CN101553165B - 用于诸如可植入装置之类的电子装置的改良型电导线 - Google Patents

用于诸如可植入装置之类的电子装置的改良型电导线 Download PDF

Info

Publication number
CN101553165B
CN101553165B CN2006800242837A CN200680024283A CN101553165B CN 101553165 B CN101553165 B CN 101553165B CN 2006800242837 A CN2006800242837 A CN 2006800242837A CN 200680024283 A CN200680024283 A CN 200680024283A CN 101553165 B CN101553165 B CN 101553165B
Authority
CN
China
Prior art keywords
electrical wire
segment
lead
adjacent segments
choke coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800242837A
Other languages
English (en)
Other versions
CN101553165A (zh
Inventor
埃金·阿塔拉
奥努尔·弗汉诺格鲁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Neuromodulation Corp
Surgi Vision Inc
ClearPoint Neuro Inc
Original Assignee
Boston Scientific Neuromodulation Corp
Surgi Vision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Neuromodulation Corp, Surgi Vision Inc filed Critical Boston Scientific Neuromodulation Corp
Publication of CN101553165A publication Critical patent/CN101553165A/zh
Application granted granted Critical
Publication of CN101553165B publication Critical patent/CN101553165B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • A61N1/086Magnetic resonance imaging [MRI] compatible leads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3718Monitoring of or protection against external electromagnetic fields or currents

Abstract

一种用于电子装置的导线,此导线可阻止所述导线之外电磁场引发的电流感应,所述导线包括一对或多对相邻电线节段,每一对相邻节段都包括第一电线节段和第二电线节段。所述导线还包括一个或多个屏蔽的RF扼流圈,其中每个屏蔽的RF扼流圈都位于所述一对或多对相邻节段中相应一对的第一电线节段和第二电线节段之间。此外,一种可植入装置,此装置包括用来发生一个或多个电脉冲的发生器,和用来向患者身体内的组织传输脉冲的所述导线。还提供了一种制造所述可植入装置的方法。

Description

用于诸如可植入装置之类的电子装置的改良型电导线
相关中请的引用
本申请要求享有2005年5月4日提交的,美国临时申请No.60/677,418,标题为“MRI Compatible Implantable Devices(MRI兼容的可植入装置)”的专利的权益,该专利文献的公开内容通过引用而结合在本发明中。
技术领域
本发明涉及用于诸如但不限于可植入装置之类装置的电导线,尤其是涉及可以阻止外部电磁场引发的电流感应,从而降低由此类电磁场引发的过热可能性的电导线。
背景技术
核磁共振成像(MRI)通常被认为是一种非常安全,非侵袭性的诊断技术。但是,对于装有可植入装置(例如,但不限于,深部脑刺激(DBS)装置,起搏器,神经刺激器,或心脏除颤器)的患者,MRI可能形成威胁。目前,装有金属植入体装置的患者不允许进行MRI扫描。这种情况的一个主要原因是MRI扫描过程中可植入装置导线附近的电磁场集聚所引发的过热。
人们已经报告和评论了许多MRI扫描期间有实质性温升的案例。例如,在Achenbach S,Moshage W,Diem B,Bieberle T,SchibgillaV,Bachmann K等人发表于Am Heart 1997;134:467-473的名为“核磁共振成像对心脏起搏器和电极的影响(Effects of MagneticResonance Imaging on Cardiac Pacemakers and Electrodes)”一文中,报告了在90秒钟的MRI扫描过程中,最大达63.1℃的温升。此外,在对44种市场上可买到的起搏器导线进行了一次体外评定中,Sommer T,Hahlhaus C,Lauck G等人在发表于Radiology 2000;215:869-879的名为“核磁共振成像与心脏起搏器:体外评定和以0.5T密度对51名患者进行的体内研究(MR Imaging and CardiacPacemakers:In Vitro Evaluation and In Vivo Studies in 51 patients at0.5T)”一文中报告,在密度为0.5特斯拉的实验中观察到23.5℃的温升。如Gleason CA,Kaula NF,Hricak H等人发表于Pacing ClinElectrophysiolgy 1992:15;81-94的名为“核磁共振成像仪对神经刺激器的影响  (The Effect of Magnetic Resonance Imagers onNeurostimulators)”一文的报告,在对装有神经刺激器的患者进行的MRI扫描中也观察到了实质性的温升。此外,如Hofman MB,de CockCC,van der Linden JC等人发表于Magn Reson Med 1996;35:413-422的名为“核磁共振成像期间的经食道心脏起搏:可行性和安全性考虑(Transesophageal Cardiac Pacing During Magnetic Resonance Imaging:Feasibility And Safety Considerations)”一文的报告,密度1.5T,SAR值为3.0W/kg的核磁共振成像显示出对植有经食道心脏起搏器导线的狗造成了严重的黏膜坏死。
此外,Smith CD,Kildishev AV,Nyenhuis JA,Foster KS,BourlandJD发表于J Applied Physics 2000;87:6188-6190的名为“MRI磁场和细长形医疗植入装置的相互作用(Interactions of MRI  Magnetic FieldsWith Elongated Medical Implants)”一文中观察并报告了在一次凝胶模型实验中,半波导线上产生了16.8℃的温升。如Konings MK,BartelsLW,Smits HJ,Bakker CJ发表于J Magn Reson Imaging 2000;12:79-85的名为“血管内导线周围由共振RF波引起的发热(Heading AroundIntravascular Guidewires By Resonating RF Waves)”一文的报告,在长达30秒扫描时间的盐水浴实验中,所观察到的由于血管内导线引起的温升在26℃和74℃之间。Nitz WR,Oppelt A,Renz W,Manke C,Lenhart M,Link J发表于J Magn Reson Imaging 2001;13:105-114的名为“关于干涉性MRI中如导线和导体的线性导电结构上的发热(OnThe Heating of Linear Conductive Structures As Guide Wires AndCatheters In Interventional MRI)”一文报告,在另一次盐水溶液实验中,对于半波导线观察到了高达34℃的温升。应该注意到,在上述很多体内研究中,观察到了一度,二度或三度烧伤。
最近对一种应用最为广泛的神经刺激系统(Medtronic公司的活震颤(Activa Tremor)控制系统)进行了一次研究。对不同的配置都进行了评价,以估计最坏的情况和临床相关的定位情况,并在64MHz的MR系统上用凝胶模型代表人体组织进行了体内实验。如RezaiAR,Finelli D,Nyenhuis JA等人发表于J Magn Reson Imaging 2002;15:241-250的名为“用于深脑刺激的神经刺激器:1.5特斯拉密度下与MRI有关的发热的体外评估(Neurostimulator For Deep BrainStimulation:Ex Vivo Evaluation Of MRI-Related Heating At 1.5-Tesla)”一文的报告,观察到的最高温度变化,对RF线圈为25.3℃,对头线圈为7.1℃。这些结果显示在某些MRI扫描条件下,发热可能造成危险。
FREEHAND系统可植入功能性神经刺激器是一种市场上可以购买的RF动力电动机控制神经假体,它既包括可植入部件也包括外部部件,由俄亥俄州克里夫兰市的NeuroControl公司销售。在一次MRI感应发热实验中,将FREEHAND系统暴露在全身平均SAR值为1.1W/kg的MRI扫描中,时间为30分钟。该实验的发现表明在使用凝胶填充的模型装置中,局部温升不超过2.7℃。因此植有FREEHAND系统的患者只有在1.5特斯拉扫描仪的某些输入功率水平下才可以承受MRI扫描过程。
由于上述过热可能性所造成的安全性担忧,人们研究了数种策略来提升MRI对于植有金属植入体装置患者的安全性。一种基本的策略是设置一个功率极限,从而确保只会产生合理数量的发热。之前在Yeung CJ,Susil RC,Atalar E发表于Magan Reson Med 2002;47:187-193的名为“干涉性MRI中电线的RF安全性:一个安全性指标的使用(RF Safety Of Wires In Intervetional MRI:Using A SafetyIndex)”一文中公布了用于这种功率限制的一种方法。然而,许多现代的MRI脉冲序列,例如快速自旋回波或稳定态自由旋进(SSFP),要求较高的RF功率水平,因此如果RF功率受限的话,无法保证能够获得高质量图像。
大多数对金属植入体装置发热的研究集中于可植入装置导线的发热而不是可植入装置脉冲发生器的发热。这主要是由于这样的事实,即发生器典型情况下是边缘为曲线的光滑的装置,因此在电磁场集聚方面其结构要比导线结构威胁性小。结果是在发生器上观察到的发热较小,而预计的温升也较小。见如下研究报告的结果,例如,Ferhanoglu O,Tasci O.T,El-Sharkawy A,Altintas A,Atalar E在2004年京都举办的国际医学磁共振学会第12届科学会议的会议记录中发表的“使用一个安全性指标对MRI中起搏器RF发热的调查研究(Investigating RF Heating Of Pacemakers in MRI Using A SafetyIndex)”,以及Ferhanoglu O,El-Sharkawy A,Atalar E在2004年哥本哈根举办的欧洲医学及生物学磁共振学会第21届科学会议的会议记录中发表的“起搏器导线顶端的RF发热(RF Heating At The TipOf Pacemaker Leads)”。
美国第No.6,284,971号专利公开了一种同轴电缆,该电缆可作为核磁共振成像的同轴电缆,设计用于更高的安全性,从而减少对使用者的过度发热或烧伤的危险。所述电缆有一个延长的轴向内导体和一个延长的轴向外部屏蔽导体,两个导体呈彼此隔开的位置关系,两个导体之间置有第一层绝缘材料。但是在这种设计中,必须采用高介电常数材料。这种要求可能会产生柔韧性问题,因为高介电常数材料易碎而且为刚性。此外,可能有多条导线需要采用隔离同轴电缆。在这种情况下,设计的小型化就成了一个困难的任务。
在之前的几个研究中用到了RF扼流圈(choke)和滤波器。例如,如Susil RC等人在发表于MRM 47:594-600的名为“用于MRI的多功能干涉性装置:一种组合式电生理学/MRI导体(MultifunctionalInterventional Devices for MRI:A Combined Electrophysiology/MRICatheter)”一文中所述,RF扼流圈被用于一种组合式电生理学/MRI导体的设计,以及如Ladd ME等人在发表于MRM 43:615-619(2000)的名为“使用同轴扼流圈减小血管内导体的共振RF发热(Reduction ofResonant RF Heating in Intravascular Catheters Using Coaxial Chokes)”一文中所述,采用三轴扼流圈来对流过三轴外表面的电流产生高阻抗。
美国第No.6,539,253号专利公开了一种集成了一体式电路陷波滤波器的可植入医疗装置,而美国第No.5,817,136号专利公开了一种带EMI保护的起搏器。这两种设计都确保了电磁干扰不会造成问题,但是没有保证发热方面的安全性。可能还会有强电流流过长电缆,这些强电流可能导致过热和燃烧。
美国第5,217,010号专利描述了起搏器中发生器和元件之间光学信号的传输,由于和光学系统和电磁场没有耦合,因此提供了安全性。但是,电到光和光到电的能量转换效率是有限的,因此脉冲发生器的寿命大大受到限制。这种情况下小型化设计也是一个困难的任务。
因此很显然,存在对一种电导线的需求,所述电导线可以和例如金属植入体装置一起使用,该导线可阻止外部电磁场(例如MRI扫描期间存在的电磁场)引发的电流感应,并从而降低由此类电磁场引发的过热可能性。
发明内容
在一个实施例中,本发明涉及用于电子装置的导线,此导线可阻止所述导线之外电磁场引发的电流感应,如MRI扫描过程中可能存在的电流感应。所述导线包括一对或多对相邻电线节段,每一对相邻节段都包括第一电线节段和第二电线节段。相邻电线节段可为单导体式电线或多导体式电线。所述导线还包括一个或多个屏蔽的RF扼流圈,其中每个屏蔽的RF扼流圈都位于一对或多对相邻节段中相应相邻节段对的第一电线节段和第二电线节段之间。所述屏蔽的RF扼流圈的第一端可操作地连接到相关相邻节段对的第一个电线节段,而第二端可操作地连接到相关相邻节段对的第二个电线节段。优选的是,所述一对或多对相邻节段包括多对相邻电线节段,而所述一个或多个屏蔽的RF扼流圈包括多个屏蔽的RF扼流圈。
在一个特定的实施例中,电磁场包括有第一波长的电磁场能量,而相邻电线节段对的多数中的每一对的第一电线节段和第二电线节段的每一段长度都不超过第一波长的预定百分比,如百分之二十五。所述电子装置可以是由患者身体携带的装置,例如可植入装置。
屏蔽的RF扼流圈可包括由一层或多层导电性屏蔽材料,如金属屏蔽材料覆盖的电感(inductor)。优选的是,所述一层或多层导电性材料的第一端电连接至所述电感,而所述一层或多层导电性材料的第二端或者是浮置的(floating),或者连接到绝缘体上。此外,屏蔽的RF扼流圈中的每个电感均可包含芯(core),如顺磁芯。作为备选,屏蔽的RF扼流圈可包括环形电感线圈,其中绕一个环形芯缠绕了一个线圈。此外,可能绕环形电感线圈提供一层或多层电气屏蔽层,如金属层,从而提供额外的屏蔽。
在另一个实施例中,导线可还包括绝缘材料层,这层材料覆盖一对或多对相邻电线节段的至少一部分,以及一个或多个屏蔽的RF扼流圈的至少一部分。
在一个特定的实施例中,一个或多个屏蔽的RF扼流圈中的一个或多个包括串联连接的第一导体和第一电感,所述第一导体和第一电感位于一对或多对相邻电线节段中相应一对的第一电线节段和第二电线节段之间,在第一导体和第一电感上覆盖着至少一层导电性屏蔽材料,在所述第一导体和所述至少一层导电性屏蔽材料之间设有电容。
在又一个实施例中,本发明涉及一种可植入患者身体内部的装置,该装置可以阻止来自所述装置外部电磁场引发的电流感应。所述装置包括用来发生一个或多个电脉冲的脉冲发生器,用来向患者身体内的组织传输一个或多个电脉冲的导线。在所述装置中的所述导线可根据以上描述的多种实施例进行构造。
在再一个实施例中,本发明涉及制造一种可植入装置的方法,所述可植入装置包含上述导线的多种实施例。特别地,所述方法包括提供一对或多对相邻电线节段,每一对包括第一电线节段和第二电线节段,以及提供屏蔽的RF扼流圈,如以上多个实施例所述,扼流圈位于一对或多对相邻节段的每一对节段的第一电线节段和第二电线节段之间。
附图说明
附图显示了目前本发明的优选实施例,所述附图和上述概括描述以及下面的详细描述一起,用于解释本发明的原理。如全部附图所示,相似的标号表示相似或对应的零件。
图1是根据本发明第一个实施例的电导线示意图。
图2显示了图1所示的电导线用于可植入装置中的示意图。
图3到图10是根据本发明的电导线的各种备选实施例的示意图。
图11显示了根据本发明的一个实施例的电导线的模拟结果。
图12显示了一个用于凝胶模型实验的设置,该实验在一个起搏器上进行,所述起搏器包括根据本发明的一个实施例的电导线;且
图13显示了对一个起搏器进行的凝胶模型实验的温度曲线图,所述起搏器包含根据本发明的一个实施例的电导线。
具体实施方式
图1是电导线5的示意图,所述电导线根据本发明的第一个实施例,用于由患者身体携带的电子装置。如本文所用,用语“患者”指的是任何动物世界成员,包括人类。如本文所用,用语“由患者身体携带”所指的装置指的是可植入患者身体内部,佩戴在患者身体上或从外部连接在患者身体上,或以上各种方式的组合。在所述优选实施例中,如图2示意性地显示,图1所示的电导线5形成可植入装置(例如,但不限于,深部脑刺激(DBS)装置,起搏器,神经刺激器,或心脏除颤器)的一部分,用来从发生器15向身体内部的位置20(如一个器官或某些其它组织)传递电信号(如,电脉冲),所述电信号对该位置发生作用(出于说明性目的,图2显示了一个DBS装置)。如本文更多细节所述,电导线5通过减少由RF场所引起的发热来允许对患者进行更安全的MRI扫描。
再参见图1,电导线5包括多个电线节段25,在本实施例中,每个节段均由单导体式电线组成。优选的是,每个电线节段25都包括一端柔性外表绝缘单导体式电线。如图1所示,电导线5包括屏蔽的RF扼流圈30,该扼流圈插在两个相邻电线节段25之间。如本文所用,用语“屏蔽的RF扼流圈”指的是为了阻止外部电磁场侵入一个有限的区域,并从而阻止外部电磁场和有限区域中可能存在的电磁场相互作用,而在所述有限的空间内捕获一个或多个电磁场的电感。
在图1所示的实施例中,屏蔽的RF扼流圈30包括电感33,该电感为线圈的形式,外部由一层电屏蔽材料35包围,例如类似铜,铝,金,银或镍钛合金的金属屏蔽材料。这层屏蔽材料35帮助减少MRI扫描过程中产生磁耦合的危险。如图1所示,电感33的第一端电连接到相邻电线节段对25的一个节段,而相反的一端电连接到相邻电线节段对25的另一个节段。此外,导电性屏蔽材料层35的一端电连接到电感33,而所述导电性屏蔽材料层35的另一端或者是浮置的,或者和绝缘材料接触(所述绝缘材料如果存在的话,包围着电线25)。
虽然图1和图2只显示了两个相邻电线节段25和一个屏蔽的RF扼流圈30,但应该理解,电导线5可包括多个图1所示的和以上所述的相邻电线节段及屏蔽的RF扼流圈。事实上,在电导线5的优选实施例中,所述电导线5包括一段长度,其中包括多个在这段长度间提供的相邻电线节段25和屏蔽的RF扼流圈。在此优选实施例中,每个电线节段25都大体上比希望在其中使用电导线5的电磁场波长的一半稍短。如同能够理解的那样,如果可能有多个电磁场,则最短的波长被选择作为设计参数。在最优选的实施例中,每个电线节段25的长度都小于或等于希望在其中使用电导线5的电磁场(例如,MRI扫描过程中使用的RF场;MRI扫描中使用的最普通的频率为64MHz,虽然42MHz和128MHz系统也很普通)波长的四分之一(λ/4)。在一个实施例中,优选的电导线5可以是用于可植入装置的常规导线,该导线被连续地修改,从而以预定的间隔(如最少每隔λ/4的间隙)包括屏蔽的RF扼流圈30。作为备选,在另一个实施例中,优选的电导线5可特别制造,从而以预定的间隙(例如最少每隔λ/4的间隙)包含屏蔽的RF扼流圈30。
如本技术领域所知,RF扼流圈可阻止某些频率的电流,并使相对较低频率的电流通过(用语“RF陷阱”也经常被使用)。因此,在电导线5中,屏蔽的RF扼流圈30会阻止(并可能完全防止)高频率(例如MRI设备的RF场频)的电流,并会同时让较低频率(例如,与扼流圈一起使用的可植入装置的频率)的电流通过。结果是,由于MRI的RF场而导致的电流感应,以及由此而来的热量产生的可能性被降低(并可能完全防止),而如图2所示从发生器15到位置20的信号传输依然被允许。在所述优选实施例中,位置20(如某个器官或其它组织)内提供的电线节段25不包括屏蔽的RF扼流圈30,并相反优选地短于λ/2,从而相对安全。
图3是根据本发明的一个备选实施例的电导线5’的示意图,该电导线5’与电导线5相似,除了它包括了一个或多个屏蔽的RF扼流圈30’,此RF扼流圈30’不是使用单层的屏蔽材料35,而是使用多层屏蔽材料35A和35B,以改善电磁场的去耦。优选的是,电导线5’包括多个按所述间隔隔开的RF扼流圈30。如图3所示,对每层屏蔽材料35A和35B,层的一端电连接到电感33,而层的另一端或者是浮置的,或者与绝缘材料接触(所述绝缘材料如果存在的话,包围着电线25)。
图4是根据本发明的第三备选实施例的电导线5”的示意图,该电导线5”与电导线5相似,除了它包括一个或多个以电感33的形式存在的屏蔽的RF扼流圈30”,  在每个电感33中都有芯40。所述每个电感33中的芯40在一定的阻抗下提供了更高的感应系数。优选的是,该芯40使用的材料是顺磁材料,例如,但不限于铝或多种塑料材料。优选的是,芯40不应使用铁磁材料来阻止由MRI磁场产生的任何吸引。
图5是根据本发明的又一备选实施例的电导线45的示意图。所述电导线45包括多个电线节段25,这一点与图1所示的电导线5类似。此实施例中的电导线45包括一个或多个RF扼流圈47,每个扼流圈的形式为优选地包括绕环形芯55缠绕的环形线圈50的环形电感线圈。屏蔽的RF扼流圈47实际上和上述屏蔽的RF扼流圈30所起的作用相同,因为所述屏蔽的扼流圈47捕获环形芯55中的电磁场,并阻止外部电磁场引发的电流感应。优选的是,电导线45包括多个按上述与屏蔽的RF扼流圈30相关联的间隙隔开的屏蔽的RF扼流圈47。当使用屏蔽的RF扼流圈47时,可不需要使用一层屏蔽材料(如屏蔽的RF扼流圈30,30’和30”中所用的),因为电磁场被捕获在芯55中。
图6A是根据本发明的又一备选实施例的电导线60的示意图。电导线60包括多个电线节段25’,在此实施例中,每个节段都由多导体式电线组成,优选地以柔性表层绝缘的多导体式电线或同轴电缆的形式出现。所述电导线60和图1所示的电导线5相似,其包括一个或多个屏蔽的RF扼流圈30,扼流圈包括外面环绕着一层如上所述屏蔽材料层35的电感33。优选的是,如图6B所示,电导线60包括多个按上述与图1相关联的间隙隔开的屏蔽的RF扼流圈30。如图6A和6B所示,每个屏蔽的RF扼流圈30的每个电感33的第一端电连接到相邻电线节段对25’的其中一个节段上,而每个屏蔽的RF扼流圈30的电感33的另一端电连接到该相邻电线节段对25’的另一个节段上。此外,应该理解,在本实施例的多种变化形式中,可能提供如图3所示的额外的一层或多层屏蔽材料层,可能如图4所示在屏蔽的RF扼流圈中提供芯40,及/或可能使用如图5所示的环形RF扼流圈47。
图7是根据本发明的又一备选实施例的电导线60’的示意图,该电导线和图6所示的电导线60相似。电导线60’和电导线60的区别在于,在相邻电线节段对25’之间提供的不是单个屏蔽的RF扼流圈30,而是多个屏蔽的RF扼流圈30。特别地,如图7所示,对每个包含在电线节段25’中的导体提供了一个屏蔽的RF扼流圈30。图8是根据本发明的又一备选实施例的电导线60”的示意图,该电导线和图6所示的电导线60相似,除了每个屏蔽的RF扼流圈30都被如图5所示的环形屏蔽的RF扼流圈47所取代。
图9A和9B分别是根据本发明的又一备选实施例的电导线65A和65B的示意图。如图9A所示,电导线65A包括多个电线节段25’,每个节段都由多导体式电线组成,其形式优选地为柔性表层绝缘的多导体式电线。如本文中其它地方所提,所述多导体式电线,或其中的每个导体可以是,例如,但不限于,同轴电线或三轴电线。电导线65A包括一个或多个备选的屏蔽RF扼流圈67,这些扼流圈优选地按上述与图1相关的间隔隔开。如图9A所示,每个屏蔽的RF扼流圈6A都包括一层如上所述的屏蔽材料35,这层材料覆盖位于相邻电线节段对25’之间的导体部分75,但不与其接触,而在每个此类导体75和所述屏蔽材料层35之间设有电容70。此外,在屏蔽的RF扼流圈67A中,在每个导体75和电线节段25’之间有电感33,其中电线节段25’在电气上从连接到电容70的点上流(电流方面)至导体75。在图9A所示的实施例中,电容70是调谐过的。图9B中所示的电导线65B和65A相似,除了在电导线65B中,在每个导体75和电线节段25’之间有电感33,其中电线节段在电气上从连接电容70的点下流(电流方面)至导体75。在电导线65B中,电容70在相对较高的频率(大约100MHz)下短路,从而没有信号由导线65B传输,并从而没有信号提供给图2所示的位置20(例如脑部和其它身体内的器官或组织)。作为备选,在电导线65A或65B中,电感33可缠绕在一起。
图10是图6所示的实施例的一个变化形式,其中围绕电线节段25’和屏蔽的RF扼流圈30,除了那些必须保持暴露的区域,以便使用电导线60的可植入装置能够正常工作(如已知的,一些可植入装置,例如起搏器,需要导线的一个或多个部分暴露,以便可以和身体进行一处或多处电连接),其它都有绝缘材料层80,例如,但不限于,特氟纶,聚乙烯,尼龙,橡胶或PVC。这层绝缘材料80会提供更多的安全性,因为电荷可能会在屏蔽材料层35的边缘聚集。所述绝缘材料层80的使用不仅仅限于电导线60,还可用于此处所示的其它实施例。此外,当电导线60(或此处描述的其它电导线)用于可植入装置时,所述绝缘材料层80还可覆盖发生器15(图2)。
本发明对电导线5的性能进行了若干次模拟。模拟结果如图11A和11B所描绘。图11A显示了在普通电线和导线5上产生的感应电流的归一化曲线。图11B显示了在普通电线和导线5表面上的SAR分布。从这些模拟来看,很明显导线5能够把一根电线分成两根电线。
此外,为了评估本发明的有效性,针对一个包括电导线5的起搏器和一个普通起搏器进行了凝胶模型实验。凝胶模型的设置如图12所示,并在每种情况下在起搏器导线的末端包括一个温度探头1,以及一个参比探头2。图12所示的每个起搏器(普通起搏器和安全起搏器,即,包括导线5的起搏器)的凝胶模型设置都被进行MRI扫描,探头所测得的温度曲线如图13所示。如图所示,包括导线5的起搏器出现的发热明显小得多。
虽然本发明的优选实施例已如上进行描述和图解说明,但应该理解,这些都是本发明的示范例,而不能被认为是本发明的限制。例如,此处所包含的描述的主体将成组开关10描述成用于唤醒处理单元15。应该理解所述成组开关10可被用于唤醒任何类型的能够进入非活动睡眠状态的电子装置。在不背离本发明的精神或范围的前提下,可对本发明进行添加,删除,替换以及其他的更改。因此,本发明不应被认为仅限于前面的描述,而只受所附权利要求的范围限制。

Claims (55)

1.一种用于电子装置的导线,所述导线阻止所述导线外部的电磁场引起的电流感应,包括:
一对或多对相邻电线节段,每对所述相邻电线节段包括第一电线节段和第二电线节段;及
一个或多个屏蔽的RF扼流圈,每个所述屏蔽的RF扼流圈均位于所述一对或多对相邻电线节段中相应一对的第一电线节段和第二电线节段之间,且所述扼流圈的第一端可操作地连接到所述一对或多对相邻电线节段中相应一对的第一电线节段上,并且所述扼流圈的第二端可操作地连接到所述一对或多对相邻电线节段中相应一对的第二电线节段上。
2.如权利要求1所述的导线,其特征在于,所述一对或多对相邻电线节段包括多对相邻电线节段,并且所述一个或多个屏蔽的RF扼流圈包括多个屏蔽的RF扼流圈。
3.如权利要求2所述的导线,其特征在于,所述电磁场包括有第一波长的电磁能量,并且所述多对相邻电线节段中每一对的第一电线节段和第二电线节段各自的长度都不超过所述第一波长的预定百分比。
4.如权利要求3所述的导线,其特征在于,所述第一波长的所述预定百分比为百分之二十五。
5.如权利要求4所述的导线,其特征在于,所述电子装置由患者的身体携带,其中所述导线位于所述装置的发生器和所述身体内的组织之间,并且所述导线包括位于所述组织中的电线的第一部分,其长度为不超过所述第一波长的百分之五十。
6.如权利要求5所述的导线,其特征在于,所述电线的第一部分以及所述多对相邻电线节段构成了基本上整个所述导线。
7.如权利要求1所述的导线,其特征在于,所述电子装置由患者 的身体携带。
8.如权利要求7所述的导线,其特征在于,所述电子装置是可植入装置。
9.如权利要求1所述的导线,其特征在于,所述一个或多个屏蔽的RF扼流圈的一个或多个包括由至少一层导电性屏蔽材料覆盖的电感。
10.如权利要求9所述的导线,其特征在于,所述至少一层导电性屏蔽材料包括两层或更多层屏蔽材料。
11.如权利要求9所述的导线,其特征在于,所述至少一层导电性屏蔽材料包括金属屏蔽材料。
12.如权利要求9所述的导线,其特征在于,在每种情况下,所述至少一层导电性屏蔽材料的第一端电连接至电感,并且所述至少一层导电性屏蔽材料的第二端或者是浮置的,或者连接到绝缘体上。
13.如权利要求1所述的导线,其特征在于,所述一个或多个屏蔽的RF扼流圈的一个或多个包括由至少一层导电性屏蔽材料覆盖的电感,每个所述电感都有芯。
14.如权利要求13所述的导线,其特征在于,每个所述电感的芯都包含顺磁材料。
15.如权利要求1所述的导线,其特征在于,所述一个或多个屏蔽的RF扼流圈的其中一个或多个包括环形电感线圈。
16.如权利要求15所述的导线,其特征在于,所述环形电感线圈包括绕环形芯缠绕而成的线圈。
17.如权利要求1所述的导线,其特征在于,每个所述相邻电线节段都是单导体式电线。
18.如权利要求1所述的导线,其特征在于,每个所述相邻电线节段都是多导体式电线。
19.如权利要求1所述的导线,所述导线还包括绝缘材料层,所述绝缘材料层覆盖了所述一对或多对相邻电线节段的至少一部分以 及所述一个或多个屏蔽的RF扼流圈的至少一部分。
20.如权利要求1所述的导线,其特征在于,所述一个或多个屏蔽的RF扼流圈的一个或多个包括串联连接的第一导体和第一电感,且所述第一导体和第一电感位于所述一对或多对相邻电线节段中相应一对的第一电线节段和第二电线节段之间,在所述第一导体和所述第一电感上覆盖着至少一层导电性屏蔽材料,而在所述第一导体和所述至少一层导电性屏蔽材料之间设有电容。
21.一种可植入患者身体内的装置,所述装置阻止来自所述装置之外的电磁场引起的电流感应,包括:
用于发生一个或多个电脉冲的发生器;
将一个或多个电脉冲传递到患者身体内组织的导线,所述导线包括:
一对或多对相邻电线节段,每对所述电线节段包括第一电线节段和第二电线节段;及
一个或多个屏蔽的RF扼流圈,每个所述屏蔽的RF扼流圈位于所述一对或多对相邻电线节段的相应一对的第一电线节段和第二电线节段之间,且所述扼流圈的第一端可操作地连接到所述一对或多对相邻电线节段中相应一对的第一电线节段上,而所述扼流圈的第二端可操作地连接到所述一对或多对相邻电线节段中相应一对的第二电线节段上。
22.如权利要求21所述的装置,其特征在于,所述一对或多对相邻电线节段包括多对相邻电线节段,并且所述一个或多个屏蔽的RF扼流圈包括多个屏蔽的RF扼流圈。
23.如权利要求22所述的装置,其特征在于,所述电磁场包括有第一波长的电磁能量,并且所述多对相邻电线节段中每一对的第一电线节段和第二电线节段各自的长度都不超过所述第一波长的预定百分比。
24.如权利要求23所述的装置,其特征在于,所述第一波长的所 述预定百分比为百分之二十五。
25.如权利要求24所述的装置,其特征在于,所述导线包括位于所述组织中的电线的第一部分,其长度为不超过所述第一波长的百分之五十。
26.如权利要求21所述的装置,其特征在于,所述一个或多个屏蔽的RF扼流圈的一个或多个包括由至少一层导电性屏蔽材料覆盖的电感。
27.如权利要求26所述的装置,其特征在于,所述至少一层导电性屏蔽材料包括两层或更多层导电性屏蔽材料。
28.如权利要求26所述的装置,其特征在于,所述至少一层导电性屏蔽材料包括金属屏蔽材料。
29.如权利要求26所述的装置,其特征在于,在每种情况下,所述至少一层导电性屏蔽材料的第一端电连接至所述电感上,而所述至少一层导电性屏蔽材料的第二端或者是浮置的,或者连接到绝缘体上。
30.如权利要求21所述的装置,其特征在于,所述一个或多个屏蔽的RF扼流圈的一个或多个包括由至少一层导电性屏蔽材料覆盖的电感,每个所述电感都有芯。
31.如权利要求30所述的装置,其特征在于,每个所述电感的芯都包含顺磁材料。
32.如权利要求21所述的装置,其特征在于,所述一个或多个屏蔽的RF扼流圈的一个或多个包括环形电感线圈。
33.如权利要求32所述的装置,其特征在于,所述环形电感线圈包括绕环形芯缠绕而成的线圈。
34.如权利要求21所述的装置,其特征在于,每个所述相邻电线节段都是单导体式电线。
35.如权利要求21所述的装置,其特征在于,每个所述相邻电线节段都是多导体式电线。 
36.如权利要求21所述的装置,所述装置还包括绝缘材料层,所述绝缘材料层覆盖了所述导线的至少一部分和所述发生器的至少一部分。
37.如权利要求36所述的装置,其特征在于,所述绝缘材料层覆盖了基本上整个所述导线,除了所述导线上必须暴露出来用于使所述装置正确工作的部分之外。
38.如权利要求21所述的装置,其特征在于,所述一个或多个屏蔽的RF扼流圈的一个或多个包括串联连接的第一导体和第一电感,且所述第一导体和第一电感位于所述一对或多对相邻电线节段中相应一对的第一电线节段和第二电线节段之间,在所述第一导体和所述第一电感上覆盖着至少一层导电性屏蔽材料,并且在所述第一导体和所述至少一层导电性屏蔽材料之间设有电容。
39.一种制造可植入患者身体内的装置的方法,所述装置阻止来自所述装置之外的电磁场引起的电流感应,所述方法包括:
提供用于发生一个或多个电脉冲的发生器;通过如下步骤制作用于将一个或多个电脉冲传输到患者身体内组织的导线:(i)提供一对或多对相邻电线节段,每对所述电线节段包括第一电线节段和第二电线节段,且(ii)在所述一对或多对相邻电线节段中每一对的第一电线节段和第二电线节段之间提供屏蔽的RF扼流圈,且
可操作地将所述发生器和所述导线相连接。
40.如权利要求39所述的方法,其特征在于,提供一对或多对相邻电线节段的步骤包括提供多对相邻电线节段。
41.如权利要求40所述的方法,其特征在于,所述电磁场包括有第一波长的电磁能量,并且所述多对相邻电线节段中每一对的第一电线节段和第二电线节段各自的长度都不超过所述第一波长的预定百分比。
42.如权利要求41所述的方法,其特征在于,所述第一波长的所述预定百分比为百分之二十五。 
43.如权利要求39所述的方法,其特征在于,提供屏蔽的RF扼流圈的步骤包括,提供位于所述一对或多对相邻电线节段中每一对的第一电线节段和第二电线节段之间的电感,并且将所述电感用至少一层导电性屏蔽材料来覆盖。
44.如权利要求43所述的方法,其特征在于,所述至少一层导电性屏蔽材料包括两层或更多层导电性屏蔽材料。
45.如权利要求43所述的方法,其特征在于,所述至少一层导电性屏蔽材料包括金属屏蔽材料。
46.如权利要求43所述的方法,其特征在于,提供屏蔽的RF扼流圈的步骤包括,将所述至少一层导电性屏蔽材料的第一端电连接至电感,并使得所述至少一层导电性屏蔽材料的第二端或者是浮置的,或者是连接在绝缘体上。
47.如权利要求43所述的方法,其特征在于,每个所述电感都有芯。
48.如权利要求47所述的方法,其特征在于,每个所述电感的芯都包含顺磁材料。
49.如权利要求39所述的方法,其特征在于,提供屏蔽的RF扼流圈的步骤包括,提供位于所述一对或多对相邻电线节段中每一对的第一电线节段和第二电线节段之间的环形电感线圈。
50.如权利要求49所述的方法,其特征在于,每个所述环形电感线圈包括绕环形芯缠绕而成的线圈。
51.如权利要求39所述的方法,其特征在于,提供一对或多对相邻电线节段的步骤包括,提供一对或多对单导体式电线的相邻节段。
52.如权利要求39所述的方法,其特征在于,提供一对或多对相邻电线节段的步骤包括,提供一对或多对多导体式电线的相邻节段。
53.如权利要求39所述的方法,所述方法还包括,在所述一对或多对相邻电线节段的至少一部分及每个屏蔽的RF扼流圈的至少一部分上面提供绝缘材料层。 
54.如权利要求53所述的方法,其特征在于,提供绝缘材料层的步骤还包括,在所述发生器的至少一部分上面提供绝缘材料层。
55.如权利要求39所述的方法,其特征在于,所述一个或多个屏蔽的RF扼流圈的一个或多个包括串联连接的第一导体和第一电感,且所述第一导体和第一电感位于所述一对或多对相邻电线节段中相应一对的第一电线节段和第二电线节段之间,在所述第一导体和所述第一电感上覆盖着至少一层导电性屏蔽材料,而在所述第一导体和所述至少一层导电性屏蔽材料之间设有电容。 
CN2006800242837A 2005-05-04 2006-05-04 用于诸如可植入装置之类的电子装置的改良型电导线 Active CN101553165B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67741805P 2005-05-04 2005-05-04
US60/677,418 2005-05-04
PCT/US2006/017362 WO2006119492A2 (en) 2005-05-04 2006-05-04 Improved electrical lead for an electronic device such as an implantable device

Publications (2)

Publication Number Publication Date
CN101553165A CN101553165A (zh) 2009-10-07
CN101553165B true CN101553165B (zh) 2011-05-18

Family

ID=37308740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800242837A Active CN101553165B (zh) 2005-05-04 2006-05-04 用于诸如可植入装置之类的电子装置的改良型电导线

Country Status (6)

Country Link
US (4) US7561906B2 (zh)
EP (1) EP1878091B1 (zh)
CN (1) CN101553165B (zh)
CA (1) CA2606824C (zh)
ES (1) ES2623366T3 (zh)
WO (1) WO2006119492A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9504822B2 (en) 2012-10-18 2016-11-29 Cardiac Pacemakers, Inc. Inductive element for providing MRI compatibility in an implantable medical device lead
US9504821B2 (en) 2014-02-26 2016-11-29 Cardiac Pacemakers, Inc. Construction of an MRI-safe tachycardia lead
US9750944B2 (en) 2009-12-30 2017-09-05 Cardiac Pacemakers, Inc. MRI-conditionally safe medical device lead

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8244370B2 (en) 2001-04-13 2012-08-14 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US8256430B2 (en) 2001-06-15 2012-09-04 Monteris Medical, Inc. Hyperthermia treatment and probe therefor
US9295828B2 (en) 2001-04-13 2016-03-29 Greatbatch Ltd. Self-resonant inductor wound portion of an implantable lead for enhanced MRI compatibility of active implantable medical devices
WO2002083016A1 (en) 2001-04-13 2002-10-24 Surgi-Vision, Inc. Systems and methods for magnetic-resonance-guided interventional procedures
US8457760B2 (en) 2001-04-13 2013-06-04 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US8437865B2 (en) 2001-04-13 2013-05-07 Greatbatch Ltd. Shielded network for an active medical device implantable lead
US8977355B2 (en) 2001-04-13 2015-03-10 Greatbatch Ltd. EMI filter employing a capacitor and an inductor tank circuit having optimum component values
EP1776040A4 (en) * 2004-08-09 2012-02-15 Univ Johns Hopkins IMPLANTABLE MRI-COMPATIBLE PACING AND ANTENNAS AND ASSOCIATED SYSTEMS AND METHODS
ES2623366T3 (es) * 2005-05-04 2017-07-11 Boston Scientific Neuromodulation Corporation Cable eléctrico mejorado para un dispositivo electrónico tal como un dispositivo implantable
CA2623453C (en) * 2005-10-21 2016-02-09 Surgi-Vision, Inc. Mri-safe high impedance lead systems and related methods
CA2623616A1 (en) 2005-11-29 2007-06-07 Surgi-Vision, Inc. Mri-guided localization and/or lead placement systems, related methods, devices and computer program products
US9901731B2 (en) * 2006-01-31 2018-02-27 Medtronic, Inc. Medical electrical lead having improved inductance
US7933662B2 (en) 2006-04-26 2011-04-26 Marshall Mark T Medical electrical lead including an inductance augmenter
US9827415B2 (en) 2006-11-09 2017-11-28 Greatbatch Ltd. Implantable lead having multi-planar spiral inductor filter
US9468750B2 (en) 2006-11-09 2016-10-18 Greatbatch Ltd. Multilayer planar spiral inductor filter for medical therapeutic or diagnostic applications
US8239041B2 (en) 2010-08-02 2012-08-07 Greatbatch Ltd. Multilayer helical wave filter for medical therapeutic or diagnostic applications
US7610101B2 (en) * 2006-11-30 2009-10-27 Cardiac Pacemakers, Inc. RF rejecting lead
AU2008229465B2 (en) * 2007-03-19 2013-08-22 Boston Scientific Neuromodulation Corporation MRI and RF compatible leads and related methods of operating and fabricating leads
ES2615402T3 (es) * 2007-03-19 2017-06-06 Boston Scientific Neuromodulation Corporation Cables compatibles con IRM y RF
US8175677B2 (en) 2007-06-07 2012-05-08 MRI Interventions, Inc. MRI-guided medical interventional systems and methods
WO2009042155A2 (en) 2007-09-24 2009-04-02 Surgivision, Inc. Mri-compatible patches and methods for using the same
US8315689B2 (en) 2007-09-24 2012-11-20 MRI Interventions, Inc. MRI surgical systems for real-time visualizations using MRI image data and predefined data of surgical tools
CA2700523A1 (en) 2007-09-24 2009-04-02 Surgivision, Inc. Mri-guided medical interventional systems and methods
WO2009067205A1 (en) * 2007-11-21 2009-05-28 Surgi-Vision, Inc. Methods, systems and computer program products for positioning a guidance apparatus relative to a patient
US20090179716A1 (en) * 2008-01-09 2009-07-16 Anaren, Inc. RF Filter Device
JP5149399B2 (ja) 2008-02-06 2013-02-20 カーディアック ペースメイカーズ, インコーポレイテッド Mriに対応した設計上の特徴を有するリード
US8255055B2 (en) * 2008-02-11 2012-08-28 Cardiac Pacemakers, Inc. MRI shielding in electrodes using AC pacing
US9108066B2 (en) 2008-03-20 2015-08-18 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10080889B2 (en) 2009-03-19 2018-09-25 Greatbatch Ltd. Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD
EP2110156B1 (de) * 2008-04-14 2016-11-02 Biotronik CRM Patent AG Feldentkopplungs-Element zur Verwendung mit einer implantierbaren Leitung und implantierbares medizinisches Gerät
US8103360B2 (en) 2008-05-09 2012-01-24 Foster Arthur J Medical lead coil conductor with spacer element
US9513443B2 (en) * 2008-05-28 2016-12-06 John Lawrence Erb Optical fiber-fine wire conductor and connectors
WO2010030373A2 (en) * 2008-09-12 2010-03-18 Surgivision, Inc. Intrabody mri stacked flat loop antennas and related systems
US8364279B2 (en) 2008-09-25 2013-01-29 Boston Scientific Neuromodulation Corporation Electrical stimulation leads having RF compatibility and methods of use and manufacture
US8335570B2 (en) 2008-10-09 2012-12-18 Boston Scientific Neuromodulation Corporation Electrical stimulation leads having RF compatibility and methods of use and manufacture
US8948843B2 (en) * 2008-10-15 2015-02-03 Sapiens Steering Brain Stimulation B.V. Probe for an implantable medical device
WO2010047893A1 (en) * 2008-10-23 2010-04-29 Cardiac Pacemakers, Inc. Systems and methods to detect implantable medical device configuration changes affecting mri conditional safety
US8634931B2 (en) * 2008-10-30 2014-01-21 Pacesetter, Inc. MRI compatible implantable medical lead and method of making same
US20100137704A1 (en) * 2008-12-02 2010-06-03 Surgivision, Inc. Medical mats with electrical paths and methods for using the same
US8294461B2 (en) * 2009-01-15 2012-10-23 The Board Of Trustees Of The Leland Stanford Junior University Reverse circularly polarized non-tissue damaging RF in MRI detection of coupled RF current producing objects in a body
EP2398382A4 (en) * 2009-02-20 2013-01-23 Surgivision Inc CABLE MANAGEMENT SYSTEMS FOR MRI SYSTEMS AND CORRESPONDING METHODS
US20100217115A1 (en) * 2009-02-25 2010-08-26 Hushek Stephen G Temperature sensing within a patient during mr imaging
US9084883B2 (en) 2009-03-12 2015-07-21 Cardiac Pacemakers, Inc. Thin profile conductor assembly for medical device leads
US8910376B2 (en) * 2009-05-27 2014-12-16 Boston Scientific Neuromodulation Corporation Systems and methods for forming an end of an elongated member of an electrical stimulation system
JP5859431B2 (ja) 2009-06-08 2016-02-10 エムアールアイ・インターヴェンションズ,インコーポレイテッド 準リアルタイムで可撓性体内装置を追跡し、動的視覚化を生成することができるmri誘導介入システム
US8369930B2 (en) 2009-06-16 2013-02-05 MRI Interventions, Inc. MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
ES2547713T3 (es) 2009-06-26 2015-10-08 Cardiac Pacemakers, Inc. Derivación de dispositivo médico que incluye una bobina unifilar con una capacidad de transmisión del par de torsión mejorada y un calentamiento por RM reducido
US8369964B2 (en) * 2009-10-09 2013-02-05 Cardiac Pacemakers, Inc. MRI compatible medical device lead including transmission line notch filters
US9254380B2 (en) 2009-10-19 2016-02-09 Cardiac Pacemakers, Inc. MRI compatible tachycardia lead
US20120232632A1 (en) * 2009-10-30 2012-09-13 St. Jude Medical Ab medical implantable lead
US10265519B2 (en) 2009-11-02 2019-04-23 Koninklijke Philips N.V. Radio frequency ablation catheter and magnetic resonance imaging system
US8554338B2 (en) * 2009-11-05 2013-10-08 Pacesetter, Inc. MRI-compatible implantable lead having a heat spreader and method of using same
US20110144722A1 (en) * 2009-12-10 2011-06-16 Pacesetter, Inc. Mri-compatible implantable lead with improved lc resonant component
US20110152990A1 (en) * 2009-12-22 2011-06-23 Pacesetter, Inc. Mri compatible lead employing multiple miniature inductors
US8406895B2 (en) * 2009-12-30 2013-03-26 Cardiac Pacemakers, Inc. Implantable electrical lead including a cooling assembly to dissipate MRI induced electrode heat
EP2519314A1 (en) * 2009-12-30 2012-11-07 Cardiac Pacemakers, Inc. Apparatus to selectively increase medical device lead inner conductor inductance
AU2010337313B2 (en) 2009-12-31 2014-04-24 Cardiac Pacemakers, Inc. MRI conditionally safe lead with multi-layer conductor
US8391994B2 (en) 2009-12-31 2013-03-05 Cardiac Pacemakers, Inc. MRI conditionally safe lead with low-profile multi-layer conductor for longitudinal expansion
US8825181B2 (en) 2010-08-30 2014-09-02 Cardiac Pacemakers, Inc. Lead conductor with pitch and torque control for MRI conditionally safe use
US8831740B2 (en) 2010-11-02 2014-09-09 Pacesetter, Inc. Implantable lead assembly having a plurality of inductors
US20120130460A1 (en) * 2010-11-22 2012-05-24 Pacesetter, Inc. Hybrid implantable lead assembly
US8942825B2 (en) * 2010-12-17 2015-01-27 Biotronik Se & Co. Kg Implantable device with elongated electrical conductor
EP2476455A1 (de) * 2011-01-13 2012-07-18 BIOTRONIK SE & Co. KG Implantierbare Elektrodenleitung
US8612021B2 (en) 2011-02-10 2013-12-17 Medtronic, Inc. Magnetic resonance imaging compatible medical electrical lead and method of making the same
US9931514B2 (en) 2013-06-30 2018-04-03 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10350421B2 (en) 2013-06-30 2019-07-16 Greatbatch Ltd. Metallurgically bonded gold pocket pad for grounding an EMI filter to a hermetic terminal for an active implantable medical device
US10272252B2 (en) 2016-11-08 2019-04-30 Greatbatch Ltd. Hermetic terminal for an AIMD having a composite brazed conductive lead
US11198014B2 (en) 2011-03-01 2021-12-14 Greatbatch Ltd. Hermetically sealed filtered feedthrough assembly having a capacitor with an oxide resistant electrical connection to an active implantable medical device housing
US9427596B2 (en) 2013-01-16 2016-08-30 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10596369B2 (en) 2011-03-01 2020-03-24 Greatbatch Ltd. Low equivalent series resistance RF filter for an active implantable medical device
WO2013016203A1 (en) * 2011-07-22 2013-01-31 Boston Scientific Scimed, Inc. Nerve modulation system with a nerve modulation element positionable in a helical guide
WO2013067369A1 (en) * 2011-11-02 2013-05-10 Boston Scientific Neuromodulation Corporation Systems and methods for making improved leads for electrical stimulation systems
US8666512B2 (en) 2011-11-04 2014-03-04 Cardiac Pacemakers, Inc. Implantable medical device lead including inner coil reverse-wound relative to shocking coil
DE102011087117B4 (de) * 2011-11-25 2023-07-20 Hilti Aktiengesellschaft Elektrischer Antrieb für eine Handwerkzeugmaschine
US8600520B2 (en) 2012-04-18 2013-12-03 Pacesetter, Inc. Implantable lead assembly having a plurality of inductors
JP5905611B2 (ja) 2012-04-20 2016-04-20 カーディアック ペースメイカーズ, インコーポレイテッド ユニファイラーコイル状ケーブルを備える埋込型医療装置リード
US8954168B2 (en) 2012-06-01 2015-02-10 Cardiac Pacemakers, Inc. Implantable device lead including a distal electrode assembly with a coiled component
EP2866723A4 (en) 2012-06-27 2016-12-14 Monteris Medical Corp GUIDED THERAPY BY IMAGE OF A FABRIC
JP6069499B2 (ja) 2012-08-31 2017-02-01 カーディアック ペースメイカーズ, インコーポレイテッド 低ピークmri加熱を有するリード線
US9192446B2 (en) 2012-09-05 2015-11-24 MRI Interventions, Inc. Trajectory guide frame for MRI-guided surgeries
USRE46699E1 (en) 2013-01-16 2018-02-06 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US9078588B2 (en) 2013-03-08 2015-07-14 MRI Interventions, Inc. MRI compatible intrabody stylets and related methods and systems
EP3269419A1 (en) 2013-08-04 2018-01-17 Greatbatch Ltd. Multilayer planar spiral inductor filter for medical, therapeutic or diagnostic applications
US10279172B1 (en) 2013-09-09 2019-05-07 Pinnacle Bionics, Inc. MRI compatible lead
US20150265353A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
US10675113B2 (en) 2014-03-18 2020-06-09 Monteris Medical Corporation Automated therapy of a three-dimensional tissue region
US9492121B2 (en) 2014-03-18 2016-11-15 Monteris Medical Corporation Image-guided therapy of a tissue
EP3134174B1 (en) * 2014-04-25 2021-09-15 Boston Scientific Neuromodulation Corporation System and device for electrical pulse charge compensation for implantable medical device capacitance loading effects
US9782581B2 (en) 2014-06-27 2017-10-10 Boston Scientific Neuromodulation Corporation Methods and systems for electrical stimulation including a shielded sheath
WO2016160423A1 (en) 2015-03-27 2016-10-06 Boston Scientific Neuromodulation Corporation Systems and methods for making and using electrical stimulation systems to reduce rf-induced tissue heating
US10327830B2 (en) 2015-04-01 2019-06-25 Monteris Medical Corporation Cryotherapy, thermal therapy, temperature modulation therapy, and probe apparatus therefor
US10173055B2 (en) 2015-04-30 2019-01-08 Boston Scientific Neuromodulation Corporaation Electrical stimulation leads and systems having a RF shield along at least the lead and methods of making and using
US10185002B2 (en) 2015-06-04 2019-01-22 General Electric Company Systems and methods for MRI common mode traps
US10677867B2 (en) * 2015-09-03 2020-06-09 MiRTLE Medical, LLC MRI-compatible 12-lead ECG cable
US11206966B2 (en) 2016-02-01 2021-12-28 Intuitive Surgical Operations, Inc. Reduction of endoscope high frequency leakage current using a common-mode choke
EP3432975B1 (en) 2016-03-21 2024-02-14 Nalu Medical, Inc. Devices for positioning external devices in relation to implanted devices
WO2018017463A1 (en) 2016-07-18 2018-01-25 Nalu Medical, Inc. Methods and systems for treating pelvic disorders and pain conditions
US11298041B2 (en) 2016-08-30 2022-04-12 The Regents Of The University Of California Methods for biomedical targeting and delivery and devices and systems for practicing the same
US10249415B2 (en) 2017-01-06 2019-04-02 Greatbatch Ltd. Process for manufacturing a leadless feedthrough for an active implantable medical device
EP3585475B1 (en) 2017-02-24 2024-04-03 Nalu Medical, Inc. Apparatus with sequentially implanted stimulators
US10905497B2 (en) 2017-04-21 2021-02-02 Clearpoint Neuro, Inc. Surgical navigation systems
CN111132626B (zh) 2017-07-17 2024-01-30 沃雅戈治疗公司 轨迹阵列引导系统
EP3664708B1 (en) 2017-08-07 2023-04-12 DePuy Synthes Products, Inc. Folded mri safe coil assembly
DE102019106675A1 (de) 2018-03-20 2019-09-26 Biotronik Se & Co. Kg Leitung für ein medizinisches Implantat, mit integrierten periodischen Induktionsspulen (iPIC) für verringerte Wechselwirkungen mit elektromagnetischen Feldern
US10912945B2 (en) 2018-03-22 2021-02-09 Greatbatch Ltd. Hermetic terminal for an active implantable medical device having a feedthrough capacitor partially overhanging a ferrule for high effective capacitance area
US10905888B2 (en) 2018-03-22 2021-02-02 Greatbatch Ltd. Electrical connection for an AIMD EMI filter utilizing an anisotropic conductive layer
US11779280B2 (en) * 2018-06-29 2023-10-10 Biosense Webster (Israel) Ltd. Reference wires to remove noise and artifacts in cardiac mapping catheter
RU205777U1 (ru) * 2020-06-30 2021-08-11 Дмитрий Валерьевич Хачатуров Устройство связи измерительных блоков системы телеметрии

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87210281U (zh) * 1987-07-17 1988-06-08 重庆电动工具厂 无线电干扰抑制器
US5246438A (en) * 1988-11-25 1993-09-21 Sensor Electronics, Inc. Method of radiofrequency ablation
CN1483209A (zh) * 2000-12-20 2004-03-17 С 扼流线圈

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2130758A (en) * 1935-06-01 1938-09-20 E J Rose Mfg Company Of Califo Electrode for diathermy treatment and the like
US3218638A (en) * 1962-05-29 1965-11-16 William M Honig Wireless passive biological telemetry system
US4766381A (en) 1987-08-12 1988-08-23 Vanderbilt University Driven inversion spin echo magnetic resonance imaging
US5314458A (en) * 1990-06-01 1994-05-24 University Of Michigan Single channel microstimulator
US5217010A (en) 1991-05-28 1993-06-08 The Johns Hopkins University Ecg amplifier and cardiac pacemaker for use during magnetic resonance imaging
US5281914A (en) 1991-08-09 1994-01-25 The Johns Hopkins University Method of vector magnetic resonance measurement and imaging and associated apparatus
US5352979A (en) 1992-08-07 1994-10-04 Conturo Thomas E Magnetic resonance imaging with contrast enhanced phase angle reconstruction
US5817136A (en) 1997-05-02 1998-10-06 Pacesetter, Inc. Rate-responsive pacemaker with minute volume determination and EMI protection
US6408202B1 (en) 1998-11-03 2002-06-18 The Johns Hopkins University Transesophageal magnetic resonance analysis method and apparatus
US8244370B2 (en) * 2001-04-13 2012-08-14 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US7844319B2 (en) * 1998-11-04 2010-11-30 Susil Robert C Systems and methods for magnetic-resonance-guided interventional procedures
US9061139B2 (en) * 1998-11-04 2015-06-23 Greatbatch Ltd. Implantable lead with a band stop filter having a capacitor in parallel with an inductor embedded in a dielectric body
US6701176B1 (en) * 1998-11-04 2004-03-02 Johns Hopkins University School Of Medicine Magnetic-resonance-guided imaging, electrophysiology, and ablation
US6284971B1 (en) 1998-11-25 2001-09-04 Johns Hopkins University School Of Medicine Enhanced safety coaxial cables
US6188219B1 (en) 1999-01-22 2001-02-13 The Johns Hopkins University Magnetic resonance imaging method and apparatus and method of calibrating the same
US6539253B2 (en) 2000-08-26 2003-03-25 Medtronic, Inc. Implantable medical device incorporating integrated circuit notch filters
US6949929B2 (en) * 2003-06-24 2005-09-27 Biophan Technologies, Inc. Magnetic resonance imaging interference immune device
US8457760B2 (en) * 2001-04-13 2013-06-04 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US7787958B2 (en) * 2001-04-13 2010-08-31 Greatbatch Ltd. RFID detection and identification system for implantable medical lead systems
US8989870B2 (en) * 2001-04-13 2015-03-24 Greatbatch Ltd. Tuned energy balanced system for minimizing heating and/or to provide EMI protection of implanted leads in a high power electromagnetic field environment
WO2002083016A1 (en) * 2001-04-13 2002-10-24 Surgi-Vision, Inc. Systems and methods for magnetic-resonance-guided interventional procedures
US7853325B2 (en) * 2001-04-13 2010-12-14 Greatbatch Ltd. Cylindrical bandstop filters for medical lead systems
US8437865B2 (en) * 2001-04-13 2013-05-07 Greatbatch Ltd. Shielded network for an active medical device implantable lead
US7916013B2 (en) * 2005-03-21 2011-03-29 Greatbatch Ltd. RFID detection and identification system for implantable medical devices
US8219208B2 (en) * 2001-04-13 2012-07-10 Greatbatch Ltd. Frequency selective passive component networks for active implantable medical devices utilizing an energy dissipating surface
US7899551B2 (en) * 2001-04-13 2011-03-01 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
US7751903B2 (en) * 2002-04-15 2010-07-06 Greatbatch Ltd. Frequency selective passive component networks for implantable leads of active implantable medical devices utilizing an energy dissipating surface
US8977355B2 (en) * 2001-04-13 2015-03-10 Greatbatch Ltd. EMI filter employing a capacitor and an inductor tank circuit having optimum component values
US8849403B2 (en) * 2001-04-13 2014-09-30 Greatbatch Ltd. Active implantable medical system having EMI shielded lead
US8000801B2 (en) * 2001-04-13 2011-08-16 Greatbatch Ltd. System for terminating abandoned implanted leads to minimize heating in high power electromagnetic field environments
US8600519B2 (en) * 2001-04-13 2013-12-03 Greatbatch Ltd. Transient voltage/current protection system for electronic circuits associated with implanted leads
US8509913B2 (en) * 2001-04-13 2013-08-13 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US20070088416A1 (en) * 2001-04-13 2007-04-19 Surgi-Vision, Inc. Mri compatible medical leads
US6944489B2 (en) 2001-10-31 2005-09-13 Medtronic, Inc. Method and apparatus for shunting induced currents in an electrical lead
US6985775B2 (en) 2002-01-29 2006-01-10 Medtronic, Inc. Method and apparatus for shunting induced currents in an electrical lead
US20030144720A1 (en) 2002-01-29 2003-07-31 Villaseca Eduardo H. Electromagnetic trap for a lead
AU2003213646A1 (en) * 2002-02-28 2003-09-09 Greatbatch-Sierra, Inc. Emi feedthrough filter terminal assembly for human implant applications utilizing oxide resistant biostable conductive pads for reliable electrical attachments
US8660645B2 (en) * 2002-02-28 2014-02-25 Greatbatch Ltd. Electronic network components utilizing biocompatible conductive adhesives for direct body fluid exposure
US7917219B2 (en) * 2002-02-28 2011-03-29 Greatbatch Ltd. Passive electronic network components designed for direct body fluid exposure
US6985347B2 (en) * 2002-02-28 2006-01-10 Greatbatch-Sierra, Inc. EMI filter capacitors designed for direct body fluid exposure
US6999818B2 (en) * 2003-05-23 2006-02-14 Greatbatch-Sierra, Inc. Inductor capacitor EMI filter for human implant applications
US6987660B2 (en) * 2003-02-27 2006-01-17 Greatbatch-Sierra, Inc. Spring contact system for EMI filtered hermetic seals for active implantable medical devices
US7623335B2 (en) * 2003-02-27 2009-11-24 Greatbatch-Sierra, Inc Hermetic feedthrough terminal assembly with wire bond pads for human implant applications
US7038900B2 (en) 2003-02-27 2006-05-02 Greatbatch-Sierra, Inc. EMI filter terminal assembly with wire bond pads for human implant applications
US6980863B2 (en) 2003-03-20 2005-12-27 Medtronic, Inc. Neurological stimulation lead extension
US20040199069A1 (en) 2003-04-02 2004-10-07 Connelly Patrick R. Device and method for preventing magnetic resonance imaging induced damage
US7039950B2 (en) 2003-04-21 2006-05-02 Ipolicy Networks, Inc. System and method for network quality of service protection on security breach detection
US7765005B2 (en) * 2004-02-12 2010-07-27 Greatbatch Ltd. Apparatus and process for reducing the susceptability of active implantable medical devices to medical procedures such as magnetic resonance imaging
US7489495B2 (en) * 2004-04-15 2009-02-10 Greatbatch-Sierra, Inc. Apparatus and process for reducing the susceptibility of active implantable medical devices to medical procedures such as magnetic resonance imaging
US7035076B1 (en) * 2005-08-15 2006-04-25 Greatbatch-Sierra, Inc. Feedthrough filter capacitor assembly with internally grounded hermetic insulator
US7035077B2 (en) * 2004-05-10 2006-04-25 Greatbatch-Sierra, Inc. Device to protect an active implantable medical device feedthrough capacitor from stray laser weld strikes, and related manufacturing process
US7136273B2 (en) * 2005-03-30 2006-11-14 Greatbatch-Sierra, Inc. Hybrid spring contact system for EMI filtered hermetic seals for active implantable medical devices
ES2623366T3 (es) * 2005-05-04 2017-07-11 Boston Scientific Neuromodulation Corporation Cable eléctrico mejorado para un dispositivo electrónico tal como un dispositivo implantable
US7853324B2 (en) * 2005-11-11 2010-12-14 Greatbatch Ltd. Tank filters utilizing very low K materials, in series with lead wires or circuits of active medical devices to enhance MRI compatibility
US20070123949A1 (en) * 2005-11-11 2007-05-31 Greatbatch Ltd. Low loss band pass filter for rf distance telemetry pin antennas of active implantable medical devices
JP2009514617A (ja) * 2005-11-11 2009-04-09 グレートバッチ リミテッド Mri適合性を高めるために能動医療装置のリードワイヤ又は回路と直列に配置されたタンクフィルタ
US20100191306A1 (en) * 2006-01-25 2010-07-29 Greatbatch Ltd. Transient voltage suppression circuit for an implanted rfid chip
US8248232B2 (en) * 2006-01-25 2012-08-21 Greatbatch Ltd. Hermetically sealed RFID microelectronic chip connected to a biocompatible RFID antenna
US8253555B2 (en) * 2006-01-25 2012-08-28 Greatbatch Ltd. Miniature hermetically sealed RFID microelectronic chip connected to a biocompatible RFID antenna for use in conjunction with an AIMD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87210281U (zh) * 1987-07-17 1988-06-08 重庆电动工具厂 无线电干扰抑制器
US5246438A (en) * 1988-11-25 1993-09-21 Sensor Electronics, Inc. Method of radiofrequency ablation
CN1483209A (zh) * 2000-12-20 2004-03-17 С 扼流线圈

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9750944B2 (en) 2009-12-30 2017-09-05 Cardiac Pacemakers, Inc. MRI-conditionally safe medical device lead
US9504822B2 (en) 2012-10-18 2016-11-29 Cardiac Pacemakers, Inc. Inductive element for providing MRI compatibility in an implantable medical device lead
US9504821B2 (en) 2014-02-26 2016-11-29 Cardiac Pacemakers, Inc. Construction of an MRI-safe tachycardia lead
US9682231B2 (en) 2014-02-26 2017-06-20 Cardiac Pacemakers, Inc. Construction of an MRI-safe tachycardia lead

Also Published As

Publication number Publication date
CA2606824C (en) 2015-11-24
ES2623366T3 (es) 2017-07-11
EP1878091B1 (en) 2017-02-22
EP1878091A2 (en) 2008-01-16
US20060252314A1 (en) 2006-11-09
CA2606824A1 (en) 2006-11-09
WO2006119492A2 (en) 2006-11-09
WO2006119492A3 (en) 2009-04-30
CN101553165A (zh) 2009-10-07
EP1878091A4 (en) 2011-01-26
US8380277B2 (en) 2013-02-19
US7957783B2 (en) 2011-06-07
US8649842B2 (en) 2014-02-11
US20130178924A1 (en) 2013-07-11
US7561906B2 (en) 2009-07-14
US20110218422A1 (en) 2011-09-08
US20090254152A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
CN101553165B (zh) 用于诸如可植入装置之类的电子装置的改良型电导线
US10183162B2 (en) Coiled, closed-loop RF current attenuator configured to be placed about an implantable lead conductor
US9669208B2 (en) Spiraled wires in a deep-brain stimulator probe
CN103549952B (zh) 构造mri兼容电极电路的方法
US8849403B2 (en) Active implantable medical system having EMI shielded lead
US8285396B2 (en) MRI compatible electrical lead for an implanted electronic medical device
US8463407B2 (en) MRI compatible implanted lead-electrode interface
US8369964B2 (en) MRI compatible medical device lead including transmission line notch filters
US20080154348A1 (en) Mri compatible implantable devices
US20090270956A1 (en) Implantable medical lead configured for improved mri safety
US20110015713A1 (en) Systems and methods for reducing lead heating and the risks of mri-induced stimulation
US20050113876A1 (en) Device and method for preventing magnetic-resonance imaging induced damage
US20100114276A1 (en) Mri compatible implantable medical lead and method of making same
CN101505824A (zh) 带有分流电极的电极系统
US8612021B2 (en) Magnetic resonance imaging compatible medical electrical lead and method of making the same
US20110301676A1 (en) Reducing resonant currents in a resonating circuit during mri scans
US20140052203A1 (en) Mri compatible implantable electronic medical lead
Stevenson et al. Issues and design solutions associated with performing MRI scans on patients with active implantable medical devices
US8571684B2 (en) Implantable lead assembly having a position tracking sensor and method of manufacturing the lead assembly
US20120130460A1 (en) Hybrid implantable lead assembly

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant