CN100521147C - 在集成电路中使用的电极结构 - Google Patents

在集成电路中使用的电极结构 Download PDF

Info

Publication number
CN100521147C
CN100521147C CNB028272862A CN02827286A CN100521147C CN 100521147 C CN100521147 C CN 100521147C CN B028272862 A CNB028272862 A CN B028272862A CN 02827286 A CN02827286 A CN 02827286A CN 100521147 C CN100521147 C CN 100521147C
Authority
CN
China
Prior art keywords
layer
ground floor
oxide
electrode structure
knitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028272862A
Other languages
English (en)
Other versions
CN1615544A (zh
Inventor
J·T·穆尔
J·F·布洛克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN1615544A publication Critical patent/CN1615544A/zh
Application granted granted Critical
Publication of CN100521147C publication Critical patent/CN100521147C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0011RRAM elements whose operation depends upon chemical change comprising conductive bridging RAM [CBRAM] or programming metallization cells [PMCs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76823Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. transforming an insulating layer into a conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76867Barrier, adhesion or liner layers characterized by methods of formation other than PVD, CVD or deposition from a liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of the switching material, e.g. post-treatment, doping
    • H10N70/046Modification of the switching material, e.g. post-treatment, doping by diffusion, e.g. photo-dissolution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/066Patterning of the switching material by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • H10N70/8265Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices on sidewalls of dielectric structures, e.g. mesa or cup type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05005Structure
    • H01L2224/05006Dual damascene structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05546Dual damascene structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/050414th Group
    • H01L2924/05042Si3N4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/957Making metal-insulator-metal device

Abstract

一种电极结构(200A),包括导电材料的第一层(202)和在第一层的表面上形成的电介质层(204)。在电介质层中形成开口(206),以便暴露第一层表面的一部分。在电介质层上并在第一层表面的暴露部分上形成接合层(210),并在导电接合层上形成导电材料的第二层(212)。接合层可以是氧化物,并且第二层是可扩散进入氧化物的导电材料。退火电极结构,以便使导电材料从第二层被化学吸附进入接合层,以改善第一层和第二层之间的粘接性。通过在电极结构中形成掺杂的玻璃层(214)来形成可编程单元。

Description

在集成电路中使用的电极结构
发明领域
本发明一般性地涉及半导体芯片和集成电路,更具体地,本发明涉及在集成电路例如电子系统、存储器系统等中使用的电极结构。
发明背景
在制造集成电路、半导体芯片等中,可以采用化学机械平坦化作为中间操作,以便使结构平坦化以至在半导体芯片或集成电路的制造中提供用于后续处理操作的均匀、水平表面。例如,可以通过淀积导电材料,典型为金属的第一层来形成半导体芯片中的不同导电材料层之间的电极或电接触,虽然也可以采用半导体材料,然后在第一导电层之上淀积薄电介质层。然后,构图电介质层在电介质层中形成至少一个开口以暴露第一导电层表面的一部分。开口可以具有深度与宽度的小的纵横比。例如,开口可以具有大约半微米宽而仅有大约500埃深,由此呈现大约0.1的纵横比。然后,在电介质层上并在第一导电层上的开口中淀积不同导电材料的第二层,以便通过开口与第一导电层形成电接触。然后,第二导电层被从电介质层去除或被平坦化以便暴露电介质层并在随后的制造操作之前在开口中形成隔离电极或镶嵌接触结构。在通过化学/机械处理或平坦化(CMP)去除第二导电层中,由CMP工艺产生的力就倾向于迫使第二层的导电材料离开开口,由此会损坏接触。
因此,由于上述原因和,通过阅读并理解本说明书将变得明显的其它原因,就需要一种特别在CMP操作期间在导电材料的第一层和不同导电材料的第二层之间提供基本改善的粘接的电极结构和制造方法,而不会对两层之间的导电性产生负面影响或产生电势垒的相反效果。还需要一种用于制造电极结构的方法,该制造方法不会影响或损坏在相同晶片或衬底上已经形成的其它元件,并不会通过需要非常大数的附加处理操作而负面影响制造工艺。
发明概述
本发明致力于有关电极结构的上述问题,并且通过阅读和学习以下说明书将理解有关电极结构的上述问题。本发明提供电极结构、存储器单元和系统,它们在制造操作例如CMP期间在不同导电层之间展示了优良粘附而对各层之间的导电性没有负面影响。本发明还提供不会负面影响在半导体管芯上已经形成的其它元件的制造方法。
根据本发明,电极结构包括导电材料的第一层和在第一层表面上形成的电介质层。在电介质层中形成开口,以暴露第一层表面的一部分。在电介质层上并在第一层表面的暴露部分上形成接合层,并在导电接合层上形成导电材料的第二层。
根据本发明的一个实施例,存储单元包括导电材料的第一层和在第一层表面上形成的电介质层。在电介质层中形成开口,以暴露第一层表面的一部分。在电介质层上并在第一层表面的暴露部分上形成接合层,并在接合层上形成导电材料的第二层。在导电材料的第二层上形成掺杂硫族元素化物材料层,并在掺杂硫族元素化物材料层上形成导电材料的第三层。
根据本发明的另一个实施例,一种制造电极的方法,包括:形成导电材料的第一层;在第一层的表面上形成电介质层;在电介质层中形成开口以便暴露第一层表面的一部分;在电介质层上并在第一层表面的暴露部分上形成接合层;以及在接合层上形成导电材料的第二层。可以在选择的温度、预定时间周期下退火电极结构,以便使导电材料从第二层扩散进入接合层,以改善第一和第二导电层之间的粘附性和导电性。
根据本发明的另一个实施例,一种制造存储器单元的方法,包括:形成导电材料的第一层;在第一层表面上形成电介质层;在电介质层中形成开口,以便暴露第一层表面的一部分;在电介质层上并在第一层表面的暴露部分上形成接合层;在接合层上形成导电材料的第二层;在导电材料的第二层上形成掺杂硫族元素化物材料层;在掺杂硫族元素化物材料层上形成导电材料的第三层。可以通过退火存储器单元以使导电材料从第三层被化学吸附进入硫族元素化物层来掺杂硫族元素化物材料层。
根据本发明提供一种电极结构,包括:
导电材料的第一层;
在第一层的表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分;
在所述电介质层之上并在第一层表面的所述暴露部分之上形成的氧化物接合层,其中所述氧化物接合层是导电的或至少半导电的;以及
在接合层上形成的导电材料的第二层。
根据本发明,提供一种电极结构,包括:
导电材料的第一层;
在第一层表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分;
在电介质层之上并在第一层表面的暴露部分之上形成的包含二氧化硅的接合层,该接合层导通电流;以及
在接合层之上形成的导电材料的第二层,该接合层包括二氧化硅和来自第二层的导电材料,该接合层能够传导电流。
根据本发明,提供一种电极结构,包括:
金属化的第一层;
在第一层表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分;
在所述电介质层上并在第一层表面的所述暴露部分上形成的氧化物接合层,其中所述氧化物接合层是导电的或至少半导电的;以及
在所述接合层上形成的金属化的第二层,其中接合层提供金属化的第一层和第二层之间的粘附。
根据本发明,提供一种电极结构,包括:
钨、镍和半导体材料之一的第一层;
在第一层表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分,其中导电接合层由退火的绝缘材料形成;
在电介质层上并在第一层表面的暴露部分上形成的导电接合层;以及
在接合层上形成的银的第二层,其中导电接合层包括氧化物和从第二层扩散进入氧化物中的银。
根据本发明,提供一种电极结构,包括:
导电材料的第一层;
在第一层表面上形成的第一电介质层;
在第一电介质层上形成的第二电介质层,其中第一电介质层具有比第二电介质层更快的腐蚀速度;
在第一和第二电介质层中形成的开口,以便暴露第一层表面的一部分,其中开口具有对应于第一和第二电介质层之间的腐蚀速度差的凹角轮廓;
在第一电介质层上并在第一层表面的暴露部分上形成的导电接合层;以及
在导电接合层上形成的导电材料的第二层。
根据本发明,提供一种半导体管芯,包括:
衬底;以及
由衬底支撑的集成电路,其中集成电路包含至少一个电极,该至少一个电极包括:
导电材料的第一层;
在第一层的表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分;
在所述电介质层之上并在第一层表面的所述暴露部分之上形成的氧化物接合层,其中所述氧化物接合层是导电的或至少半导电的;以及
在所述接合层之上形成的导电材料的第二层。
根据本发明,提供一种半导体管芯,包括:
衬底;以及
由衬底支撑的集成电路,其中集成电路包含至少一个电极结构,该至少一个电极结构包括:
金属化的第一层;
在第一层表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分;
在电介质层上并在第一层表面的暴露部分上形成的导电接合层,其中该导电接合层由退火的绝缘材料形成;以及
在导电接合层上形成的金属化的第二层,其中导电接合层包括二氧化硅和来自第二层的金属。
根据本发明,提供一种半导体管芯,包括:
衬底;以及
在衬底上形成的集成电路,其中集成电路包含至少一个电极结构,该至少一个电极结构包括:
钨、镍和多晶硅之一的第一层;
在第一层表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分;
在电介质层上并在第一层表面的暴露部分上形成的导电接合层,其中该导电接合层由退火的绝缘材料形成;以及
在接合层上形成的银的第二层,其中导电接合层包括二氧化硅和从第二层进入二氧化硅中的银。
根据本发明,提供一种制造电极结构的方法,包括:
形成导电材料的第一层;
在第一层的表面上形成电介质层;
在电介质层中形成开口,以便暴露第一层表面的一部分;
在电介质层之上并在第一层表面的暴露部分之上形成氧化物接合层,其中该氧化物接合层是导电的或至少半导电的;以及
在氧化物接合层上形成导电材料的第二层。
在随后的说明书中将部分地提出本发明的这些和其它实施例、方面、优点和特征,并且本领域普通技术人员通过参考本发明的以下说明书和参照的附图或通过本发明的实践,本发明的这些和其它实施例、各方面、优点和特征将部分地变得明显。利用特别是在所附权利要求书中提出的手段措施、程序及组合,就能够实现并获得本发明的各方面、优点和特征。
附图的简要说明
附图中,在所有的几个附图中,相同的数字表示基本上类似的元件。具有不同字母下标或撇号(X’)的相同数字表示不同地出现的基本上类似的元件。
图1A-1C说明在根据本发明的集成电路中使用的电极的形成操作。
图2A-D说明根据本发明的一个实施例的可编程存储器单元的形成操作。
图3A-3E说明根据本发明的另一个实施例的可编程存储器单元的形成操作。
图4是结合了根据本发明的可编程存储器单元的存储器系统的示意性附图。
图5是根据本发明的一个实施例的含有半导体管芯的晶片或衬底的顶视图。
图6是根据本发明的一个实施例的电路模块的示意性方框图。
图7是根据本发明的一个实施例的存储器模块的示意性方框图。
图8是根据本发明的另一个实施例的电子系统的示意性方框图。
图9是根据本发明的一个实施例的存储器系统的示意性方框图。
图10是根据本发明的一个实施例的计算机系统的示意性方框图。
实施例的描述
在以下优选实施例的详细的说明书中,参照构成其一部分的附图,其中利用可实践本发明的说明性具体实施例来展示优选实施例。足够详细地描述这些实施例,使本领域普通技术人员能够实践本发明,并且应当理解,在不脱离本发明的范围的情况下,可以使用其它实施例或进行工艺或机械式改变。在以下说明书中使用的术语晶片和衬底包括任何基底的半导体结构。将理解为包括蓝宝石上硅(SOS)技术、绝缘体上硅(SOI)技术、薄膜晶体管(TFT)技术、掺杂和未掺杂的半导体、由基底半导体支撑的硅外延层以及本领域技术人员公知的其它半导体支撑结构。而且,在以下的说明书中,当参照晶片或衬底时,在基底半导体中就已经利用了早期处理操作以形成区/结。因此,以下详细的说明不是限制性的,并且本发明的范围仅由所附的权利要求书限定。
在此描述的晶体管包括来自双极结型技术(BJT)、场效应技术(FET)或互补金属氧化物半导体(CMOS)技术中的晶体管。金属氧化物半导体(MOS)晶体管包括栅极、第一节点(漏极)和第二节点(源极)。由于MOS晶体管为典型的对称型器件,只是在端子上施加电压时才真正指定“源极”和“漏极”。因此,在此的源极和漏极的指定应当解释为最宽的意义。还应当注意,P沟道MOS晶体管可以替换为N沟道MOS晶体管,并且反之亦然,只要反转相关的栅极电压的极性即可。例如,在P沟道MOS晶体管的情况下施加负栅极电压以激活晶体管,如果用N沟道MOS晶体管代替P沟道晶体管,那么反转极性以施加正栅极电压来激活N沟道晶体管。
图1A-1C说明根据本发明的形成电极结构100的操作。在图1A中,淀积或形成导电材料的第一层102。导电材料的第一层102可以是钨、镍或半导体材料。在第一导电层102上形成电介质层104。电介质层104可以是氮化物,例如氮化硅或类似的电介质材料。通过标准光刻技术等构图电介质层104以形成穿过电介质层104的至少一个开口106,以暴露第一导电层102的表面108的一部分。开口106可以具有明显大于深度“D”的宽度“W”或直径,以提供小的纵横比;然而,本发明不限于这种纵横比。在电介质层104上并在第一导电层102的表面108上形成氧化物的层110。氧化层110可以是通过先驱物(precursor)例如四乙基原硅酸酯(TEOS)等的热反应淀积的氧化硅。氧化层110可以具有大约50埃和大约200埃之间的厚度。在氧化层110上形成导电材料的第二层112。导电材料的第二层112可以是银、镍或另一种金属或导电材料,其可以扩散进入氧化层110并接合到氧化层110。
在图1B中,在惰性气氛环境中在选择的温度预定时间周期下退火电极结构100B。惰性气氛环境可以是氮气、氩气或一些对形成电极结构100的材料是非反应性的其它气体。对于TEOS的氧化层110和银的第二导电层112,大约350℃大约10分钟的退火提供适合数量的银分子扩散进入或化学吸附进入TEOS,使氧化层110至少为半导电性,以至不会在第一和第二导电层102和112之间产生电势垒。因此,通过退火操作,氧化层110就被转换成导电或至少半导电的接合层110’。可以在与大约130℃一样低的温度下或室温下退火电极结构100B;然而,获得适合水平的化学吸附的时间周期将更长,由此增加了制造工艺的总时间。根据本发明,可以调整退火温度和时间周期以控制导电材料或金属的分子从第二层112扩散进入或化学吸附进入氧化层110的速度和数量。还可以考虑其它元件和随后的处理步骤来选择退火温度和时间周期,以至不会对晶片或半导体管芯上已经形成的其它元件产生负面效果或损伤或将导致附加的处理操作而增加制造半导体芯片的成本和时间。
在图1C中,可以平坦化电极结构以形成隔离电极结构或镶嵌层114并形成用于随后处理操作的水平或更加均匀的表面116。可以通过化学/机械平坦化(CMP)工艺等来完成电极结构100C的平坦化。根据本发明,选择接合层110’,以提供第一和第二导电层102和112之间足够的粘附,以防止由CMP产生的力挤压出镶嵌层114或使镶嵌层114翘曲。
在图2A-2D中,示出了根据本发明的一个实施例的处理操作,以形成可以在存储器系统例如可编程单元随机存取存储器(PCRAM)器件等中使用的可编程存储器或金属化单元结构200。在图2A中,形成第一导电层202。第一导电层202可以是金属,例如钨、镍等,或者第一导电层202可以是半导体或多晶硅材料。在第一导电层202上形成电介质材料的层204。电介质层204可以是氮化物,例如氮化硅或类似的电介质。通过标准光刻技术或类似的材料去除技术,选择性构图电介质层204,在电介质层204中形成至少一个开口206,并暴露第一导电层202的表面208的一部分。开口206可以具有明显小于宽度尺寸“W”的深度尺寸“D”,以限定深度与宽度的小的纵横比。然而,本发明不限于此。在电介质层204上并在第一导电层202的露出的表面部分208上形成氧化的层210。氧化层210可以是二氧化硅。氧化层210可以具有大约50埃和大约100埃之间的厚度。在氧化层210上并在开口206中形成导电材料的第二层212。第二导电层212可以是金属,例如银、镍、多晶硅或可扩散进入氧化物并显示出与氧化物的优良粘附性的其它导电材料。根据存储器单元结构200的其它参数或特征,第二导电层可以具有大约50埃和大约500埃之间的厚度。
在图2B中,在惰性气氛环境例如氮气、氩气或一些对形成单元结构200的材料是非反应性的其它气体中,在选择的温度预定时间周期下退火存储器单元结构200B。作为一个实例,对于TEOS的氧化层210和银的第二导电层212,大约350℃大约10分钟的退火提供适合水平的银分子扩散进入或化学吸附进入TEOS氧化层210,使氧化层210至少为半导电,以至不会在第一和第二导电层202和212之间产生电势垒。因此,退火操作的结果,氧化层210就变成导电或半导电的接合层210’,并且退火处理的结果提供了第一和第二导电层202和212之间的更强的粘附,用于在随后制造操作例如CMP期间的结构200的稳定性。本领域普通技术人员通过阅读和领会本公开应当理解,可以调整退火温度和时间以控制银或导电材料从第二导电层212化学吸附进入氧化层210的速度和数量,并且还控制对在晶片或半导体芯片上预先形成的结构或器件的影响。由于在退火处理期间导电材料的扩散,所以所得到的导电接合层210’就限定了第一和第二导电层202和212之间的电接触或界面。
在图2C中,在第二导电层212上并在开口206中形成硫族元素化物(chalcogenide)玻璃材料的层214。硫族元素化物玻璃材料的层214可以是硒化锗(GeXSe1-X,其中X是锗的浓度,并且1-X是硒化物的浓度)。在根据本发明教导的一个实施例中,锗与硒化物的浓度比可以在大约15/85和大约40/60之间。在层214上形成导电材料的第三层216。第三导电层216可以是诸如银、镍或可扩散进入硫族元素化物材料中的其它金属。通过退火存储器单元结构200C以便使金属或导电材料从第三层216扩散进入硫族元素化物层214中至选定的浓度来掺杂层214。退火处理可以是紫外线退火或类似的退火处理。退火处理还改善了第三导电层216和硫族元素化物层214之间的粘附,结果为高粘附性的单元结构200C,该单元结构200C就可以承受随后制造操作例如CMP施加的力或压力。
在图2D中,平坦化单元结构200D以形成隔离单元结构200D或第三层接触或镶嵌层216’,并提供用于随后处理操作的水平或更加均匀的表面218。可以通过CMP等平坦化单元结构200D。可以在平坦化表面218上形成导电材料的第四层220,并且第四层220与第三层接触216’电接触。
可以通过淀积处理最小化在开口206的侧壁222上形成的第二层212的导电材料或金属化,并且在退火处理期间第二层212的导电材料或金属化基本上扩散进入侧壁222上的氧化层210。以此方式,在侧壁222上的任何剩余金属化和导电材料的第四层220之间就不需要在CMP操作之后并在形成第三层220之前必须附加处理步骤的隔离或电介质。
图3A-3E说明根据本发明的另一个实施例的形成可编程存储器单元300中的操作,可编程存储器单元300形成了凹角轮廓(reentrantprofile),以防止导电材料形成在电介质层中开口的侧壁上。在图3A中,形成第一导电层302。第一导电层302可以是金属,例如钨、镍等、或半导体材料或多晶硅。在第一导电层302上形成具有一种腐蚀速度的第一电介质层304,并且在第一电介质层304上形成具有第二腐蚀速度的第二电介质层306。根据本发明,第一电介质层304的腐蚀速度比第二电介质层306的腐蚀速度更快。因此,在图2B中,当选择性构图第一和第二电介质层304和306以形成开口308时,开口就具有凹角轮廓,该凹角轮廓具有当开口308向下延伸以暴露第一导电层302时回转一个角度的侧壁310。在第二电介质层306上并在开口308中的第一导电层302的暴露表面部分314上形成氧化物的层312。氧化层312可以是氧化硅。在氧化层312上形成导电材料的第二层316。第二导电层316可以是银、镍或可扩散进入氧化物的其它导电材料或金属。由于开口308的凹角轮廓,第二导电层316和氧化层312就不会形成在开口308的侧壁310上。
在图3C中,在选择的温度预定时间周期下退火单元结构300C,以便使金属化或导电材料从第二导电层316扩散进入氧化层312中,形成导电接合层312’。在随后的处理操作例如CMP期间,导电接合层312’提供第一和第二导电层302和316之间的电接触和粘附。如上所述,可以调整退火温度和时间,以便控制金属分子化学吸附进入氧化层312的量,并且控制对在晶片或半导体芯片上已经形成的其它元件或器件的影响。
在图3D中,在第二导电层316上并在开口308中形成硫族元素化物(chalcogenide)玻璃材料的层318。硫族元素化物玻璃材料层318可以是硒化锗(GeXSe1-X,其中X是锗的浓度,并且1-X是硒化物的浓度)。如上所述,根据本发明的教导,锗与硒化物的浓度比可以在大约15/85和大约40/60之间。在层318上形成导电材料的第三层320。导电材料的第三层320可以是金属,例如银、镍或可扩散进入硫族元素化物材料中的其它金属。通过退火存储器单元结构300D以便使金属或导电材料从第三层320扩散进入硫族元素化物层318中以将两层接合在一起来掺杂层318,并且层318提供更好的粘接性。
在图3E中,平坦化单元结构300E,形成隔离单元结构300E,该隔离单元结构300E包括隔离的第三层接触或电极320’。平坦化还提供用于随后处理操作的水平、更加均匀的表面322。可以通过CMP等平坦化单元结构300E。可以在平坦化表面322上形成导电材料的第四层324,并且第四层324与第三层电极或接触320’电接触。
在操作中,可以通过在第一层或电极302和第三层电极320’之上施加电势或电压来编程可编程存储器单元200或300或可编程金属化单元,该电势或电压具有足够的电压电平以便使枝状晶体326或导电丝形成在电极320’和第二导电层316之间,第二导电层316通过导电接合层312’电连接到第一层电极302。因为用金属或导电材料例如银来掺杂硫族元素化物层322,所以电压就使枝状晶体326(图2D中的226)形成,以便短路两个电极320’和302。通过施加足够电压以形成枝状晶体326来偏压单元300上的电阻为大约10000欧姆。未加偏置并处于开路状态下的单元300的电阻为大约10兆欧姆。因此,已施加电压以形成枝状晶体326的可编程单元300就表示为逻辑1,并且未编程或开路单元300就表示为逻辑0。为了擦除已编程单元300,可以将反极性电压施加到单元300的电极320’和302,以便使足够的电流流过单元300通过毁坏枝状晶体326或导电元件使单元300返回到高阻状态。
图4是根据本发明的存储器器件或系统400的示意性图。存储器系统400包括以行和列排列的多个存储器元件402。每个存储器元件402包括晶体管404。每个晶体管404包括耦合到用于控制存储器元件402的操作的地址线408的栅电极406,并且每个晶体管404包括耦合到数据线412的第一源/漏电极410和耦合到根据本发明教导的、例如类似于存储器单元200D(图2D)和300E(图3E)的可编程存储器单元416的第二源/漏电极414。
参照图5,可以用含有存储器系统的硅晶片500来制造半导体管芯510,存储器系统包括类似于根据本发明的系统400或包含新型电极结构100C(图1E)或存储器单元200D(图2D)或300E(图3E)的电子系统。管芯510是在含有电路以形成特定功能的衬底上的各个图形,典型为矩形。半导体晶片00典型地含有包含相同功能的这种管芯510的重复图形。芯片510还含有额外的电路以使这种复杂器件作为具有多种功能性的单片处理器。典型地以保护外壳(未示出)来封装管芯510,从其延伸的引线(未示出)提供对管芯510的电路的访问,用于单向或双向通信和控制。
如图6中所示,可以将两个或多个管芯510组合在电路模块600中以增强或扩展单个芯片510的功能,芯片510包含集成了根据本发明的新型电极结构100C或存储器单元200D或300E的至少一个电子系统或存储器系统400,芯片510具有或不具有保护外壳。电路模块600可以是表示各种不同功能的管芯510的组合或含有相同功能性的管芯510的组合。电路模块600的一些实例包括存储器模块、器件驱动器、功率模块、通信调制解调器、处理器模块和专用模块,并且电路模块600可以包含多层、多芯片模块。电路模块600可以是各种电子系统例如钟表、电视、蜂窝电话、个人计算机、汽车、工业控制系统、飞机和其它系统的次部件。电路模块600具有从其延伸的各种引线610,该引线提供单向或双向通信和控制。
图7示出了作为含有用于存储器系统400的电路的存储器模块700的电路模块的一个实施例,存储器系统400包含本发明的电极结构100C或存储器单元结构200D或300E。存储器模块700通常描述单列直插式内存条(SIMM)或双列直插式内存条(DIMM)。SIMM或DIMM通常是印刷电路板(PCB)或含有一系列存储器器件的其它支撑体。当SIMM具有单列直插组的接触或引线时,DIMM将具有在支撑体的每侧上的一组引线,每组引线表示独立的I/O信号。存储器模块700包含在支撑体715上含有的多个存储器器件710,其数量根据所需总线宽度和奇偶性的需要。存储器模块700可以包含在支撑体715的两个侧面上的存储器器件710。存储器模块700接收来自命令链路720上的外部控制器(未示出)的命令信号并提供数据链路730上的数据输入和数据输出。命令链路720和数据链路730连接到从支撑体715延伸的引线740。为了概念目的,示出了引线740,并且引线740不限于图7中所示的位置。
图8示出了含有如上所述的一个或多个电路模块600的电子系统800,电路模块600含有本发明的电极结构100C或存储器单元200D或300E。电子系统800通常包含用户接口810。用户接口810提供电子系统800的用户电子系统800的某些形式的控制或结果的观察。用户接口810的一些实例包括个人计算机的键盘、鼠标、监视器和打印机;收音机的调谐标度盘、显示器和扬声器;汽车的点火开关和气踏板;以及自动出纳机的读卡器、键盘、显示器和货币分配器。用户接口810进一步说明提供给电子系统800的访问端口。访问端口用于将电子系统连接到预先示例的更多可触的用户接口元件。一个或多个电路模块600可以是提供某些形式的操作、控制或从或到用户接口810的输入或输出的方向的处理器,或是提供预编程到电子系统800中的某些形式的信息或被提供给电子系统800的其它信息的处理器。从预先给出的列举的实例列表中应当看出,电子系统800通常包含除了电路模块600和用户接口810之外的确定的机械部件(未示出)。应当清楚,电子系统800中的一个或多个电路模块600可以用单个集成电路替代。而且,电子系统800可以是较大电子系统的次部件。
图9示出了作为存储器系统900的电子系统的一个实施例。存储器系统900包含如上所述的一个或多个存储器模块700和存储器控制器910,存储器模块700包含根据本发明的存储器系统400和电极结构100C或存储器单元200D或300E。存储器控制器910提供并控制存储器系统900和外部系统总线920之间的双向接口。存储器系统900接受来自外部总线920的命令信号并将它中继给命令链路930上的一个或多个存储器模块700。存储器系统900提供一个或多个存储器模块700和数据链路940上的外部系统总线920之间的数据输入和数据输出。
图10示出了作为计算机系统1000的电子系统的进一步的实施例。计算机系统1000包含置于计算机单元1005中的处理器1010和存储器系统900。计算机系统1000仅仅是含有作为次部件的另一电子系统即存储器系统900的一个实例,包含根据本发明的存储器系统400和电极结构100C或存储器单元200D和300E。计算机系统1000任选地包含用户接口部件。图10中描述的是键盘1020、鼠标器1030、监视器1040、打印机1050和体存储器件1060。应当清楚,其它部件通常与计算机系统1000相关,例如调制解调器、装置驱动卡、附加的存储器件等。还应当清楚,可以在单个集成电路上组合计算机系统1000的处理器1010和存储器系统900。这种单个封装处理单元减少了处理器1010和存储器系统900之间的通信时间。
结论
因此,本发明提供一种电极结构和存储器单元结构和制造方法,提供了在随后处理操作例如CMP操作期间的两层导电材料之间实质上改善的粘接性。本发明的电极结构和存储器单元结构还提供两导电层之间不是电势垒的导电界面,并可以提供可被编程以存储数据的掺杂的玻璃层。本发明还提供一种制造电极结构或存储器单元结构的方法,其不会对随后的处理操作有负面影响或需要的附加处理操作,并且工艺可以被控制以防止对在相同晶片或衬底上已经形成的其它元件的损伤。
虽然在此已经说明并描述了具体的实施例,但本领域普通技术人员应当清楚,计算以获得相同目的的任何排列都可以代替示出的具体实施例。本申请希望覆盖本发明的任何自适应变化或改变。因此,希望本发明仅由权利要求书和它的等同内容限定。

Claims (36)

1.一种电极结构,包括:
导电材料的第一层;
在第一层的表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分;
在所述电介质层之上并在第一层表面的所述暴露部分之上形成的氧化物接合层;以及
在接合层上形成的导电材料的第二层,
其中氧化物接合层是导电的,以至不会在导电材料的第一层和第二层之间产生电势垒,并且来自所述第二层的导电材料被化学吸附到所述氧化物接合层中。
2.根据权利要求1的电极结构,其中第一层是粘附到所述氧化物接合层的金属。
3.根据权利要求1的电极结构,其中第二层是可扩散进入所述氧化物并与所述氧化物接合的金属。
4.根据权利要求1的电极结构,其中第一层是钨和镍之一。
5.根据权利要求1的电极结构,其中第二层是银和镍之一。
6.根据权利要求1的电极结构,其中所述氧化物接合层包含来自所述第二导电层的材料。
7.根据权利要求1的电极结构,其中所述接合层具有50
Figure C02827286C0002131439QIETU
至200
Figure C02827286C0002131439QIETU
的厚度。
8.一种电极结构,包括:
导电材料的第一层;
在第一层表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分;
在电介质层之上并在第一层表面的暴露部分之上形成的包含二氧化硅的接合层;以及
在接合层之上形成的导电材料的第二层,
其中接合层是导电的,以至不会在导电材料的第一层和第二层之间产生电势垒,并且来自所述第二层的导电材料被化学吸附到所述接合层中。
9.一种电极结构,包括:
金属化的第一层;
在第一层表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分;
在所述电介质层上并在第一层表面的所述暴露部分上形成的氧化物接合层;以及
在所述接合层上形成的金属化的第二层,其中接合层提供金属化的第一层和第二层之间的粘附,
其中氧化物接合层是导电的,以至不会在金属化的第一层和第二层之间产生电势垒,并且来自所述第二层的材料被化学吸附到所述氧化物接合层中。
10.根据权利要求9的电极结构,其中该氧化物接合层是通过退火该电极结构以使得来自第二层的导电材料被化学吸附到所述氧化层中而形成。
11.根据权利要求9的电极结构,其中该第一层是被粘附到所述氧化接合层的金属。
12.根据权利要求9的电极结构,其中该第二层是可扩散进入所述氧化物并接合到氧化物的金属。
13.根据权利要求9的电极结构,其中所述接合层具有50
Figure C02827286C0002131439QIETU
至200
Figure C02827286C0002131439QIETU
的厚度。
14.一种电极结构,包括:
钨、镍和半导体材料之一的第一层;
在第一层表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分;
在电介质层上并在第一层表面的暴露部分上形成的导电接合层;以及
在接合层上形成的银的第二层,其中导电接合层包括氧化物和从第二层扩散进入氧化物中的银,并且是导电的,以至不会在第一层和第二层之间产生电势垒。
15.一种电极结构,包括:
导电材料的第一层;
在第一层表面上形成的第一电介质层;
在第一电介质层上形成的第二电介质层,其中第一电介质层具有比第二电介质层更快的腐蚀速度;
在第一和第二电介质层中形成的开口,以便暴露第一层表面的一部分,其中开口具有响应于第一和第二电介质层之间的腐蚀速度差的凹角轮廓;
在第一电介质层上并在第一层表面的暴露部分上形成的导电接合层;以及
在导电接合层上形成的导电材料的第二层,
其中导电接合层是导电的,以至不会在导电材料的第一层和第二层之间产生电势垒,并且来自所述第二层的导电材料被化学吸附到所述接合层中。
16.一种半导体管芯,包括:
衬底;以及
由衬底支撑的集成电路,其中集成电路包含至少一个电极,该至少一个电极包括:
导电材料的第一层;
在第一层的表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分;
在所述电介质层之上并在第一层表面的所述暴露部分之上形成的氧化物接合层;以及
在所述接合层之上形成的导电材料的第二层,
其中氧化物接合层是导电的,以至不会在导电材料的第一层和第二层之间产生电势垒,并且来自所述第二层的导电材料被化学吸附到所述氧化物接合层中。
17.根据权利要求16的半导体管芯,其中该氧化物接合层是通过退火该电极结构以使得来自第二层的导电材料被化学吸附到所述氧化层中而形成。
18.根据权利要求16的半导体管芯,其中该第一层是被粘附到所述氧化层的金属。
19.根据权利要求16的半导体管芯,其中该第二层是可扩散进入所述氧化物并接合到氧化物的金属。
20.根据权利要求16的半导体管芯,其中所述接合层具有
Figure C02827286C00041
Figure C02827286C00042
的厚度。
21.一种半导体管芯,包括:
衬底;以及
由衬底支撑的集成电路,其中集成电路包含至少一个电极结构,该至少一个电极结构包括:
金属化的第一层;
在第一层表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分;
在电介质层上并在第一层表面的暴露部分上形成的导电接合层;以及
在导电接合层上形成的金属化的第二层,其中导电接合层包括二氧化硅和来自第二层的金属,
其中导电接合层是导电的,以至不会在金属化的第一层和第二层之间产生电势垒,并且来自所述第二层的材料被化学吸附到所述接合层中。
22.一种半导体管芯,包括:
衬底;以及
在衬底上形成的集成电路,其中集成电路包含至少一个电极结构,该至少一个电极结构包括:
钨、镍和多晶硅之一的第一层;
在第一层表面上形成的电介质层;
在电介质层中形成的开口,以便暴露第一层表面的一部分;
在电介质层上并在第一层表面的暴露部分上形成的导电接合层;以及
在接合层上形成的银的第二层,其中导电接合层包括二氧化硅和从第二层进入二氧化硅中的银,并且是导电的,以至不会在第一层和第二层之间产生电势垒,并且来自所述第二层的材料被化学吸附到所述接合层中。
23.一种制造电极结构的方法,包括:
形成导电材料的第一层;
在第一层的表面上形成电介质层;
在电介质层中形成开口,以便暴露第一层表面的一部分;
在电介质层之上并在第一层表面的暴露部分之上形成氧化物接合层;
在氧化物接合层上形成导电材料的第二层;以及
退火电极结构以便使导电材料从第二层被化学吸附进入氧化物接合层,
其中氧化物接合层被形成为导电的,以至不会在导电材料的第一层和第二层之间产生电势垒。
24.根据权利要求23的方法,其中形成氧化物接合层包括:
形成氧化层;以及
退火电极结构以便使导电材料从第二层被化学吸附进入氧化层。
25.根据权利要求24的方法,还包括通过在选择的温度、预定时间周期下进行退火,控制导电材料从第二层进入氧化层的化学吸附。
26.根据权利要求23的方法,还包括为第二层的材料选择可扩散进入氧化物的金属。
27.根据权利要求23的方法,还包括通过化学/机械平坦化工艺来平坦化电极结构。
28.一种制造电极结构的方法,包括:
形成金属化的第一层;
在第一层表面上形成电介质层;
在电介质层中形成开口,以便暴露第一层表面的一部分;
在电介质层之上并在第一层表面的暴露部分上形成氧化物接合层;
在接合层上形成金属化的第二层;
退火电极结构以便使金属化从第二层扩散进入接合层并提供金属化的第一和第二层之间的粘附,使氧化物接合层为至少半导电的;以及
通过化学/机械平坦化工艺平坦化电极结构,以在电介质层中的开口中形成隔离金属化结构,
其中氧化物接合层被形成,以至不会在金属化的第一层和第二层之间产生电势垒。
29.一种制造电极结构的方法,包括:
形成包含钨、镍和多晶硅之一的第一层;
在第一层表面上形成电介质层;
在电介质层中形成开口,以便暴露第一层表面的一部分;
在电介质层上并在第一层表面的暴露部分上形成包含二氧化硅的接合层;
在接合层上形成包含银和镍之一的第二层;
在选择的温度、预定时间周期下退火电极结构,以控制银或镍进入接合层的化学吸附;以及
平坦化电极结构,以便在开口中形成镶嵌银层,
其中接合层被形成为导电的,以至不会在第一层和第二层之间产生电势垒。
30.一种制造电极结构的方法,包括:
形成导电材料的第一层;
在第一层表面上形成电介质层;
在电介质层中形成包含凹角轮廓的开口,以便暴露第一层表面的一部分;
在电介质层上并在第一层表面的暴露部分上形成导电接合层;
在导电接合层上形成导电材料的第二层;以及
退火电极结构以便使导电材料从第二层被化学吸附进入接合层,
其中导电接合层被形成为导电的,以至不会在导电材料的第一层和第二层之间产生电势垒。
31.一种制造电极结构的方法,包括:
形成包含钨、镍和多晶硅之一的第一层;
在第一层表面上形成第一电介质层;
在第一电介质层上形成第二电介质层,其中第一电介质层具有比第二电介质层更快的腐蚀速度;
在第一和第二电介质层中形成开口,以便暴露第一层表面的一部分,其中开口包含响应于第一和第二电介质层之间的腐蚀速度差的凹角轮廓;
在第二电介质层上并在第一层表面的暴露部分上形成包含二氧化硅的接合层;
在接合层上形成包含银和镍之一的第二层;
在选择的温度、预定时间周期下退火电极结构,以控制银或镍进入接合层的化学吸附;以及
平坦化电极结构,以便在开口中形成镶嵌银层,
其中接合层被形成为导电的,以至不会在包含钨、镍和多晶硅之一的第一层和包含银和镍之一的第二层之间产生电势垒。
32.一种制造半导体管芯的方法,包括:
提供衬底;
形成由衬底支撑的集成电路;以及
形成耦合到集成电路的电极,其中形成电极包括:
形成导电材料的第一层;
在第一层的表面上形成电介质层;
在电介质层中形成开口,以便暴露第一层表面的一部分;
在电介质层之上并在第一层表面的暴露部分之上形成导电接合层;
在导电接合层上形成导电材料的第二层;以及
退火电极结构以便使导电材料从第二层被化学吸附进入接合层,
其中导电接合层被形成为导电的,以至不会在导电材料的第一层和第二层之间产生电势垒。
33.一种制造半导体管芯的方法,包括:
提供衬底;
形成由衬底支撑的集成电路;以及
形成与集成电路相关的电极结构,其中形成电极结构包括:
形成金属化的第一层;
在第一层表面上形成电介质层;
在电介质层中形成开口,以便暴露第一层表面的一部分;
在电介质层上并在第一层表面的暴露部分上形成氧化物接合层;
在该接合层上形成的金属化的第二层;
退火电极结构,以便使金属化从第二层扩散进入接合层并提供金属化的第一和第二层之间的粘附,使得该氧化物接合层为至少半导电的;以及
通过化学/机械平坦化工艺平坦化电极结构,在电介质层中的开口中形成隔离金属化结构,
其中氧化物接合层被形成,以至不会在金属化的第一层和第二层之间产生电势垒。
34.一种制造半导体管芯的方法,包括:
提供衬底;
形成由衬底支撑的集成电路;以及
形成与集成电路相关的电极结构,其中形成电极结构包括:
形成包括钨、镍和多晶硅之一的第一层;
在第一层表面上形成电介质层;
在电介质层中形成开口,以便暴露第一层表面的一部分;
在电介质层上并在第一层表面的暴露部分上形成包含二氧化硅的氧化物接合层;
在接合层上形成包含银和镍之一的第二层;
在选择的温度、预定时间周期下退火电极结构,以便控制银或镍进入接合层的化学吸附,使得该氧化物接合层为半导电的;以及
平坦化电极结构,以在开口中形成镶嵌银层,
其中氧化物接合层被形成,以至不会在第一层和第二层之间产生电势垒。
35.一种制造半导体管芯的方法,包括:
提供衬底;
形成由衬底支撑的集成电路;和
形成耦合到集成电路的电极,其中形成该电极包括:
形成导电材料的第一层;
在所述第一层的表面上形成氧化物接合层;
在该接合层上形成导电材料的第二层;以及
退火电极结构以便使导电材料从第二层被化学吸附进入氧化层,
其中氧化物接合层被形成为导电的,以至不会在导电材料的第一层和第二层之间产生电势垒。
36.根据权利要求35的制造半导体管芯的方法,其中所述导电材料的第二层是金属层,并且所述氧化物接合层包括氧化物层和从所述第二层扩散进入所述氧化物层的金属。
CNB028272862A 2001-11-19 2002-11-19 在集成电路中使用的电极结构 Expired - Fee Related CN100521147C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/988,984 2001-11-19
US09/988,984 US6815818B2 (en) 2001-11-19 2001-11-19 Electrode structure for use in an integrated circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2007100061607A Division CN101005056A (zh) 2001-11-19 2002-11-19 在集成电路中使用的电极结构

Publications (2)

Publication Number Publication Date
CN1615544A CN1615544A (zh) 2005-05-11
CN100521147C true CN100521147C (zh) 2009-07-29

Family

ID=25534649

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB028272862A Expired - Fee Related CN100521147C (zh) 2001-11-19 2002-11-19 在集成电路中使用的电极结构
CNA2007100061607A Pending CN101005056A (zh) 2001-11-19 2002-11-19 在集成电路中使用的电极结构

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2007100061607A Pending CN101005056A (zh) 2001-11-19 2002-11-19 在集成电路中使用的电极结构

Country Status (8)

Country Link
US (4) US6815818B2 (zh)
EP (2) EP1780728B1 (zh)
JP (1) JP4587670B2 (zh)
KR (1) KR100593283B1 (zh)
CN (2) CN100521147C (zh)
AT (1) ATE512442T1 (zh)
AU (1) AU2002362009A1 (zh)
WO (1) WO2003052815A2 (zh)

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664030B2 (en) 1999-03-30 2014-03-04 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
JP4742429B2 (ja) * 2001-02-19 2011-08-10 住友電気工業株式会社 ガラス微粒子堆積体の製造方法
US6734455B2 (en) * 2001-03-15 2004-05-11 Micron Technology, Inc. Agglomeration elimination for metal sputter deposition of chalcogenides
US7102150B2 (en) * 2001-05-11 2006-09-05 Harshfield Steven T PCRAM memory cell and method of making same
US6951805B2 (en) * 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6784018B2 (en) * 2001-08-29 2004-08-31 Micron Technology, Inc. Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry
US6881623B2 (en) * 2001-08-29 2005-04-19 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device
US6955940B2 (en) * 2001-08-29 2005-10-18 Micron Technology, Inc. Method of forming chalcogenide comprising devices
US6646902B2 (en) 2001-08-30 2003-11-11 Micron Technology, Inc. Method of retaining memory state in a programmable conductor RAM
US6709958B2 (en) * 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US7656678B2 (en) 2001-10-26 2010-02-02 Entorian Technologies, Lp Stacked module systems
US6815818B2 (en) * 2001-11-19 2004-11-09 Micron Technology, Inc. Electrode structure for use in an integrated circuit
US6791859B2 (en) * 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6909656B2 (en) * 2002-01-04 2005-06-21 Micron Technology, Inc. PCRAM rewrite prevention
US6867064B2 (en) * 2002-02-15 2005-03-15 Micron Technology, Inc. Method to alter chalcogenide glass for improved switching characteristics
US6791885B2 (en) * 2002-02-19 2004-09-14 Micron Technology, Inc. Programmable conductor random access memory and method for sensing same
US7151273B2 (en) * 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US6847535B2 (en) 2002-02-20 2005-01-25 Micron Technology, Inc. Removable programmable conductor memory card and associated read/write device and method of operation
US6809362B2 (en) * 2002-02-20 2004-10-26 Micron Technology, Inc. Multiple data state memory cell
US7087919B2 (en) * 2002-02-20 2006-08-08 Micron Technology, Inc. Layered resistance variable memory device and method of fabrication
US6937528B2 (en) * 2002-03-05 2005-08-30 Micron Technology, Inc. Variable resistance memory and method for sensing same
US6849868B2 (en) 2002-03-14 2005-02-01 Micron Technology, Inc. Methods and apparatus for resistance variable material cells
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6855975B2 (en) * 2002-04-10 2005-02-15 Micron Technology, Inc. Thin film diode integrated with chalcogenide memory cell
US6858482B2 (en) * 2002-04-10 2005-02-22 Micron Technology, Inc. Method of manufacture of programmable switching circuits and memory cells employing a glass layer
US6731528B2 (en) * 2002-05-03 2004-05-04 Micron Technology, Inc. Dual write cycle programmable conductor memory system and method of operation
US6825135B2 (en) 2002-06-06 2004-11-30 Micron Technology, Inc. Elimination of dendrite formation during metal/chalcogenide glass deposition
US6890790B2 (en) * 2002-06-06 2005-05-10 Micron Technology, Inc. Co-sputter deposition of metal-doped chalcogenides
US7209378B2 (en) * 2002-08-08 2007-04-24 Micron Technology, Inc. Columnar 1T-N memory cell structure
US7018863B2 (en) * 2002-08-22 2006-03-28 Micron Technology, Inc. Method of manufacture of a resistance variable memory cell
DE10239845C1 (de) 2002-08-29 2003-12-24 Day4 Energy Inc Elektrode für fotovoltaische Zellen, fotovoltaische Zelle und fotovoltaischer Modul
US6864521B2 (en) * 2002-08-29 2005-03-08 Micron Technology, Inc. Method to control silver concentration in a resistance variable memory element
US7364644B2 (en) * 2002-08-29 2008-04-29 Micron Technology, Inc. Silver selenide film stoichiometry and morphology control in sputter deposition
US6831019B1 (en) * 2002-08-29 2004-12-14 Micron Technology, Inc. Plasma etching methods and methods of forming memory devices comprising a chalcogenide comprising layer received operably proximate conductive electrodes
US7010644B2 (en) * 2002-08-29 2006-03-07 Micron Technology, Inc. Software refreshed memory device and method
US7314776B2 (en) * 2002-12-13 2008-01-01 Ovonyx, Inc. Method to manufacture a phase change memory
ATE490562T1 (de) * 2002-12-19 2010-12-15 Nxp Bv Elektrisches bauelement mit einer schicht aus phasenwechsel-material und verfahren zur seiner herstellung
US7472170B2 (en) 2003-02-13 2008-12-30 Bruce Zak System and method for managing content on a network interface
US6969867B2 (en) * 2003-03-10 2005-11-29 Energy Conversion Devices, Inc. Field effect chalcogenide devices
US7022579B2 (en) * 2003-03-14 2006-04-04 Micron Technology, Inc. Method for filling via with metal
US7061004B2 (en) * 2003-07-21 2006-06-13 Micron Technology, Inc. Resistance variable memory elements and methods of formation
US6903361B2 (en) * 2003-09-17 2005-06-07 Micron Technology, Inc. Non-volatile memory structure
US20050128559A1 (en) * 2003-12-15 2005-06-16 Nishimura Ken A. Spatial light modulator and method for performing dynamic photolithography
US7098068B2 (en) * 2004-03-10 2006-08-29 Micron Technology, Inc. Method of forming a chalcogenide material containing device
US7583551B2 (en) * 2004-03-10 2009-09-01 Micron Technology, Inc. Power management control and controlling memory refresh operations
US7112836B2 (en) * 2004-03-17 2006-09-26 Macronix International Co., Ltd. Method of forming a chalcogenide memory cell having a horizontal electrode and a memory cell produced by the method
CN101834198A (zh) * 2004-05-14 2010-09-15 瑞萨电子株式会社 半导体存储器件
US7326950B2 (en) 2004-07-19 2008-02-05 Micron Technology, Inc. Memory device with switching glass layer
US7190048B2 (en) * 2004-07-19 2007-03-13 Micron Technology, Inc. Resistance variable memory device and method of fabrication
US7354793B2 (en) 2004-08-12 2008-04-08 Micron Technology, Inc. Method of forming a PCRAM device incorporating a resistance-variable chalocogenide element
US7226857B2 (en) 2004-07-30 2007-06-05 Micron Technology, Inc. Front-end processing of nickel plated bond pads
US7365411B2 (en) 2004-08-12 2008-04-29 Micron Technology, Inc. Resistance variable memory with temperature tolerant materials
US7151688B2 (en) * 2004-09-01 2006-12-19 Micron Technology, Inc. Sensing of resistance variable memory devices
US7760513B2 (en) 2004-09-03 2010-07-20 Entorian Technologies Lp Modified core for circuit module system and method
US7443023B2 (en) 2004-09-03 2008-10-28 Entorian Technologies, Lp High capacity thin module system
US7423885B2 (en) 2004-09-03 2008-09-09 Entorian Technologies, Lp Die module system
DE102004046804B4 (de) * 2004-09-27 2006-10-05 Infineon Technologies Ag Resistiv schaltender Halbleiterspeicher
US7109584B2 (en) * 2004-11-23 2006-09-19 International Business Machines Corporation Dendrite growth control circuit
DE102004061548A1 (de) * 2004-12-21 2006-06-29 Infineon Technologies Ag Integration von 1T1R-CBRAM-Speicherzellen
US7374174B2 (en) * 2004-12-22 2008-05-20 Micron Technology, Inc. Small electrode for resistance variable devices
US20060131555A1 (en) * 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
KR100707182B1 (ko) * 2005-02-18 2007-04-13 삼성전자주식회사 상전이 메모리 소자 및 제조방법
US7317200B2 (en) 2005-02-23 2008-01-08 Micron Technology, Inc. SnSe-based limited reprogrammable cell
DE102005016244A1 (de) * 2005-04-08 2006-10-19 Infineon Technologies Ag Speicherzelle, Speichereinrichtung und Verfahren zu deren Herstellung
US7427770B2 (en) * 2005-04-22 2008-09-23 Micron Technology, Inc. Memory array for increased bit density
US7709289B2 (en) * 2005-04-22 2010-05-04 Micron Technology, Inc. Memory elements having patterned electrodes and method of forming the same
US7449355B2 (en) * 2005-04-27 2008-11-11 Robert Bosch Gmbh Anti-stiction technique for electromechanical systems and electromechanical device employing same
US7269079B2 (en) * 2005-05-16 2007-09-11 Micron Technology, Inc. Power circuits for reducing a number of power supply voltage taps required for sensing a resistive memory
US7233520B2 (en) * 2005-07-08 2007-06-19 Micron Technology, Inc. Process for erasing chalcogenide variable resistance memory bits
US7274034B2 (en) * 2005-08-01 2007-09-25 Micron Technology, Inc. Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication
US7332735B2 (en) * 2005-08-02 2008-02-19 Micron Technology, Inc. Phase change memory cell and method of formation
US7317567B2 (en) * 2005-08-02 2008-01-08 Micron Technology, Inc. Method and apparatus for providing color changing thin film material
US7579615B2 (en) 2005-08-09 2009-08-25 Micron Technology, Inc. Access transistor for memory device
US20070037316A1 (en) * 2005-08-09 2007-02-15 Micron Technology, Inc. Memory cell contact using spacers
US7304368B2 (en) * 2005-08-11 2007-12-04 Micron Technology, Inc. Chalcogenide-based electrokinetic memory element and method of forming the same
US7251154B2 (en) * 2005-08-15 2007-07-31 Micron Technology, Inc. Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance
US7277313B2 (en) * 2005-08-31 2007-10-02 Micron Technology, Inc. Resistance variable memory element with threshold device and method of forming the same
US7541607B2 (en) * 2005-11-02 2009-06-02 Elpida Memory, Inc. Electrically rewritable non-volatile memory element and method of manufacturing the same
US20070144577A1 (en) * 2005-12-23 2007-06-28 Rubin George L Solar cell with physically separated distributed electrical contacts
KR100744273B1 (ko) * 2005-12-28 2007-07-30 동부일렉트로닉스 주식회사 상변화 메모리 소자 제조 방법
US7498508B2 (en) 2006-02-24 2009-03-03 Day4 Energy, Inc. High voltage solar cell and solar cell module
US9865758B2 (en) 2006-04-13 2018-01-09 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8884155B2 (en) 2006-04-13 2014-11-11 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9006563B2 (en) 2006-04-13 2015-04-14 Solannex, Inc. Collector grid and interconnect structures for photovoltaic arrays and modules
US8729385B2 (en) 2006-04-13 2014-05-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9236512B2 (en) 2006-04-13 2016-01-12 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8822810B2 (en) 2006-04-13 2014-09-02 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US7968967B2 (en) * 2006-07-17 2011-06-28 Taiwan Semiconductor Manufacturing Company, Ltd. One-time-programmable anti-fuse formed using damascene process
US7560723B2 (en) 2006-08-29 2009-07-14 Micron Technology, Inc. Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication
US8097535B2 (en) * 2006-09-04 2012-01-17 Nxp B.V. Fabrication of self-assembled nanowire-type interconnects on a semiconductor device
US8232175B2 (en) * 2006-09-14 2012-07-31 Spansion Llc Damascene metal-insulator-metal (MIM) device with improved scaleability
US20080092944A1 (en) * 2006-10-16 2008-04-24 Leonid Rubin Semiconductor structure and process for forming ohmic connections to a semiconductor structure
US7767994B2 (en) * 2006-12-05 2010-08-03 Electronics And Telecommunications Research Institute Phase-change random access memory device and method of manufacturing the same
US7888228B2 (en) * 2007-04-05 2011-02-15 Adesto Technology Corporation Method of manufacturing an integrated circuit, an integrated circuit, and a memory module
US20080290368A1 (en) * 2007-05-21 2008-11-27 Day4 Energy, Inc. Photovoltaic cell with shallow emitter
US8237149B2 (en) * 2007-06-18 2012-08-07 Samsung Electronics Co., Ltd. Non-volatile memory device having bottom electrode
KR100911473B1 (ko) * 2007-06-18 2009-08-11 삼성전자주식회사 상변화 메모리 유닛, 이의 제조 방법, 이를 포함하는상변화 메모리 장치 및 그 제조 방법
KR100881055B1 (ko) * 2007-06-20 2009-01-30 삼성전자주식회사 상변화 메모리 유닛, 이의 제조 방법, 이를 포함하는상변화 메모리 장치 및 그 제조 방법
FR2922368A1 (fr) * 2007-10-16 2009-04-17 Commissariat Energie Atomique Procede de fabrication d'une memoire cbram ayant une fiabilite amelioree
KR101168977B1 (ko) 2007-11-19 2012-07-26 삼성전자주식회사 콘택홀에 인접한 층간절연막 상에 성장 방지막을 갖는집적회로 메모리 소자의 제조 방법
US7994075B1 (en) * 2008-02-26 2011-08-09 Honeywell International, Inc. Low weight and high durability soft body armor composite using topical wax coatings
US7855435B2 (en) * 2008-03-12 2010-12-21 Qimonda Ag Integrated circuit, method of manufacturing an integrated circuit, and memory module
US7579210B1 (en) * 2008-03-25 2009-08-25 Ovonyx, Inc. Planar segmented contact
JP5223004B2 (ja) 2008-07-28 2013-06-26 デイ4 エネルギー インコーポレイテッド 低温精密エッチ・バック及び不動態化プロセスで製造された選択エミッタを有する結晶シリコンpv電池
US8467236B2 (en) * 2008-08-01 2013-06-18 Boise State University Continuously variable resistor
US7825479B2 (en) * 2008-08-06 2010-11-02 International Business Machines Corporation Electrical antifuse having a multi-thickness dielectric layer
EP2202816B1 (en) * 2008-12-24 2012-06-20 Imec Method for manufacturing a resistive switching memory device
TWI383950B (zh) 2009-04-22 2013-02-01 Ind Tech Res Inst 奈米點狀材料的形成方法
CN101615655B (zh) * 2009-07-21 2012-09-05 中国科学院上海微系统与信息技术研究所 导电氧化物过渡层及含该过渡层的相变存储器单元
TWI415139B (zh) * 2009-11-02 2013-11-11 Ind Tech Res Inst 一種導電組成物及其形成方法
JP5183708B2 (ja) * 2010-09-21 2013-04-17 株式会社日立製作所 半導体装置およびその製造方法
US8524599B2 (en) 2011-03-17 2013-09-03 Micron Technology, Inc. Methods of forming at least one conductive element and methods of forming a semiconductor structure
US8486743B2 (en) 2011-03-23 2013-07-16 Micron Technology, Inc. Methods of forming memory cells
CN102760832B (zh) * 2011-04-29 2015-06-03 中芯国际集成电路制造(上海)有限公司 相变半导体器件的制造方法以及相变半导体器件
US8994489B2 (en) 2011-10-19 2015-03-31 Micron Technology, Inc. Fuses, and methods of forming and using fuses
US9252188B2 (en) 2011-11-17 2016-02-02 Micron Technology, Inc. Methods of forming memory cells
US9006075B2 (en) 2011-11-17 2015-04-14 Micron Technology, Inc. Memory cells, semiconductor devices including such cells, and methods of fabrication
US8723155B2 (en) 2011-11-17 2014-05-13 Micron Technology, Inc. Memory cells and integrated devices
US8546231B2 (en) 2011-11-17 2013-10-01 Micron Technology, Inc. Memory arrays and methods of forming memory cells
US9117515B2 (en) * 2012-01-18 2015-08-25 Macronix International Co., Ltd. Programmable metallization cell with two dielectric layers
US9136467B2 (en) 2012-04-30 2015-09-15 Micron Technology, Inc. Phase change memory cells and methods of forming phase change memory cells
US8765555B2 (en) 2012-04-30 2014-07-01 Micron Technology, Inc. Phase change memory cells and methods of forming phase change memory cells
US9018613B2 (en) * 2012-08-14 2015-04-28 Kabushiki Kaisha Toshiba Semiconductor memory device with a memory cell block including a block film
US9437266B2 (en) 2012-11-13 2016-09-06 Macronix International Co., Ltd. Unipolar programmable metallization cell
US9553262B2 (en) 2013-02-07 2017-01-24 Micron Technology, Inc. Arrays of memory cells and methods of forming an array of memory cells
KR101431656B1 (ko) * 2013-04-05 2014-08-21 한국과학기술연구원 저머늄 및 셀레늄을 이용한 칼코지나이드 스위칭 소자 및 그 제조방법
WO2015016851A1 (en) * 2013-07-31 2015-02-05 Hewlett-Packard Development Company, L.P. Memristor and methods for making the same
US9881971B2 (en) 2014-04-01 2018-01-30 Micron Technology, Inc. Memory arrays
US9362494B2 (en) 2014-06-02 2016-06-07 Micron Technology, Inc. Array of cross point memory cells and methods of forming an array of cross point memory cells
US9343506B2 (en) 2014-06-04 2016-05-17 Micron Technology, Inc. Memory arrays with polygonal memory cells having specific sidewall orientations
US10163917B2 (en) * 2016-11-01 2018-12-25 Micron Technology, Inc. Cell disturb prevention using a leaker device to reduce excess charge from an electronic device
US20190237629A1 (en) * 2018-01-26 2019-08-01 Lumileds Llc Optically transparent adhesion layer to connect noble metals to oxides
CN111029417A (zh) * 2019-12-02 2020-04-17 上海集成电路研发中心有限公司 一种光电探测器及其制备方法

Family Cites Families (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) * 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3622319A (en) 1966-10-20 1971-11-23 Western Electric Co Nonreflecting photomasks and methods of making same
US3868651A (en) * 1970-08-13 1975-02-25 Energy Conversion Devices Inc Method and apparatus for storing and reading data in a memory having catalytic material to initiate amorphous to crystalline change in memory structure
US3743847A (en) 1971-06-01 1973-07-03 Motorola Inc Amorphous silicon film as a uv filter
US4267261A (en) * 1971-07-15 1981-05-12 Energy Conversion Devices, Inc. Method for full format imaging
US3961314A (en) * 1974-03-05 1976-06-01 Energy Conversion Devices, Inc. Structure and method for producing an image
US3966317A (en) * 1974-04-08 1976-06-29 Energy Conversion Devices, Inc. Dry process production of archival microform records from hard copy
US4177474A (en) 1977-05-18 1979-12-04 Energy Conversion Devices, Inc. High temperature amorphous semiconductor member and method of making the same
JPS5565365A (en) 1978-11-07 1980-05-16 Nippon Telegr & Teleph Corp <Ntt> Pattern forming method
DE2901303C2 (de) 1979-01-15 1984-04-19 Max Planck Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Festes Ionenleitermaterial, seine Verwendung und Verfahren zu dessen Herstellung
US4312938A (en) 1979-07-06 1982-01-26 Drexler Technology Corporation Method for making a broadband reflective laser recording and data storage medium with absorptive underlayer
US4269935A (en) 1979-07-13 1981-05-26 Ionomet Company, Inc. Process of doping silver image in chalcogenide layer
US4316946A (en) 1979-12-03 1982-02-23 Ionomet Company, Inc. Surface sensitized chalcogenide product and process for making and using the same
US4499557A (en) 1980-10-28 1985-02-12 Energy Conversion Devices, Inc. Programmable cell for use in programmable electronic arrays
US4405710A (en) 1981-06-22 1983-09-20 Cornell Research Foundation, Inc. Ion beam exposure of (g-Gex -Se1-x) inorganic resists
US4737379A (en) * 1982-09-24 1988-04-12 Energy Conversion Devices, Inc. Plasma deposited coatings, and low temperature plasma method of making same
US4545111A (en) * 1983-01-18 1985-10-08 Energy Conversion Devices, Inc. Method for making, parallel preprogramming or field programming of electronic matrix arrays
US4608296A (en) * 1983-12-06 1986-08-26 Energy Conversion Devices, Inc. Superconducting films and devices exhibiting AC to DC conversion
US4795657A (en) 1984-04-13 1989-01-03 Energy Conversion Devices, Inc. Method of fabricating a programmable array
US4843443A (en) * 1984-05-14 1989-06-27 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4769338A (en) * 1984-05-14 1988-09-06 Energy Conversion Devices, Inc. Thin film field effect transistor and method of making same
US4668968A (en) * 1984-05-14 1987-05-26 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4670763A (en) * 1984-05-14 1987-06-02 Energy Conversion Devices, Inc. Thin film field effect transistor
US4673957A (en) * 1984-05-14 1987-06-16 Energy Conversion Devices, Inc. Integrated circuit compatible thin film field effect transistor and method of making same
US4678679A (en) * 1984-06-25 1987-07-07 Energy Conversion Devices, Inc. Continuous deposition of activated process gases
US4646266A (en) * 1984-09-28 1987-02-24 Energy Conversion Devices, Inc. Programmable semiconductor structures and methods for using the same
US4637895A (en) * 1985-04-01 1987-01-20 Energy Conversion Devices, Inc. Gas mixtures for the vapor deposition of semiconductor material
US4664939A (en) * 1985-04-01 1987-05-12 Energy Conversion Devices, Inc. Vertical semiconductor processor
US4710899A (en) 1985-06-10 1987-12-01 Energy Conversion Devices, Inc. Data storage medium incorporating a transition metal for increased switching speed
US4671618A (en) 1986-05-22 1987-06-09 Wu Bao Gang Liquid crystalline-plastic material having submillisecond switch times and extended memory
US4766471A (en) * 1986-01-23 1988-08-23 Energy Conversion Devices, Inc. Thin film electro-optical devices
US4818717A (en) * 1986-06-27 1989-04-04 Energy Conversion Devices, Inc. Method for making electronic matrix arrays
US4728406A (en) * 1986-08-18 1988-03-01 Energy Conversion Devices, Inc. Method for plasma - coating a semiconductor body
US4809044A (en) * 1986-08-22 1989-02-28 Energy Conversion Devices, Inc. Thin film overvoltage protection devices
US4845533A (en) * 1986-08-22 1989-07-04 Energy Conversion Devices, Inc. Thin film electrical devices with amorphous carbon electrodes and method of making same
US4853785A (en) * 1986-10-15 1989-08-01 Energy Conversion Devices, Inc. Electronic camera including electronic signal storage cartridge
US4788594A (en) * 1986-10-15 1988-11-29 Energy Conversion Devices, Inc. Solid state electronic camera including thin film matrix of photosensors
US4847674A (en) 1987-03-10 1989-07-11 Advanced Micro Devices, Inc. High speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism
US4800526A (en) 1987-05-08 1989-01-24 Gaf Corporation Memory element for information storage and retrieval system and associated process
US4891330A (en) * 1987-07-27 1990-01-02 Energy Conversion Devices, Inc. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements
US4775425A (en) * 1987-07-27 1988-10-04 Energy Conversion Devices, Inc. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same
JPH0719841B2 (ja) 1987-10-02 1995-03-06 株式会社東芝 半導体装置
US5272359A (en) 1988-04-07 1993-12-21 California Institute Of Technology Reversible non-volatile switch based on a TCNQ charge transfer complex
GB8910854D0 (en) 1989-05-11 1989-06-28 British Petroleum Co Plc Semiconductor device
DE59009235D1 (de) * 1989-11-30 1995-07-20 Siemens Ag Verfahren zur Verringerung der Reflektivität von Sputter-Schichten.
US5159661A (en) * 1990-10-05 1992-10-27 Energy Conversion Devices, Inc. Vertically interconnected parallel distributed processor
US5314772A (en) 1990-10-09 1994-05-24 Arizona Board Of Regents High resolution, multi-layer resist for microlithography and method therefor
JPH0770731B2 (ja) 1990-11-22 1995-07-31 松下電器産業株式会社 電気可塑性素子
US5166758A (en) * 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5406509A (en) * 1991-01-18 1995-04-11 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5335219A (en) * 1991-01-18 1994-08-02 Ovshinsky Stanford R Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5341328A (en) 1991-01-18 1994-08-23 Energy Conversion Devices, Inc. Electrically erasable memory elements having reduced switching current requirements and increased write/erase cycle life
US5534711A (en) * 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5414271A (en) * 1991-01-18 1995-05-09 Energy Conversion Devices, Inc. Electrically erasable memory elements having improved set resistance stability
US5536947A (en) * 1991-01-18 1996-07-16 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory element and arrays fabricated therefrom
US5534712A (en) * 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5296716A (en) * 1991-01-18 1994-03-22 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5596522A (en) * 1991-01-18 1997-01-21 Energy Conversion Devices, Inc. Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5166556A (en) 1991-01-22 1992-11-24 Myson Technology, Inc. Programmable antifuse structure, process, logic cell and architecture for programmable integrated circuits
US5128099A (en) 1991-02-15 1992-07-07 Energy Conversion Devices, Inc. Congruent state changeable optical memory material and device
US5219788A (en) 1991-02-25 1993-06-15 Ibm Corporation Bilayer metallization cap for photolithography
US5177567A (en) * 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
DE4127189C2 (de) * 1991-08-19 2001-08-16 Gustav Schumacher Steuereinrichtung für eine pendelnd gelagerte Baugruppe an einer landwirtschaftlichen Maschine
US5359205A (en) * 1991-11-07 1994-10-25 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
KR970009274B1 (ko) 1991-11-11 1997-06-09 미쓰비시덴키 가부시키가이샤 반도체장치의 도전층접속구조 및 그 제조방법
GB2261565B (en) 1991-11-15 1995-05-03 Sony Broadcast & Communication Video image filtering
US5238862A (en) 1992-03-18 1993-08-24 Micron Technology, Inc. Method of forming a stacked capacitor with striated electrode
JP2803940B2 (ja) * 1992-06-23 1998-09-24 シャープ株式会社 半導体装置
KR940004732A (ko) 1992-08-07 1994-03-15 가나이 쯔또무 패턴 형성 방법 및 패턴 형성에 사용하는 박막 형성 방법
US5350484A (en) 1992-09-08 1994-09-27 Intel Corporation Method for the anisotropic etching of metal films in the fabrication of interconnects
US5818749A (en) 1993-08-20 1998-10-06 Micron Technology, Inc. Integrated circuit memory device
BE1007902A3 (nl) 1993-12-23 1995-11-14 Philips Electronics Nv Schakelelement met geheugen voorzien van schottky tunnelbarriere.
US5415271A (en) * 1994-09-12 1995-05-16 Foster; Raymond K. Reciprocating floor conveyor with overlay, protective plate
US5500532A (en) 1994-08-18 1996-03-19 Arizona Board Of Regents Personal electronic dosimeter
JP2643870B2 (ja) 1994-11-29 1997-08-20 日本電気株式会社 半導体記憶装置の製造方法
US5543737A (en) * 1995-02-10 1996-08-06 Energy Conversion Devices, Inc. Logical operation circuit employing two-terminal chalcogenide switches
US5869843A (en) 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
JP3363154B2 (ja) 1995-06-07 2003-01-08 ミクロン テクノロジー、インコーポレイテッド 不揮発性メモリセル内のマルチステート材料と共に使用するスタック/トレンチダイオード
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5751012A (en) 1995-06-07 1998-05-12 Micron Technology, Inc. Polysilicon pillar diode for use in a non-volatile memory cell
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5714768A (en) * 1995-10-24 1998-02-03 Energy Conversion Devices, Inc. Second-layer phase change memory array on top of a logic device
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
US5694054A (en) * 1995-11-28 1997-12-02 Energy Conversion Devices, Inc. Integrated drivers for flat panel displays employing chalcogenide logic elements
US5591501A (en) * 1995-12-20 1997-01-07 Energy Conversion Devices, Inc. Optical recording medium having a plurality of discrete phase change data recording points
US6653733B1 (en) 1996-02-23 2003-11-25 Micron Technology, Inc. Conductors in semiconductor devices
US5687112A (en) * 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US5852870A (en) 1996-04-24 1998-12-29 Amkor Technology, Inc. Method of making grid array assembly
US5851882A (en) 1996-05-06 1998-12-22 Micron Technology, Inc. ZPROM manufacture and design and methods for forming thin structures using spacers as an etching mask
US5899724A (en) * 1996-05-09 1999-05-04 International Business Machines Corporation Method for fabricating a titanium resistor
US5761115A (en) 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
JPH1050836A (ja) * 1996-07-31 1998-02-20 Sumitomo Metal Ind Ltd 半導体装置の製造方法
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5825046A (en) * 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
US6087674A (en) * 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5846889A (en) 1997-03-14 1998-12-08 The United States Of America As Represented By The Secretary Of The Navy Infrared transparent selenide glasses
GB2323704B (en) * 1997-03-24 2001-10-24 United Microelectronics Corp Self-aligned unlanded via metallization
US5998066A (en) 1997-05-16 1999-12-07 Aerial Imaging Corporation Gray scale mask and depth pattern transfer technique using inorganic chalcogenide glass
US5952671A (en) * 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) * 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US6051511A (en) 1997-07-31 2000-04-18 Micron Technology, Inc. Method and apparatus for reducing isolation stress in integrated circuits
KR100371102B1 (ko) 1997-12-04 2003-02-06 엑손 테크놀로지스 코포레이션 프로그램형 표면하 군집 금속화 구조체 및 그 제조 방법
US6011757A (en) * 1998-01-27 2000-01-04 Ovshinsky; Stanford R. Optical recording media having increased erasability
US5993365A (en) * 1998-03-26 1999-11-30 Eastman Kodak Company Tool attachment and release device for robotic arms
US6100194A (en) 1998-06-22 2000-08-08 Stmicroelectronics, Inc. Silver metallization by damascene method
US6141241A (en) * 1998-06-23 2000-10-31 Energy Conversion Devices, Inc. Universal memory element with systems employing same and apparatus and method for reading, writing and programming same
US6297170B1 (en) 1998-06-23 2001-10-02 Vlsi Technology, Inc. Sacrificial multilayer anti-reflective coating for mos gate formation
US5912839A (en) * 1998-06-23 1999-06-15 Energy Conversion Devices, Inc. Universal memory element and method of programming same
US6469364B1 (en) 1998-08-31 2002-10-22 Arizona Board Of Regents Programmable interconnection system for electrical circuits
US6388324B2 (en) * 1998-08-31 2002-05-14 Arizona Board Of Regents Self-repairing interconnections for electrical circuits
US6184477B1 (en) * 1998-12-02 2001-02-06 Kyocera Corporation Multi-layer circuit substrate having orthogonal grid ground and power planes
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6825489B2 (en) 2001-04-06 2004-11-30 Axon Technologies Corporation Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same
US6635914B2 (en) * 2000-09-08 2003-10-21 Axon Technologies Corp. Microelectronic programmable device and methods of forming and programming the same
US6177338B1 (en) 1999-02-08 2001-01-23 Taiwan Semiconductor Manufacturing Company Two step barrier process
KR20010110433A (ko) * 1999-02-11 2001-12-13 알란 엠. 포스칸져 프로그래머블 마이크로일렉트로닉 장치 및 그 형성방법과프로그래밍 방법
JP3974284B2 (ja) * 1999-03-18 2007-09-12 株式会社東芝 半導体装置の製造方法
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
US6143604A (en) 1999-06-04 2000-11-07 Taiwan Semiconductor Manufacturing Company Method for fabricating small-size two-step contacts for word-line strapping on dynamic random access memory (DRAM)
US6350679B1 (en) 1999-08-03 2002-02-26 Micron Technology, Inc. Methods of providing an interlevel dielectric layer intermediate different elevation conductive metal layers in the fabrication of integrated circuitry
US6423628B1 (en) 1999-10-22 2002-07-23 Lsi Logic Corporation Method of forming integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines
US6914802B2 (en) * 2000-02-11 2005-07-05 Axon Technologies Corporation Microelectronic photonic structure and device and method of forming the same
US6501111B1 (en) * 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6429064B1 (en) * 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6555860B2 (en) * 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6563164B2 (en) * 2000-09-29 2003-05-13 Ovonyx, Inc. Compositionally modified resistive electrode
US6339544B1 (en) * 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6404665B1 (en) * 2000-09-29 2002-06-11 Intel Corporation Compositionally modified resistive electrode
US6653193B2 (en) * 2000-12-08 2003-11-25 Micron Technology, Inc. Resistance variable device
US6649928B2 (en) 2000-12-13 2003-11-18 Intel Corporation Method to selectively remove one side of a conductive bottom electrode of a phase-change memory cell and structure obtained thereby
US6696355B2 (en) * 2000-12-14 2004-02-24 Ovonyx, Inc. Method to selectively increase the top resistance of the lower programming electrode in a phase-change memory
US6437383B1 (en) * 2000-12-21 2002-08-20 Intel Corporation Dual trench isolation for a phase-change memory cell and method of making same
US6569705B2 (en) * 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6646297B2 (en) 2000-12-26 2003-11-11 Ovonyx, Inc. Lower electrode isolation in a double-wide trench
US6534781B2 (en) * 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6531373B2 (en) * 2000-12-27 2003-03-11 Ovonyx, Inc. Method of forming a phase-change memory cell using silicon on insulator low electrode in charcogenide elements
US6687427B2 (en) * 2000-12-29 2004-02-03 Intel Corporation Optic switch
US6638820B2 (en) 2001-02-08 2003-10-28 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of precluding diffusion of a metal into adjacent chalcogenide material, and chalcogenide comprising devices
US6727192B2 (en) 2001-03-01 2004-04-27 Micron Technology, Inc. Methods of metal doping a chalcogenide material
US6348365B1 (en) 2001-03-02 2002-02-19 Micron Technology, Inc. PCRAM cell manufacturing
US6818481B2 (en) 2001-03-07 2004-11-16 Micron Technology, Inc. Method to manufacture a buried electrode PCRAM cell
US6734455B2 (en) * 2001-03-15 2004-05-11 Micron Technology, Inc. Agglomeration elimination for metal sputter deposition of chalcogenides
US6473332B1 (en) 2001-04-04 2002-10-29 The University Of Houston System Electrically variable multi-state resistance computing
US6724069B2 (en) * 2001-04-05 2004-04-20 International Business Machines Corporation Spin-on cap layer, and semiconductor device containing same
DE60220912T2 (de) 2001-05-07 2008-02-28 Advanced Micro Devices, Inc., Sunnyvale Speichervorrichtung mit einem sich selbst einbauenden polymer und verfahren zur herstellung derselben
US6480438B1 (en) * 2001-06-12 2002-11-12 Ovonyx, Inc. Providing equal cell programming conditions across a large and high density array of phase-change memory cells
US6613604B2 (en) * 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6589714B2 (en) * 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6570784B2 (en) * 2001-06-29 2003-05-27 Ovonyx, Inc. Programming a phase-change material memory
US6462984B1 (en) * 2001-06-29 2002-10-08 Intel Corporation Biasing scheme of floating unselected wordlines and bitlines of a diode-based memory array
US6487113B1 (en) * 2001-06-29 2002-11-26 Ovonyx, Inc. Programming a phase-change memory with slow quench time
US6642102B2 (en) * 2001-06-30 2003-11-04 Intel Corporation Barrier material encapsulation of programmable material
US6605527B2 (en) * 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6514805B2 (en) * 2001-06-30 2003-02-04 Intel Corporation Trench sidewall profile for device isolation
US6673700B2 (en) * 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6511862B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Modified contact for programmable devices
US6951805B2 (en) 2001-08-01 2005-10-04 Micron Technology, Inc. Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry
US6590807B2 (en) * 2001-08-02 2003-07-08 Intel Corporation Method for reading a structural phase-change memory
US6737312B2 (en) * 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6881623B2 (en) * 2001-08-29 2005-04-19 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device
US6955940B2 (en) * 2001-08-29 2005-10-18 Micron Technology, Inc. Method of forming chalcogenide comprising devices
US6784018B2 (en) * 2001-08-29 2004-08-31 Micron Technology, Inc. Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry
US20030047765A1 (en) * 2001-08-30 2003-03-13 Campbell Kristy A. Stoichiometry for chalcogenide glasses useful for memory devices and method of formation
US6709958B2 (en) * 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6646902B2 (en) * 2001-08-30 2003-11-11 Micron Technology, Inc. Method of retaining memory state in a programmable conductor RAM
US6507061B1 (en) * 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
EP2112659A1 (en) * 2001-09-01 2009-10-28 Energy Convertion Devices, Inc. Increased data storage in optical data storage and retrieval systems using blue lasers and/or plasmon lenses
US6545287B2 (en) * 2001-09-07 2003-04-08 Intel Corporation Using selective deposition to form phase-change memory cells
US6586761B2 (en) * 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6690026B2 (en) * 2001-09-28 2004-02-10 Intel Corporation Method of fabricating a three-dimensional array of active media
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6545907B1 (en) * 2001-10-30 2003-04-08 Ovonyx, Inc. Technique and apparatus for performing write operations to a phase change material memory device
US6576921B2 (en) * 2001-11-08 2003-06-10 Intel Corporation Isolating phase change material memory cells
US6815818B2 (en) * 2001-11-19 2004-11-09 Micron Technology, Inc. Electrode structure for use in an integrated circuit
US6791859B2 (en) * 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6625054B2 (en) * 2001-12-28 2003-09-23 Intel Corporation Method and apparatus to program a phase change memory
US6667900B2 (en) 2001-12-28 2003-12-23 Ovonyx, Inc. Method and apparatus to operate a memory cell
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6671710B2 (en) * 2002-05-10 2003-12-30 Energy Conversion Devices, Inc. Methods of computing with digital multistate phase change materials
US6918382B2 (en) * 2002-08-26 2005-07-19 Energy Conversion Devices, Inc. Hydrogen powered scooter

Also Published As

Publication number Publication date
US20040238958A1 (en) 2004-12-02
US7332401B2 (en) 2008-02-19
US6815818B2 (en) 2004-11-09
US20040232551A1 (en) 2004-11-25
JP2005513780A (ja) 2005-05-12
WO2003052815A2 (en) 2003-06-26
EP1780728A2 (en) 2007-05-02
KR20040064280A (ko) 2004-07-16
JP4587670B2 (ja) 2010-11-24
EP1780728A3 (en) 2010-03-03
ATE512442T1 (de) 2011-06-15
EP1446832A2 (en) 2004-08-18
CN1615544A (zh) 2005-05-11
US7115504B2 (en) 2006-10-03
US20030096497A1 (en) 2003-05-22
WO2003052815A3 (en) 2003-11-20
US20040229423A1 (en) 2004-11-18
EP1780728B1 (en) 2011-06-08
CN101005056A (zh) 2007-07-25
EP1446832B1 (en) 2012-08-01
KR100593283B1 (ko) 2006-06-28
US7115992B2 (en) 2006-10-03
AU2002362009A1 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
CN100521147C (zh) 在集成电路中使用的电极结构
US20220157753A1 (en) Semiconductor memory device structure
JP2005513780A5 (zh)
US10818544B2 (en) Method to enhance electrode adhesion stability
KR101662906B1 (ko) 백 엔드 오브 라인 부분에 프로그래머블 인터커넥트를 가진 fpga 장치
US6864529B2 (en) Thin film transistor memory device
CN113544814A (zh) 包括在两种或更多种不同半导体材料内扩散的氢的集成组合件及形成集成组合件的方法
CN104051618A (zh) 电阻式存储器装置与其制造方法
US6784026B2 (en) Microelectronic die including low RC under-layer interconnects
JP2000311957A (ja) 半導体装置
TWI482266B (zh) 與互補金屬氧化物半導體(cmos)相容之無金接點
JPH0247868A (ja) 不揮発性半導体記憶装置
JPH08139193A (ja) 半導体装置
KR20100076252A (ko) 반도체 소자 및 그 제조 방법
KR20080068172A (ko) 반도체 소자의 배선 형성 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090729

Termination date: 20131119