超级帧中设置TBTT的定时相对位置,并且空白0指示未设置TBTT的定时相对位置。在此序列中,其中空白(0)变成最长运行长度(run length)的位置是新布置信标的可能位置。在图7示出的例子中,最长运行长度是3,并且能够存在两个可能位置。接着,通信站A确定它们中间的第15位作为其普通信标的TBTT。
在设置第15位的时间作为其普通信标的TBTT之后(即,其超级帧的头),通信站A开始信标的发送。此时,由通信站A发送的NBOI字段变成如图7中“用于Tx的NBOI(1信标Tx)”所示,其中通信站0至2的能够由通信站A接收其信标的每个信标接收时间以位映射形式写入,该位映射标记对应于相对其普通信标的发送时间的相对位置的位位置。
此外,当通信站A出于获得优先发送权等等的目的发送辅助信标时,进一步搜索通过集成邻近站点的NBOI字段的“NBOI的或”示出的序列中空白(0)的最长运行长度,并且在发现的空白的位置上设置辅助信标的发送时间。在图7中示出的例子中假设发送两个辅助信标的情况,并且在“NBOI的或”中的第6位的空白的时间和第11位的空白的时间上设置辅助信标的发送时间。在这种情况下,由通信站A发送的NBOI字段也被标记在其中站点除其辅助信标之外发送普通信标的位置(相对普通信标的相对位置)中,并且此NBOI字段变成如“用于Tx的NBOI(3信标Tx)”所示。
在每个通信站通过在如上面描述的处理过程中设置其信标发送定时TBTT执行信标发送的情况下,能够在每个通信站仍然静止的条件下避免信标的冲突,使得电波的达到范围不波动。此外,由于基于发送数据的优先级在超级帧内发送辅助信标(或类似于多个信标的信号),所以能够优先地分配资源以提供QoS通信。此外,由于每个通信站能够通过参考从邻居接收的信标(NBOI字段)的数量来自主地获得系统的饱和水平,所以能够针对每个通信站在考虑系统的饱和水平的情况下容纳优先级传输,而无论是否分布式控制系统。此外,由于每个通信站参考接收信标的NBOI字段并且信标发送时间被配置成彼此不冲突,所以即使在多个通信站容纳优先级传输的情况下,仍能避免冲突频繁出现的这种情况。
因而,当通信站新进入网络时,基于由从每个通信站接收的信标而获得的NBOI的求和的结果,确定其中空白的运行长度变得最长的时间段的中心作为信标发送定时。
在上面的解释中示出了通过或(OR)来参考NOBI字段的例子,此外,在NBAI字段的情况下,执行控制,使得不在通过参考和数(或)的类似过程而标记的定时的信标发送时间进行发送。
具体地,当通信站发送某些信息时,根据需要接收从邻近通信站发送的信标,并且执行控制,使得不在基于由接收自每个通信站的信标而获得的NBAI字段的求和(或)的结果来标记的定时的信标发送时间进行发送。
图8示出此时的处理。这里,示出其中NBAI字段具有8个位的情况作为一个例子,其中作为基于上述过程获得的接收信标的相应NBAI字段的和数(或)的结果,第0位,第4位和第6位被标记。第0位是其信标,并且不特别执行附加处理。由于第4位被标记,所以其发送许可标志被降低,以便不在时间T4,即第4位的信标发送时间,执行发送。
此外,类似地,对于第6位,其发送许可标志被降低,以便不在相应时间T6执行发送。因此,当某个通信站希望接收另一个通信站的信标时,不存在发送站中断其接收的这种情况,并且能够执行高可靠发送和接收。
·发送优先时间段TPP
每个通信站以固定间隔发送信标,并且在这个实施例中,在发送信标之后,一段时间的发送的优先权被提供给已经发送信标的站点。图9示出其中发送优先权被提供给信标发送站的视图。图9示出其中指定480[微秒]作为发送优先时间段的情况作为一个例子。此划分优先级的时间段被定义成发送优先时间段(TPP)。TPP在信标发送之后立即开始,并且在从TBTT经过T_TPP之后的时间结束。由于每个通信站在每个超级帧中发送信标,所以相同时率(time rate)的TPP被基本上分配给每个通信站。在一个通信站的TPP结束之后,直到另一个通信站发送信标为止的时间段变成公平访问时间段(FAP)。在公平访问时间段(FAP)中,通过普通CSMA/CA方法(或,稍后描述的PSMA/CA方法)执行公平介质获取竞争。
图10示出超级帧的结构。如此图中所示,在从每个通信站发送信标后,TPP被分配给已经发送信标的通信站,FAP在时间经过TPP的长度之后开始,并且FAP在从下一个通信站发送信标时结束。应当注意,这里示出了一个例子,其中TPP在发送信标之后立即开始,然而不限于此例子,TPP的开始时间例如可以被设置在相对于信标的发送时间的相对位置(时间)。此外,还存在其中TPP被定义成从TBTT开始的480[微秒]的情况。此外,如图9所示,由于TPP的范围在从作为基础的TBTT开始的T_TPP时间段之后结束,所以当由于TBTT偏移而将信标发送时间延迟时,删除TPP的范围。
使用图11A到11C解释通信站的典型发送和接收过程的例子。在图11A到11C中,以以下情况为例进行通信站STA0以及通信站STA1的解释,其中从通信站STA0向通信站STA1执行发送。每个通信站不必每次接收另一个站点的信标信号。还存在这样的情况,其中接收的频率被来自上层的指令等等降低。图11A示出了通信站STA0和STA1之间发送和接收的分组的序列图;图11B示出了通信站STA0的发送单元的状态;并且图11C示出了通信站STA0的接收单元的状态。对于发送和接收单元的状态,高电平表示活动状态(尝试发送或接收的状态),并且低电平表示休眠状态。
首先,在确认介质畅通之后,通信站STA0发送信标。假定通信站STA1在此信标中的TIM以及(或)寻呼(PAGE)中被唤起。已经接收此信标的通信站STA1响应寻呼信息(0)。由于此响应对应于通信站STA0的TPP的中央并且已经获得优先权,所以以SIFS间隔执行发送。之后,由于在通信站STA1和通信站STA0之间在TPP内的发送和接收具有优先权,以SIFS间隔执行发送。在确认通信站STA1处于能够接收的状态之后,已经接收响应的通信站STA0发送寻址到通信站STA1(1)的分组。此外,由于图11A中存在另一个寻址到通信站STA1的分组,所以发送另外一个分组(2)。已经接收两个分组的通信站STA1在确认正确接收那些分组之后发送ACK(3)。之后,通信站STA0发送最后分组(4)。然而,在接收先前ACK的同时,通信站STA0的TPP结束并且FAP已经在(4)的发送的时间开始。由于在FAP中不存在发送的优先权,所以针对分组(4),以LIFS+补偿的间隔执行发送。由通信站STA1(5)发送对应于分组(4)的ACK。
执行最后发送之后的某个时间段被定义成侦听窗口,并且致使每个通信站操作接收设备。图11还示出其方面。当在侦听时间段内不存在接收分组时,通信站改变状态为休眠状态,并且停止发送和接收设备以尝试降低功耗。在下文中解释每个终端的节电操作的细节。
·活动等级的定义
在未执行数据的发送和接收时实施自动节电,并且在执行数据的发送和接收时,操作相应处理过程。MAC层的间歇操作速率基于发送和接收数据的存在或不存在而波动。
图13是示出在这个实施例中对每个通信终端设置的活动等级的定义以及转变。因此,基于操作速率等等定义从活动等级0到活动等级3的4个级段。尽管稍后详细描述每个活动等级的发送和接收过程,但是在这里针对每个活动等级进行简要的解释。
活动等级0对应于未与另一个站点发送和接收信息以及信号的状态。此活动等级0是其中仅在信标的发送时以及在信标发送时间左右操作接收设备的状态。当从上层产生要发送的数据或当在此状态下从另一个站点被唤起时,转变到活动等级1。
活动等级1对应于其中与最小频带电平的特定站点(或,存在于附近的所有通信站)执行发送和接收的状态。此活动等级1是其中相互执行涉及信标的发送和接收的发送和接收处理,并且作为其结果执行数据的发送和接收等等的状态。当判断要发送和接收的数据的量过多以致活动等级1不能处理时,转变到活动等级2。
活动等级2是这样一种状态,其中分散地在每个超级帧中发送的信标的发送时间之间产生发送触发器,并且即使在发送触发器被激活的时间点上也执行数据的发送和接收。当判断要发送和接收的数据的量过多以致活动等级2不能处理时,转变到活动等级3。
活动等级3对应于其中在全部时间段执行数据的发送和接收的状态。发送站和接收站连续地执行发送和接收操作,并且当在发送端上产生要发送的数据时立即开始发送过程。
当在每个活动等级中确定其间要发送数据的量较小的时间变得足够长(即,使用例如定时器管理)时,转变到低一个级别的活动等级。
·邻近站点列表(邻居列表)
图12的图例示出了这个实施例中的一部分邻居列表。
每个通信站保留每个站点的邻近站点信息,并且此信息以称作邻居列表的形式被管理。在邻居列表中,针对每个站点存储信标的发送定时,与有关站点的传播路径的状态等等。
在这个实施例中,在此邻居列表中针对发送和接收分别获得并且管理每个邻近站点的活动等级。在图12中,示出了通信站STA0的邻居列表的例子(图12的左边),以及图4中的通信站STA1的邻居列表的例子(图12的右边)。
在通信站STA0的邻居列表中,关于通信站STA1,STA2并且STA3的三个站点的数据被注册为记录(通信站STA0能够从其接收信标),其中针对每个站点写入发送时涉及的活动等级以及接收时涉及的活动等级。在这里示出的例子中,描述了通信站STA0和STA1在针对全部站点的发送和接收中处于活动等级0(如图中的ACT-0所示)中的情况。
·活动等级0时的操作
图14A到14D的框图示出了在活动等级0的情况下的发送和接收过程。在此图中,针对通信站STA0以及通信站STA1进行解释。图14A是通信站STA0中的接收操作状态,图14B是通信站STA0中的发送状态,图14C是通信站STA1中的发送状态,并且图14D是通信站STA1中的接收操作状态。针对接收操作的状态,高电平示出接收操作,并且低电平示出接收操作的停止(类似于在图15中及之后的图中的接收操作的状态)。此后,使用类似图例进行解释。
在活动等级0中,每个通信站在其信标发送时间之前操作接收单元,以便判断介质是否畅通;当介质畅通时在信标发送时间发送信标;接着在上述称作侦听窗口的时间段上操作接收单元;并且在寻址到此的数据未被接收的情况下停止发送和接收单元,直到下一个信标发送。具体地,活动等级0是执行发送和接收处理的最小必要等级的状态,并且是执行最低功耗操作的模式。在活动等级0下执行以下操作。
·每个超级帧周期(T_SF)中的信标发送操作
·信标发送之后侦听窗口内的接收操作
·在每个T_SCAN处的超级帧周期(T_SF)上执行的扫描操作
在活动等级0中,数据发送和接收所需要的等待时间单向最大变成最大超级帧周期T_SF[毫秒]。由于在此操作模式下没有接收另一个站点的信标,所以获得硬件的低功耗操作。
在图14的最上层(图14A的上侧)示出了涉及通信站STA0的邻居列表中的通信站STA1的接收活动等级,并且此对应于图12中通信站STA0的邻居列表中的项(A)(2)。直接在接收活动等级下示出了涉及通信站STA0的邻居列表中的通信站STA1的发送活动等级,并且此对应于图12中通信站STA0的邻居列表中的项(A)(1)。
此外,直接在图14D的接收状态下示出了涉及通信站STA1的邻居列表中的通信站STA0的接收活动等级,并且此对应于图12中通信站STA1的邻居列表中的项(A)(2)。在图14A到14D的最低层中示出了涉及通信站STA1的邻居列表中的通信站STA0的发送活动等级,此对应于图12中通信站STA1的邻居列表中的项(A)(1)。此后,还对存在类似对应关系的假设进行解释。具体地,图12中的邻居列表的内容还描述了图14中示出的每个终端的活动等级。
当在上述活动等级0下发送和接收处理期间存在要发送或要接收的数据的情况下,转变到活动等级1。
·活动等级1时的操作
图15A到15D的框图示出了在活动等级1的情况下的发送和接收过程。活动等级1是其中除活动等级0的操作之外还接收邻近站点的信标,并且功耗基于邻近站点数而波动的状态。在活动等级1下,执行如下所述的活动。
·每个超级帧周期(T_SF)中的信标发送操作
·信标发送之后侦听窗口内的接收处理操作
·从有关站点识别的邻近站点进行接收的信标接收处理操作
·在每个T_SCAN处的超级帧周期(T_SF)上执行的扫描操作
图15A是通信站STA0中接收操作的状态,图15B是通信站STA0中分组的发送和接收的状态,图15C是通信站STA1中分组的发送和接收状态,并且图15D是通信站STA1中接收操作的状态。此外,在图15A的上侧示出了通信站STA0中的接收(Rx)活动等以及发送(Tx)活动等级,并且在图15D的下侧示出了通信站STA1中的接收(Rx)活动等以及发送(Tx)活动等级。在图15A到15D中,基于来自通信站STA0的发送请求进行从活动等级0到活动等级1的转变,并且之后状态返回到活动等级0的情况被作为一个例子。
最初,在通信站STA0并且STA1两者中发送和接收的活动等级为0;当在通信站STA0中产生要发送到通信站STA1的数据D0时,通信站STA0针对通信站STA1的接收活动等级在该时刻转变到等级1,并且在通信站STA1的信标(B1-3)发送时间接收通信站STA1的信标。当通过使此信标接收成为触发来发送表明存在到通信站STA1的发送请求的寻呼信息时,通信站STA1识别“STA0有要发送到其地址的信息”,并且涉及通信站STA0的发送和接收的活动等级转变到等级1。此外,通信站STA1向通信站STA0返回指示确认上述寻呼信息的ACK,并且接收了此ACK的通信站STA0把涉及通信站STA1的发送活动等级转变到等级1。
之后,在通信站STA0的信标发送时间,通信站STA0在确认邻居列表中涉及通信站STA1的发送活动等级是等级1之后通过信标(B0-4)唤起通信站STA1。由于涉及通信站STA0的接收活动等级是等级1,通信站STA1接收此信标并且返回响应此唤起的ACK。此唤起及响应假定对应于RTS/CTS过程中RTS并且CTS的滚动(roll),并且之后发送数据D0以便从通信站STA0发送到通信站STA1。接着,通信站STA1返回ACK。尽管通信站STA0并且STA1之后都在侦听窗口上操作接收单元(LW),但是后来由于不存在接收数据的原因停止接收单元。
在活动等级1下,基本上以数据发送端的信标发送为开始,基于上述过程执行数据的发送和接收。这里,当发送数据较少时,通信站STA0也可以在通信站STA1发送的信标(B1-3)之后立即发送数据。
此外,这里解释其中存在两个站点STA0并且STA1的例子,然而,在其它更多站点存在于附近的情况下,还存在这样一种情况,其中针对任意一个站点的发送活动等级变成等级1的站点(即,向任意一个站点发送数据的站点)执行其中发送和接收活动等级被设置成等级0的站点的信标接收。
在图15的例子中,示出了之后转变到活动等级0的处理。在发送和接收先前数据D0之后,通信站STA1在其信标发送定时发送信标(B1-5)。尽管通信站STA0接收此信标,但是什么也未发生。此外,之后通信站STA0在其信标发送定时发送信标(B0-6)。尽管通信站STA1接收此信标,但是未向其发送任何东西。接着,通信站STA1决定把涉及通信站STA0的活动等级转变到等级0。之后,通信站STA1通过将在其信标发送定时发送的信标(B1-7),或在此后要立即发送的数据(图中未示出)通知“STA1把涉及STA0的接收活动等级转变到等级0”,并且如所通知的那样把活动等级转变到等级0。已经接收此通知的通信站STA0把涉及通信站STA1的发送活动等级转变到等级0。此外,之后通信站STA0通过将在其信标发送定时发送的信标(B0-8)通知“STA0把涉及STA1的接收活动等级转变到等级0”,并且转变活动等级到等级0。
尽管通信站STA1已经转变活动等级到等级0(由于在上述例子中没有跟随信标(B0-6)发送数据),但是尽管接连接收多个信标,还存在由于没有发送数据而使活动等级被转变的情况。此外,也可以使定时器监视没有执行传输的发送和接收的时间,并且通过把定时器的超时作为触发来降低活动等级。此时,有必要分别设置定时器以降低发送活动等级,并且设定定时器以降低接收活动等级,并且通过将针对降低发送活动等级而设定的时间设置成短于针对降低接收活动等级而设定的时间来提供余量,并且可以阻止产生这种无用的传输,使得“尽管数据被发送,但是接收设备没有接收到数据”。
此外,尽管在上述例子中执行通知活动等级被降低的过程,但是还存在省略此过程的情况。在这种情况下,执行处理,使得当在N个信标周期没有从STA0接收数据时,执行处理使得接收端的STA1自动转变活动等级,并且当在N-1信标周期没有从STA1接收数据的ACK(确认)时,发送端的STA0自动转变活动等级。通过使发送端的信标周期被设置得更短,能够省略无用处理。
除上述之外,还存在由于“仅分散地执行数据的发送和接收从而超过值”而把活动等级转变到等级0的情况。
此外,尽管在上述例子中通信站STA1(即接收端)决定“活动等级被从等级1转变到等级0”,但是还存在通信站STA0(即发送端)做出这种决定并且接收端遵循该决定的情况。由于在这种情况下的过程类似于上述过程,在这里不具体进行其解释。
在活动等级1下,数据发送和接收需要的等待时间单向最大为超级帧周期T_SF[毫秒]。假定活动等级1是这样的状态,其中有时交换信令但是不实际执行传输。
当在活动等级1下的发送和接收处理期间识别定期存在要发送的或要接收的数据时,进行到活动等级2的转变。例如,通过监视在发送缓冲区中累积的分组的数量是否超出预定阈值,判断要发送的或要接收的数据是否定期存在。
·从活动等级1到活动等级2的转变
活动等级2是除活动等级1的操作之外,周期性地操作发送和接收设备的状态,并且是尽管数据被发送和接收,然而通过间歇发送和接收执行低功耗操作的模式。
在活动等级2中执行以下活动。
·每个超级帧周期T-SF中的信标发送操作
·信标发送之后侦听窗口内的接收处理操作
·有关站点识别的邻近站点的信标的接收处理操作
·在指定(或要指定的)时间的接收处理操作(基于必要性也执行发送处理操作)
·在每个T-SCAN时的超级帧周期T-SF执行的扫描操作
图16A到16D的框图示出了从活动等级1到活动等级2的转变。图16A是通信站STA0中接收操作的状态,图16B是通信站STA0中分组的发送和接收的状态,图16C是通信站STA1中分组的发送和接收的状态,并且图16D是通信站STA1中接收操作的状态。此外,在图16A的上侧示出了通信站STA0中的接收(Rx)活动等以及发送(Tx)活动等级,并且在图16D的下侧示出了通信站STA1中的接收(Rx)活动等以及发送(Tx)活动等级。在图16中,基于来自通信站STA0的发送请求进行转变的情况被称作一个例子。
在图16的初始状态下,针对涉及彼此的发送和接收等级,在通信站STA0和STA1都在等级1的状态下执行数据的发送和接收,并且以通信站STA0的信标(B0-10)的发送为开始发送已经到达通信站STA0的针对通信站STA1的发送数据D0。之后,针对通信站STA1的发送数据D1和D2在时间再次变成通信站STA0的信标发送定时之前到达通信站STA0。此时,通信站STA0判断寻址到通信站STA1的发送数据被累积超过允许值,并且决定把发送活动等级转变到等级2。
当在通信站STA0的信标发送定时发送信标(B0-12)时,通信站STA0通知在通过信标唤起通信站STA1的同时,STA0希望把活动等级转变到等级2。已经接收此通知的通信站STA1转变涉及通信站STA0的接收活动等级为所通知的等级2,并且返回确认的ACK。已经接收此确认的通信站STA0确认通信站STA1的接收活动等级被转变到等级2,并且转变发送活动等级到等级2。此外,尽管通信站STA0并且通信站STA1仅在以信标(B0-12)为开始发送先前累积的发送数据D1和D2并且获得其响应之后的侦听窗口(LW)内操作接收单元,然而由于未进一步接收任何数据,所以停止接收单元。之后,由于通信站STA0处于发送活动等级2的状态,所以在由通信站STA0的发送活动等级2指定的时间操作发送和接收设备,并且在执行预定过程之后尝试在此时间段内累积的数据D3的发送。另一方面,通信站STA1处于与通信站STA0的活动等级2同步的状态,类似地在由通信站STA0的发送活动等级2指定的时间操作接收设备,接收发送的数据D3,并且返回ACK。
此外,在上述例子中,由于“判断寻址到通信站STA1的发送数据已经累积超过允许值”的原因,通信站STA0(即发送端)决定使活动等级转变到等级2,然而除此之外,存在由“假定在其信标发送之后立即开始数据发送,判断数据的发送不能在某个时间段内完成”的原因导致的情况,由“没有从接收站点接收到针对在活动等级1的类别内进行的唤起的响应”的原因导致的情况,等等。
·活动等级2时的操作
图17A到17E的图例示出了在活动等级2的情况下的发送和接收过程。图17A是通信站STA0中接收操作的状态,图17B示出了在通信站STA0中产生发送触发信号的状态,图17C是通信站STA0中分组的发送和接收状态,图17D是通信站STA1中分组的发送和接收的状态,并且图17E是通信站STA1中接收操作的状态。此外,在图17A的上侧示出了通信站STA0中的接收(Rx)活动等级以及发送(Tx)活动等级,并且在图17E的下侧示出了通信站STA1中的接收(Rx)活动等级以及发送(Tx)活动等级。在图17A到17E中,参考两次产生在信标之间产生的发送触发的情况,示出从通信站STA0向通信站STA1发送数据的情况以作为一个例子。
在活动等级2下,在由发送端上相对于信标发送定时的相对时间定义的时间产生发送触发,并且除信标的发送之外,以此发送触发的生成为开始来执行数据的发送。首先,对在活动等级2时执行的数据发送和接收的过程进行解释,并且稍后描述何时产生发送触发。
在图17的初始状态下,假定发送和接收两端的活动等级已经变成等级2。通信站STA0(即发送站)通过使信标(B0-14)的发送作为触发,发送累积到此时的发送数据D4和D5。由于在完成D5的发送的时间点上没有累积更多发送数据,所以暂停一次发送,并且在通信站STA0和STA1操作接收单元经过侦听窗口(LW)的时间段之后,停止接收单元。因此,当在此侦听窗口(LW)的时间段内提供新发送数据时,尽管未在图中示出,立即发送数据。
之后,尽管向通信站STA0提供新发送数据D6,但是由于已经暂停发送和接收,通信站STA0保留数据。在此时间段内,通信站STA0和通信站STA1使用其中提供的定时器监视从通信站STA0的前一信标(B0-14)的发送时间经过的时间,并且在预定时间T-AL2(1)[微秒]经过之后产生发送触发。通信站STA0以此发送触发的生成为开始,尝试发送寻址到通信站STA1的累积数据。另一方面,类似地,当从前一信标(B0-14)的发送时间经过时间T-ALT2(1)[微秒]以准备好从通信站STA0进行发送时,通信站STA1也操作接收设备。
因此,以此发送触发为开始,发送和接收在通信站STA0中累积的数据D6和D7。在完成数据D7的发送和接收之后,由于没有更多累积的发送数据,所以通信站STA0和通信站STA1暂停发送,并且当在侦听窗口(LW)的时间段内操作接收单元之后,通信站STA0和STA1停止接收单元。之后,尽管向通信站STA0提供新数据D8,但是由于已经暂停发送和接收,通信站STA0保留此数据。即使在此时间段内,通信站STA0和通信站STA1也使用其中提供的定时器监视从通信站STA0的前一信标(B0-14)的发送时间所经过的时间,并且在从先前产生的发送触发经过预定时间T-AL2(2)[微秒]之后产生新发送触发。基于上述过程,以此发送触发的生成为开始,通信站STA0以及通信站STA1再次执行数据的发送和接收。
接着,重复类似处理,直到产生通信站STA0的下一个发送信标(B0-16)。
·在活动等级2上设置T-AL2(i)的例子
定义活动等级2的目的是通过补充T-SF(即信标间隔)并且通过在提供更短等待时间但是允许一些等待时间的同时使用间歇操作,来降低功耗。此外,期望产生此发送触发的时间不与其它通信站相互重叠,以便避免与另一个站点的发送分组的冲突,并且改进MAC层的性能。
尤其是,当网络中容纳的通信站数量较小时,基于确定其信标发送时间的参考时间,或基于例如TBTT的信标发送时间,考虑到尽可能满足上述事项,发送站在活动等级2产生发送触发,使得能够在每个T-AL2(i)开始发送操作。通过下列公式获得T-AL2(i)(i=1,2,---)。
T_AL2_i=
(N AL2 STEP+AL2 TBL[i])*T Bmin
+N AL2 TRX STT OFFSET
+N AL2 TRX STT OFFSET STEP*i,
其中
AL2 TBL[i]=[0,-1,0,0,0,1]
例如,当在T_SF=40毫秒,T Bmin=625[微秒],N AL2 STEP=9,N AL2 TRX STT OFFSET=180[微秒],并且N AL2 TRX STT OFFSETSTEP=10.0[微秒]的情况下执行上述操作时,每个发送触发时间T AL2[i]被设置成:
T AL2[0]=TBTT
T AL2[1]=TBTT+5.625[毫秒]+190[微秒]
T AL2[2]=TBTT+10.625[毫秒]+200[微秒]
T AL2[3]=TBTT+16.250[毫秒]+210[微秒]
T AL2[4]=TBTT+21.875[毫秒]+220[微秒]
T AL2[5]=TBTT+27.500[毫秒]+230[微秒]
T AL2[6]=TBTT+33.750[毫秒]+240[微秒]
并且可进行发送的时间以接近6.25[毫秒]的间隔出现。
例如,当通过MAX WIN SIZE=64k字节的TCP执行FTP等等的成批传送时,两种方式的等待时间变成最坏值12.5[毫秒],并且TCP的流量控制导致的吞吐量的限制变成40.96[Mbps]。如果发送和接收所需的处理延迟被估计为1.0[毫秒],则可以提供高达35.31[Mbps]的吞吐率。
此外,当设定是上述T AL2[*]时,并且在TBTT在从0到63的每个T Bmin上存在的情况下,当拾取与TBTT=0的通信站冲突的那些时,T AL2[*]的大规模冲突变成如下。
TBTT=8,56x一次
TBTT=20,28,36,44x一次
TBTT=10,18,26,38,46,54x  两次
TBTT=17,19,27,29,35,37,45,47x两次
TBTT=9,55x四次
当通信站的数量是4或少于4时不出现T AL2[*]的冲突,当通信站的数量是8或少于8时出现一次与两个站点的冲突,并且随着通信站的数量超过该数量,冲突的可能性会增加。尽管接收站处于能够在指定的T AL2[i]处执行接收和发送的状态中,但是当没有对其发送数据时,接收站当在T LW时间段内操作接收设备之后再次转变到空闲状态。此外,当接收节点识别出未在指定的T AL2[i]处发送寻址到有关接收节点的信息时,在通知发送源的通信站仅在任何T AL2(i)的时间处执行接收操作之后,可以降低活动状态的时率。
此外,尽管在上述例子中把六组发送触发时间定义成活动等级2,但是本发明不限制于此。
此外,这种其中在活动等级2中定义多个级段,在活动等级2-1上产生三组发送触发时间,并且在活动等级2-2上产生六组发送触发时间的处理也在可由本发明得知的范围内。
·从活动等级2到活动等级1的转变
图18A到18E的图例示出了从活动等级2到活动等级1的转变。图18A是通信站STA0中接收操作的状态,图18B示出了在通信站STA0中产生发送触发信号的状态,图18C是通信站STA0中分组的发送和接收状态,图18D是通信站STA1中分组的发送和接收的状态,并且图18E是通信站STA1中接收操作的状态。此外,在图18A的上侧示出了通信站STA0中的接收(Rx)活动等级以及发送(Tx)活动等级,并且在图18E的下侧示出了通信站STA1中的接收(Rx)活动等级以及发送(Tx)活动等级。在图18A到18E中,把基于来自通信站STA1的请求进行转变的情况作为一个例子。
在图18A到18E的初始状态下,在通信站STA0和STA1都处于针对涉及彼此的发送和接收等级的等级2的状态下,执行数据的发送和接收,并且以通信站STA0的信标的发送或发送触发的生成的发送为开始,执行从通信站STA0到通信站STA1数据的发送和接收。
在此图中,首先通信站STA0发送信标(B0-16),并且以此信标发送为开始发送和接收已经在通信站STA0中累积的发送数据D10和D11。之后,在侦听窗口(LW)的时间段上操作接收单元,并且接着暂停发送和接收。之后,从前一信标(B0-16)的发送时间经过T-AL2(1)[微秒],并且产生发送触发。尽管通信站STA0和STA1在此时间左右操作接收单元,但是由于在通信站STA0中没有累积发送数据,所以不执行发送和接收,并且在从发送触发的生成经过侦听窗口(LW)的时间段之后再次停止接收单元。此外,从此发送触发的生成经过TAL2(2)[微秒],再次产生发送触发,通信站STA0和STA1执行类似操作,但是不存在发送和接收的数据。
此外,之后,尽管通信站STA0发送信标(B0-18),也不存在发送和接收的数据。在这个时间点上,由于一个信标发送周期上不存在发送数据,所以通信站STA1决定将涉及通信站STA0的接收活动等级转变到等级1。之后,在将在其信标发送定时发送的信标(B1-19)中,或在之后要立即发送的数据(图中未示出)中,通信站STA1通知“STA1转变涉及STA0的发送和接收活动等级到等级1”,并且转变活动等级到所通知的等级1。已经接收此通知的通信站STA0把涉及通信站STA1的发送活动等级转变到等级1。
尽管在上述例子中由于“在一个信标发送周期上不存在数据”而使得通信站STA1转变活动等级到等级1,但是还存在由于“在多个周期上不存在数据”而转变活动等级的情况。
此外,尽管在上述例子中执行通知降低活动等级的过程,但是还存在省略此过程的情况。在这种情况下,当在N个信标周期上没有从STA0接收到数据时,执行处理,使得接收端的STA1自动转变活动等级,并且当在N-1个信标周期上没有从STA1接收到数据的ACK(确认)时,发送端的STA0自动转变活动等级。通过使发送端的信标周期被设置得更短,能够省略无用处理。
此外,尽管在上述例子中通信站STA1(即接收端)决定“活动等级被从等级2转变到等级1”,但是还存在通信站STA0(即发送端)做出这种决定并且接收端遵循此决定的情况。由于在这种情况下的过程类似于上述过程,在这里不具体进行其解释。
·从活动等级2到活动等级3的转变
活动等级3是这样的状态,其中即使除活动等级1的操作之外还在空闲时间段内定期地执行接收操作,并且连续执行检测另一个通信站发送的载波(或前同步码)的操作。此活动等级3是通过此活动等级提供尽可能宽的频带和尽可能短的等待时间的模式,尽管降低功耗的效率较低。
在活动等级3中执行以下操作。
·每个超级帧周期T-SF中的信标发送操作
·在信标发送之后的侦听窗口内的接收处理操作
·连续接收处理操作
图19A到19E的图例示出了从活动等级2到活动等级3的转变。图19A是通信站STA0中接收操作的状态,图19B示出了在通信站STA0中产生发送触发信号的状态,图19C是通信站STA0中分组的发送和接收状态,图19D是通信站STA1中分组的发送和接收的状态,并且图19E是通信站STA1中接收操作的状态。此外,在图19A的上侧示出了通信站STA0中的接收(Rx)活动等级以及发送(Tx)活动等级,并且在图19E的下侧示出了通信站STA1中的接收(Rx)活动等级以及发送(Tx)活动等级。在图19A到19E中,把基于来自通信站STA0的发送请求进行转变的情况作为一个例子。
在图19A到19E的初始状态下,在通信站STA0和STA1都处于针对涉及彼此的发送和接收等级的等级2的状态下,执行数据的发送和接收,并且以发送触发的生成为开始,发送在通信站STA0中已经累积的针对通信站STA1的发送数据D8,D9和D10。之后,尽管在侦听窗口(LW)上操作接收单元,但是由于未产生新发送数据,所以暂停发送和接收。然而,针对通信站STA1的发送数据D11和D12在发送通信站STA0的信标(B0-20)的时间(即下一个发送机会)之前到达通信站STA0。此时,发送站STA0判断寻址到发送站STA1的发送数据已经被累积超过允许值,并且决定转变发送活动等级到等级3。
当在通信站STA0的信标发送定时发送信标(B0-20)时,通信站STA0通知:STA0希望在通过信标唤起通信站STA1的同时把活动等级转变到等级3。已经接收此通知的通信站STA1转变接收活动等级到所通知的等级3,并且返回确认的ACK。已经接收此ACK的通信站STA0确认通信站STA1的接收活动等级被转变到等级3,并且转变涉及通信站STA1的发送活动等级到等级3。此外,在以信标(B0-20)的发送为开始顺序发送已经累积的发送数据D11时以及之后,并且通信站STA1顺序接收发送的数据。
在活动等级3中,当新发送数据到达发送端时,立即开始发送过程,并且尽可能早地尝试发送数据的传送。另一方面,接收端保持接收单元操作,并且尽管不确定何时发送数据,但是准备着接收寻址到此处的数据。
在上述例子中,由于“判断寻址到STA1的发送数据已经累积超过允许值”的原因,通信站STA0(即发送端)决定使活动等级转变到等级2,然而,此外,还存在由“假定以发送触发为开始发送累积的发送数据,判断数据的发送不可在某个时间段内完成”的原因导致的情况,由“未接收在活动等级2的类别内进行的针对接收站的唤起的响应”的原因导致的情况,等等。
·从活动等级3到活动等级2的转变
图20A到20E的图例示出了从活动等级3到活动等级2的转变。图20A是通信站STA0中接收操作的状态,图20B示出了在通信站STA0中产生发送触发信号的状态,图20C是通信站STA0中分组的发送和接收状态,图20D是通信站STA1中分组的发送和接收的状态,并且图20E是通信站STA1中接收操作的状态。此外,在图20A的上侧示出了通信站STA0中的接收(Rx)活动等级以及发送(Tx)活动等级,并且在图20E的下侧示出了通信站STA1中的接收(Rx)活动等级以及发送(Tx)活动等级。在此图中,把基于来自通信站STA1的请求进行转变的情况作为一个例子。
在图20A到20E的初始状态中,在通信站STA0和STA1都处于针对涉及彼此的发送和接收等级的等级3的状态下,执行数据的发送和接收,并且当在通信站STA0中产生发送数据时立即执行数据的发送和接收。然而,在图20A到20E中,不频繁执行此数据的发送和接收,在从数据D18的发送和接收经过一些时间之后执行数据D19的发送和接收,并且进一步地,在一段时间内不发送数据。接着,由于仅在超过允许值时分散地执行数据的发送和接收,通信站STA1决定转变涉及通信站STA0的接收活动等级到等级2。之后,通信站STA1在于其信标发送定时发送的信标(B1-21)中,或之后立即发送的数据(图中未示出)中通知“STA1转变涉及STA0的接收活动等级到等级2”,并且转变活动等级到所通知的等级2。已经接收此通知的通信站STA0把涉及通信站STA1的发送活动等级转变到等级2。
在转变到活动等级2之后,基于上述过程产生发送触发,并且以发送触发为开始,执行数据的发送和接收。
尽管在上述例子中具体由于“仅在超过允许值时分散地执行数据的发送和接收”而使得通信站STA1转变活动等级为等级2,然而还存在由于“仅针对接收活动等级2能够接收的数据量执行发送和接收”而进行转变的情况。
此外,尽管在上述例子中执行通知降低活动等级的过程,但是还存在省略此过程的情况。在这种情况下,通过在接收端的STA1中设定允许值为高于发送端的STA0中的允许值,能够省略无用处理。
此外,尽管通信站STA1(即接收端)在上述例子中决定“活动等级被从等级3转变到等级2”,但是还存在通信站STA0(即发送端)做出这种决定并且接收端遵循此决定的情况。由于在这种情况下的过程类似于上述过程,在这里不具体进行其解释。
·网络广播
如上所述,每个通信站中的发送和接收等级在不执行数据的发送和接收的状态中是等级0,使得节省功率。
另一方面,当发送要向整个网络传送的广播信息时,例如以在图21A,21B和21C中示出的形式顺序地执行发送,并且每个通信站向邻近通信站传送所接收的广播信息,使得信息被发送到网络中的全部通信站。
当在发送和接收等级0中发送和接收广播信息时,有必要紧接在每个通信站的信标的发送之后的预期定时多次发送消息,这是一种浪费。在其中连续产生广播信息的这种情况下,增加了传输,从而导致频带的浪费。
·广播发送和接收过程
因此,当产生广播信息时,其操作状态成为ACT-1全部,在涉及全部邻近通信站的接收活动等级被设置成等级1之后,在向邻近通信站发送“转变操作状态到ACT-1全部的请求”的同时转变涉及每个通信站的发送活动等级,并且在其发送信标内或在信标的发送之后立即发送的分组中通知广播信息,直到在邻居列表中注册的发送活动等级变成等级1。此外,在发送信标和上述请求信息中写入其操作状态。
在图22A到22C中按时间先后顺序示出了特定例子。图22A到22C的图例示出了广播信息的发送和接收过程的例子,并且其中通信站STA0以例如图21A到21C所示的这种排列方式传送广播信息到通信站STA1和通信站STA2的情况被作为一个例子。图22A是通信站STA0中分组的发送和接收的状态,图22B是通信站STA1中分组的发送和接收的状态,并且图22C是通信站STA2中分组的发送和接收的状态。此外,在图22A的上侧示出了每个通信站STA0,STA1和STA2的活动等级。
图23示出了每个通信站的操作状态,以及在图22A到22C中按时间先后顺序的每个时间的例子中的邻居列表的状态。
在时间T0(即图22A到22C的初始状态)处每个通信站在活动等级0上,并且仅执行在侦听窗口(LT)上的其信标发送和紧接在其之后的接收处理。此时,如图23所示,每个站点的邻居列表中的全部项处于活动等级0(ACT-0)。
之后,要发送到通信站STA0的广播信息在时间T1到达。以此信息为开始,通信站STA0设置其操作状态为ACT-1全部,并且设置涉及存在于邻居列表中的全部通信站的接收活动等级为等级1。在此时间点上,通信站STA0已经切换成接收每个通信站的信标的模式。
之后,通信站STA0当在通信站STA1的信标发送时间T2处接收由通信站STA1发送的信标之后,发送寻址到通信站STA1、指示“期望操作状态被转变到ACT-1全部”的寻呼信息。通信站STA1确认此请求,并且在时间T3发送指示“操作状态已经转变到ACT-1全部”的指示信息(即,使目的地址为广播地址)作为通知的信息。在此时间点上,通信站STA1设置操作状态为ACT-1全部,设置涉及存在于邻居列表中的全部通信站的接收活动等级为等级1,并且设置通信站STA0(即寻呼信息的发送源)的发送活动等级为等级1。此外,在已经接收上述由通信站STA1发送的指示信息的通信站STA0中,涉及通信站STA1的发送活动等级被设置成等级1。
之后,时间T4变成通信站STA0的信标发送时间。在信标中,写入有关通信站STA0的操作状态被设置成ACT-1全部的信息。此时,由于涉及通信站STA1的发送活动等级已经被设置为等级1,所以通信站STA0识别出通信站STA1执行接收,并且发送广播信息。由通信站STA1接收此广播信息。然而,由于涉及在其邻居列表中注册的通信站STA2的发送活动等级是等级0,所以通信站STA0识别出广播信息未被传送给通信站STA2。注意,还存在这样一种情况,其中通信站STA0不发送广播信息,直到涉及在其邻居列表中注册的全部通信站的发送活动等级变成等级1或更高等级。
此外,之后,通信站STA0和STA0在时间T5处在接收由通信站STA2发送的信标之后,发送寻址到通信站STA2、指示“期望操作状态被转变到ACT-1全部”的寻呼信息。在此图中,示出这样一种情况作为例子,其中通信站STA0发送寻呼信息。通信站STA2确认此请求,并且在类似于上述过程的过程中,在时间T6发送作为通知的信息的、指示“操作状态已经转变到ACT-1全部”的指示信息。在此时间点上,通信站STA2设置操作状态为ACT-1全部,设置涉及存在于邻居列表中的全部通信站的接收活动等级为等级1,并且设置通信站STA0(即寻呼信息的发送源)的发送活动等级为等级1。此外,已经接收由通信站STA2发送的上述指示信息的通信站STA0和STA1设置涉及通信站STA2的发送活动等级为等级1。
之后,通信站STA1在时间T7发送信标。在信标中,写入有关通信站STA1的操作状态已经被设置为ACT-1全部的信息。此时,在前面已经从通信站STA0接收广播信息的情况下,通信站STA1发送广播信息。在此时间点上,广播信息已经发送到通信站STA1和STA2。另一方面,通过接收通信站STA1的信标,通信站STA2识别出通信站STA1的操作状态已经设置为ACT-1全部,并且转变涉及通信站STA1的发送活动等级到等级1。
之后,由于通信站STA0中涉及全部邻近站点的发送活动等级在时间T8是等级1,所以通信站STA0在时间T8处发送信标,并且发送广播信息。
在如上所述的这种过程中,每个通信站能够相互转变邻近通信站的操作状态为ACT-1全部。还存在这样一种情况,其中由于在某个时间段上不存在接收数据等等,所以转变的操作状态被返回到ACT-0。
·写入信标中的信息
在上面进行信标中写入操作状态的解释;此外针对写入信标中的信息解释细节。图24的图例示出了在本发明系统中写入信标中的一部分信息的例子。在信标中,至少存在发送站的地址(STA-ID),表示可接收信标的接收时间的字段(NBOI),表示在接收活动等级1或更高等级中对其实际执行接收的信标的接收时间的字段(NBAI),和表示此通信站的操作状态的字段(活动状态)。
在STA-ID中写入标识发送站的地址。表示通信站的操作状态的字段(活动状态)是表示上述操作状态的字段,并且示出了下列操作状态的任意一个。
ACT-0全部:存在其接收活动等级是等级0的一或多个邻近站点。
ACT-1全部:全部邻近站点的接收活动等级是等级1或更高。
ACT-3全部:涉及一或多个邻近站点的活动等级是等级3。
·活动等级转变请求消息
尽管针对实施例在上面做出解释,其中通信站信标信号通知通信方站点有关进行其活动等级的转变的决定,但是接着解释其中使用除信标消息之外的消息的发送作为触发的转变活动等级的过程。
在图25中示出在提高活动等级的方向进行转变的情况下的过程。
尽管在其中传输不存在的状态中活动等级是等级0,但是当把寻址到另一个通信站的传输传送给某个通信站的MAC层时,开始提高链路的活动的处理。之后,随着把进一步的传输传送给发送端的MAC层,提高活动等级。
在图25中,其中节点#1是传输的发送源结点并且节点#2是目标节点的情况被作为一个例子。如此图所示,通过触发(即从发送源给出的指令)开始活动等级的提高。在其中发送端希望目标节点提高活动等级的情况中,在确认从此节点进行接收的接收活动等级是等级1或更高之后发送“AL*_RQ”请求消息,并且通知发送端希望目标节点提高活动等级。当接收此请求消息时,接收端设置涉及发送源点的接收活动等级为指定等级,并且在进一步确认发送活动等级是等级1或更高之后,返回“AL*_CF”的响应消息,并且通知发送源节点活动等级已经提高。当接收此响应消息时,发送端设置涉及目标节点的发送活动等级为指定等级。
如此图所示,类似过程能够被应用于向上方向针对全部活动等级的转变。
针对活动等级0→活动等级1的转变的触发是发送数据的生成。
针对之后的转变:活动等级1→活动等级2→活动等级3的触发可以例如通过监视在发送缓冲区中累积的分组的数量,在分组数量超出预定阈值时开始。
接着,使用图26解释在降低活动等级的方向进行转变的情况下的过程。
尽管活动等级被提高,当传输的发送和接收被中断时,降低活动等级的处理变得必要。定时器保持运行以监视不存在传输的发送和接收的时间,并且通过把定时器的超时作为触发来降低活动等级。此时,有必要分别设置用于降低发送活动等级的定时器,和用于降低接收活动等级的定时器,通过将为用于降低发送活动等级的定时器设置的时间设定成短于为用于降低接收活动等级的定时器设置的时间,提供一余量,并且能够阻止这种无用传输的生成,使得“尽管执行发送,但是接收设备没有接收到”。
此外,作为在降低活动等级时的处理,也可想到通过类似于提高活动等级的情况而交换消息来遵循过程。即使在这种情况下,仍需要使用定时器降低活动等级的机制,以便处理其中突然中断通信的链路。
应当注意,虽然在上述实施例中解释了专门执行发送和接收的通信设备的结构的例子,然而,也可以在例如执行各种数据处理的个人计算机设备上安装等同于本实施例的发送单元和接收单元的用于执行通信处理的板,卡等等,并且安装软件以通过计算机设备端的中央处理单元执行基带单元中的处理。
附图标记说明
1——天线
2——天线共享设备
3——接收处理单元
4——发送处理单元
5——基带单元
6——接口单元
7——MAC(介质访问控制)单元
8——DLC(数据链路控制)单元
100——无线通信设备
101——接口
102——数据缓冲器
103——中央控制单元
104——信标产生单元
106——无线发送单元
107——定时控制单元
109——天线
110——无线接收单元
112——信标分析单元
113——信息存储器单元

Claims (5)

1.一种配置成在包括多个通信设备的自组织网络中执行无线通信的通信设备,包括:
发射机和接收机,被配置成当不在休眠状态下进行操作时,以至少三个活动等级之一进行操作。
2.如权利要求1所述的通信设备,其中,
在第一活动等级,所述发射机仅在发送信标信号期间进行操作,而所述接收机仅在发送信标信号之后的预定时间段进行操作;
在第二活动等级,所述发射机仅在发送信标信号期间进行操作,而所述接收机仅在发送信标信号之后的预定时间段和不同通信设备的信标接收时间段进行操作;以及
在第三活动等级,所述发射机或接收机在所有时间进行操作。
3.如权利要求2所述的通信设备,其中,
当在预定时间段内没有接收到数据时,所述通信设备进入休眠状态。
4.如权利要求3所述的通信设备,
所述通信设备发送指示当前活动等级的信息。
5.如权利要求3所述的通信设备,
所述通信设备发送活动等级变化的信息。
CN2009101705189A 2003-02-03 2004-02-03 通信设备 Expired - Lifetime CN101668345B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP200326462 2003-02-03
JP2003026462 2003-02-03
JP2003-26462 2003-02-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB200480006125XA Division CN100555964C (zh) 2003-02-03 2004-02-03 通信方法、通信设备及计算机程序

Publications (2)

Publication Number Publication Date
CN101668345A true CN101668345A (zh) 2010-03-10
CN101668345B CN101668345B (zh) 2013-07-31

Family

ID=32844142

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB200480006125XA Expired - Lifetime CN100555964C (zh) 2003-02-03 2004-02-03 通信方法、通信设备及计算机程序
CN2009101705189A Expired - Lifetime CN101668345B (zh) 2003-02-03 2004-02-03 通信设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB200480006125XA Expired - Lifetime CN100555964C (zh) 2003-02-03 2004-02-03 通信方法、通信设备及计算机程序

Country Status (6)

Country Link
US (9) US7302227B2 (zh)
EP (3) EP3203800B1 (zh)
JP (2) JP4670638B2 (zh)
KR (1) KR101127174B1 (zh)
CN (2) CN100555964C (zh)
WO (1) WO2004071020A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104769892A (zh) * 2012-09-28 2015-07-08 奥林奇公司 用于在电信网络中调节传送的方法和设备

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8190163B2 (en) 2002-08-08 2012-05-29 Qualcomm Incorporated Methods and apparatus of enhanced coding in multi-user communication systems
US7363039B2 (en) 2002-08-08 2008-04-22 Qualcomm Incorporated Method of creating and utilizing diversity in multiple carrier communication system
US6961595B2 (en) 2002-08-08 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple states
CN100586086C (zh) 2003-02-03 2010-01-27 索尼株式会社 无线通信系统,无线通信设备和无线通信方法
US7302227B2 (en) 2003-02-03 2007-11-27 Sony Corporation Communication method, communication device, and computer program
BRPI0407628B1 (pt) 2003-02-19 2017-09-26 Qualcomm Incorporated Coding of controlled superposition in multi-user communication systems
GB2400905A (en) * 2003-04-24 2004-10-27 Memco Ltd Edge device for a powered door with infra-red and visible elements
CN1784860B (zh) 2003-05-07 2011-09-21 索尼株式会社 无线通信系统、无线通信设备、无线通信方法
US7990883B2 (en) * 2003-05-16 2011-08-02 Sony Corporation Communication system, communication method, communication apparatus, communication control method, and computer program
US8593932B2 (en) 2003-05-16 2013-11-26 Qualcomm Incorporated Efficient signal transmission methods and apparatus using a shared transmission resource
JP4419955B2 (ja) * 2003-05-16 2010-02-24 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US7925291B2 (en) 2003-08-13 2011-04-12 Qualcomm Incorporated User specific downlink power control channel Q-bit
JP2005101756A (ja) 2003-09-22 2005-04-14 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4622503B2 (ja) * 2003-12-24 2011-02-02 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US7406105B2 (en) * 2004-03-03 2008-07-29 Alfred E. Mann Foundation For Scientific Research System and method for sharing a common communication channel between multiple systems of implantable medical devices
US7684381B2 (en) * 2004-05-04 2010-03-23 Qualcomm Incorporated Offset beacon for distributed management and control of wireless networks
US8099094B2 (en) 2004-07-12 2012-01-17 Interdigital Technology Corporation Neighbor scanning in wireless local area networks
CN101076971B (zh) * 2004-08-12 2015-11-25 美商内数位科技公司 用于控制接入到无线通信媒介的方法及系统
JP4310253B2 (ja) * 2004-09-21 2009-08-05 キヤノン株式会社 通信装置及び通信方法
JP4735145B2 (ja) 2004-10-18 2011-07-27 ソニー株式会社 無線通信システム,無線通信装置,およびコンピュータプログラム
JP4529636B2 (ja) * 2004-10-25 2010-08-25 ソニー株式会社 無線通信システムおよび無線通信装置
JP4734928B2 (ja) * 2005-01-11 2011-07-27 沖電気工業株式会社 通信タイミング制御装置、通信タイミング制御方法、ノード及び通信システム
JP2006279253A (ja) * 2005-03-28 2006-10-12 Fujitsu Ltd 無線通信装置及び無線通信システム
JP4701824B2 (ja) * 2005-05-11 2011-06-15 ソニー株式会社 無線通信装置およびその制御方法
US7590403B1 (en) * 2005-06-07 2009-09-15 Good Technology, Inc. Wireless device dormancy override
US20060285528A1 (en) * 2005-06-21 2006-12-21 Xia Gao Method and apparatus for power saving in beacon generation of wireless networks in ad hoc mode
EP1985149B1 (en) 2006-01-11 2010-07-28 QUALCOMM Incorporated Communications method and apparatus for transmitting priority information via beacon signals
US8811369B2 (en) 2006-01-11 2014-08-19 Qualcomm Incorporated Methods and apparatus for supporting multiple communications modes of operation
US7920543B2 (en) * 2006-01-18 2011-04-05 Qualcomm Incorporated Wireless broadband communications network using message diffusion architecture
TWI309532B (en) * 2006-05-29 2009-05-01 Inst Information Industry Adaptive power management methods and systems for wireless networks
JP5048062B2 (ja) * 2006-07-14 2012-10-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ビーコン送受信方法及びシステム
US7885616B2 (en) * 2006-08-16 2011-02-08 Research In Motion Limited Method and system for coordinating necessary radio transmission events with unrelated opportunistic events to optimize battery life and network resources
WO2008086532A1 (en) * 2007-01-11 2008-07-17 Qualcomm Incorporated Using dtx and drx in a wireless communication system
JP4349439B2 (ja) * 2007-06-07 2009-10-21 ソニー株式会社 無線通信システム、無線通信装置、プログラム、および無線通信方法
US7898983B2 (en) * 2007-07-05 2011-03-01 Qualcomm Incorporated Methods and apparatus supporting traffic signaling in peer to peer communications
US8599823B2 (en) 2007-07-06 2013-12-03 Qualcomm Incorporated Communications methods and apparatus related to synchronization with respect to a peer to peer timing structure
US8385317B2 (en) 2007-07-06 2013-02-26 Qualcomm Incorporated Methods and apparatus supporting multiple timing synchronizations corresponding to different communications peers
US8601156B2 (en) * 2007-07-06 2013-12-03 Qualcomm Incorporated Methods and apparatus related to peer discovery and/or paging in peer to peer wireless communications
US8385316B2 (en) 2007-07-06 2013-02-26 Qualcomm Incorporated Methods and apparatus related to peer to peer communications timing structure
TWI478556B (zh) * 2007-12-10 2015-03-21 Koninkl Philips Electronics Nv 擁塞控制
EP2243261B1 (en) * 2008-04-28 2015-09-16 Huawei Technologies Co., Ltd. Transparent bypass and associated mechanisms
US8595501B2 (en) 2008-05-09 2013-11-26 Qualcomm Incorporated Network helper for authentication between a token and verifiers
US8670573B2 (en) * 2008-07-07 2014-03-11 Robert Bosch Gmbh Low latency ultra wideband communications headset and operating method therefor
KR101281180B1 (ko) * 2008-08-18 2013-07-02 에스케이텔레콤 주식회사 유비쿼터스 센서 네트워크에서 QoS 지원을 위한 시스템 및 방법
US8879466B2 (en) * 2009-05-18 2014-11-04 Electronics And Telecommunications Research Institute Sensor node for using asynchronous MAC
KR20120009772A (ko) * 2010-07-21 2012-02-02 삼성전자주식회사 M2m 통신 시스템에서의 간섭 완화를 위한 시그널링 방법 및 디바이스
JP5636861B2 (ja) * 2010-10-14 2014-12-10 富士通株式会社 通信装置、通信システム、及び通信方法
JP4996732B2 (ja) * 2010-11-05 2012-08-08 株式会社東芝 移動無線端末装置および基地局探索方法
US8593953B2 (en) * 2010-12-23 2013-11-26 White Squirrel Wireless Technologies Inc. System and method for controlling data transmission in a multihop wireless network
US8626060B2 (en) * 2011-04-14 2014-01-07 Qualcomm, Incorporated Beacon signals for repeaters within a wireless communications system
JP5915964B2 (ja) * 2011-09-14 2016-05-11 ソニー株式会社 通信装置、通信システムおよび通信装置の制御方法
CN103369550B (zh) * 2012-03-26 2016-08-10 华为技术有限公司 一种目标站点、查询站点、通讯系统以及通讯方法
US9814037B2 (en) * 2013-06-28 2017-11-07 Intel Corporation Method for efficient channel estimation and beamforming in FDD system by exploiting uplink-downlink correspondence
EP3108365A1 (en) * 2014-02-20 2016-12-28 Telefonaktiebolaget LM Ericsson (publ) Methods, apparatuses, and computer program products for deploying and managing software containers
CN103973592B (zh) 2014-05-16 2017-12-05 华为技术有限公司 信元处理方法及装置
US9655054B2 (en) * 2014-09-19 2017-05-16 Qualcomm Incorporated Adapting blind reception duration for range and congestion
US9980224B2 (en) 2015-04-03 2018-05-22 Qualcomm Incorporated Determining inactivity timeout using distributed coordination function
WO2016174904A1 (ja) * 2015-04-30 2016-11-03 ソニー株式会社 通信装置および通信方法
JP6259423B2 (ja) * 2015-07-01 2018-01-10 日本電信電話株式会社 無線通信方法および基地局装置
MY182873A (en) 2015-07-07 2021-02-05 Sony Corp Communication device and communication method
EP3286901B1 (en) 2016-07-04 2019-09-04 Telefonaktiebolaget LM Ericsson (PUBL) Method and device for facilitating transmission of access information
US10750400B2 (en) * 2016-09-30 2020-08-18 Qualcomm Incorporated Processing a data packet received over control plane in congestion scenario
DE102019200958A1 (de) * 2018-01-25 2019-07-25 Yazaki Corporation Drahtloses Kommunikationsendgerät und Kommunikationssteuerverfahren
US11726162B2 (en) 2021-04-16 2023-08-15 Rockwell Collins, Inc. System and method for neighbor direction and relative velocity determination via doppler nulling techniques
US11737121B2 (en) 2021-08-20 2023-08-22 Rockwell Collins, Inc. System and method to compile and distribute spatial awareness information for network
US11665658B1 (en) 2021-04-16 2023-05-30 Rockwell Collins, Inc. System and method for application of doppler corrections for time synchronized transmitter and receiver
US11304084B1 (en) 2020-10-23 2022-04-12 Rockwell Collins, Inc. System and method for beacon-based passive clustering in mobile ad hoc networks (MANET)
US11700146B2 (en) * 2020-08-26 2023-07-11 Microchip Technology Incorporated EMI reduction in PLCA-based networks through beacon temporal spreading

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600622B2 (ja) 1994-09-22 1997-04-16 日本電気株式会社 Tdma方式の移動通信システムにおける下り制御信号の送信制御方法
US6130602A (en) * 1996-05-13 2000-10-10 Micron Technology, Inc. Radio frequency data communications device
US5940399A (en) * 1996-06-20 1999-08-17 Mrv Communications, Inc. Methods of collision control in CSMA local area network
US5870673A (en) 1996-08-30 1999-02-09 Telefonaktiebolaget Lm Ericsson Methods and systems for concurrent receipt of incoming calls from a wide area cellular network and a private radio communications network
US6198728B1 (en) * 1996-12-19 2001-03-06 Phillips Electronics North America Corp. Medium access control (MAC) protocol for wireless ATM
GB9721008D0 (en) * 1997-10-03 1997-12-03 Hewlett Packard Co Power management method foruse in a wireless local area network (LAN)
US6282407B1 (en) * 1998-04-16 2001-08-28 Motorola, Inc. Active electrostatic transceiver and communicating system
JP2000165930A (ja) 1998-11-30 2000-06-16 Clarion Co Ltd 無線通信ネットワークシステム
JP3412687B2 (ja) 1999-06-15 2003-06-03 日本電気株式会社 Lan間接続方法、アクセスポイント装置及びlanシステム
US6751455B1 (en) * 1999-09-17 2004-06-15 The Regents Of The University Of California Power- and bandwidth-adaptive in-home wireless communications system with power-grid-powered agents and battery-powered clients
JP4374725B2 (ja) * 1999-09-22 2009-12-02 パナソニック株式会社 通信方法及び通信局
US6615033B1 (en) * 2000-01-11 2003-09-02 International Business Machines Corporation Synchronized-timed-reminded communications for family radios
GB0022632D0 (en) 2000-09-15 2000-11-01 Koninkl Philips Electronics Nv Method of, and signalling system for, transferring data
US6799030B2 (en) * 2000-10-11 2004-09-28 Novatel Wireless, Inc. Method and apparatus for low power operation of an RF wireless modem
US6888795B2 (en) * 2000-12-30 2005-05-03 Durham Logistics Llc Resource allocation in a circuit switched network
JP2002300175A (ja) 2001-04-03 2002-10-11 Matsushita Electric Ind Co Ltd 無線通信システム
JP3700839B2 (ja) * 2001-08-30 2005-09-28 ソニー株式会社 無線通信装置及び無線通信装置の制御方法、並びにコンピュータ・プログラム
US7248570B2 (en) * 2001-09-17 2007-07-24 Microsoft Corporation System and method for coordinating bandwidth usage of a communication channel by wireless network nodes
US7280517B2 (en) * 2001-11-02 2007-10-09 At&T Corp. Wireless LANs and neighborhood capture
GB2382746B (en) * 2001-11-20 2005-12-14 Ericsson Telefon Ab L M Establishing radio communication channels
KR100547793B1 (ko) * 2001-12-29 2006-02-01 삼성전자주식회사 이동통신시스템에서 역방향 데이터 전송 제어 방법
US6980541B2 (en) * 2002-01-03 2005-12-27 Freescale Semiconductor, Inc. Media access controller having pseudo-static guaranteed time slots
US20030128659A1 (en) * 2002-01-09 2003-07-10 Koninklijke Philips Electronics N.V. Coexistence of OFDM and DSSS/CCK stations in a WLAN
US6798761B2 (en) * 2002-01-10 2004-09-28 Harris Corporation Method and device for establishing communication links and handling SP slot connection collisions in a communication system
JP3885597B2 (ja) * 2002-02-05 2007-02-21 ソニー株式会社 無線通信システム及び無線通信制御方法、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP3789374B2 (ja) * 2002-03-22 2006-06-21 Necインフロンティア株式会社 電話システム
US7133398B2 (en) * 2002-03-27 2006-11-07 Motorola, Inc. System and method for asynchronous communications employing direct and indirect access protocols
JP3799285B2 (ja) * 2002-03-29 2006-07-19 Necインフロンティア株式会社 無線lan基地局、無線端末およびプログラム
US7151945B2 (en) * 2002-03-29 2006-12-19 Cisco Systems Wireless Networking (Australia) Pty Limited Method and apparatus for clock synchronization in a wireless network
US7564810B2 (en) * 2002-05-08 2009-07-21 Microsoft Corporation Method and system for managing power consumption of a network interface module in a wireless computing device
US7564812B1 (en) * 2002-06-06 2009-07-21 Bbn Technologies Corp Method and apparatus for varying times/channels of broadcast beacons
US7689196B2 (en) * 2002-06-26 2010-03-30 Qualcomm Incorporated Timer-based sleep for terminals in wireless communication systems
US7366200B2 (en) * 2002-08-26 2008-04-29 Qualcomm Incorporated Beacon signaling in a wireless system
US7215681B2 (en) * 2002-09-11 2007-05-08 Itt Manufacturing Enterprises Inc. Adaptive channel access for carrier sense multiple access based systems
US7280801B2 (en) * 2002-12-02 2007-10-09 Agere Systems Inc. Reducing interference between different communication systems sharing a common wireless transmission medium
JP3849647B2 (ja) * 2003-01-23 2006-11-22 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US7340615B2 (en) * 2003-01-31 2008-03-04 Microsoft Corporation Method and apparatus for managing power in network interface modules
CN100586086C (zh) * 2003-02-03 2010-01-27 索尼株式会社 无线通信系统,无线通信设备和无线通信方法
US7302227B2 (en) * 2003-02-03 2007-11-27 Sony Corporation Communication method, communication device, and computer program
US6980810B1 (en) * 2003-05-12 2005-12-27 At&T Corp. Point coordinated spread-spectrum wireless local area network
US7092353B2 (en) * 2003-10-17 2006-08-15 Qualcomm Incorporated Carrier search methods and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104769892A (zh) * 2012-09-28 2015-07-08 奥林奇公司 用于在电信网络中调节传送的方法和设备
CN104769892B (zh) * 2012-09-28 2018-06-05 奥林奇公司 用于在电信网络中调节传送的方法和设备

Also Published As

Publication number Publication date
JPWO2004071020A1 (ja) 2006-06-01
KR101127174B1 (ko) 2012-03-22
US20160270074A1 (en) 2016-09-15
EP1592176A4 (en) 2011-03-02
US8761072B2 (en) 2014-06-24
US9655115B2 (en) 2017-05-16
US20140079034A1 (en) 2014-03-20
EP2897424A1 (en) 2015-07-22
CN1757201A (zh) 2006-04-05
JP4962576B2 (ja) 2012-06-27
US20140112314A1 (en) 2014-04-24
EP1592176B1 (en) 2017-04-12
US8670713B2 (en) 2014-03-11
US20120170562A1 (en) 2012-07-05
US10028271B2 (en) 2018-07-17
US11323999B2 (en) 2022-05-03
WO2004071020A1 (ja) 2004-08-19
CN101668345B (zh) 2013-07-31
US20150016391A1 (en) 2015-01-15
US20070184780A1 (en) 2007-08-09
JP4670638B2 (ja) 2011-04-13
US20060234740A1 (en) 2006-10-19
EP3203800B1 (en) 2021-03-31
JP2010154542A (ja) 2010-07-08
KR20050095868A (ko) 2005-10-04
EP1592176A1 (en) 2005-11-02
US20110026508A1 (en) 2011-02-03
US7302227B2 (en) 2007-11-27
US7844223B2 (en) 2010-11-30
CN100555964C (zh) 2009-10-28
EP2897424B1 (en) 2018-12-05
US8099049B2 (en) 2012-01-17
EP3203800A1 (en) 2017-08-09
US20180317226A1 (en) 2018-11-01
US8837448B2 (en) 2014-09-16

Similar Documents

Publication Publication Date Title
CN101668345B (zh) 通信设备
CN100586086C (zh) 无线通信系统,无线通信设备和无线通信方法
CN100372326C (zh) 无线通信系统、无线通信装置及无线通信方法
KR101082922B1 (ko) 무선 개인영역 네트워크에서 우선 순위를 적용한무선통신방법
CN1543731A (zh) 在共处802.11A/E和Hiperlan/2系统之间共享带宽的系统和方法
CN105636233A (zh) 一种laa系统中同时考虑上下行链路的lbt机制
JP2005094169A (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
EP1355450A1 (en) Channel overlap mitigation in wireless LANs using a central medium access control
CN100428742C (zh) 一种能量感知介质访问控制协议实现方法
US20110002252A1 (en) Frame structure for piconet master node on/off scheduling and method thereof
JP4329500B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
CN101018171B (zh) 无线通信系统、无线通信设备、无线通信方法和程序
JP4264645B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
Lo et al. An efficient scheduling mechanism for IEEE 802.11 e MAC enhancements
JP4748217B2 (ja) 無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
Aissa et al. Proposition and Analysis of Multi channel Cognitive MAC Protocols with parallel transmission of traffic and UWB Control information
Li et al. A mac-layer retransmission algorithm designed for zigbee protocol

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20130731