CN101263408A - Mems镜阵列的抖动幅度的自动调节方法 - Google Patents

Mems镜阵列的抖动幅度的自动调节方法 Download PDF

Info

Publication number
CN101263408A
CN101263408A CNA2006800279761A CN200680027976A CN101263408A CN 101263408 A CN101263408 A CN 101263408A CN A2006800279761 A CNA2006800279761 A CN A2006800279761A CN 200680027976 A CN200680027976 A CN 200680027976A CN 101263408 A CN101263408 A CN 101263408A
Authority
CN
China
Prior art keywords
output port
slope
mirror
mems mirror
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800279761A
Other languages
English (en)
Inventor
布赖恩·P·特里梅因
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Capella Photonics Inc
Original Assignee
Capella Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Capella Photonics Inc filed Critical Capella Photonics Inc
Publication of CN101263408A publication Critical patent/CN101263408A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3586Control or adjustment details, e.g. calibrating
    • G02B6/3588Control or adjustment details, e.g. calibrating of the processed beams, i.e. controlling during switching of orientation, alignment, or beam propagation properties such as intensity, size or shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3594Characterised by additional functional means, e.g. means for variably attenuating or branching or means for switching differently polarized beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0049Crosstalk reduction; Noise; Power budget

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种用于调节光学开关中的MEMS镜的抖动幅度的方法和采用这种方法的光学开关。一个或更多个MEMS镜的抖动幅度可以在光学开关中被调节,所述光学开关具有输入端口和一个或更多个MEMS镜的阵列,所述MEMS镜能够有选择地光学耦合到一个或更多个光学输入/输出(I/O)端口。用于将镜定位的数模转换器(DAC)确定在位置x处用于所述MEMS镜中的一个的抖动幅度,所述MEMS镜被定位用于将光学信号耦合到输出端口。伺服控制组件包括存储器,所述存储器包含用于将每个镜定位在开控制环内作为端口位置x的函数的数模转换器(DAC)设置。所述伺服控制组件被编程以便利用存储的DAC设置调节MEMS镜中的一个或更多个MEMS镜的抖动幅度。

Description

MEMS镜阵列的抖动幅度的自动调节方法
技术领域
本发明的实施例涉及光学系统,尤其是涉及采用MEMS(微机电系统)镜阵列以便利用准直器和自由空间光学将来自输入光纤的光耦合到输出光纤的光学系统。
背景技术
多信道光信号典型包括多个光谱信道(即光谱通道),每个光谱信道都具有不同的中心波长和相关的带宽。相邻信道的中心波长以预定的波长或频率间隔分开,且多个光谱信道可以被波分多路复用以便形成光学网络的复合多信道信号。每个光谱信道能够承载分离和独立的信息。在光学网络中的不同位置或节点,一个或更多个光谱信道可以通过利用例如可重新配置的光分插复用器(ROADM)从复合多信道光信号传下来或传上到复合多信道光信号。
可重新配置的光分插构造利用波分路由(WSR)装置和采用光纤准直器阵列的方法,所述光纤准直器阵列提供了输入端口和多个输出端口;波长分离器;光束聚焦器;和信道微镜阵列。可重新配置的光分插构造公开在共同转让的美国专利No.6549699,6625346,6661948,6687431和6760511,这些专利的公开在此通过引用并入。
操作中,多波长光信号从输入端口出现。波长分离器将多波长光信号分离成多个光谱信道;每个的特征在于不同的中心波长和相关的带宽。光束聚焦器将光谱信道聚焦到对应的光谱斑点内。信道微镜定位成每个信道微镜接收光谱信道之一。信道微镜可单个地控制且可移动,例如可连续地枢转(或可旋转),以便将光谱信道反射到选择的输出端口内。由此,每个信道微镜被分配给特定的光谱信道,因此叫做“信道微镜(channelmicromirror)”。且每个输出端口可以接收任何数量的反射光谱信道。与先前使用的相反,在此构造中信道微镜的不同特征在于每个信道微镜的运动,例如枢转(或旋转)处于模拟控制下,从而它的枢转角度能够连续地被调节。这使得每个信道微镜能够越过全部可能的输出端口扫描它的相应光谱信道且由此将光谱信道导引道任何期望的输出端口。
上述美国专利还涉及用于通过使用抖动方案实现最佳耦合的装置。抖动MEMS镜是确定光学通信路径的峰值耦合的装置。使用的抖动量在将不希望的干扰添加到光路中与具有用于伺服控制的足够抖动信号之间权衡。不幸的是,在建造MEMS装置的工艺中造成了从一个镜到另一个镜的参数改变。微调每个MEMS镜以避免工艺变化是有利的。
由此,在本领域内存在对基于各个MEMS特性设置抖动幅度的方法的需要。
发明内容
本发明的实施例涉及用于在光学开关中调节用于MEMS镜的抖动幅度的方法和采用所述方法的光学开关。
根据本发明的实施例,一个或更多个MEMS镜的抖动幅度可以在光学开关中被调节,所述光学开关具有输入端口和一个或更多个MEMS镜的阵列,所述一个或更多个MEMS镜阵列能够可选择地光学耦合到N≥3个光学输入/输出(I/O)端口中的一个或更多输入/输出(I/O)端口。所述MEMS镜是对准的镜,以便在n个准直器中的每一个准直器处实现标称峰值耦合。用于将镜定位在开控制环中作为选择的准直器的函数的数模(DAC)设置存储到非易失存储器内。DAC设置用于针对MEMS镜之一确定抖动幅度DITHER(x),所述MEMS镜之一定位成将光信号耦合到在位置x的输出端口。
在具体的实施例中,DITHER(x)可以通过使N个信号值拟合到与输出端口位置对应的参数的多项式,确定所述多项式在与给定的输出端口对应的参数值处的斜率,和基于斜率的值确定DITHER(x)。
根据本发明的另一实施例,光学开关装置可以包括N≥3个光学输入/输出(I/O)端口,能够选择性地将一个或更多个光谱信道反射到N个端口中的一个或更多个端口的一个或更多个MEMS镜的阵列,和与所述一个或更多个MEMS镜通信的伺服控制组件。伺服控制组件适于控制信道微镜且由此维持每个反射光谱信道到输出端口之一内的预定耦合。伺服控制组件包括包含数模转换器(DAC)设置的存储器,数模转换器设置用于将每个镜定位在开控制环内作为端口位置x的函数。伺服控制组件包括编程有一组指令的处理单元,所述指令用于执行调节一个或更多个MEMS镜的抖动幅度。所述指令包括用于针对定位成将光信号耦合到处于位置x的输出端口的MEMS镜之一利用存储的DAC设置确定抖动幅度DITHER(x)的指令。
附图说明
通过结合下面的附图考虑下面详细的描述能够容易地理解本发明的教导,其中:
图1A示出了可以用于本发明实施例类型的波分路由(WSR)装置。
图1B示出了图1A所示波分路由(WSR)装置的信道微镜103的阵列的局部放大视图。
图1C是用于图1A所示波分路由(WSR)装置的双轴向镜阵列的示意图。
图1D是作为信道微镜的枢转角度θ的函数的耦合效率的视图。
图1E是示出MEMS镜旋转角度与施加的电压的图形。
图2是可以用于本发明实施例类型的另一波分路由(WSR)装置的示意图。
图3是可以用于本发明实施例类型的再一波分路由(WSR)装置的示意图。
图4是根据本发明实施例的具有伺服控制的WSR-S装置的示意图。
图5是光学耦合对镜旋转的图形,示出了抖动处理。
图6是用于信道微镜的数模转换(DAC)与端口数量的图形。
图7是示出了根据本发明实施例的用于调节光学开关中的一个或更多个MEMS镜的抖动幅度的方法的流程图。
具体实施方式
尽管下面的详细描述包括用于说明的许多特定实施例,然而,本领域的普通技术人员能够理解,在本发明的范围内可以对下面的细节进行变化和替换。因此,下面描述的示例性实施例的提出没有对本发明的一般性带来损失,且不对本发明施加任何限制。
图1A示出了可以用于本发明实施例类型的波分路由(WSR)装置100。通过示例说明本发明波分路由(WSR)装置的一般原理和拓朴结构,WSR装置100包括多个输入/输出端口,所述输入/输出端口可以为光纤准直器110的阵列的形式,提供了输入端口110-1和多个输出端口110-2到110-N(N≥3);波长分离器,该波长分离器的一个形式可以是衍射光栅101;聚焦透镜102形式的光束聚焦器;和信道微镜103的阵列。
运行中,多波长光信号从输入端口110-1出现。衍射光栅101将多波长光信号成角度地分成多个光谱信道,所述多个光谱信道又由聚焦透镜102聚焦到与聚焦斑点(图1A中没有示出)对应的空间阵列内。信道微镜103根据由光谱信道形成的空间阵列定位成每个信道微镜接收一个光谱信道。信道微镜103可单个地控制且在模拟(或连续)控制下可移动,例如可枢转(或可旋转),从而,在反射时,光谱信道通过聚焦透镜102和衍射光栅101指向输出端口110-2到110-N中所选择的一个输出端口。由此,阵列103内的每个信道微镜被分配给特定的光谱信道,因此,叫做“信道微镜”。每个输出端口可以接收任何数量的反射光谱信道。例如,信道微镜103可以是静电致动微机电系统(MEMS)镜。合适的MEMS镜的示例详细地示出在美国专利6695457和6820988中,这些专利的全部公开在此通过引用并入。本发明的实施例并不限于静电MEMS镜,也能够适用于具有其他形式致动、如音圈电机或静磁致动的MEMS镜。
为了说明和清楚的目的,在图1A中和下面的视图中仅示出了选择的一些(例如三个)光谱信道和输入多波长光信号。然而,需要注意的是,在本发明WSR装置中可以具有任何数量的光谱信道(只要光谱信道的数量不超过系统中采用的信道镜的数量)。需要注意的是,代表示出在图1A和下面视图中的光谱信道的光束仅设置用于说明目的。即,它们的尺寸和形状可能没有根据比例绘出。例如,输入光束和相应的衍射光束通常具有不同的横截面形状,只要衍射光栅上的入射角不等于衍射角,这对于本领域的普通技术人员是已知的。
在图1A所示的实施例中,优选的是,衍射光栅101和信道微镜103分别放置在聚焦透镜102的(相对侧上)第一和第二(即前和后)焦平面内。这样的远心(telecentric)布置允许聚焦的光束的主光线彼此平行且通常平行于光轴。在此应用中,远心构造进一步允许反射的光谱信道有效地耦合到各个输出端口内,从而使得各种变换走离效果(translational walk-offeffects)最小化,所述变换走离效果否则可能会升高。而且,多波长输入光信号优选地被准直且横截面为圆形的。从衍射光栅101衍射而来的相应光谱信道横截面通常为椭圆形;它们在一维上与输入光束尺寸相同且在另一维上延长。
已知的是,衍射光栅的衍射效率通常是偏振相关的。例如,标准安装构造中的光栅的衍射效率对于p(或TM)偏振(垂直于光栅上的凹槽线)比对于s(或TE)偏振(正交于p偏振)高得多,反之亦然。为了减轻这种偏振敏感效应,四分之一波片104可以光学地置于衍射光栅101和信道微镜103之间,且优选放置在衍射光栅101和聚焦透镜102之间,如图1A所示。这样,在穿越四分之一波片104两次时,每个光谱信道经历了总共大约90度的偏振旋转。(即,如果当首先遇到衍射光栅时光束具有p偏振,在第二次遇到时它将主要具有(如果不是全部)s偏振,且反之亦然)。这确保了所有的光谱信道都经历几乎相同的往返偏振相关损耗。
在图1A中的WSR装置100内,例如,衍射光栅101定向为光谱信道的聚焦斑点落到水平阵列中的信道微镜103内。如图1B所示。
图1B示出了图1A所示波分路由(WSR)装置的信道微镜103的阵列的局部放大视图。例如,信道微镜103可以沿x轴(即图中的水平方向)布置在一维阵列内,以便以一一对应的关系接收空间上分离的光谱信道的聚焦斑点。(如在图1A的情况下,只示出了三个光谱信道,每个光谱信道由汇聚光束表示)。在替换实施例中,信道微镜103阵列可以是二维阵列,例如具有邻近第一一维阵列的第二一维阵列,如图1B中的虚线所示。每个信道微镜的反射面位于图中限定的x-y平面内且可绕沿x方向的轴线以模拟(或连续)的方式移动,例如枢转(或偏转)。在反射时,每个光谱信道相对于它的入射方向在y方向上(例如向下)被反射,以便被引导图1A所示的输出端口110-2到110-N中的一个输出端口内。如图1C所示,每个信道微镜103可以是双轴微镜,该双轴微镜构造为绕切换轴线X和衰减轴线Y旋转。尽管这里示出和描述了一维阵列的信道微镜103,本领域的普通技术人员能够知道本发明的实施例也适用于两维微镜阵列。
如上所述,每个信道微镜的运动可单个和连续地可控制的,从而它的位置、例如枢转角度能够连续地被调节。这使得每个信道微镜能够越过全部可能的输出端口扫描它的对应光谱信道且由此将光谱信道引导到任何期望的输出端口。为了说明这个能力,图1D示出了由图1A中的实施例中的WSR装置的光线跟踪模型提供的作为信道微镜的枢转角度θ的函数的耦合效率的视图。如这里使用的,用于光谱信道的耦合效率定义为耦合到输出端口内的光纤芯体内的光功率的量与入射到光纤(与用作输出端口的光纤准直器相关联)的进入面上的光功率的总量的比率。在光线跟踪模型内,输入光信号入射到处于85度掠射角的、具有每毫米700行的衍射光栅上,其中光栅被刻痕以便使用于“-1”级的衍射效率最佳。聚焦透镜具有100毫米的焦距。每个输出端口可以由与光纤耦合的四分之一节距GRIN透镜(直径为2毫米)提供。如图1D所示,耦合效率随着枢转角度θ变化,且对于耦合效率它要求θ变化0.2度在此示例情况下实践中变得可以忽略。这样,通过控制其相应信道微镜的枢转角度,每个光谱信道实践中可以获得任何的耦合效率值。这也就是说,以单个波长粒度的可变光学衰减在本发明的WSR装置中能够获得。
在本发明的实施例中,信道镜利用数模转换器(DAC)值切换以便名义上指令指向N个准直器之一的旋转角度。为了保持施加的电压合理,MEMS在宽的旋转范围内使用,典型地在+/-2.5度的范围内使用。在图1E中示出了镜角度对电压的曲线是非线性曲线。用于三个不同镜的曲线通过图1E中的上部、中间和下部曲线示出。精通于控制系统的方法的技术人员将认识到图1E中的不同斜率将导致用于不同镜和用于指向不同端口的相同镜的不同控制环稳定性。
图1A提出了根据本发明的WSR装置的许多个实施例之一。通常,波长分离器是它可以是刻线式衍射光栅、全息衍射光栅、阶跃光栅、散射棱镜或本领域内已知的其他类型的光谱分离装置的波长分离装置。光束聚焦器可以聚焦透镜、透镜组件、或本领域内已知的其他光束聚焦装置。聚焦功能可以通过将曲线衍射光栅用作波长分离器实现。信道微镜可以由硅微机械加工镜、反射带(或膜)、或本领域已知的其他类型的光束反射元件提供。每个微镜可以绕一个或两个轴线枢转。重要的是,每个信道微镜的枢转(或旋转)运动可以以模拟方式单个地控制,从而枢转角度能够连续地被调节以便使得信道微镜能够越过全部可能的输出端口扫描光谱信道。用于微机械加工镜和相关致动机构的下面的构造技术在本领域内具有文献,例如,参见美国专利5629790,该专利在此通过应用并入。而且,光纤准直器典型地是准直透镜(如GRIN透镜)和一起封装在机械刚性不锈钢(或玻璃)管内的套圈安装的光纤的形式。用作输入端口和输出端口的光纤准直器可以布置在一维阵列、二维阵列或其他所需空间图案中。例如,它们可以方便地沿构造在基板上的V形槽安装在线性阵列内,所述基板由本领域内通常使用的硅,塑料或陶瓷制成。然而,需要注意的是,输入端口和输出端口不必须彼此在空间上非常靠近,如处于阵列构造内(尽管靠近封装将减少每个信道微镜所需的旋转范围)。本领域的普通技术人员将知道怎样设计根据本发明的WSR装置以便最好地适于给定的应用。
本发明的WSR装置可以进一步包括准直器对准镜阵列(有时是指端口镜),用于调节输入多波长光信号的对准和便于光谱信道耦合到各个输出端口内,如图2和3所示。
图2示出了可以用于本发明实施例的可选WSR装置250。例如,WSR装置250建立在参考图1A描述的用相同标号示出的许多个元件并且因此共享所述许多个元件。除了上述元件,WSR装置200进一步包括准直器对准镜(有时称为端口镜)220-1到220-N的一维阵列,所述准直器对准镜220-1到220-N的一维阵列光学地置于衍射光栅101与光纤准直器阵列110之间。准直器对准镜220-1设计用于与输入端口110-1对应,用于调节输入多波长光信号的对准且因此确保光谱信道撞击进入相应的信道微镜内。准直器对准镜220-2至220-N以一一对应的关系指定道输出端口110-2至110-N,用于提供反射的光谱信道的准直光束的角向控制、由此方便将光谱信道根据所需的耦合效率耦合到各输出端口。每个准直器对准镜可以围绕一个轴或者2个轴可旋转。准直器对准镜220-1到220-N的每一个的定向用设置可以由一组存储的值建立,每个镜设定到用于最佳耦合到其对应的端口的单个位置。
WSR装置250也可以包括成像透镜的第一和第二二维阵列260,270,所述成像透镜相对于二维准直器对准镜阵列220和光纤准直器阵列220放置在4-f远心布置内。例如,第一和第二阵列260,270内的成像透镜可以都具有相同的焦距f。阵列220内的准直器对准镜放置在第一阵列260内的成像透镜的各个第一(或前)焦点上。同样,光纤准直器阵列110内的光纤准直器放置在第二阵列270内的成像透镜的各个第二(或后)焦点上。成像透镜的第一和第二阵列260,270之间的分离为2f。这样,准直器对准镜有效地被成像到相应光纤准直器内的GRIN透镜的各个进入表面(即前焦平面)。这样的远心成像系统大体上消除了当镜角度变化时可能发生的在输出端口的准直的光束的变换走离(translational walk-off)。
图3示出了另一个可选WSR装置300,该WSR装置300能够用于本发明的实施例。例如,WSR装置300建立在参考图1A和图2描述的用相同标号示出的许多个元件并且因此共享所述许多个元件。在此情况下,图2所示的一维光纤准直器阵列101由光纤准直器的二维阵列350代替,提供输入端口和多个输出端口。因此,图2中的一维准直器对准镜阵列220由准直器对准镜的二维阵列320代替,且图2中的成像透镜的第一和第二一维阵列260,270也同样分别由成像透镜的第一和第二二维阵列360,370代替。与图2B中的实施例的情况一样,成像透镜的第一和第二二维阵列360,370相对于二维准直器对准镜阵列320和二维光纤准直器阵列350放置在4-f远心布置内。在此情况下信道微镜103必须双轴地可枢转(以便将其相应的光谱信道导引到任何一个输出端口)。这样,WSR装置300被装备用于支持更多个输出端口。
在本发明的实施例中,信道微镜103由伺服控制环控制,所述伺服控制环集成到参考图1A,图2,和图3描述的上述类型的光学开关内。图4A示出了根据本发明实施例的WSR-S装置的示意图。WSR-S装置400包括WSR装置410和伺服控制组件440。WSR装置410可以大体上与图1A中的WSR装置100,图2中的WSR装置250或图3中的WSR装置300或根据本发明的任何其他实施例类似。伺服控制组件440包括光谱功率监视器460,用于监视耦合到WSR装置410的输出端口420-1到420-N内的光谱信道的光功率水平。例如,光谱功率监视器460可以通过光纤耦合器(fiber-optic coupler)420-1-C到420-N-C耦合到输出端口420-1到420-N,其中每个光纤耦合器用于“分接(tap off)”相应输出端口内的光信号的预定部分。伺服控制组件440进一步包括与WSR装置410的光谱功率监视器460和信道微镜430通信的处理单元470。伺服控制组件440可以进一步包括非易失存储器450,所述非易失存储器450可以用程序480形式的指令编程,所述程序480通过处理单元470可读。所述存储器450可以是非易失存储器,如只读存储器(ROM),盘驱动器,闪存存储器等。
程序480可以执行下述调节抖动幅度的方法。程序480可以通过使用利用逻辑芯片,如现场可编程门阵列(FPGA)作为处理器470和存储器450的数字信号处理(DPS)固件执行。尽管程序编码480这里描述为在固件内执行且使用FPGA执行,本领域的普通技术人员将认识到抖动幅度调节的方法能够可选地利用诸如特定用途集成电路(ASIC)或其他硬件电路的硬件执行。可选地,程序480可以遵循多个不同编程语言,如汇编语言,C++,JAVA,或许多其他语言中任何一种。处理单元470和存储器450可以是通用计算机的一部分,该通用计算机在执行诸如程序480的程序时变成特定用途的计算机。这样,需要理解的是,本发明的实施例能够全部或部分以软件,硬件或二者的一些组合执行。在一个实施例中,程序编码480可以包括一组处理器可读指令,所述指令执行具有下面将要描述的图7中的方法700,或图8中的方法共有的特征的方法。
处理单元470利用来自于光谱功率监视器460的光功率测量以便基于单个基础提供信道微镜430的反馈控制,从而对于每个光谱信道维持到所选择的储存端口的期望的耦合效率。这样,伺服控制组件440提供了光谱信道以一个信道接一个信道的基础到各个输出端口的耦合的动态控制,且由此管理到输出端口内的光谱信道的光功率水平。在本发明中,输出端口内的光谱信道的光功率水平可以根据需要动态地被管理或维持在期望的值(例如在预定值平衡)。
例如,处理单元470可以将合适的交流(抖动)控制信号施加到信道微镜,与dc控制信号重叠,用于将信道微镜维持在具体的枢转位置。这使得能够在瞬间微镜的枢转角度获得相应光谱信道的光功率水平和光功率水平的变化率(或光功率水平的时间导数)。考虑到图1D示出的示例性耦合效率曲线,光功率水平的变化率与耦合效率曲线的坡度成比例,且因此在确定与测量的光功率水平相应的微镜的枢转角度中是有用的。在确定将被施加到微镜的反馈控制信号的幅度也是有用的,以便以最有效的方式实现期望的耦合效率。
图5示出了已知的抖动的处理。图中的曲线502代表作为镜角度的函数的到用于特定镜的特定准直器的光耦合。竖直的波形曲线504代表对于不同标称镜角度在频率f的镜的抖动。在本发明的实施例中,用于将每个镜耦合到每个不同输出端口的抖动信号的幅度可以不同。这些抖动幅度如上所述被调节。镜的抖动在用于输出端口的光学耦合信号内产生相应的振荡。水平波形曲线506代表相对于光学耦合信号(误差信号)的镜位置的导数。在峰值耦合频率是2f,而在非峰值耦合频率是f且相移为+/-180度。在峰值耦合,平均误差信号为零。误差信号供给到控制镜的控制环(例如具有PID控制器)。解调的抖动提供了能够用在PID控制环内以便将MEMS移动到最佳耦合的误差信号。PID控制器以使用于到准直器的最佳光学耦合的误差信号最佳的方式调节镜角度。
伺服控制组件440典型地包括一个或更多个数模转换器(DACs),所述数模转换器将来自于处理单元的数字信息转换成施加到信道微镜的开环电压。与施加的电压对应的数字信息称为DAC值。在本发明的实施例中,对于每个微镜的抖动幅度由用于将镜的角度设置到到不同输出端口的光学耦合信号的镜的角度的存储的DAC设置确定。作为光学对准的一部分,信道微镜103定位用于在每个输出端口对准器处的光路的最佳耦合。相应的开环电压,或DAC值,然后存储在非易失存储器内。图6示出了对于图1所示类型的开关内的给定镜,作为对准器(端口)数量的函数的DAC值的曲线图的示例。图6中的菱形代表存储的DAC设置。这些DAC设置能够拟合到图6中的虚线示出的多项式曲线。与多项式曲线对应的方程能够提供关于用作信道微镜103内的铰链的硬度的信息。如上所述,光信号的最佳耦合在运行期间通过将小的抖动施加到MEMS镜且解调分接的光线的样本实现。关于铰链硬度的信息能够用于确定用于到给定端口的最佳耦合的合适的抖动幅度。
例如,WSS的使用者经常希望由抖动引起的光学扰动最小化。矛盾的要求是对于稳定性和最小光学扰动抖动应该小、且应该足够大用于提供有用的用于控制环的误差信号。这些冲突的要求对于控制系统而言通过基于存储的对准数据计算坡度能够被调和。控制系统设计能够利用标称镜参数进行。利用标称参数,控制环增益能够被调节以便给出良好的响应时间且很少或者不具有到阶跃响应的过冲。所述增益能够由两个参数调节。一个参数是抖动幅度且另一个是乘以误差信号的增益常数。抖动幅度必须足够大从而光学干扰能够在具有良好信噪比的光学信道监视器内被探测到且必须小从而它不影响用户数据通信。典型地,在最佳耦合0.5%的光学干扰满足这些标准。一旦抖动幅度被选择,增益常数然后被调节以便给出良好的阶跃响应。利用具有标称光学平台的标称镜,抖动幅度被调节以便满足此标准且DAC计数内的结果得到的值是REF_DITHER。以相同的方式,在范围中心的对准器具有最小的镜倾斜且在标称光学平台将引起斜率REF_SLOPE。
