CN100473825C - 基于轴的径向位移进行风力涡轮机转子载荷控制的方法和设备 - Google Patents

基于轴的径向位移进行风力涡轮机转子载荷控制的方法和设备 Download PDF

Info

Publication number
CN100473825C
CN100473825C CNB2004800203725A CN200480020372A CN100473825C CN 100473825 C CN100473825 C CN 100473825C CN B2004800203725 A CNB2004800203725 A CN B2004800203725A CN 200480020372 A CN200480020372 A CN 200480020372A CN 100473825 C CN100473825 C CN 100473825C
Authority
CN
China
Prior art keywords
proximity detectors
wind turbine
axle
load
described axle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2004800203725A
Other languages
English (en)
Other versions
CN1823223A (zh
Inventor
柯克·G·皮尔斯
戴维·L·勒米厄
拉尔夫·W·布莱克莫尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Renovables Espana SL
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1823223A publication Critical patent/CN1823223A/zh
Application granted granted Critical
Publication of CN100473825C publication Critical patent/CN100473825C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/331Mechanical loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/821Displacement measuring means, e.g. inductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

垂直的和水平的风切变、横偏和/或湍流共同作用产生穿过风力涡轮机转子的不对称载荷。合成载荷在叶片中产生弯矩,该弯矩作用到毂并随后作用在主轴上。结果是,主轴可从其静止位置径向位移。利用两个或多个传感器可测量径向位移量。来自传感器的输出信号被用来确定合成转子载荷的大小和/或方向。该信息被用来使得叶片节距发生变化或进行具有相似系统效果的其他动作,以减小不对称载荷并从而减小了各种涡轮部件上的疲劳和载荷。

Description

基于轴的径向位移进行风力涡轮机转子载荷控制的方法和设备
技术领域
本发明涉及风力涡轮机。更具体地,本发明涉及基于轴的径向位移进行的载荷控制。
背景技术
实用级的风力涡轮机(即设计用来为公共电网提供电力的风力涡轮机)可以具有大的转子(例如,30米或更大的直径)。由于垂直或水平风切变、横偏和湍流,产生横跨这些转子的不对称载荷。这些不对称载荷在转子叶片和其他风力涡轮机部件上产生过度载荷和一定数量的疲劳循环。
已经开发了各种技术来减小由转子的不对称载荷导致的疲劳。例如,在1997年10月P.Caselitz等人在爱尔兰都柏林堡(Dublin Castle,Ireland)举办的欧洲风能会议上发表的“通过先进控制方法减少风能转换器上的疲劳载荷(Reduction of Fatigue Loads on Wind Energy Converters by Advanced ControlMethods)”中公开了塔振动的主动阻尼技术。然而,这里公开的技术基于塔的倾斜和摇摆,其仅提供了关于各个风力涡轮机部件上的载荷的一般信息。
基于专利合作条约(PCT)在2001年5月10日公布的、题为“风力涡轮机运行的控制方法和使用所述方法的风力涡轮机(METHOD OFCONTROLLING THE OPERATION OF A WIND TURBINE AND WINDTURBINE FOR USE IN SAID METHOD)”(公开号WO 10/33075,PCT申请号PCT/DK99/00595)的国际申请中公开了一种另外的技术。该PCT申请公开了一种涡轮控制器,该控制器基于作用在叶片上的机械载荷控制风力涡轮机叶片的节距。然而,所述PCT申请中的控制系统很复杂,因为必须不断地评估多个叶片传感器的输出。
发明内容
根据本发明一个方面,提供了一种风力涡轮机,包括:
至少两个面向轴的接近传感器,用以探测所述轴相对于相对不偏移部件的从预定位置的径向位移,所述至少两个接近传感器相对于彼此正交设置;和
控制电路,所述控制电路与所述至少两个接近传感器连接,以响应来自所述至少两个接近传感器的信号减轻一个或多个部件上的导致偏移的载荷。
优选地,所述控制电路通过控制一个或多个风力涡轮机叶片的节距减轻所述轴上的弯曲载荷。
优选地,所述一个或多个部件包括所述风力涡轮机的主轴。
优选地,所述至少两个传感器包括下列之一:两个面向所述轴的接近传感器,其中所述两个接近传感器相对于所述轴的轴线以大约90度间隔开;四个面向所述轴的接近传感器,所述四个接近传感器相对于所述轴的轴线以大约90度间隔开;两对面向所述轴的接近传感器,所述两对接近传感器相对于所述轴的轴线以大约90度间隔开。
根据本发明另一方面,提供了一种方法,包括:
从至少两个面向轴的接近传感器接收指示风力涡轮机的轴的径向位移的信号,所述至少两个接近传感器相对于彼此正交设置;
基于来自所述至少两个接近传感器的所述信号确定作用在所述风力涡轮机上的载荷;和
基于所述确定的载荷使所述风力涡轮机的一个和多个叶片改变节距。
优选地,所述轴包括主轴。
优选地,所述至少两个接近传感器探测所述轴从静止位置的径向位移。
优选地,所述至少两个接近传感器包括两个面向所述轴的接近传感器,其中所述两个接近传感器相对于所述轴的轴线以大约90度间隔开。
优选地,所述至少两个接近传感器包括四个面向所述轴的接近传感器,所述四个接近传感器相对于所述轴的轴线以大约90度间隔开。
优选地,所述至少两个接近传感器包括两对面向所述轴的接近传感器,所述两对接近传感器相对于所述轴的轴线以大约90度间隔开。
附图说明
本发明通过示例的方式示出,而不是以限制的方式示出,在附图中相同的附图标记指代相似的部件。
图1是风力涡轮机部件的一个实施例。
具体实施方式
描述基于轴的径向位移的风力涡轮机载荷的控制方法和设备。在以下的描述中,为了解释的目的,阐述了多个特定的细节以彻底理解本发明。然而,对本领域技术人员显而易见的是,没有这些特定细节也可以实施本发明。在其他情形中,结构和装置以框图形式示出以避免模糊本发明。
垂直和水平风切变、横偏和/或湍流共同作用而产生横跨风力涡轮机转子的不对称载荷。所形成的载荷在叶片上产生弯矩,该弯矩作用到毂并随后作用在低速轴上。结果,主轴从其静止位置产生位移。虽然轴的径向位移可利用一个传感器进行测量,但需要两个或多个大致正交定位的传感器将径向位移解析为控制目的所需的形式。然后,来自传感器的输出信号可被用来确定所产生的转子载荷的大小和/或方向,并通过例如控制叶片节距来调节该载荷或载荷的不对称性。
减小载荷并因此减小各涡轮部件上的载荷和疲劳所需的叶片节距改变可根据传感器产生的输出信号确定。派克斯DQ变换(Parks DQtransformation)、偏差估计方法计算和/或其他控制技术可用来计算每个转子叶片的节距增量以减小总的和/或不对称的转子载荷。可以减小转子叶片和其他涡轮机部件的疲劳和过度载荷。
主轴径向位移的确定可利用传感器得到,所述传感器利用基于声、光、磁、电容或感应场效应的传感器技术测量轴的位移或应变。在一个实施例中,使用接近传感器测量主轴径向位移。在一个实施例中,使用最少两个传感器测量主轴径向位移。如下文中更详细描述的那样,也可以使用额外的和/或不同的传感器。
图1是风力涡轮机部件的一个实施例。除了毂110之外,图1的各部件容纳在塔190上的机舱185中。塔190的高度可基于现有技术中公知的因素和条件选择。在一个实施例中,使用了多个微控制器(例如,在控制板195中)对整个系统进行监测和控制,包括节距和速度调节、高速轴和偏航制动施加(yaw brake application)、偏航(yaw)和泵用马达应用以及故障监测。也可以使用其它分散式或集中式控制结构。
在一个实施例中,控制系统将控制信号提供给可变叶片节距控制器120以控制借助风驱动毂110的叶片(图1中未示出)的节距。在一个实施例中,毂110装设有三个叶片;然而,可使用任何数量的叶片。在一个实施例中,各叶片的节距可通过叶片节距控制器120独立控制。毂110和涡轮机叶片结合以形成风力涡轮机转子。
风力涡轮机的传动系统包括连接到毂110和齿轮箱160的转子轴175,在一个实施例中,使用双路构造(dual path geometry)驱动封装在齿轮箱中的高速轴。高速轴用来驱动发电机150。在一个实施例中,转子扭矩通过联轴器165传递。任何类型的发电机,例如线绕感应发电机可用于图1的风力涡轮机中。
偏航驱动器170和偏航平台180为风力涡轮机提供了偏航定向系统。在一个实施例中,该偏航系统基于从安装在机舱上的风向标155接收的信息由控制系统电操作和控制。在一个实施例中,偏航系统安装在设置在塔190顶部的凸缘上。
如下文更详细的描述,设置有一个或多个接近传感器以探测主轴175从预定静止位置的偏移(deflection)。利用来自传感器的数据,涡轮机控制器(图1中未示出)可确定导致由传感器探测的偏移的叶片上的载荷。利用该信息,涡轮机控制器可使叶片节距改变以减小叶片上的载荷或减小载荷的不对称性(即,使得转子上的载荷更对称)。
下面说明基于传感器测量值控制叶片节距的系统的一个实施例。(各)接近传感器(proximity sensor)响应于风力涡轮机部件例如主轴的位移产生信号。涡轮机控制器连接到(各)传感器以接收(各)传感器产生的信号。涡轮机控制器分析该信号以确定导致偏移的力。
在一个实施例中,涡轮机控制器包括从(各)传感器接收输出信号(模拟信号或数字信号)的处理器。该处理器可以例如是执行指令的通用处理器、硬连线控制电路(a hardwired control circuit)或通用处理器和硬连线电路的组合。响应于从(各)传感器接收的信号,涡轮机控制器产生传送到叶片节距控制器的控制信号。
叶片节距控制器连接到一个或多个控制风力涡轮机叶片节距的叶片旋转驱动器。通过改变叶片的节距,作用在涡轮机上的载荷的大小和/或持续时间可被减小,从而改善风力涡轮机的整体性能。
横跨风力涡轮机转子的不对称载荷会由于垂直和水平风切变、横偏、湍流等而产生。横跨转子的不对称载荷呈现为主轴的偏移或应变。因此,诸如径向位移的轴位移的测量值可用来计算不对称载荷的大小。
所计算的大小可被用来确定相应于风力涡轮机每个转子叶片的叶片节距指令以减小作用在转子轴上并传递到其他涡轮机部件的不对称载荷。坐标变换、偏差估计方法和/或其他控制技术可用来计算相应于各转子叶片的倾斜角(pitch angle)以减小总的不对称转子载荷。可以减小转子叶片和其他涡轮机部件的疲劳和过度载荷。
在一个实施例中,轴的径向位移通过分析来自传感器的信号进行确定,所述传感器基于声、光、磁、涡电流、电容或感应场或其他技术利用传感器技术测量轴的位移。在一个实施例中,使用接近传感器测量相对于低偏移参考框架如主框架或低速轴主轴承壳体的位移。
最少两个传感器被用来测量轴的径向位移;然而,为了冗余信息、传感器诊断目的或其他原因,可使用多于两个的传感器。包括四个传感器的实施例,每个传感器绕着主轴表面的圆周以90度间隔设置。包括绕着主轴以90间隔成对设置的四个传感器的实施例。还包括绕着主轴以90间隔成对设置的四个传感器的备选实施例。在一个实施例中,传感器尽可能远离齿轮箱设置位。在备选实施例中,传感器大致居中地设置在齿轮箱160和主轴承125之间。
下面说明涡轮机控制器的一个实施例。涡轮机控制器包括总线或其他交换信息的通信装置,以及连接到总线以处理信息的处理器。虽然示出的涡轮机控制器具有单个处理器,但涡轮机控制器可包括多个处理器和/或协处理器(co-processor)。涡轮机控制器还包括连接于总线以存储由处理器执行的信息和指令的随机存取存储器(RAM)或其他动态存储装置(称为存储器)。存储器也可用来在由处理器执行指令期间储存临时变量或其他中间信息。
涡轮机控制器也可包括连接于总线、以存储用于处理器的静态信息和指令的只读存储器(ROM)和/或其他静态存储装置。数据存储装置连接到总线以存储信息和指令。(各)输入/输出装置可包括本领域公知的任何装置以将输入数据提供给涡轮机控制器和/或接收来自涡轮机控制器的输出数据。
指令经由远程连接从存储装置如磁盘、只读存储器(ROM)集成电路、CD-ROM、DVD提供给存储器,所述远程连接既可以是有线的也可以是无线的,提供通往一种或多种电子存取介质等的通路。在其他实施例中,硬连线电路可用来代替软件指令或与其结合。因此,指令序列的执行不限于硬件电路和软件指令的任何特定组合。
传感器接口是一种允许涡轮机控制器与风力涡轮机内的一个或多个传感器通信的接口。例如,传感器接口可进行连接以接收来自如上所述探测风力涡轮机部件的偏移的一个或多个传感器的输出信号。传感器接口可以是例如模拟-数字转换器,该转换器将传感器产生的模拟电压信号转换为可被(各)处理器使用的多位数字信号。
然后,(各)处理器可分析这些数据并通过(各)输入/输出装置将数据传输到叶片节距控制器,以使叶片节距控制器改变风力涡轮机的一个或多个叶片的节距。(各)处理器也可以响应来自传感器的信号采取其他行动。例如,(各)处理器可施加经由叶片节距实现的机械或气动制动以停止或减慢毂或旋转轴的旋转。
下面说明响应于轴的径向位移控制风力涡轮机叶片节距的一个实施例。首先,接收来自一个或多个传感器的信号。接收信号的部件(例如处理器、模拟-数字转换器)与传感器连接并在需要时将信号转换为可用的格式。
随后,响应来自传感器的信号,控制电路(例如处理器、硬连线控制电路)利用来自传感器的信号确定一个或多个风力涡轮机部件上的载荷。控制电路可利用本领域公知的任何数学方程在输入数据(例如位移的大小)和相关的载荷数据(例如施加在风力涡轮机叶片上的力)之间进行转换。转子叶片上的、产生所述位移的载荷和载荷的任何不对称性也可以通过控制电路进行确定。
随后,控制电路确定对于载荷条件的响应。例如,响应于涡轮机叶片上增加的载荷,控制电路可确定所述响应应该是改变风力涡轮机的一个或多个叶片的节距。作为另一实例,控制电路可确定所述响应应该是施加制动以停止或减慢毂的旋转。作为另一实例,控制电路可确定所述响应应该是施加某一其他动作,例如诱发补偿性的偏航调节。
随后,控制电路产生启动选定响应的信号。例如,控制电路可产生形式例如为经由各个控制线路传输的数据包或一组控制信号的信号,以使叶片节距控制器改变一个或多个叶片的节距。随后,如果选定的响应未能使得风力涡轮机在可接受的操作范围内操作,该处理过程可按需要重复或甚至停止,致使节距控制没有得到所述的低速轴反馈节距控制算法的好处。
说明书中提及的“一个实施例”或“实施例”意指结合该实施例描述的特定的特征、结构或特性被包括在本发明的至少一个实施例中。在说明书各处出现的词组“在一个实施例中”不一定总是指相同的实施例。
在上述说明书中,已经参考其特定实施例描述了本发明。然而,显而易见的是可以在不脱离本发明更广泛的实质和范围的情况下对其进行各种修改和改变。因此,本说明书和附图被认为是示例性的而不是限制性的。

Claims (10)

1.一种风力涡轮机,包括:
至少两个面向轴的接近传感器,用以探测所述轴相对于相对不偏移部件的从预定位置的径向位移,所述至少两个接近传感器相对于彼此正交设置;和
控制电路,所述控制电路与所述至少两个接近传感器连接,以响应来自所述至少两个接近传感器的信号减轻一个或多个部件上的导致偏移的载荷。
2.如权利要求1所述的风力涡轮机,其中所述控制电路通过控制一个或多个风力涡轮机叶片的节距减轻所述轴上的弯曲载荷。
3.如权利要求1所述的风力涡轮机,其中所述一个或多个部件包括所述风力涡轮机的主轴。
4.如权利要求1所述的风力涡轮机,其中所述至少两个传感器包括下列之一:两个面向所述轴的接近传感器,其中所述两个接近传感器相对于所述轴的轴线以90度间隔开;四个面向所述轴的接近传感器,所述四个接近传感器相对于所述轴的轴线以90度间隔开;两对面向所述轴的接近传感器,所述两对接近传感器相对于所述轴的轴线以90度间隔开。
5.一种方法,包括:
从至少两个面向轴的接近传感器接收指示风力涡轮机的轴的径向位移的信号,所述至少两个接近传感器相对于彼此正交设置;
基于来自所述至少两个接近传感器的所述信号确定作用在所述风力涡轮机上的载荷;和
基于所述确定的载荷使所述风力涡轮机的一个和多个叶片改变节距。
6.如权利要求5所述的方法,其中所述轴包括主轴。
7.如权利要求5所述的方法,其中所述至少两个接近传感器探测所述轴从静止位置的径向位移。
8.如权利要求5所述的方法,其中所述至少两个接近传感器包括两个面向所述轴的接近传感器,其中所述两个接近传感器相对于所述轴的轴线以90度间隔开。
9.如权利要求5所述的方法,其中所述至少两个接近传感器包括四个面向所述轴的接近传感器,所述四个接近传感器相对于所述轴的轴线以90度间隔开。
10.如权利要求5所述的方法,其中所述至少两个接近传感器包括两对面向所述轴的接近传感器,所述两对接近传感器相对于所述轴的轴线以90度间隔开。
CNB2004800203725A 2003-07-15 2004-07-14 基于轴的径向位移进行风力涡轮机转子载荷控制的方法和设备 Active CN100473825C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/620,485 US7004724B2 (en) 2003-02-03 2003-07-15 Method and apparatus for wind turbine rotor load control based on shaft radial displacement
US10/620,485 2003-07-15

Publications (2)

Publication Number Publication Date
CN1823223A CN1823223A (zh) 2006-08-23
CN100473825C true CN100473825C (zh) 2009-04-01

Family

ID=34103166

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800203725A Active CN100473825C (zh) 2003-07-15 2004-07-14 基于轴的径向位移进行风力涡轮机转子载荷控制的方法和设备

Country Status (8)

Country Link
US (1) US7004724B2 (zh)
EP (1) EP1646786B1 (zh)
CN (1) CN100473825C (zh)
AU (1) AU2004259426B2 (zh)
BR (1) BRPI0411953B1 (zh)
DK (1) DK1646786T3 (zh)
ES (1) ES2578277T3 (zh)
WO (1) WO2005010358A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472245A (zh) * 2009-08-07 2012-05-23 爱罗丁工程有限公司 具有用于使负载最小化的装置的风力机
CN102538737A (zh) * 2010-12-16 2012-07-04 通用电气公司 用于测量风力涡轮中的轴偏移的系统和方法
CN102668363A (zh) * 2009-11-30 2012-09-12 杰拉尔德·L·巴伯 具有可调节发电机的风力涡轮机

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBZ20010043A1 (it) * 2001-09-13 2003-03-13 High Technology Invest Bv Generatore elettrico azionato da energia eolica.
US7322794B2 (en) * 2003-02-03 2008-01-29 General Electric Company Method and apparatus for condition-based monitoring of wind turbine components
WO2005015011A1 (ja) * 2003-08-12 2005-02-17 Nabtesco Corporation 風力発電装置のヨー駆動装置に用いる減速機、該減速機を用いた風力発電装置のヨー駆動方法および装置
KR20070026362A (ko) 2004-02-27 2007-03-08 미츠비시 쥬고교 가부시키가이샤 풍력 발전 장치 및 그 액티브 제진 방법 그리고 풍차 타워
ITBZ20040047A1 (it) 2004-09-20 2004-12-20 High Technology Invest Bv Generatore/motore elettrico, in particolare per l'impiego in impianti eolici, impianti a fune o idraulici.
US8535008B2 (en) * 2004-10-18 2013-09-17 Whale-Power Corporation Turbine and compressor employing tubercle leading edge rotor design
US8585363B2 (en) * 2004-12-30 2013-11-19 Vestas Wind Systems A/S Wind turbine comprising a multiplied redundancy control system and method of controlling a wind turbine
US7740448B2 (en) * 2005-09-09 2010-06-22 General Electric Company Pitch control battery backup methods and system
ITBZ20050063A1 (it) * 2005-11-29 2007-05-30 High Technology Invest Bv Pacco di lamierini per generatori e motori elettrici e procedimento per la sua attuazione
ITBZ20050062A1 (it) * 2005-11-29 2007-05-30 High Technology Invest Bv Rotore a magneti permanenti per generatori e motori elettrici
DK1934474T3 (da) * 2005-09-21 2010-06-21 Wilic S A R L Lejepakningsanordning med labyrintpaknings- og skruepakningskombination
DK2461058T3 (en) * 2006-03-10 2015-07-13 Ntn Toyo Bearing Co Ltd Roller bearing, cage segment and main shaft support structure for wind powered generator
US7437264B2 (en) * 2006-06-19 2008-10-14 General Electric Company Methods and apparatus for balancing a rotor
US7581921B2 (en) * 2006-06-19 2009-09-01 General Electric Company Methods and apparatus for controlling rotary machines
EP2044326B1 (en) * 2006-07-06 2018-08-22 Acciona Windpower, S.A. Systems, methods and apparatuses for a wind turbine controller
US7914250B2 (en) * 2006-12-08 2011-03-29 General Electric Company Method and system for estimating life of a gearbox
US7656135B2 (en) * 2007-01-05 2010-02-02 General Electric Company Method and apparatus for controlling rotary machines
US7857599B2 (en) * 2007-01-10 2010-12-28 General Electric Company Method and apparatus for forming wind turbine machines
US7621843B2 (en) * 2007-01-17 2009-11-24 General Electric Company Apparatus for restraining axial movement of a ring gear in a gearbox for a wind turbine
EP1947329A1 (en) * 2007-01-18 2008-07-23 Ecotecnia Energias Renovables S.L. Wind turbine and method for mitigating the asymmetric loads endured by the rotor or the wind turbine
US7918646B2 (en) * 2007-01-22 2011-04-05 Lonestar Inventions LLP High efficiency turbine with variable attack angle foils
ES2303480B1 (es) * 2007-01-26 2009-06-09 GAMESA INNOVATION & TECHNOLOGY, S.L. Multiplicadora sensorizada.
EP1978246A1 (en) * 2007-04-04 2008-10-08 Siemens Aktiengesellschaft Method of reducing an unbalance in a wind turbine rotor and device for performing the method
ES2656542T3 (es) * 2007-08-31 2018-02-27 Vestas Wind Systems A/S Método para el control de al menos un mecanismo de regulación de una turbina eólica, una turbina eólica y un parque eólico
ES2337645B1 (es) 2007-09-14 2011-03-11 GAMESA INNOVATION & TECHNOLOGY, S.L. Union de pala sensorizada.
EP2053241A1 (en) 2007-10-24 2009-04-29 Ecotecnia Energias Renovables S.L. Method for determining fatigue damage in a power train of a wind turbine
DK2060785T3 (en) * 2007-11-15 2019-04-15 Siemens Gamesa Renewable Energy Innovation & Technology SL Sensor control method and system
DE102007059165B4 (de) * 2007-11-26 2010-11-11 Windcomp Gmbh Verfahren und System zur Messung einer Auslenkung eines Hohlbauteils einer Windenergieanlage aus einer Normalposition
US8215905B2 (en) * 2007-12-31 2012-07-10 General Electric Corporation Methods and apparatus for error reduction in rotor loading measurements
WO2009109655A1 (en) * 2008-03-07 2009-09-11 Vestas Wind Systems A/S A control system and a method for controlling a wind turbine
WO2009144061A2 (de) * 2008-04-15 2009-12-03 Alstom Technology Ltd Verfahren zur überwachung einer elektrodynamischen maschine
US8020455B2 (en) * 2008-06-06 2011-09-20 General Electric Company Magnetostrictive sensing systems and methods for encoding
ITMI20081122A1 (it) 2008-06-19 2009-12-20 Rolic Invest Sarl Generatore eolico provvisto di un impianto di raffreddamento
IT1390758B1 (it) 2008-07-23 2011-09-23 Rolic Invest Sarl Generatore eolico
US20100054941A1 (en) * 2008-08-27 2010-03-04 Till Hoffmann Wind tracking system of a wind turbine
US8262354B2 (en) * 2008-08-27 2012-09-11 General Electric Company Method and apparatus for load measurement in a wind turbine
US8353667B2 (en) * 2008-08-27 2013-01-15 General Electric Company Method and apparatus for adjusting a yaw angle of a wind turbine
IT1391939B1 (it) * 2008-11-12 2012-02-02 Rolic Invest Sarl Generatore eolico
IT1391770B1 (it) 2008-11-13 2012-01-27 Rolic Invest Sarl Generatore eolico per la generazione di energia elettrica
US8573937B2 (en) 2008-11-21 2013-11-05 Xzeres Corp. System for providing dynamic pitch control in a wind turbine
WO2010018590A1 (en) * 2008-11-24 2010-02-18 Yogesh Sonar Horizontal axis wind turbine
US7837442B2 (en) * 2008-12-03 2010-11-23 General Electric Company Root sleeve for wind turbine blade
US8823241B2 (en) 2009-01-16 2014-09-02 Boulder Wind Power, Inc. Segmented stator for an axial field device
IT1392804B1 (it) * 2009-01-30 2012-03-23 Rolic Invest Sarl Imballo e metodo di imballo per pale di generatori eolici
IT1393937B1 (it) * 2009-04-09 2012-05-17 Rolic Invest Sarl Aerogeneratore
IT1393707B1 (it) 2009-04-29 2012-05-08 Rolic Invest Sarl Impianto eolico per la generazione di energia elettrica
US8222757B2 (en) * 2009-06-05 2012-07-17 General Electric Company Load identification system and method of assembling the same
IT1394723B1 (it) * 2009-06-10 2012-07-13 Rolic Invest Sarl Impianto eolico per la generazione di energia elettrica e relativo metodo di controllo
IT1395148B1 (it) 2009-08-07 2012-09-05 Rolic Invest Sarl Metodo e apparecchiatura di attivazione di una macchina elettrica e macchina elettrica
US20110044811A1 (en) * 2009-08-20 2011-02-24 Bertolotti Fabio P Wind turbine as wind-direction sensor
US8562300B2 (en) * 2009-09-14 2013-10-22 Hamilton Sundstrand Corporation Wind turbine with high solidity rotor
US8092171B2 (en) * 2009-09-30 2012-01-10 General Electric Company Systems and methods for assembling a pitch assembly for use in a wind turbine
EP2494191B1 (en) * 2009-10-29 2014-05-21 Mervento Oy Wind power station
IT1397081B1 (it) 2009-11-23 2012-12-28 Rolic Invest Sarl Impianto eolico per la generazione di energia elettrica
EP2752577B1 (en) 2010-01-14 2020-04-01 Senvion GmbH Wind turbine rotor blade components and methods of making same
EP2556244B1 (en) 2010-01-14 2014-05-21 Daniel P. Coffey Wind energy conversion device
US10137542B2 (en) 2010-01-14 2018-11-27 Senvion Gmbh Wind turbine rotor blade components and machine for making same
IT1398060B1 (it) 2010-02-04 2013-02-07 Wilic Sarl Impianto e metodo di raffreddamento di un generatore elettrico di un aerogeneratore, e aerogeneratore comprendente tale impianto di raffreddamento
IT1399201B1 (it) 2010-03-30 2013-04-11 Wilic Sarl Aerogeneratore e metodo di rimozione di un cuscinetto da un aerogeneratore
IT1399511B1 (it) 2010-04-22 2013-04-19 Wilic Sarl Generatore elettrico per un aerogeneratore e aerogeneratore equipaggiato con tale generatore elettrico
CN101852174B (zh) * 2010-05-20 2012-01-04 国电联合动力技术有限公司 一种控制风速垂向变化对风力发电机组影响的方法
US9154024B2 (en) 2010-06-02 2015-10-06 Boulder Wind Power, Inc. Systems and methods for improved direct drive generators
US8025485B2 (en) * 2010-06-17 2011-09-27 General Electric Company Wind turbine blade attachment configuration with flattened bolts
US8222760B2 (en) * 2010-06-29 2012-07-17 General Electric Company Method for controlling a proximity sensor of a wind turbine
US8035242B2 (en) 2010-11-09 2011-10-11 General Electric Company Wind turbine farm and method of controlling at least one wind turbine
WO2012118549A1 (en) 2010-12-09 2012-09-07 Northern Power Systems, Inc. Systems for load reduction in a tower of an idled wind-power unit and methods thereof
US20110243730A1 (en) * 2010-12-14 2011-10-06 Eric David Eggleston Systems and methods for determining deflection of a wind turbine shaft
ITMI20110377A1 (it) 2011-03-10 2012-09-11 Wilic Sarl Macchina elettrica rotante per aerogeneratore
ITMI20110375A1 (it) 2011-03-10 2012-09-11 Wilic Sarl Turbina eolica
ITMI20110378A1 (it) 2011-03-10 2012-09-11 Wilic Sarl Macchina elettrica rotante per aerogeneratore
BR112013026393A2 (pt) 2011-04-12 2016-12-27 Boulder Wind Power Inc sistemas e métodos de controle de vão de ar
US8240991B2 (en) 2011-06-23 2012-08-14 General Electric Company Method and system for operating a wind turbine
CN102900600B (zh) * 2011-07-29 2015-09-09 西门子公司 风力发电机状态监测方法
US8227930B2 (en) 2011-08-25 2012-07-24 General Electric Company System and method for adjusting a bending moment of a shaft in a wind turbine
CN102392784A (zh) * 2011-09-22 2012-03-28 苏州能健电气有限公司 变桨系统的plc控制系统
DK2597302T3 (da) * 2011-11-23 2014-05-19 Siemens Ag Bestemmelse af en samlet belastning af en vindmølle i vinkelafsnit
US8317471B2 (en) 2011-11-29 2012-11-27 General Electric Company Method for preventing rotor overspeed of a wind turbine
US8434996B2 (en) 2011-12-06 2013-05-07 General Electric Company System and method for detecting and/or controlling loads in a wind turbine
EP2844870B1 (en) * 2012-05-02 2020-07-01 General Electric Company System and method for stopping the operation of a wind turbine
US8339019B1 (en) 2012-07-30 2012-12-25 Boulder Wind Power, Inc. Structure for an electromagnetic machine having compression and tension members
US9551320B2 (en) 2012-09-27 2017-01-24 General Electric Company Asymmetric load control for torsion fatigue reduction in a wind turbine tower
US8987929B2 (en) 2012-11-01 2015-03-24 General Electric Company System and method for operating wind farm
US8736133B1 (en) 2013-03-14 2014-05-27 Boulder Wind Power, Inc. Methods and apparatus for overlapping windings
US9261077B2 (en) 2013-03-19 2016-02-16 General Electric Company System and method for real-time load control of a wind turbine
DK2806161T3 (en) 2013-05-24 2018-07-23 Alstom Renovables Espana Sl Structural element for a wind turbine
US9518560B2 (en) * 2013-05-28 2016-12-13 Siemens Aktiengesellschaft Method to individually optimize respective pitch angles of a plurality of blades in a wind turbine
US9551321B2 (en) 2013-06-26 2017-01-24 General Electric Company System and method for controlling a wind turbine
US9683553B2 (en) 2013-09-06 2017-06-20 General Electric Company System and method for monitoring wind turbine loading
US9593668B2 (en) 2013-09-10 2017-03-14 General Electric Company Methods and systems for reducing amplitude modulation in wind turbines
US9624905B2 (en) 2013-09-20 2017-04-18 General Electric Company System and method for preventing excessive loading on a wind turbine
US9631606B2 (en) 2014-04-14 2017-04-25 General Electric Company System and method for thrust-speed control of a wind turbine
US10177620B2 (en) 2014-05-05 2019-01-08 Boulder Wind Power, Inc. Methods and apparatus for segmenting a machine
US9970415B2 (en) 2014-06-12 2018-05-15 General Electric Company Method and system for managing loads on a wind turbine
US10100812B2 (en) 2014-06-30 2018-10-16 General Electric Company Methods and systems to operate a wind turbine system
JP6695105B2 (ja) * 2015-07-21 2020-05-20 Ntn株式会社 風力発電装置の状態監視装置
CN105332856A (zh) * 2015-11-02 2016-02-17 浙江运达风电股份有限公司 一种基于测量固定坐标系下主轴载荷的风电机组独立变桨控制方法
US11022100B2 (en) * 2015-12-17 2021-06-01 General Electric Company System and method for controlling wind turbines
US10519929B2 (en) * 2016-11-09 2019-12-31 General Electric Company System and method for minimizing energy loss due to yaw untwist of a wind turbine
EP3343025A1 (en) * 2016-12-30 2018-07-04 Acciona Windpower, S.A. Method of reducing loads acting on a wind turbine yaw system
EP3412908B1 (de) * 2017-06-09 2024-01-24 Nordex Energy SE & Co. KG Windenergieanlage mit system sowie verfahren zur montage und zum betreiben einer windenergieanlage
US10634121B2 (en) 2017-06-15 2020-04-28 General Electric Company Variable rated speed control in partial load operation of a wind turbine
US10539119B2 (en) 2017-07-10 2020-01-21 WindESCo, Inc. System and method for augmenting control of a wind turbine assembly
WO2020216424A1 (en) * 2019-04-26 2020-10-29 Vestas Wind Systems A/S Controller and method for a wind turbine
US11060504B1 (en) 2020-02-07 2021-07-13 General Electric Company Systems and methods for continuous machine learning based control of wind turbines
CN111306012B (zh) * 2020-03-05 2021-03-19 山东中车风电有限公司 风力发电机组传动主轴连接面偏移纠正的方法
CN113494418A (zh) * 2020-04-08 2021-10-12 通用电气可再生能源西班牙有限公司 用于减轻作用于风力涡轮的转子叶片的负载的系统和方法
US11441541B2 (en) * 2020-08-24 2022-09-13 General Electric Renovables Espana, S.L. Main shaft assembly of a wind turbine
EP3961177B1 (en) 2020-08-25 2022-06-15 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A measurement apparatus for determining a bending moment
US11231012B1 (en) 2020-09-22 2022-01-25 General Electric Renovables Espana, S.L. Systems and methods for controlling a wind turbine
CN112284455A (zh) * 2020-10-29 2021-01-29 陕西中科启航科技有限公司 一种高精度叶根载荷及频率测量方法
US11649804B2 (en) 2021-06-07 2023-05-16 General Electric Renovables Espana, S.L. Systems and methods for controlling a wind turbine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298313A (en) 1979-06-18 1981-11-03 Hohenemser Kurt H Horizontal axis wind generator having adaptive cyclic pitch control
US4495423A (en) 1981-09-10 1985-01-22 Felt Products Mfg. Co. Wind energy conversion system
US4420692A (en) 1982-04-02 1983-12-13 United Technologies Corporation Motion responsive wind turbine tower damping
US4435647A (en) 1982-04-02 1984-03-06 United Technologies Corporation Predicted motion wind turbine tower damping
US4613762A (en) 1984-12-11 1986-09-23 The United States Of America As Represented By The Secretary Of Agriculture Output responsive field control for wind-driven alternators and generators
US5140856A (en) * 1990-12-03 1992-08-25 Dynamic Rotor Balancing, Inc. In situ balancing of wind turbines
US5083039B1 (en) 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
DE19731918B4 (de) * 1997-07-25 2005-12-22 Wobben, Aloys, Dipl.-Ing. Windenergieanlage
EP0995904A3 (de) * 1998-10-20 2002-02-06 Tacke Windenergie GmbH Windkraftanlage
US6619918B1 (en) 1999-11-03 2003-09-16 Vestas Wind Systems A/S Method of controlling the operation of a wind turbine and wind turbine for use in said method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472245A (zh) * 2009-08-07 2012-05-23 爱罗丁工程有限公司 具有用于使负载最小化的装置的风力机
CN102472245B (zh) * 2009-08-07 2014-12-03 爱罗丁工程有限公司 具有用于使负载最小化的装置的风力机
CN102668363A (zh) * 2009-11-30 2012-09-12 杰拉尔德·L·巴伯 具有可调节发电机的风力涡轮机
CN102668363B (zh) * 2009-11-30 2015-10-07 杰拉尔德·L·巴伯 具有可调节发电机的风力涡轮机
CN102538737A (zh) * 2010-12-16 2012-07-04 通用电气公司 用于测量风力涡轮中的轴偏移的系统和方法

Also Published As

Publication number Publication date
BRPI0411953B1 (pt) 2023-05-16
AU2004259426B2 (en) 2010-05-13
US20040151575A1 (en) 2004-08-05
DK1646786T3 (en) 2016-07-18
US7004724B2 (en) 2006-02-28
EP1646786A1 (en) 2006-04-19
WO2005010358A1 (en) 2005-02-03
AU2004259426A1 (en) 2005-02-03
EP1646786B1 (en) 2016-05-11
CN1823223A (zh) 2006-08-23
ES2578277T3 (es) 2016-07-22
BRPI0411953A (pt) 2006-08-29

Similar Documents

Publication Publication Date Title
CN100473825C (zh) 基于轴的径向位移进行风力涡轮机转子载荷控制的方法和设备
US7160083B2 (en) Method and apparatus for wind turbine rotor load control
CN101092931B (zh) 用于平衡转子的方法和装置
CN101042111B (zh) 控制转子转速的方法和装置
CN102022265B (zh) 用于确定风力涡轮机的监测设定点极限的系统和方法
CN101713375B (zh) 在电网电力失效和变化风况时控制风轮机的系统和方法
CN101169103B (zh) 用于运行风力涡轮机的方法和设备
US7121795B2 (en) Method and apparatus for reducing rotor blade deflections, loads, and/or peak rotational speed
JP5101689B2 (ja) 風力発電装置及び風力発電装置のヨー旋回制御方法
EP1612413B1 (en) Methods and apparatus for reduction of asymmetric rotor loads in wind turbines
US7095129B2 (en) Methods and apparatus for rotor load control in wind turbines
EP1760311B1 (en) Method and apparatus for condition-based monitoring of wind turbine components
CN100400861C (zh) 风力发电装置及其主动式减振方法以及风车塔架
CN102312778B (zh) 用于监视风力涡轮机的操作的方法和系统
EP2306004A2 (en) Method and apparatus for controlling acoustic emissions of a wind turbine
US10100812B2 (en) Methods and systems to operate a wind turbine system
CN103842645B (zh) 用于操作联接到电网的风力涡轮机的方法和系统
CN101818722A (zh) 风力涡轮机噪声控制
EP3306078A1 (en) Wind farm and wind power generation apparatus
CN101639039B (zh) 风力涡轮机倾斜系统的脉冲转矩控制
WO2012076012A1 (en) Method of managing computing tasks in a wind farm
WO2021197560A1 (en) Controlling the yaw to reduce motor speed
CN114439687A (zh) 一种风电机组对风装置及其对风方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240116

Address after: Barcelona, Spain

Patentee after: Ge renewable energy Spain Ltd.

Address before: New York, United States

Patentee before: General Electric Co.