基于上述,已经提出了一种方法用于利用诸如图6示出的REF_DITHER和REF_SLOPE的DAC设置和DAC设置对端口数量信息设置用于每个不同端口的给定镜的抖动幅度。用于调节光学开关内的一个或更多个MEMS的抖动幅度的通常方法700示出在图7的流程图内。所述光学开关可以如上所述,例如通常包括输入端口,和一个或更多个MEMS镜阵列,所述MEMS镜能够有选择地光学耦合到N个光学输入/输出(I/O)端口中的一个或更多个,其中N是大于等于3的整数。所述方法在702开始,对准一个或更多个MEMS镜以便在N个准直器中的每一个实现标称峰值耦合。在704,用于在开环控制中定位每个镜的作为所选择的准直器的函数的DAC设置存储到装置400的存储器450内。在706,对于MEMS镜中的一个确定抖动幅度DITHER(x),所述一个MEMS镜定位成将光信号耦合到位于用于利用存储的DAC设置的位置x处的输出端口。例如,对于给定的一个镜,N个信号值Sc可以利用与施加到给定镜的信号相对应的每个信号值Sc确定以便在输入端口和N个输出端口中的不同的一个输出端口之间耦合光信号。所述N个信号值可以拟合到与输出端口(例如端口数量)的位置相对应的参数的多项式。多项式的斜率然后可以被确定在与给定的输出端口相对应的值。用于镜的抖动幅度然后可以基于斜率的值确定。为了说明目的,讨论确定用于一个镜的仅一个抖动幅度。然而,本领域的普通技术人员将认识到对于信道微镜的一维或二维阵列内的每个镜可以重复进行相同的抖动幅度确定。
此技术的可行性已经展示在可以从加利福尼亚圣何塞的CapellaPhotonics购买到的型号为WavePath4500的波长选择开关(WSS)中。在使用标称MEMS镜的设计中,DAC计数对准直器的斜率已知为这里由REF_SLOPE表示的参考值。基于控制系统的设计,参考抖动幅度将具有这里由REF_DITHER表示的值。存储在非易失存储器内的数据是对于每个对准器位置用于MEMS镜的每个板的DAC值。这些值用于确定与每个端口相应的抖动幅度。在启动期间,执行示出在图8的流程图内的步骤。
在802,DAC值被从非易失存储器读取。在804,计算出在每个对准器位置的镜的差分DAC驱动。此导致用于N个对准器的1×N的向量。例如,作为图6所示端口数量的函数的DAC设置可以如上所述被存储。表1是用于具有10个端口的WavePath4500中的MEMS信道镜的差分DAC值的示例。需要注意的是,通常DAC值的设置对于每个信道镜可以不同。
表I
准直器        dy
1            5144
2            4180
3            3070
4            1754
5            400
6            -848
7            -2384
8            -3592
9            -4636
10          -5500
在806,来自于804的DAC设置信息是拟合到3阶多项式的曲线,例如为下面的形式
(方程1)  a3c3+a2c2+a1c+a0=DAC_VALUE(k),k=1∶N
其中c是准直器数量。需要注意的是在此情况下,DAC_VALUE(k)是参考上述图7所述的信号值Sc的特定示例。使N个DAC值拟合到多项式要求四个位置系数的确定。然而,如果准直器是从0开始被任意重现编号,第一个系数a0就立即知道,
(方程2)a0=DAC_VALUE(1)。
剩下的就是要找到从N>3的数据点的三个未知系数。
(方程3)a3c3+a2c2+a1c=DAC_VALUE(k)-a0,k=2∶N
这是超定项方程且具有导致最小平方误差曲线拟合的解。上述N-1方程能够以熟知的矩阵形式A.x=b书写,其中A是N×3的矩阵且b是N×1的向量,x=[a3 a2 a1]T是未知的系数。解为
(方程4)x=(ATA)-1ATb。
矩阵项(ATA)-1AT是由准直器数量的多项式项构成的大小3×N。此矩阵被脱机预先计算且作为三行向量以编码存储,每个向量大小为1×N(R3、R2和R1)。
所述系数作为内积a3=R3.b在固件内被计算,
(方程4)a2=R2.b,且a1=R1.b。
本领域的普通技术人员能够作为计算机指令的序列执行上述矩阵操作。
通过数字示例,基于表1的差分DAC值,相应的三阶多项式的形式为:
(方程5)10.26c3-164.85c2-506.93c+5791.1=DAC_VALUE(k)
一旦所述系数已知,那么在每个准直器处的斜率在808被计算为:
(方程6)slope(x)=3a3c2+2a2c+a1,c=0∶N-1
本领域的普通技术人员将认识到形式slope(x)正是方程4对c的导数。
通过数字示例,基于方程6的系数,用于不同对准器的slope(x)的相应值在下面的表II中给出。
表II
准直器编号
(x)            slope(x)
1                -806
2                -1043
3                -1219
4                -1333
5                -1386
6                -1377
7                -1307
8                -1175
9                -982
10               -727
一旦slope(x)已知,那么在每个准直器位置的抖动幅度DITHER(x)可以在810由先前确定的REF_DITHER和REF_SLOPE的值计算出为:
(方程6)DITHER(x)=REF_DITHER*slope(x)/REF_SLOPE
这里描述了用于一个信道微镜的计算,但是在WSS内,对于信道微镜阵列103内的每个镜重复所述计算。
此方法的优点是抖动幅度能够针对大阵列内的每个镜进行调整而不是使用单个固定值。通过使抖动幅度适于被控制的特定镜,能够使用更宽范围的MEMS处理分布。如果更大的固定抖动幅度将被使用,使用具有弱铰链的MEMS上的小抖动维持了更小的光学干扰。从控制的观点来看,弱铰链的小信号增益大于强的铰链且要求更小的环增益。由于抖动幅度是环增益的一部分,降低抖动幅度补偿了用于更弱铰链的环增益。
尽管上述是本发明的优选实施例的完整描述,可以使用不同的替换,修改和等同物。这里描述的任何特征,无论是优选或不优选的,都可以与这里描述的无论是优选或不优选的任何其他特征组合。因此,本发明的范围不是参考上述描述确定而是参考所附权利要求和它们完整范围的等同物确定。在下面的权利要求中,不定冠词是指跟随冠词的术语的一个或更多个数量,除非特别说明。所附权利要求不能以包括功能性限定来解释,除非在使用功能性限定的权利要求中明确地引用了这样的功能性限定。

Claims (19)

1、一种用于调节光学开关中的一个或更多个MEMS镜的抖动幅度的方法,所述光学开关具有输入端口,和一个或更多个MEMS镜的阵列,所述MEMS镜能够选择性地光学地耦合到N个光学输入/输出(I/O)端口中的一个或更多个输入/输出(I/O)端口,其中N是大于或等于3的整数,所述方法包括以下步骤:
对准所述一个或更多个MEMS镜以便在N个准直器中的每个准直器处实现标称峰值耦合;
将数模转换器(DAC)设置存储到非易失存储器内,所述数模转换器(DAC)设置用于将每个镜定位在开控制环内作为所选择准直器的函数;和
对于MEMS镜中的一个MEMS镜利用存储的DAC设置确定抖动幅度DITHER(x),所述一个MEMS镜定位成将光信号耦合到位置x处的输出端口。
2、根据权利要求1所述的方法,其中所述DAC设置包括N个信号值Sc,其中每个信号值Sc对应于施加到给定镜的信号以便定位所述镜从而耦合输入端口和N个输出端口中的不同的一个输出端口之间的光信号。
3、根据权利要求2所述的方法,其中确定抖动幅度DITHER(x)包括:
将N个信号值拟合到对应于输出端口的位置的参数的多项式;
确定所述多项式在与给定输出端口位置相对应的参数的值处的斜率;
基于斜率的值确定抖动幅度DITHER(x)。
4、根据权利要求3所述的方法,其中所述多项式为a3c3+a2c2+a1c+a0=Sc的形式,其中c是代表阵列中的输出端口位置的整数。
5、根据权利要求4所述的方法,其中对于位置x处的输出端口抖动幅度DITHER(x)由下面方程给出:
DITHER(x)=REF_DITHER*slope(x)/REF_SLOPE,
其中x是代表阵列中的输出端口位置的整数,REF_DITHER是从MEMS镜的设计确定的抖动幅度值,REF_SLOPE是从控制MEMS镜的角度的控制系统的设计确定的斜率值,且slope(x)是在输出端口位置x处的斜率的值。
6、根据权利要求5所述的方法,其中slope(x)具有下面的形式:
slope(x)=3a3c2+2a2c+a1
7、一种用于调节光学开关中的一个或更多个MEMS镜的抖动幅度的方法,所述光学开关具有输入端口,和一个或更多个MEMS镜阵列,所述MEMS镜能够选择性地光学地耦合到N个光学输入/输出(I/O)端口中的一个或更多个,其中N是大于或等于3的整数,所述方法包括以下步骤:
对于所述镜中的给定的一个镜,确定N个信号值Sc,其中每个信号值Sc对应于施加到给定镜的信号以便耦合输入端口和N个输出端口中的一个不同输出端口之间的光信号;
将N个信号值拟合到对应于输出端口的位置的参数的多项式;
确定所述多项式在对应于给定输出端口的值处的斜率;
基于斜率的值确定抖动幅度。
8、一种光学开关装置,包括:
N个光学输入/输出(I/O)端口,其中N是大于或等于3的整数;
一个或更多个MEMS镜的阵列,所述一个或更多个MEMS镜能够有选择地将一个或更多个光谱信道反射到N个端口中的一个或更多个端口;和
与所述一个或更多个MEMS镜通信的伺服控制组件,所述伺服控制组件适于控制所述信道微镜且从而维持每个反射光谱信道到所述输出端口之一内的预定耦合,其中所述伺服控制组件包括存储器,该存储器包含数模转换器(DAC)设置,数模转换器(DAC)设置用于将每个镜定位在开控制环内作为端口位置x的函数,其中所述伺服控制组件包括处理单元,该处理单元编程有一组用于执行调节一个或更多个MEMS镜的抖动幅度的方法的指令,所述一组指令包括用于针对MEMS镜之一利用存储的DAC设置确定抖动幅度DITHER(x)的指令,所述MEMS镜之一定位成将光信号耦合到位置x处的输出端口。
9、根据权利要求8所述的装置,其中所述DAC设置包括N个信号值Sc,其中每个信号值Sc对应于施加到给定镜的信号以便定位所述镜从而耦合输入端口和N个输出端口中的不同的一个输出端口之间的光信号。
10、根据权利要求9所述的装置,其中确定抖动幅度DITHER(x)包括:
将N个信号值拟合到对应于输出端口的位置的参数的多项式;
在与给定输出端口对应的参数的值处确定多项式的斜率;
基于斜率的值确定抖动幅度DITHER(x)。
11、根据权利要求10所述的装置,其中所述多项式为a3c3+a2c2+a1c+a0=Sc的形式,其中c是代表阵列中的输出端口位置的整数。
12、根据权利要求11所述的装置,其中对于位置x处的输出端口的抖动幅度DITHER(x)由下面方程给出:
DITHER(x)=REF_DITHER*slope(x)/REF_SLOPE,
其中x是代表阵列中的输出端口的位置的整数,REF_DITHER是从MEMS镜的设计确定的抖动幅度值,REF_SLOPE是从控制MEMS镜的角度的控制系统的设计确定的斜率值,且slope(x)是在输出端口位置x处的斜率的值。
13、根据权利要求12所述的装置,其中slope(x)具有下面的形式:
slope(x)=3a3c2+2a2c+a1
14、根据权利要求8所述的装置,其中所述N个I/O端口包括多个光纤准直器,提供了用于多波长光信号的输入端口和多个输出端口。
15、根据权利要求14所述的装置,进一步包括:
波长分离器,用于将来自于所述输入端口的所述多波长光信号分离成多光谱信道;和
光束聚焦器,用于将所述光谱信道聚焦到相应的光谱斑点;
其中一个或更多个MEMS镜的阵列是信道微镜的空间阵列,所述信道微镜定位成每个信道微镜接收所述光谱信道之一,所述信道微镜可单个地且连续地被控制以便将所述光谱信道反射到所述输出端口中所选择的输出端口。
16、根据权利要求15所述的装置,其中所述信道微镜的空间阵列是一维阵列。
17、根据权利要求15所述的装置,其中所述信道微镜的空间阵列是二维阵列。
18、根据权利要求8所述的装置,其中所述伺服控制组件包括光谱监视器,用于监视耦合到所述输出端口的所述光谱信道的功率水平;和处理单元,所述处理单元可对所述功率水平作出响应用于提供所述信道微镜的控制。
19、根据权利要求8所述的装置,其中每个所述MEMS镜可绕一个或更多个轴线旋转。
CNA2006800279761A 2005-08-03 2006-06-21 Mems镜阵列的抖动幅度的自动调节方法 Pending CN101263408A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/197,934 US7567756B2 (en) 2005-08-03 2005-08-03 Method of automatic adjustment of dither amplitude of MEMS mirror arrays
US11/197,934 2005-08-03

Publications (1)

Publication Number Publication Date
CN101263408A true CN101263408A (zh) 2008-09-10

Family

ID=37727785

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800279761A Pending CN101263408A (zh) 2005-08-03 2006-06-21 Mems镜阵列的抖动幅度的自动调节方法

Country Status (6)

Country Link
US (1) US7567756B2 (zh)
EP (1) EP1913431A2 (zh)
JP (1) JP2009503607A (zh)
CN (1) CN101263408A (zh)
CA (1) CA2616046A1 (zh)
WO (1) WO2007018758A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472974A (zh) * 2009-07-17 2012-05-23 卡尔蔡司Smt有限责任公司 微光刻投射曝光设备以及测量有关包含在其中的光学表面的参数的方法
CN103616074A (zh) * 2013-11-21 2014-03-05 中国科学院长春光学精密机械与物理研究所 数字微镜光栅光谱仪的波长标定方法
WO2015180469A1 (zh) * 2014-05-27 2015-12-03 华为技术有限公司 光开关和波分复用光系统
CN111198441A (zh) * 2018-11-20 2020-05-26 英飞凌科技股份有限公司 自适应和上下文感知的微机电系统(mems)镜控制

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7539371B2 (en) 2005-04-11 2009-05-26 Capella Photonics, Inc. Optical apparatus with reduced effect of mirror edge diffraction
US7756368B2 (en) * 2005-04-11 2010-07-13 Capella Photonics, Inc. Flex spectrum WSS
US7346234B2 (en) * 2005-04-11 2008-03-18 Capella Photonics Reduction of MEMS mirror edge diffraction in a wavelength selective switch using servo-based multi-axes rotation
US7362930B2 (en) * 2005-04-11 2008-04-22 Capella Photonics Reduction of MEMS mirror edge diffraction in a wavelength selective switch using servo-based rotation about multiple non-orthogonal axes
US7352927B2 (en) 2005-04-11 2008-04-01 Capella Photonics Optical add-drop multiplexer architecture with reduced effect of mirror edge diffraction
US8190025B2 (en) * 2008-02-28 2012-05-29 Olympus Corporation Wavelength selective switch having distinct planes of operation
JP5177077B2 (ja) * 2009-05-26 2013-04-03 富士通株式会社 光スイッチおよび光スイッチの制御方法
JP5299209B2 (ja) * 2009-10-14 2013-09-25 富士通株式会社 波長選択スイッチおよび光伝送装置
JP5416040B2 (ja) * 2010-06-14 2014-02-12 日本電信電話株式会社 空間光デバイス
US8606410B2 (en) * 2010-06-29 2013-12-10 Headway Technologies, Inc. Drive method for starting and operating a resonant scanning MEMS device at its resonant frequency
JP5838639B2 (ja) * 2011-08-02 2016-01-06 富士通株式会社 光伝送装置及び光伝送方法
US20140355984A1 (en) * 2013-05-29 2014-12-04 Calient Technologies, Inc. Colorless, reconfigurable, optical add-drop multiplexer (roadm) apparatus and method
US9971095B2 (en) * 2014-02-25 2018-05-15 X Development Llc Free-space optical communication dual-fiber ferrule

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618808A (en) * 1985-01-30 1986-10-21 International Business Machines Corporation Electromagnetic actuator system using stepper motor with closed loop position sensing, electronic commutation and dynamic position and anomaly correction
US5269790A (en) * 1990-10-16 1993-12-14 Noboru Funatsu Clip forceps
US5629790A (en) 1993-10-18 1997-05-13 Neukermans; Armand P. Micromachined torsional scanner
US5835458A (en) * 1994-09-09 1998-11-10 Gemfire Corporation Solid state optical data reader using an electric field for routing control
US5745271A (en) * 1996-07-31 1998-04-28 Lucent Technologies, Inc. Attenuation device for wavelength multiplexed optical fiber communications
US5868480A (en) * 1996-12-17 1999-02-09 Compaq Computer Corporation Image projection apparatus for producing an image supplied by parallel transmitted colored light
TW373083B (en) * 1996-12-20 1999-11-01 Corning Inc Reflective coupling array for optical waveguide
US6097859A (en) * 1998-02-12 2000-08-01 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6204946B1 (en) * 1997-08-21 2001-03-20 Lucent Technologies Inc. Reconfigurable wavelength division multiplex add/drop device using micromirrors
US6172777B1 (en) * 1997-09-23 2001-01-09 Lsa, Inc. Optical interconnection for holographic memories and method for using the same
US6289155B1 (en) * 1997-12-13 2001-09-11 Lightchip, Inc. Wavelength division multiplexing/demultiplexing devices using dual high index of refraction crystalline lenses
US6263135B1 (en) * 1997-12-13 2001-07-17 Lightchip, Inc. Wavelength division multiplexing/demultiplexing devices using high index of refraction crystalline lenses
US5974207A (en) * 1997-12-23 1999-10-26 Lucent Technologies, Inc. Article comprising a wavelength-selective add-drop multiplexer
US5960133A (en) * 1998-01-27 1999-09-28 Tellium, Inc. Wavelength-selective optical add/drop using tilting micro-mirrors
US6193376B1 (en) 1998-02-27 2001-02-27 Minolta Co., Ltd. Display apparatus
US6307657B1 (en) * 1998-07-17 2001-10-23 Lucent Technologies Inc. Optomechanical platform
US6343862B1 (en) * 1998-11-20 2002-02-05 Minolta Co., Ltd. Projecting image display device
US6205269B1 (en) * 1999-04-06 2001-03-20 Ciena Corporation Optical add/drop multiplexer
US6263127B1 (en) * 1999-05-13 2001-07-17 Lucent Technologies Inc. Free-space/arrayed-waveguide router
US6243507B1 (en) * 1999-06-07 2001-06-05 At&T Corp. Connection-verification in optical MEMS crossconnects via mirror-dither
US6661393B2 (en) * 1999-08-05 2003-12-09 Microvision, Inc. Scanned display with variation compensation
US6222954B1 (en) * 1999-09-17 2001-04-24 Light Bytes, Inc. Fault-tolerant fiber-optical beam control modules
US6411751B1 (en) * 1999-10-08 2002-06-25 Lucent Technologies Inc. System and method for training an optical cross-connect comprising steerable switching elements
US6634810B1 (en) * 1999-10-08 2003-10-21 Lucent Technologies Inc. Free-space multi-port wavelength router with broad wavelength passbands
US6345133B1 (en) * 1999-12-23 2002-02-05 Jds Uniphase Corporation Functional device based on focusing-concave gratings for multi-wavelength channel manipulation
US6193396B1 (en) * 2000-01-19 2001-02-27 Novelty Manufacturing Co. Hanging holder for decorations
US20010046350A1 (en) * 2000-02-25 2001-11-29 Tedesco James M. Configurable Wavelength routing device
US6418250B1 (en) * 2000-02-28 2002-07-09 Corning Incorporated Apparatus and method of making a blockless optical multiplexing device
US6415073B1 (en) * 2000-04-10 2002-07-02 Lightchip, Inc. Wavelength division multiplexing/demultiplexing devices employing patterned optical components
US6453087B2 (en) * 2000-04-28 2002-09-17 Confluent Photonics Co. Miniature monolithic optical add-drop multiplexer
US6661945B2 (en) * 2000-04-28 2003-12-09 Kaiser Optical Systems, Inc. Multi-band wavelength dispersive device for use in dense wavelength division multiplexing (DWDM) networks
US6381387B1 (en) * 2000-08-02 2002-04-30 Networks Photonics, Inc. Athermalization of a wavelength routing element
WO2002025358A2 (en) * 2000-09-22 2002-03-28 Movaz Networks, Inc. Variable transmission multi-channel optical switch
US6771855B2 (en) * 2000-10-30 2004-08-03 Santur Corporation Laser and fiber coupling control
US20020176657A1 (en) * 2001-03-19 2002-11-28 Elliot Burke Beam convergence system for optical switching cores
US6549699B2 (en) * 2001-03-19 2003-04-15 Capella Photonics, Inc. Reconfigurable all-optical multiplexers with simultaneous add-drop capability
US6625346B2 (en) * 2001-03-19 2003-09-23 Capella Photonics, Inc. Reconfigurable optical add-drop multiplexers with servo control and dynamic spectral power management capabilities
US6760511B2 (en) * 2001-03-19 2004-07-06 Capella Photonics, Inc. Reconfigurable optical add-drop multiplexers employing polarization diversity
US20030095307A1 (en) * 2001-09-25 2003-05-22 Cidra Corporation Reconfigurable optical add/drop multiplexer having an array of micro-mirrors
US7209274B2 (en) * 2001-06-02 2007-04-24 Capella Photonics, Inc. High fill-factor bulk silicon mirrors
US6695457B2 (en) * 2001-06-02 2004-02-24 Capella Photonics, Inc. Bulk silicon mirrors with hinges underneath
US6657770B2 (en) * 2001-06-22 2003-12-02 Lucent Technologies Inc. Programmable optical multiplexer/demultiplexer
US6704476B2 (en) * 2001-06-29 2004-03-09 Lucent Technologies Inc. Optical MEMS switch with imaging system
US6647172B2 (en) * 2001-06-29 2003-11-11 Lucent Technologies Inc. Imaging technique for use with optical MEMS devices
US6757458B2 (en) * 2001-06-29 2004-06-29 Lucent Technologies Inc. Optical MEMS switch with converging beams
US6439728B1 (en) * 2001-08-28 2002-08-27 Network Photonics, Inc. Multimirror stack for vertical integration of MEMS devices in two-position retroreflectors
US6754431B2 (en) * 2001-10-24 2004-06-22 Intel Corporation Variable optical attenuator
CN1653368A (zh) * 2002-03-18 2005-08-10 连续光子学有限公司 光开关的多轴控制系统
US20040120713A1 (en) * 2002-03-27 2004-06-24 Robert Ward Method and apparatus for providing sparing capacity for optical switches
EP1506633A2 (en) * 2002-05-20 2005-02-16 Metconnex Canada Inc. Reconfigurable optical add-drop module, system and method
JP2004020752A (ja) * 2002-06-13 2004-01-22 Olympus Corp 光スイッチ
US6958861B1 (en) * 2002-12-02 2005-10-25 The Ohio State University Method and apparatus for combining optical beams
US7162115B2 (en) * 2003-05-31 2007-01-09 Jds Uniphase Corporation Multiport wavelength-selective optical switch
US20050074204A1 (en) * 2003-10-02 2005-04-07 Gordon Wilson Spectral plane method and apparatus for wavelength-selective optical switching
US7245415B2 (en) * 2003-10-23 2007-07-17 Spatial Photonics, Inc. High contrast spatial light modulator
US7062120B2 (en) * 2003-11-14 2006-06-13 Sumitomo Electric Industries, Ltd. Optical device and movable reflector
JP4445373B2 (ja) * 2004-10-29 2010-04-07 富士通株式会社 光スイッチ
JP4568579B2 (ja) * 2004-10-29 2010-10-27 富士通株式会社 光スイッチ
JP4528112B2 (ja) * 2004-12-27 2010-08-18 富士通株式会社 光スイッチ並びに光スイッチの制御装置及び制御方法
US7346234B2 (en) * 2005-04-11 2008-03-18 Capella Photonics Reduction of MEMS mirror edge diffraction in a wavelength selective switch using servo-based multi-axes rotation
US7352927B2 (en) * 2005-04-11 2008-04-01 Capella Photonics Optical add-drop multiplexer architecture with reduced effect of mirror edge diffraction
JP4489678B2 (ja) * 2005-09-30 2010-06-23 富士通株式会社 波長選択光スイッチおよび分光機能を備えた光デバイス

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472974A (zh) * 2009-07-17 2012-05-23 卡尔蔡司Smt有限责任公司 微光刻投射曝光设备以及测量有关包含在其中的光学表面的参数的方法
CN102472974B (zh) * 2009-07-17 2014-05-07 卡尔蔡司Smt有限责任公司 微光刻投射曝光设备以及测量有关包含在其中的光学表面的参数的方法
CN103616074A (zh) * 2013-11-21 2014-03-05 中国科学院长春光学精密机械与物理研究所 数字微镜光栅光谱仪的波长标定方法
CN103616074B (zh) * 2013-11-21 2015-06-10 中国科学院长春光学精密机械与物理研究所 数字微镜光栅光谱仪的波长标定方法
WO2015180469A1 (zh) * 2014-05-27 2015-12-03 华为技术有限公司 光开关和波分复用光系统
US10031294B2 (en) 2014-05-27 2018-07-24 Huawei Technologies Co., Ltd. Optical switch and wavelength division multiplexing optical system
CN111198441A (zh) * 2018-11-20 2020-05-26 英飞凌科技股份有限公司 自适应和上下文感知的微机电系统(mems)镜控制
CN111198441B (zh) * 2018-11-20 2022-02-08 英飞凌科技股份有限公司 自适应和上下文感知的微机电系统(mems)镜控制

Also Published As

Publication number Publication date
WO2007018758A3 (en) 2007-06-14
EP1913431A2 (en) 2008-04-23
WO2007018758A2 (en) 2007-02-15
US7567756B2 (en) 2009-07-28
JP2009503607A (ja) 2009-01-29
US20070166034A1 (en) 2007-07-19
CA2616046A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
CN101263408A (zh) Mems镜阵列的抖动幅度的自动调节方法
USRE47906E1 (en) Reconfigurable optical add-drop multiplexers with servo control and dynamic spectral power management capabilities
CN101194194B (zh) 减小了镜边沿衍射效应的光分插复用器结构
JP4523058B2 (ja) Memsベースの減衰またはパワー管理を有する最適化された再構成可能な光学アド・ドロップ・マルチプレクサ・アーキテクチャ
US7346234B2 (en) Reduction of MEMS mirror edge diffraction in a wavelength selective switch using servo-based multi-axes rotation
EP1969406B1 (en) Reduction of mems mirror edge diffraction in a wavelength selective switch using servo-based rotation about multiple non-orthogonal axes
US7305188B2 (en) Wavelength demultiplexing unit
JP4678530B2 (ja) 波長操作システムおよび方法
US7769255B2 (en) High port count instantiated wavelength selective switch
US7756368B2 (en) Flex spectrum WSS
US20050074204A1 (en) Spectral plane method and apparatus for wavelength-selective optical switching
US7016098B2 (en) Optical device with configurable channel allocation
JP2002517875A (ja) オーバーサンプリング及び画像処理を使用して処理量を増加させた多チャンネル型スキャニング装置
CA2734130C (en) Spatial light modulator (slm)-based optical attenuator
KR20040036929A (ko) 인터리브된 채널들을 갖는 자유공간 파장 라우팅 시스템
GB2505052A (en) Co-aligning Multiple Beams
JP4443553B2 (ja) レンズ調節方法、レンズ調節装置および光スイッチ
JP4351264B2 (ja) 光波長選択スイッチおよび光波長選択スイッチの調節方法
US6947220B1 (en) Devices for information processing in optical communications
CN100582828C (zh) 用于消除mems器件中扰动的系统和方法
WO2013088586A1 (ja) 波長選択スイッチ
JP2016122152A (ja) 光信号選択装置および光信号選択装置の制御方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication