CA2765815A1 - Treatment of down syndrome gene related diseases by inhibition of natural antisense transcript to a down syndrome gene - Google Patents

Treatment of down syndrome gene related diseases by inhibition of natural antisense transcript to a down syndrome gene Download PDF

Info

Publication number
CA2765815A1
CA2765815A1 CA2765815A CA2765815A CA2765815A1 CA 2765815 A1 CA2765815 A1 CA 2765815A1 CA 2765815 A CA2765815 A CA 2765815A CA 2765815 A CA2765815 A CA 2765815A CA 2765815 A1 CA2765815 A1 CA 2765815A1
Authority
CA
Canada
Prior art keywords
oligonucleotide
down syndrome
antisense
syndrome gene
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2765815A
Other languages
French (fr)
Inventor
Joseph Collard
Olga Khorkova Sherman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Curna Inc
Original Assignee
Opko Curna LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opko Curna LLC filed Critical Opko Curna LLC
Publication of CA2765815A1 publication Critical patent/CA2765815A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • A61P3/14Drugs for disorders of the metabolism for electrolyte homeostasis for calcium homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Abstract

The present invention relates to antisense oligonucleotides that modulate the expression of and/or function of a Down Syndrome Gene, in particular, by targeting natural antisense polynucleotides of a Down Syndrome Gene. The invention also relates to the identification of these antisense oligonucleotides and their use in treating diseases and disorders associated with the expression of Down Syndrome Genes.

Description

TREATMENT OF DOWN SYNDROME GENE RELATED DISEASES BY INHIBITION OF NATURAL
ANTISENSE TRANSCRIPT TO A DOWN SYNDROME GENE
FIELD OF THE INVENTION
[0001 ] The present application claims the priority of U.S. provisional patent application 61/220,747 filed June 26, 2009 and U.S. provisional patent application No. 61/235,752 filed Aug 21, 2009 which arc incorporated herein by reference in their entireties.
[0002] Embodiments of the invention comprise oligonuclcotides modulating expression and/or function of a Down Syndrome Gene and associated molecules.
BACKGROUND
[0003] DNA-RNA and RNA-RNA hybridization are important to many aspects of nucleic acid function including DNA replication, transcription, and translation. Hybridization is also central to a variety of technologies that either detect a particular nucleic acid or alter its expression. Antisense nucleotides, for example, disrupt gene expression by hybridizing to target RNA, thereby interfering with RNA splicing, transcription, translation, and replication.
Antisense DNA has the added feature that DNA-RNA hybrids serve as a substrate for digestion by ribonuclease H, an activity that is present in most cell types. Antisense molecules can be delivered into cells, as is the case for oligodeoxynucleotides (ODNs), or they can be expressed from endogenous genes as RNA molecules. The FDA
recently approved an antisense drug, VITRAVENE7'^' (for treatment of cytomegalovirus retinitis), reflecting that antisense has therapeutic utility.
SUMMARY
[0004] In one embodiment, the invention provides methods for inhibiting the action of a natural antisense transcript by using antisense oligonucleotide(s) targeted to any region of the natural antisense transcript resulting in up-regulation of the corresponding sense gene. It is also contemplated herein that inhibition of the natural antisense transcript can be achieved by siRNA, ribozymcs and small molecules, which are considered to be within the scope of the present invention.
[0005] One embodiment provides a method of modulating function and/or expression of a Down Syndrome Gene polynucleotide in patient cells or tissues in vivo or in vitro comprising contacting said cells or tissues with an antisense oligonucleotide 5 to 30 nucleotides in length wherein said oligonucleotide has at least 50% sequence identity to a reverse complement of a polynucleotide comprising 5 to 30 consecutive nucleotides within nucleotides I to 3814 of SEQ ID SEQ ID NO: 3, l to 633 of SEQ ID NO: 4, 1 to 497 of SEQ ID
SEQ ID NO: 5 and Ito 545 of SEQ ID NO: 6 thereby modulating function and/or expression of the Down Syndrome Gene polynucleotide in patient cells or tissues in vivo or in vitro.
[0006] In another embodiment, an oligonucleotide targets a natural antisense sequence of a Down Syndrome Gene polynucleotide, for example, nucleotides set forth in SEQ ID NO: 3 to 6, and any variants, alleles, homologs, mutants, derivatives, fragments and complementary sequences thereto. Examples of antisense oligonucleotides are set forth as SEQ ID NOS: 7 to 24.
[0007] Another embodiment provides a method of modulating function and/or expression of a Down Syndrome Gene polynuclcotidc in patient cells or tissues in vivo or in vitro comprising contacting said cells or tissues with an antisense oligonucleotide 5 to 30 nucleotides in length wherein said oligonucleotide has at least 50% sequence identity to a reverse complement of the an antisense of the Down Syndrome Gene polynucleotide; thereby modulating function and/or expression of the Down Syndrome Gene polynucleotide in patient cells or tissues in vivo or in vitro.
[0008] Another embodiment provides a method of modulating function and/or expression of a Down Syndrome Gene polynucleotide in patient cells or tissues in vivo or in vitro comprising contacting said cells or tissues with an antisense oligonucleotide 5 to 30 nucleotides in length wherein said oligonucleotide has at least 50% sequence identity to an antisense oligonucleotide to a Down Syndrome Gene antisense polynuclcotide; thereby modulating function and/or expression of the Down Syndrome Gene polynuclcotidc in patient cells or tissues in vivo or in vitro.
[0009] In one embodiment, a composition comprises one or more antisense oligonucleotides which bind to sense and/or antisense Down Syndrome Gene polynucleotides.
[0010] In another embodiment, the oligonucleotides comprise one or more modified or substituted nucleotides.
[001 1 ] In another embodiment, the oligonucleotides comprise one or more modified bonds.
[0012] In yet another embodiment, the modified nucleotides comprise modified bases comprising phosphorothioatc, methylphosphonate, peptide nucleic acids, 2'-O-methyl, fluoro- or carbon, methylene or other locked nucleic acid (LNA) molecules. Preferably, the modified nucleotides are locked nucleic acid molecules, including a-L-LNA.
[0013] In another embodiment, the oligonucleotides are administered to a patient subcutaneously, intramuscularly, intravenously or intraperitoneally.
[0014] In another embodiment, the oligonucleotides are administered in a pharmaceutical composition. A
treatment regimen comprises administering the antisense compounds at least once to patient; however, this treatment can be modified to include multiple doses over a period of time. The treatment can be combined with one or more other types of therapies.
[0015] In another embodiment, the oligonucleotides are encapsulated in a liposome or attached to a carrier molecule (e.g. cholesterol, TAT peptide).
[0016] Other aspects are described infra.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] Figure I is a graph of real time PCR results showing the fold change +
standard deviation in DYRK I A
mRNA after treatment of HcpG2 cells with phosphorothioatc oligonucleotides introduced using Lipofectamine 2000, as compared to control. Real time PCR results show that the levels of DYRK I A mRNA in HepG2 cells are significantly increased 48h after treatment with I of the oliogs designed to DYRKIa antisense Hs. 713879 (CUR-0885-CUR-0890). Bars denoted as CUR-0991, CUR-0892, CUR-0893, CUR-0885, CUR-0889, CUR-0889, CUR-0886, CUR-0888 and CUR-0590 correspond to samples treated with SEQ ID NOS: 7 to 15 respectively.
[0018] Figure 2 is a graph of real time PCR results showing the fold change +
standard deviation in DYRKIA
mRNA after treatment of Vero cells with phosphorothioate oligonuclcotides introduced using Lipofectamine 2000, as compared to control. Real time PCR results show that the levels of DYRKIA
mRNA in Vero cells are significantly increased 48h after treatment with I of the oliogs designed to DYRKIA antisense Hs. 713879. Bar denoted as CUR-0889 correspond to sample treated with SEQ ID NO: 11.
[0019] Figure 3 is a graph of real time PCR results showing the fold change +
standard deviation in DSCR I
mRNA after treatment of HcpG2 cells with phosphorothioatc oligonuclcotides introduced using Lipofectamine 2000, as compared to control. Bars denoted as CUR-0902, CUR-0901, CUR-0900, CUR-0899, CUR-0905, CUR-0906, CUR-0904 and CUR-0907 correspond to samples treated with SEQ ID NOS: 16 to 23 respectively.
[0020] Figure 4 is a graph of real time PCR results showing the fold change +
standard deviation in DSCR I
mRNA after treatment of Vero cells with phosphorothioate oligonucleotides introduced using Lipofectamine 2000, as compared to control. Bars denoted as CUR-0907 and CUR-0904 correspond to samples treated with SEQ ID
NOS: 23 and 22 respectively.
[0021 ] Sequence Listing Description SEQ ID NO: 1: Homo sapiens dual-specificity tyrosinc-(Y)-phosphorylation regulated kinase IA (DYRKIA), transcript variant 3, mRNA (NCBI Accession No.: NM_101395).
SEQ ID NO: 2: Homo sapiens regulator of calcineurin 1 (RCAN I), transcript variant 1, m.RNA (NCB.1 Accession No.: NM 004414).
SEQ ID NOs: 3 to 6 - SEQ ID NO: 3: Natural DYRKIA antisensc sequence (Hs.713879); SEQ ID NO: 4: Natural DYRK I A antisense sequence (Hs.624346); SEQ ID NO: 5: Natural DSCR I
antiscnse sequence (Hs.664668) and SEQ ID NO: 6: Natural DSCRI antisense sequence (DA403464) SEQ ID NOs: 7 to 24: Antisense oligonucleotides. `r' indicates RNA and *
indicates phosphothioate bond.
DETAILED DESCRIPTION
[0022] Several aspects of the invention are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the invention. One having ordinary skill in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details or with other methods. The present invention is not limited by the ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the present invention.

[0023] All genes, gene names, and gene products disclosed herein are intended to correspond to homologs from any species for which the compositions and methods disclosed herein are applicable. Thus, the terms include, but are not limited to genes and gene products from humans and mice. It is understood that when a gene or gene product from a particular species is disclosed, this disclosure is intended to be exemplary only, and is not to be interpreted as a limitation unless the context in which it appears clearly indicates. Thus, for example, for the genes disclosed herein, which in some embodiments relate to mammalian nucleic acid and amino acid sequences are intended to encompass homologous and/or orthologous genes and gene products from other animals including, but not limited to other mammals, fish, amphibians, reptiles, and birds. In embodiments, the genes or nucleic acid sequences arc human.

Definitions [0024] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" arc intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms "including", "includes", "having", "has", "with", or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term "comprising."
[0025] The term "about" or "approximately" means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, "about" can mean within I or more than I standard deviation, per the practice in the art. Alternatively, "about" can mean a range of up to 20 /,, preferably up to 10%, more preferably up to 5%, and more preferably still up to 1% of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated the term "about" meaning within an acceptable error range for the particular value should be assumed.
[0026] As used herein, the teen "mRNA" means the presently known niRNA
transcript(s) of a targeted gene, and any further transcripts which may be elucidated.
[0027] By "antisense oligonucleotides" or "antiscnsc compound" is meant an RNA
or DNA molecule that binds to another RNA or DNA (target RNA, DNA). For example, if it is an RNA
oligonucleotidc it binds to another RNA
target by means of RNA-RNA interactions and alters the activity of the target RNA. An antisense oligonucleotide can upregulate or downrcgulate expression and/or function of a particular polynucleotide. The definition is meant to include any foreign RNA or DNA molecule which is useful from a therapeutic, diagnostic, or other viewpoint.
Such molecules include, for example, antisense RNA or DNA molecules, interference RNA (RNAi), micro RNA, decoy RNA molecules, siRNA, enzymatic RNA, therapeutic editing RNA and agonist and antagonist RNA, antisense oligomeric compounds, antisense oligonucleotides, external guide sequence (EGS) oligonucleotides, alternate splicers, primers, probes, and other oligomcric compounds that hybridize to at least a portion of the target nucleic acid. As such, these compounds may be introduced in the form of single-stranded, double-stranded, partially single-stranded, or circular oligomeric compounds.
[0028] In the context of this invention, the teen "oligonuclcotide" refers to an oligomcr or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. The term "oligonuclcotide", also includes linear or circular oligomcrs of natural and/or modified monomers or linkages, including dcoxyribonuclcosidcs, ribonuclcosidcs, substituted and alpha-anomcric forms thereof, peptide nucleic acids (PNA), locked nucleic acids (LNA), phosphorothioate, methylphosphonate, and the like. Oligonucleotides are capable of specifically binding to a target polynuclcotide by way of a regular pattern of monomer-to-monomer interactions, such as Watson-Crick type of base pairing, Hoogstcen or reverse Hoogstecn types of base pairing, or the like.
[0029] The oligonucleotide may be "chimeric", that is, composed of different regions. In the context of this invention "chimeric" compounds are oligonucleotides, which contain two or more chemical regions, for example, DNA region(s), RNA region(s), PNA region(s) etc. Each chemical region is made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotides compound. These oligonucleotides typically comprise at least one region wherein the oligonucleotide is modified in order to exhibit one or more desired properties. The desired properties of the oligonucleotide include, but are not limited, for example, to increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. Different regions of the oligonuclcotidc may therefore have different properties. The chimeric oligonucleotides of the present invention can be formed as mixed structures of two or more oligonucleotides, modified oligonucleotides, oligonuclcosides and/or oligonucleotide analogs as described above.
[0030] The oligonuclcotide can be composed of regions that can be linked in "register" that is, when the monomers arc linked consecutively, as in native .DNA, or linked via spacers.
The spacers are intended to constitute a covalent "bridge" between the regions and have in cases a length not exceeding about 100 carbon atoms. The spacers may carry different functionalities, for example, having positive or negative charge, carry special nucleic acid binding properties (intercalators, groove binders, toxins, fluorophors etc.), being lipophilic, inducing special secondary structures like, for example, alanine containing peptides that induce alpha-helices.
[0031 ] As used herein "Down Syndrome Genes" are inclusive of all family members, mutants, alleles, fragments, species, coding and noncoding sequences, sense and antisensc polynuclcotidc strands, etc.
[0032] As used herein, the words `Dual specificity tyrosine-phosphorylation-regulated kinase IA', `Dual specificity YAKI-rclated kinase', DYRK, DYRKI, hMNB, HP86, MNB, MNBH and Protein kinase minibrain homolog , are considered the same in the literature and arc used interchangeably in the present application.
[0033] As used herein, the words 'DSCRI, Down syndrome critical region gene I.
RCAN I regulator of calcineurin 1, Adapt78, ADAPT78, Calcipressin-l, CSPI, DSCI, MCIPI, Myocyte-enriched calcineurin-interacting protein 1, RCN I and Regulator of calcincurin I arc considered the same in the literature and arc used interchangeably in the present application.
[0034] As used herein, the term "oligonucleotide specific for" or "oligonucleotidc which targets" refers to an oligonucleotide having a sequence (i) capable of forming a stable complex with a portion of the targeted gene, or (ii) capable of forming a stable duplex with a portion of a mRNA transcript of the targeted gene. Stability of the complexes and duplexes can be determined by theoretical calculations and/or in vitro assays. Exemplary assays for determining stability of hybridization complexes and duplexes are described in the Examples below.
[0035] As used herein, the term "target nucleic acid" encompasses DNA, RNA
(comprising prcmRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA, coding, noncoding sequences, sense or antisense polynucleotides. The specific hybridization of an oligomeric compound with its target nucleic acid interferes with the normal function of the nucleic acid. This modulation of function of a target nucleic acid by compounds, which specifically hybridize to it, is generally referred to as "antisense". The functions of DNA to be interfered include, for example, replication and transcription. The functions of RNA to be interfered, include all vital functions such as, for example, translocation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA. The overall effect of such interference with target nucleic acid function is modulation of the expression of an encoded product or oligonucleotides.
[0036] RNA interference "RNAi" is mediated by double stranded RNA (dsRNA) molecules that have sequence-specific homology to their "target" nucleic acid sequences. In certain embodiments of the present invention, the mediators are 5-25 nucleotide "small interfering" RNA duplexes (siRNAs). The siRNAs are derived from the processing of dsRNA by an RNase enzyme known as Dicer. siRNA duplex products are recruited into a multi-protein siRNA complex tented RISC (RNA Induced Silencing Complex). Without wishing to be bound by any particular theory, a RISC is then believed to be guided to a target nucleic acid (suitably mRNA), where the siRNA
duplex interacts in a sequence-specific way to mediate cleavage in a catalytic fashion. Small interfering RNAs that can be used in accordance with the present invention can be synthesized and used according to procedures that are well known in the art and that will be familiar to the ordinarily skilled artisan. Small interfering RNAs for use in the methods of the present invention suitably comprise between about I to about 50 nucleotides (nt). In examples of non limiting embodiments, siRNAs can comprise about 5 to about 40 nt, about 5 to about 30 nt, about 10 to about 30 at, about 15 to about 25 nt, or about 20-25 nucleotides.
[0037] Selection of appropriate oligonucleotides is facilitated by using computer programs that automatically align nucleic acid sequences and indicate regions of identity or homology.
Such programs arc used to compare nucleic acid sequences obtained, for example, by searching databases such as GenBank or by sequencing PCR
products. Comparison of nucleic acid sequences from a range of species allows the selection of nucleic acid sequences that display an appropriate degree of identity between species. In the case of genes that have not been sequenced, Southern blots are performed to allow a determination of the degree of identity between genes in target species and other species. By performing Southern blots at varying degrees of stringency, as is well known in the art, it is possible to obtain an approximate measure of identity. These procedures allow the selection of oligonucleotides that exhibit a high degree of complcmentarity to target nucleic acid sequences in a subject to be controlled and a lower degree of complementarity to corresponding nucleic acid sequences in other species. One skilled in the art will realize that there is considerable latitude in selecting appropriate regions of genes for use in the present invention.
[0038] By "enzymatic RNA" is meant an RNA molecule with enzymatic activity.
Enzymatic nucleic acids (ribozymcs) act by first binding to a target RNA. Such binding occurs through the target binding portion of an enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through base pairing, and once bound to the correct site, acts enzymatically to cut the target RNA.
[0039] By "decoy RNA" is meant an RNA molecule that mimics the natural binding domain for a ligand. The decoy RNA therefore competes with natural binding target for the binding of a specific ligand. For example, it has been shown that over-expression of HIV trans-activation response (TAR) RNA can act as a "decoy" and efficiently binds HIV tat protein, thereby preventing it from binding to TAR sequences encoded in the HIV RNA. This is meant to be a specific example. Those in the art will recognize that this is but one example, and other embodiments can be readily generated using techniques generally known in the art.
[0040] As used herein, the term "monomers" typically indicates monomers linked by phosphodiester bonds or analogs thereof to form oligonucleotides ranging in size from a few monomeric units, e.g., from about 3-4, to about several hundreds of monomeric units. Analogs of phosphodiester linkages include: phosphorothioate, phosphorodithioate, methylphosphomates, phosphoroselenoatc, phosphoramidate, and the like, as more fully described below.
[0041] The term "nucleotide" covers naturally occurring nucleotides as well as nonnaturally occurring nucleotides. It should be clear to the person skilled in the art that various nucleotides which previously have been considered "non-naturally occurring" have subsequently been found in nature.
Thus, "nucleotides" includes not only the known purine and pyrimidine heterocycles-containing molecules, but also heterocyclic analogues and tautomers thereof. Illustrative examples of other types of nucleotides are molecules containing adenine, guanine, thymine, cytosine, uracil, purine, xanthine, diaminopurine, 8-oxo- N6-methyladenine, 7-dcazaxanthine, 7-deazaguanine, N4,N4-ethanocytosin, N6,N6-ethano-2,6- diaminopurine, 5-methylcytosine, 5-(C3-C6)-alkynylcytosine. 5-fluorouracil, 5-bromouracil, pscudoisocytosinc, 2-hydroxy-5-methyl-4-triazolopyridin, isocytosine, isoguanin, inosine and the "non-naturally occurring" nucleotides described in U.S. Pat No. 5,432,272.
The term "nucleotide" is intended to cover every and all of these examples as well as analogues and tautomers thereof. Especially interesting nucleotides are those containing adenine, guanine, thymine, cytosine, and uracil, which are considered as the naturally occurring nucleotides in relation to therapeutic and diagnostic application in humans. Nucleotides include the natural 2'-deoxy and 2'- hydroxyl sugars, e.g., as described in Kornberg and Baker, DNA Replication, 2nd Ed. (Freeman, San Francisco, 1992) as well as their analogs.
[0042] "Analogs" in reference to nucleotides includes synthetic nucleotides having modified base moieties and/or modified sugar moieties. Such analogs include synthetic nucleotides designed to enhance binding properties, e.g., duplex or triplex stability, specificity, or the like.
[0043] As used herein, "hybridization" means the pairing of substantially complementary strands of oligomeric compounds. One mechanism of pairing involves hydrogen bonding, which may be Watson-Crick, Hoogstecn or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases (nucleotides) of the strands of oligomeric compounds. For example, adenine and thyminc are complementary nucleotides which pair through the formation of hydrogen bonds. Hybridization can occur under varying circumstances.
[0044] An antiscnsc compound is "specifically hybridizable" when binding of the compound to the target nucleic acid interferes with the normal function of the target nucleic acid to cause a modulation of function and/or activity, and there is a sufficient degree of complementarity to avoid non-specific binding of the antiscnsc compound to non-target nucleic acid sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and under conditions in which assays are perforated in the case of in vitro assays.
[0045] As used herein, the phrase "stringent hybridization conditions" or "stringent conditions" refers to conditions under which a compound of the invention will hybridize to its target sequence, but to a minimal number of other sequences. Stringent conditions arc sequence-dependent and will be different in different circumstances and in the context of this invention, "stringent conditions" under which oligomeric compounds hybridize to a target sequence are determined by the nature and composition of the oligomcric compounds and the assays in which they are being investigated. In general, stringent hybridization conditions comprise low concentrations (<O.15M) of salts with inorganic cations such as Na++ or K++- (i.e., low ionic strength), temperature higher than 20 C - 25 C. below the Tm of the oligomeric compound: target sequence complex, and the presence of denaturants such as formamide, dimethylfonnamide, dimethyl sulfoxide, or the detergent sodium dodecyl sulfate (SDS). For example, the hybridization rate decreases 1.1% for each 1% formamide. An example of a high stringency hybridization condition is 0. I X sodium chloride-sodium citrate buffer (SSC)/0.1 % (w/v) SDS at 60 C. for 30 minutes.
[0046] "Complementary," as used herein; refers to the capacity for precise pairing between two nucleotides on one or two oligomeric strands. For example, if a nucleobase at a certain position of an antisense compound is capable of hydrogen bonding with a nucleobase at a certain position of a target nucleic acid, said target nucleic acid being a DNA, RNA, or oligonucleotide molecule, then the position of hydrogen bonding between the oligonucleotide and the target nucleic acid is considered to be a complementary position. The oligomeric compound and the further DNA, RNA, or oligonucleotide molecule are complementary to each other when a sufficient number of complementary positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, "specifically hybridizable" and "complementary"
are terms which are used to indicate a sufficient degree of precise pairing or complementarity over a sufficient number of nucleotides such that stable and specific binding occurs between the oligomeric compound and a target nucleic acid.
[0047] It is understood in the art that the sequence of an oligomeric compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. Moreover, an oligonucleotide may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure, mismatch or hairpin structure). The oligomeric compounds of the present invention comprise at least about 70%, or at least about 75%, or at least about 80%, or at least about 85%. or at least about 90%, or at least about 95%, or at least about 99% sequence complementarity to a target region within the target nucleic acid sequence to which they are targeted. For example, an antisense compound in which 18 of 20 nucleotides of the antiscnsc compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining noncomplementary nucleotides may be clustered or interspersed with complementary nucleotides and need not be contiguous to each other or to complementary nucleotides. As such, an antisense compound which is 18 nucleotides in length having 4 (four) noncomplementary nucleotides which are flanked by two regions of complete complementarity with the target nucleic acid would have 77.8% overall complementarily with the target nucleic acid and would thus fall within the scope of the present invention. Percent complementarity of an antiscnsc compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowcrBLAST
programs known in the art. Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv App!. Math., (1981) 2, 482-489).
[0048] As used herein, the term "Thermal Melting Point (Tm)" refers to the temperature, under defined ionic strength, pH, and nucleic acid concentration, at which 50% of the oligonuclcotides complementary to the target sequence hybridize to the target sequence at equilibrium. Typically, stringent conditions will be those in which the salt concentration is at least about 0.01 to 1.0 M Na ion concentration (or other salts) at pH TO to 8.3 and the temperature is at least about 30 C for short oligonucleotides (e.g., 10 to 50 nucleotide). Stringent conditions may also be achieved with the addition of destabilizing agents such as fonnamide.
[0049] As used herein, "modulation" means either an increase (stimulation) or a decrease (inhibition) in the expression of a gene.
[0050] The term "variant," when used in the context of a polynucleotidc sequence, may encompass a polynucleotide sequence related to a wild type gene. This definition may also include, for example, "allelic,"
"splice," "species," or "polymorphic" variants. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. Of particular utility in the invention are variants of wild type gene products.
Variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypcptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes that give rise to variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
[0051 ] The resulting polypeptides generally will have significant amino acid identity relative to each other. A
polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs,) or single base mutations in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population with a propensity for a disease state, that is susceptibility versus resistance.
[0052] Derivative polynucleotides include nucleic acids subjected to chemical modification, for example, replacement of hydrogen by an alkyl, acyl, or amino group. Derivatives, e.g., derivative oligonucleotides, may comprise non-naturally-occumng portions, such as altered sugar moieties or inter-sugar linkages. Exemplary among these arc phosphorothioate and other sulfur containing species which are known in the art. Derivative nucleic acids may also contain labels, including radionucleotides, enzymes, fluorescent agents, chcntilumincscent agents, chromogcnic agents, substrates, cofactors, inhibitors, magnetic particles, and the like.
[0053] A "derivative" polypeptide or peptide is one that is modified, for example, by glycosylation, pegylation, phosphorylation, sulfation, reduction/alkylation, acylation, chemical coupling, or mild formalin treatment. A
derivative may also be modified to contain a detectable label, either directly or indirectly, including, but not limited to, a radioisotope, fluorescent, and enzyme label.
[0054] As used herein, the term "animal" or "patient" is meant to include, for example, humans, sheep, elks, deer, niule deer, minks, mammals, monkeys, horses, cattle, pigs, goats, dogs, cats, rats, mice, birds, chicken, reptiles, fish, insects and arachnids.
[0055] "Mammal" covers warm blooded mammals that arc typically under medical care (e.g., humans and domesticated animals). Examples include feline, canine, equine, bovine, and human, as well as just human.
[0056] "Treating" or "treatment" covers the treatment of a disease-state in a mammal, and includes: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) inhibiting the disease-state, e.g., arresting it development; and/or (c) relieving the disease-state, e.g., causing regression of the disease state until a desired endpoint is reached. Treating also includes the amelioration of a symptom of a disease (e.g., lessen the pain or discomfort), wherein such amelioration may or may not be directly affecting the disease (e.g., cause, transmission, expression, etc.).
[0057] As used herein, "cancer" refers to all types of cancer or neoplasm or malignant tumors found in mammals, including, but not limited to: leukemias, lymphomas, melanomas, carcinomas and sarcomas. The cancer manifests itself as a "tumor" or tissue comprising malignant cells of the cancer.
Examples of tumors include sarcomas and carcinomas such as, but not limited to: fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, Ieiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, scminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, and retinoblastoma. Additional cancers which can be treated by the disclosed composition according to the invention include but not limited to, for example, Hodgkin's Disease, Non-Hodgkin's Lymphoma, multiple myeloma, neuroblastoma, breast cancer, ovarian cancer, lung cancer, rhabdomyosarcoma, primary thrombocytosis, primary macroglobulinemia, small-cell lung tumors, primary brain tumors, stomach cancer, colon cancer, malignant pancreatic insulanoma, malignant carcinoid, urinary bladder cancer, premalignant skin lesions, testicular cancer, lymphomas, thyroid cancer, neuroblastoma, esophageal cancer, genitourinary tract cancer, malignant hypercalcemia, cervical cancer, endometrial cancer, adrenal cortical cancer, and prostate cancer.
[0058] "Neurological disease or disorder" refers to any disease or disorder of the nervous system and/or visual system. "Neurological disease or disorder" include disease or disorders that involve the central nervous system (brain, brainstem and cerebellum), the peripheral nervous system (including cranial nerves), and the autonomic nervous system (parts of which are located in both central and peripheral nervous system). Examples of neurological disorders include but are not limited to, headache, stupor and coma, dementia, seizure, sleep disorders, trauma, infections, neoplasms, ncuroopthalmology, movement disorders, demyelinating diseases, spinal cord disorders, and disorders of peripheral nerves, muscle and neuromuscular junctions. Addiction and mental illness, include, but are not limited to, bipolar disorder and schizophrenia, are also included in the definition of neurological disorder. The following is a list of several neurological disorders, symptoms, signs and syndromes that can be treated using compositions and methods according to the present invention: acquired epileptiform aphasia;
acute disseminated encephalomyelitis; adrenoleukodystrophy: age-related macular degeneration; agenesis of the corpus callosum; agnosia; Aicardi syndrome; Alexander disease; Alpers' disease; alternating hemiplegia; Vascular dementia; amyotrophic lateral sclerosis; anenccphaly; Angelman syndrome;
angiomatosis; anoxia; aphasia;
apraxia; arachnoid cysts; arachnoiditis; Anronl-Chiari malformation;
arteriovenous malformation; Asperger syndrome; ataxia telegiectasia; attention deficit hyperactivity disorder;
autism; autonomic dysfunction; back pain;
Batten disease; Bchcet's disease; Bell's palsy; benign essential blepharospasm; benign focal; amyotrophy; benign intracranial hypertension: Binswangei's disease; blepharospasm; Bloch Sulzberger syndrome; brachial plexus injury; brain abscess; brain injury; brain tumors (including glioblastoma multiforme); spinal tumor; Brown-Sequard syndrome; Canavan disease; carpal tunnel syndrome; causalgia; central pain syndrome; central pontine myclinolysis; cephalic disorder; cerebral aneurysm; cerebral arteriosclerosis;
cerebral atrophy; cerebral gigantism;
cerebral palsy; Charcot-Marie-Tooth disease: chemotherapy-induced neuropathy and neuropathic pain; Chiari malformation; chorea; chronic inflammatory demyclinating polyneu.ropathy;
chronic pain; chronic regional pain syndrome; Coffin Lowry syndrome; coma, including persistent vegetative state;
congenital facial diplegia;
corticobasal degeneration; cranial arteritis; craniosynostosis; Creutzfeldt-Jakob disease; cumulative trauma disorders; Cushing 's syndrome; cytomegalic inclusion body disease;
cytomegalovirus infection; dancing eyes-dancing feet syndrome; DandyWalkcr syndrome; Dawson disease; De Morsier's syndrome; Dcjcrine-Klumkc palsy; dementia; dermatomyositis; diabetic neuropathy; diffuse sclerosis;
dysautonomia; dysgraphia; dyslexia;
dystonias; early infantile epileptic encephalopatlry; empty sella syndrome;
encephalitis; cncephalocelcs;
cnccphalotrigcminal angiomatosis; epilepsy; Erb's palsy; essential tremor;
Fabry's disease; Fahr's syndrome;
fainting; familial spastic paralysis; febrile seizures; Fisher syndrome;
Friedreich's ataxia; fronto-temporal dementia and other "tauopathies"; Gaucher's disease; Gerstmann's syndrome; giant cell arteritis; giant cell inclusion disease;
globoid cell leukodystrophy; Guillain-Barre syndrome; HTLV-I-associated myelopathy; Hallervorden-Spatz disease; head injury; headache; hemifacial spasm; hereditary spastic paraplegia; hcrcdopathia atactic a polyncuritiformis; herpes zostcr oticus; herpes zoster; Hirayama syndrome;
HiVassociated dementia and neuropathy (also neurological manifestations of AIDS); holoproscncephaly;
Huntington's disease and other polyglutaminc repeat diseases; hydrancncephaly; hydrocephalus;
hypcreortisolism; hypoxia; immune-mediated encephalomyelitis; inclusion body myositis; incontinentia pigment]; infantile phytanic acid storage disease;
infantile refsum disease; infantile spasms; inflammatory myopathy;
intracranial cyst; intracranial hypertension;
Joubert syndrome; Kcams-Sayrc syndrome; Kennedy disease Kinsboume syndrome;
Klippcl Feil syndrome;
Krabbe disease; Kugclberg-Welandcr disease; kuru; Lafora disease; Lambert-Eaton myasthenic syndrome;
Landau-Kleffner syndrome; lateral medullary (Wallenberg) syndrome; learning disabilities; Leigh's disease;
Lennox-Gustaut syndrome; Lesch-Nyhan syndrome; leukodystrophy; Levy body dementia; Lissencephaly;
locked-in syndrome; Lou Gchrig's disease (i.e.. motor neuron disease or amyotrophic lateral sclerosis); lumbar disc disease; Lyme disease--neurological sequelae; Machado-Joseph disease;
macrencephaly; megalencephaly;
Melkersson-Rosenthal syndrome; Menieres disease; meningitis; Menkes disease;
metachromatic Icukodystrophy;
microcephaly; migraine; Miller Fisher syndrome; mini-strokes; mitochondrial myopathies; Mobius syndrome;
monomelic amyotrophy; motor neuron disease; Moyamoya disease;
mucopolysaccharidoses; milt]-infarct dementia; multifocal motor neuropathy; multiple sclerosis and other demyelinating disorders; multiple system atrophy with postural hypotension; p muscular dystrophy; myasthenia gravis;
myelinoclastic diffuse sclerosis;
myoclonic encephalopathy of infants; myoclonus; myopathy; myotonia congenital;
narcolepsy; neurofibromatosis;
ncurolcptic malignant syndrome; neurological manifestations of AIDS;
neurological scquclac oflupus;
ncuromyotonia; neuronal eeroid lipofuscinosis; neuronal migration disorders;
Nicmann-Pick disease; O'Sullivan-McLeod syndrome, occipital neuralgia; occult spinal dysraphism sequence;
Ohtahara syndrome;
olivopontoccrebcllar atrophy; opsoclonus myoclonus; optic neuritis;
orthostatic hypotension; overuse syndrome;
paresthesia; Neurodegenerative disease or disorder (Parkinson's disease, Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), dementia, multiple sclerosis and other diseases and disorders associated with neuronal cell death); paramyotonia congenital; parancoplastic diseases;
paroxysmal attacks; Pany Romberg syndrome; Pelizaeus-Mcrzbaehcr disease; periodic paralyses; peripheral neuropathy; painful neuropathy and neuropathic pain; persistent vegetative state; pervasive developmental disorders; photic sneeze reflex; phytanic acid storage disease; Pick's disease; pinched nerve; pituitary tumors;
polymyositis; porencephaly; post-polio syndrome, postherpetic neuralgia; postinfectious encephalomyelitis; postural hypotension; Prader- Willi syndrome;
primary lateral sclerosis; priors diseases;, progressive hemifacial atrophy;
progressive multifocalleukoenccphalopathy; progressive sclerosing poliodystrophy;
progressive supranuclear palsy;
pseudotumor cerebri; Ramsay-Hunt syndrome (types I and 11); Rasmussen's encephalitis; reflex sympathetic dystrophy syndrome; Refsum disease; repetitive motion disorders; repetitive stress injuries; restless legs syndrome;
retrovirus-associated myelopathy; Rett syndrome; Reye's syndrome; Saint Vitus dance, Sandhoff disease;
Schilder's disease; schizcncephaly; septo-optic dysplasia, shaken baby syndrome; shingles; Shy-Drager syndrome;
Sjogren's syndrome: sleep apnca; Soto's syndrome; spasticity: spina bifida;
spinal cord injury; spinal cord tumors;
spinal muscular atrophy; Stiff-Person syndrome; stroke; Sturge-Weber syndrome;
subacute sclerosing panenccphatitis, subcortical arteriosclerotic enccphalopathy; Sydenham chorea;
syncope; syringomyclia; tardive dyskinesia; Tay-Sachs disease; temporal arteritis; tethered spinal cord syndrome; Thomsen disease; thoracic outlet syndrome; Tic Douloureux; Todd's paralysis; Tourette syndrome; transient ischemic attack; transmissible spongiform encephalopathies; transverse myelitis; traumatic brain injury;
tremor; trigeminal neuralgia; tropical spastic paraparesis; tuberous sclerosis; vascular dementia (multi-infarct dementia); vasculitis including temporal arteritis; Von Hippel-Lindau disease; Wallenberg's syndrome; Werdnig-Hoffman disease; West syndrome, whiplash; Williams syndrome; Wildon's disease; and Zellweger syndrome.
[0059] An "Inflammation" refers to systemic inflammatory conditions and conditions associated locally with migration and attraction of monocytes, leukocytes and/or neutrophils. Examples of inflammation include, but are not limited to, Inflammation resulting from infection with pathogenic organisms (including gram-positive bacteria, gram-negative bacteria, viruses, fungi, and parasites such as protozoa and helminths), transplant rejection (including rejection of solid organs such as kidney, liver, heart, lung or cornea, as well as rejection of bone marrow transplants including graft-versus-host disease (GVHD)), or from localized chronic or acute autoimmune or allergic reactions. Autoimmune diseases include acute glomerulonephritis;
rheumatoid or reactive arthritis; chronic glomeruloncphritis; inflammatory bowel diseases such as Crohn's disease, ulcerative colitis and necrotizing entcrocolitis; granulocyte transfusion associated syndromes; inflammatory dermatoscs such as contact dermatitis, atopic dermatitis, psoriasis; systemic lupus crythematosus (SLE), autoimmune thyroiditis, multiple sclerosis, and some forms of diabetes, or any other autoimmune state where attack by the subject's own immune system results in pathologic tissue destruction. Allergic reactions include allergic asthma, chronic bronchitis, acute and delayed hypersensitivity. Systemic inflammatory disease states include inflammation associated with trauma, bums, reperfusion following ischemic events (e.g. thrombotic events in heart, brain, intestines or peripheral vasculature, including myocardial infarction and stroke), sepsis, ARDS or multiple organ dysfunction syndrome. Inflammatory cell recruitment also occurs in atherosclerotic plaques. Inflammation includes, but is not limited to, Non-Hodgkin's lymphoma, Wegener's granulomatosis, Hashimoto's thyroiditis, hepatocellular carcinoma, thymus atrophy, chronic pancreatitis, rheumatoid arthritis, reactive lymphoid hyperplasia, osteoarthritis, ulcerative colitis, papillary carcinoma, Crohn's disease, ulcerative colitis, acute cholecystitis, chronic cholecystitis, cirrhosis, chronic sialadenitis, peritonitis, acute pancreatitis, chronic pancreatitis, chronic Gastritis, adenomyosis, cndometriosis, acute cervicitis, chronic cervicitis, lymphoid hyperplasia, multiple sclerosis, hypertrophy secondary to idiopathic thrombocytopenic purpura, primary IgA nephropathy, systemic lupus erythematosus, psoriasis, pulmonary emphysema, chronic pyelonephritis, and chronic cystitis.
[0060] A cardiovascular disease or disorder includes those disorders that can either cause ischemia or are caused by reperfusion of the heart. Examples include, but are not limited to, atherosclerosis, coronary artery disease, granulomatous myocarditis, chronic rrryocarditis (non-granulomatous), primary hypcrtrophic cardiomyopathy, peripheral artery disease (PAD), stroke, angina pectoris, myocardial infarction, cardiovascular tissue damage caused by cardiac arrest, cardiovascular tissue damage caused by cardiac bypass, cardiogenic shock, and related conditions that would be known by those of ordinary skill in the art or which involve dysfunction of or tissue damage to the heart or vasculaturc, especially, but not limited to, tissue damage related to a Down Syndrome Gene activation. CVS diseases include, but are not limited to, atherosclerosis, granulomatous myocarditis, myocardial infarction, myocardial fibrosis secondary to valvular heart disease, myocardial fibrosis without infarction, primary hypertrophic cardiomyopathy, and chronic myocarditis (non-granulomatous).
[0061] Examples of diseases or disorders associated with oxidative stress include but not limited to atherosclerosis, Parkinson's disease, heart failure, myocardial infarction, Alzheimer's disease, chronic fatigue syndrome Amyotrophic Lateral Sclerosis (ALS), chronic obstructive pulmonary disease (COPD), multiple sclerosis, hepatic diseases or disorders, gastrointestinal diseases or disorders, diabetes, cancer, autoimmunity, immune related diseases or disorders, neurological diseases or disorders, neurodegencrative diseases or disorders, nerve repair and paralysis, ncuroendocrine differentiation, inflammatory diseases, muscular diseases or disorders, diseases or disorders associated with infectious organisms, and the like.
Palvnucleoiide and Oligonuclenlide Compposwons and Molecules 7biets [0062] In one embodiment, the targets comprise nucleic acid sequences of a Down Syndrome Gene, including without limitation sense and/or antisense noncoding and/or coding sequences associated with a Down Syndrome Gene.
[0063] in one embodiment, the targets comprise nucleic acid sequences of DYRK
I, including without limitation sense and/or antisense noncoding and/or coding sequences associated with DYRKI
gene.
[0064] In one embodiment, the targets comprise nucleic acid sequences of DSCRI, including without limitation sense and/or antisense noncoding and/or coding sequences associated with DSCR
I gene.
[0065] DYRKIA (dual-specificity tyrosine phosphorylation-regulated kinase IA) is a serine/threonine kinase that autophosphorylates on tyrosine residues. The protein contains a nuclear localization signal and has been localized to the splicing-factor compartment (nuclear speckles), but it is also present in the cytoplasm. DYRKIA displays a broad substrate spectrum including transcription factors, splicing factors and synaptic proteins. It is ubiquitously, though not evenly, expressed in all tissues and cells, with high levels in embryonic and adult brain. The human DYRKIA gene is considered a candidate gene for several Down syndrome characteristics, including mental retardation, due to its localization in the Down syndrome critical region on chromosome 21 and its role in brain function. Notably, fly mutants of the Drosophila ortholog of DYRKIA, Minibrain, have a reduced number of neurons in the central nervous system. Mice heterozygous for a disrupted allele of Dyrkla exhibit decreased viability, growth delay and behavioral alterations.
[0066] DYRKAa encodes a member of the Dual-specificity tyrosine phosphorylationregulated kinase (DYRK) family. This member contains a nuclear targeting signal sequence, a protein kinase domain, a leucine zipper motif, and a highly conservative 13-consecutive-histidine repeat. It catalyzes its autophosphorylation on serine/threonine and tyrosine residues and may playa significant role in a signaling pathway regulating cell proliferation and may be involved in brain development. This gene is a homolog of Drosophila mnb (minibrain) gene and rat Dyrk gene.
DYRK I is localized in the Down syndrome critical region of chromosome 21, and is considered to be a strong candidate gene for learning defects associated with Down syndrome. Alternative splicing of this gene generates several transcript variants differing from each other either in the 5' UTR or in the 3' coding region. These variants encode at least five different isoforms.
[0067] Down syndrome critical region protein I (DSCRI) is a VEGF target gene and an anti-inflammatory signaling molecule in endothelial cells. The human gene (DSCR 1) is one of 50 to 100 genes that reside within the minimal region on human chromosome 21 (HC21), which, when present in more than 2 copies, causes mental retardation, collectively known as Down syndrome (DS). DSCRI belongs to a family of conserved proteins, also termed calcipressins or modulatory calcincurin-interacting proteins (MCIPs), comprising 3 members in humans, DSCR I IMCIP 1 , ZAKI-4/DSCR I L I IMCIP2, and DSCR I L2/MCIP3, that share in common the capacity to bind to calcincurin. DSCRI functions as a small cytoplasmic signaling molecule regulated by the Ca2+/calmodulin-dependent serine/threoninc protein phosphatase 2B (P.P2B) or calcincurin A
(CnA).
[0068] The incidence of many cancer types is significantly reduced in individuals with Down's syndrome and it is thought that this broad cancer protection is conferred by the increased expression of one or more of the 231 supernumerary genes on the extra copy of chromosome 21. One such gene is Down syndrome critical region protein I (DSCR 1, also known as RCAN 1), which encodes a protein that suppresses vascular endothelial growth factor (VEGF)-mediatcd angiogenic signaling by the calcincurin pathway. DSCRI
is increased in Down's syndrome tissues and in a mouse model of Down's syndrome. Without wishing to be bound by theory, attenuation of calcineurin activity by DSCRI, together with another chromosome 21 gene DYRK I a, may be sufficient to markedly diminish angiogenesis. Alternative names of (DSCRI) include: Down's syndrome candidate region-I, RCANI regulator of calcincurin I, Adapt78, ADAPT78, Calcipressin-I, CSPI, DSCI, DSCRI, MCIPI, Myocyte-enriched calcineurin-interacting protein 1, RCN 1, Regulator of calcincurin 1.
[0069] DYRKIa encodes a member of the Dual-specificity tyrosine phosphorylationregulated kinase (DYRK) family. This member contains a nuclear targeting signal sequence, a protein kinase domain, a leucine zipper motif, and a highly conservative I3-consecutive-histidine repeat. It catalyzes its autophosphorylation on serinc/threonine and tyrosine residues and may playa significant role in a signaling pathway regulating cell proliferation and may be involved in brain development. This gene is a homolog of Drosophila mnb (minibrain) gene and rat Dyrk gene.
DYRK.Ia is localized in the Down syndrome critical region of chromosome 21, and is considered to be a strong candidate gene for learning defects associated with Down syndrome. Alternative splicing of this gene generates several transcript variants differing from each other either in the 5' UTR or in the 3' coding region. These variants encode at least five different isoforms.
[0070] DYRKIA and RCANI genes, which are located on DSCR are closely associated with the typical features of DS patients, and their implication to the pathogenesis of neural defects in DS. DYRKIA phosphorylates several transcriptional factors, such as CREB and NFAT, endocytic complex proteins, and AD-linked gene products.
Meanwhile, RCANI is an endogenous inhibitor of calcineurin A, and its unbalanced activity is thought to cause major neuronal and/or non-neuronal malfunction in DS and AD. Interestingly, they both contribute to the learning and memory deficit, altered synaptic plasticity, impaired cell cycle regulation, and AD-like neuropathology in DS.
[0071] In some embodiments, antisense oligonucleotides are used to prevent or treat diseases or disorders associated with Down Syndrome Gene family members. Exemplary Down Syndrome Gene mediated diseases and disorders which can be treated with cell/tissues regenerated from stein cells obtained using the antisense compounds comprise: a disease or disorder associated with mutant, aberrant expression or function of DYRK1a or DSCR I: cancer, an angiogenic disease or disorder, an apoptotic disease or disorder, a cell proliferative disease or disorder, inflammation, a cardiovascular disease or disorder, a neurological disease or disorder, Down's syndrome, Alzheimer's disease, mental retardation, memory impairment, trisomy, neuropathology, a neurodegenerative disease or disorder, cardiomyocyte hypertrophy, a vascular anomaly (e.g., infantile hernangioma, an angiogenesis-dependent vascular tumor, vascular malformation etc.), Hypcrhomocysteinemia, impaired osteoblast differentiation, ostcoclastogenesis, impaired mitochondrial function, oxidative stress, a disease or disorder associated with impaired calcineurin-mediated signaling pathway, a disease or disorder associated with impaired regulation of angiogenesis, calcium-mediated stress and a disease or disorder associated with defective or impaired APC and/or Axin function.
[0072] In another embodiment. antiscnse oligonucleotides to Down Syndrome Gene natural antiscnse treats patients at risk of developing or have developed cardiac diseases or disorders. For example, activation of the phosphatase calcineurin and its downstream targets, transcription factors of the NFAT family, resulting in cardiomyocytc hypertrophy. Dual specificity tyrosine (Y) phosphorylation-rcgulatcd kinasc IA (DYRKla) is able to antagonize calcincurin signaling by directly phosphorylating N.FATs.
Antiscnse oligonucleotides modulate DYRK I a in the treatment of cardiac diseases or disorders, such as the hypertrophic response of cardiomyocytes.
[0073] In embodiments, antisense oligonucleotides comprising DYRKia and/or DSCRI prevent or treat diseases associated with physiologically abnormal levels, activity, function, expression in vivo which may also alter the physiological pathways these molecules are involved with either directly or indirectly. Thus one or more DYRKIa and/or DSCR I antisÃnse oligonucleotides can be used to prevent diseases or disorders or treat such patients.
[0074] In another embodiment, antiscnse oligonucleotides to DYRKIa and/or DSCRI natural antiscnse treats patients at risk of developing or have developed cardiac diseases or disorders. For example, activation of the phosphatase calcineurin and its downstream targets, transcription factors of the NFAT family, resulting in cardiomyocyte hypertrophy. Dual specificity tyrosine (Y) phosphorylation-regulated kinase IA (DYRKIa) is able to antagonize calcineurin signaling by directly phosphorylating NFATs.
Antisense oligonucleotides modulate DYRK I a in the treatment of cardiac diseases or disorders, such as the hypcrtrophic response of cardiomyocytes.
[0075] In one embodiment, the oligonucleotides arc specific for polynucleotides of a Down Syndrome Gene, which includes, without limitation noncoding regions. The Down Syndrome Gene targets comprise variants of a Down Syndrome Gene; mutants of a Down Syndrome Gene, including SN.Ps;
noncoding sequences of a Down Syndrome Gene; alleles, fragments and the like. Preferably the oligonucleotide is an antiscnse RNA molecule.
[0076] In accordance with embodiments of the invention, the target nucleic acid molecule is not limited to a Down Syndrome Gene polynucleotides alone but extends to any of the isoforms, receptors, homologs, non-coding regions and the like of a Down Syndrome Gene.
[0077] In another embodiment, an oligonucleotide targets a natural antiscnse sequence (natural antisense to the coding and non-coding regions) of a Down Syndrome Gene targets, including, without limitation, variants, alleles, homologs, mutants, derivatives, fragments and complementary sequences thereto.
Preferably the oligonucleotide is an antisense RNA or DNA molecule.
[0078] In another embodiment, the oligomeric compounds of the present invention also include variants in which a different base is present at one or more of the nucleotide positions in the compound. For example, if the first nucleotide is an adenine, variants may be produced which contain thymidine, guanosine, cytidine or other natural or unnatural nucleotides at this position. This may be done at any of the positions of the antisense compound.
[0079] In some embodiments, homology, sequence identity or complementarity, between the antisense compound and target is from about 50% to about 60%. In some embodiments, homology, sequence identity or complementarity, is from about 60% to about 70%. In some embodiments, homology, sequence identity or complementarity, is from about 70% to about 80%. In some embodiments, homology, sequence identity or complementarity, is from about 80% to about 90%. In some embodiments, homology, sequence identity or complementarity, is about 90%, about 92%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%
or about 100%.
[0080] An antisense compound is specifically hybridizable when binding of the compound to the target nucleic acid interferes with the normal function of the target nucleic acid to cause a loss of activity, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target nucleic acid sequences under conditions in which specific binding is desired. Such conditions include, i.e., physiological conditions in the case of in vivo assays or therapeutic treatment, and conditions in which assays arc performed in the case of in vitro assays.
[0081 ] An antisense compound, whether DNA, RNA, chimeric, substituted etc, is specifically hybridizable when binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarily to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed.
[0082] In another embodiment, targeting of a Down Syndrome Gene including without limitation, antisense sequences which are identified and expanded, using for example, PCR, hybridization etc., one or more of the sequences set forth as SEQ ID NO: 3 to 6, and the like, modulate the expression or function of a Down Syndrome Gene. In one embodiment, expression or function is up-regulated as compared to a control. In another embodiment, expression or function is down-regulated as compared to a control.
[0083] In another embodiment, oligonucleotides comprise nucleic acid sequences set forth as SEQ ID NOS: 7 to 24 including antisense sequences which are identified and expanded, using for example, PCR, hybridization etc.
These oligonucleotides can comprise one or more modified nucleotides, shorter or longer fragments, modified bonds and the like. Examples of modified bonds or intemucleotide linkages comprise phosphorothioate, phosphorodithioate or the like. In another embodiment, the nucleotides comprise a phosphorus derivative. The phosphorus derivative (or modified phosphate group) which may be attached to the sugar or sugar analog moiety in the modified oligonucleotides of the present invention may be a monophosphate, diphosphate, triphosphate, alkylphosphatc, alkanephosphate, phosphorothioate and the like. The preparation of the above-noted phosphate analogs, and their incorporation into nucleotides, modified nucleotides and oligonucleotides, per se, is also known and need not be described here.
[0084] The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses.
Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisensc oligonucleotides have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans.
[0085] In embodiments of the present invention oligomeric antisense compounds, particularly oligonucleotides, bind to target nucleic acid molecules and modulate the expression and/or function of molecules encoded by a target gene. The functions of DNA to be interfered comprise, for example, replication and transcription. The functions of RNA to be interfered comprise all vital functions such as, for example, translocation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA
to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA. The functions may be up-regulated or inhibited depending on the functions desired.
[0086] The antisense compounds, include, antisense oligomeric compounds, antisense oligonucleotides, external guide sequence (EGS) oligonucleotides, alternate splicers, primers, probes, and other oligomeric compounds that hybridize to at least a portion of the target nucleic acid. As such, these compounds may be introduced in the form of single-stranded, double-stranded, partially single-stranded, or circular oligomeric compounds.
[0087] Targeting an antisense compound to a particular nucleic acid molecule, in the context of this invention, can be a multistep process. The process usually begins with the identification of a target nucleic acid whose function is to be modulated. This target nucleic acid may be, for example, a cellular gene (or mRNA transcribed from the (Yene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target nucleic acid encodes a Down Syndrome Gene.
[0088] The targeting process usually also includes determination of at least one target region, segment, or site within the target nucleic acid for the antisense interaction to occur such that the desired effect, e.g., modulation of expression, will result. Within the context of the present invention, the tern "region" is defined as a portion of the target nucleic acid having at least one identifiable structure, function, or characteristic. Within regions of target nucleic acids are segments. "Segments" are defined as smaller or sub-portions of regions within a target nucleic acid. "Sites," as used in the present invention, are defined as positions within a target nucleic acid.

[0089] In one embodiment, the antisense oligonucleotides bind to the natural antisense sequences of a Down Syndrome Gene and modulate the expression and/or function of a Down Syndrome Gene (SEQ ID NO: 1 to 3).
Examples of antisense sequences include SEQ ID NOS: 4 to 30.
[0090] In another embodiment, the antisense oligonucleotides bind to one or more segments of a Down Syndrome Gene polynucleotidc and modulate the expression and/or function of a Down Syndrome Gene. The segments comprise at least five consecutive nucleotides of a Down Syndrome Gene sense or antisense polynucleotides.
[0091] In another embodiment, the antisense oligonucleotides are specific for natural antisense sequences of a Down Syndrome Gene wherein binding of the oligonucleotides to the natural antisense sequences of a Down Syndrome Gene modulate expression and/or function of a Down Syndrome Gene.
[0092] In another embodiment, oligonucleotide compounds comprise sequences set forth as SEQ ID NOS: 7 to 24, antisense sequences which are identified and expanded, using for example, PCR, hybridization etc These oligonucleotides can comprise one or more modified nucleotides, shorter or longer fragments, modified bonds and the like. Examples of modified bonds or intemucleotide linkages comprise phosphorothioate, phosphorodithioate or the like. In another embodiment, the nucleotides comprise a phosphorus derivative. The phosphorus derivative (or modified phosphate group) which may be attached to the sugar or sugar analog moiety in the modified oligonucleotides of the present invention may be a monophosphate, diphosphate, triphosphate, alkylphosphate, alkanephosphate, phosphorothioate and the like. The preparation of the above-noted phosphate analogs, and their incorporation into nucleotides, modified nucleotides and oligonucleotides, per se, is also known and need not be described here.
[0093] Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA
molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the "AUG codon," the "start codon" or the "AUG start codon". A minority of genes has a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG; and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically mcthioninc (in cuka yotcs) or formylmethionine (in prokaryotes). Eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, "start codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to initiate translation of an mRNA transcribed from a gene encoding a Down Syndrome Gene, regardless of the sequence(s) of such codons. A translation termination codon (or "stop codon") of a gene may have one of three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'- TAG and 5'-TGA, respectively).

[0094] The terms "start codon region" and "translation initiation codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terns "stop codon region"
and "translation termination codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon. Consequently, the "start codon region" (or "translation initiation codon region") and the "stop codon region"
(or "translation termination codon region") are all regions that may be targeted effectively with the antisense compounds of the present invention.
[0095] The open reading frame (ORF) or "coding region," which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Within the context of the present invention, a targeted region is the intragenic region encompassing the translation initiation or termination codon of the open reading frame (ORF) of a gene.
[0096] Another target region includes the 5' untranslated region (5'UTR), known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA (or corresponding nucleotides on the gene). Still another target region includes the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA (or corresponding nucleotides on the gene). The 5' cap site of an mRNA
comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap site. Another target region for this invention is the 5' cap region.
[0097] Although some eu.karyotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns," which arc excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "cxons" and are spliced together to form a continuous tnRNA sequence. In one embodiment, targeting splice sites, i.e., intron-exon junctions or exon-intron junctions, is particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular splice product is implicated in disease. An aberrant fusion junction due to rearrangement or deletion is another embodiment of a target site. mRNA transcripts produced via the process of splicing of two (or more) mRNAs from different gene sources are known as "fusion transcripts". Introns can be effectively targeted using antisense compounds targeted to, for example, DNA or pre-mRNA.
[0098] In another embodiment, the antisense oligonucleotides bind to coding and/or non-coding regions of a target polynucleotide and modulate the expression and/or function of the target molecule.
[0099] In another embodiment, the antisense oligonucleotides bind to natural antisense polynucleotides and modulate the expression and/or function of the target molecule.

[00100] In another embodiment, the antisense oligonucleotidcs bind to sense polynuclcotidcs and modulate the expression and/or .fimction of the target molecule.
[00101 ] Alternative RNA transcripts can be produced from the same genomic region of DNA. These alternative transcripts are generally known as "variants". More specifically, "pre-mRNA
variants" are transcripts produced from the same genomic DNA that differ from other transcripts produced from the same genomic DNA in either their start or stop position and contain both intronic and exonic sequence.
[00102] Upon excision of one or more exon or intron regions, or portions thereof during splicing, pre-mRNA
variants produce smaller "mRNA variants". Consequently, mRNA variants are processed pre-mRNA variants and each unique pre-mRNA variant must always produce a unique mRNA variant as a result of splicing. These mRNA
variants are also known as "alternative splice variants". If no splicing of the pre-mRNA variant occurs then the pre-mRNA variant is identical to the mRNA variant.
[00103] Variants can be produced through the use of alternative signals to start or stop transcription. Pre-mRNAs and mRNAs can possess more than one start codon or stop codon. Variants that originate from a pre-mRNA or mRNA that use alternative start codons are known as "alternative start variants" of that pre-mRNA or mRNA.
Those transcripts that use an alternative stop codon are known as "alternative stop variants" of that pre-mRNA or mRNA. One specific type of alternative stop variant is the "polyA variant" in which the multiple transcripts produced result from the alternative selection of one of the "polyA stop signals" by the transcription machinery, thereby producing transcripts that terminate at unique polyA sites. Within the context of the invention, the types of variants described herein are also embodiments of target nucleic acids.
[00104] The locations on the target nucleic acid to which the antisense compounds hybridize are defined as at least a 5-nucleotide long portion of a target region to which an active antisense compound is targeted.
[00105] While the specific sequences of certain exemplary target segments are set forth herein, one of skill in the art will recognize that these serve to illustrate and describe particular embodiments within the scope of the present invention. Additional target segments are readily identifiable by one having ordinary skill in the art in view of this disclosure.
[00106] Target segments 5-100 nucleotides in length comprising a stretch of at least five (5) consecutive nucleotides selected from within the illustrative target segments are considered to be suitable for targeting as well.
[00107] Target segments can include.DNA or RNA sequences that comprise at least the 5 consecutive nucleotides from the 5'-terminus of one of the illustrative target segments (the remaining nucleotides being a consecutive stretch of the same DNA or RNA beginning immediately upstream of the 5'-terminus of the target segment and continuing until the DNA or RNA contains about 5 to about 100 nucleotides).
Similarly target segments are represented by DNA or RNA sequences that comprise at least the 5 consecutive nucleotides from the 3'-terminus of one of the illustrative target segments (the remaining nucleotides being a consecutive stretch of the same DNA or RNA beginning immediately downstream of the 3'-terminus of the target segment and continuing until the DNA or RNA contains about 5 to about 100 nucleotides). One having skill in the art armed with the target segments illustrated herein will be able, without undue experimentation, to identify further target segments.
[00108] Once one or more target regions, segments or sites have been identified, antisense compounds are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.
[00109] In embodiments of the invention the oligonuclcotidcs bind to an antiscnsc strand of a particular target.
The oligonuclcotidcs are at least 5 nucleotides in length and can be synthesized so each oligonuclcotidc targets overlapping sequences such that oligonuclcotidcs arc synthesized to cover the entire length of the target polynucleotide. The targets also include coding as well as non coding regions.
[00110] In one embodiment, specific nucleic acids arc targeted by antisense oligonuclcotidcs. Targeting an antisense compound to a particular nucleic acid, is a multistep process. The process usually begins with the identification of a nucleic acid sequence whose function is to be modulated.
This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a non coding polynucleotide such as for example, non coding RNA
(ncR.NA).
[001 1 1 ] RNAs can be classified into (1) messenger RNAs (mRNAs), which are translated into proteins, and (2) non-protein-coding RNAs (neRNAs). neRNAs comprise microRNAs, antisense transcripts and other Transcriptional Units (TU) containing a high density of stop codons and lacking any extensive "Open Reading Frame". Many neRNAs appear to start from initiation sites in 3' untranslated regions (3'UTRs) of protein-coding loci. neRNAs are often rare and at least half of the neRNAs that have been sequenced by the FANTOM. consortium seem not to be polyadenylated. Most researchers have for obvious reasons focused on polyadenylated mRNAs that are processed and exported to the cytoplasm. Recently, it was shown that the set of non-polyadenylated nuclear RNAs may be very large, and that many such transcripts arise from intergenic regions. The mechanism by which neRNAs may regulate gene expression is by base pairing with target transcripts. The RNAs that function by base pairing can be grouped into (1) cis encoded RNAs that are encoded at the same genetic location, but on the opposite strand to the RNAs they act upon and therefore display perfect complementarity to their target, and (2) trans-encoded RNAs that are encoded at a chromosomal location distinct from the RNAs they act upon and generally do not exhibit perfect base-pairing potential with their targets.
[00112] Without wishing to be bound by theory, perturbation of an antiscnsc polynucleotide by the antisense oligonucleotides described herein can alter the expression of the corresponding sense messenger RNAs. However, this regulation can either be discordant (antisense knockdown results in messenger RNA elevation) or concordant (antiscnsc knockdown results in concomitant messenger RNA reduction). In these cases, antisense oligonuclcotidcs can be targeted to overlapping or non-overlapping parts of the antiscnsc transcript resulting in its knockdown or sequestration. Coding as well as non-coding antisense can be targeted in an identical manner and that either category is capable of regulating the corresponding sense transcripts - either in a concordant or disconcordant manner. The strategies that arc employed in identifying new oligonucleotides for use against a target can be based on the knockdown of antisense RNA transcripts by antisense oligonucleotides or any other means of modulating the desired target.
[00113] Strategy 1: In the case of discordant regulation, knocking down the antisense transcript elevates the expression of the conventional (sense) gene. Should that latter gene encode for a known or putative drug target, then knockdown of its antisense counterpart could conceivably mimic the action of a receptor agonist or an enzyme stimulant.
[00114] Strategy 2: In the case of concordant regulation, one could concomitantly knock down both antisense and sense transcripts and thereby achieve synergistic reduction of the conventional (sense) gene expression. If, for example, an antisense oligonucleotide is used to achieve knockdown, then this strategy can be used to apply one antisensc oligonucleotide targeted to the sense transcript and another antisense oligonucleotide to the corresponding antiscnse transcript, or a single energetically symmetric antisense oligonucleotide that simultaneously targets overlapping sense and antiscnse transcripts.
[001 15] According to the present invention, antisense compounds include antisense oligonucleotides, ribozymes, external guide sequence (EGS) oligonucleotides, siRNA compounds, single- or double-stranded RNA interference (RNA1) compounds such as siRNA compounds, and other oligomeric compounds which hybridize to at least a portion of the target nucleic acid and modulate its function. As such, they may be DNA, RNA, DNA-like, RNA-like, or mixtures thereof, or may be mimetics of one or more of these. These compounds may be single-stranded, doublestranded, circular or hairpin oligomeric compounds and may contain structural elements such as internal or terminal bulges, mismatches or loops. Antisense compounds are routinely prepared linearly but can be joined or otherwise prepared to be circular and/or branched. Antiscnse compounds can include constructs such as, for example, two strands hybridized to form a wholly or partially double-stranded compound or a single strand with sufficient self-complementarity to allow for hybridization and formation of a fully or partially double-stranded compound. The two strands can be linked internally leaving free 3' or 5' termini or can be linked to form a continuous hairpin structure or loop. The hairpin structure may contain an overhang on either the 5' or 3' terminus producing an extension of single stranded character. The double stranded compounds optionally can include overhangs on the ends. Further modifications can include conjugate groups attached to one of the termini, selected nucleotide positions, sugar positions or to one of the intemucleoside linkages. Alternatively, the two strands can be linked via a non-nucleic acid moiety or linker group. When formed from only one strand, dsRNA can take the form of a self-complementary hairpin-type molecule that doubles back on itself to form a duplex. Thus, the dsRNAs can be fully or partially double stranded. Specific modulation of gene expression can be achieved by stable expression of dsRNA hairpins in transgenic cell lines, however, in some embodiments, the gene expression or function is up reguilated. When formed from two strands, or a single strand that takes the form of a self-complementary hairpin-type molecule doubled back on itself to form a duplex, the two strands (or duplex-forming regions of a single strand) are complementary RNA strands that base pair in Watson-Crick fashion.
[00116] Once introduced to a system, the compounds of the invention may elicit the action of one or more enzymes or structural proteins to effect cleavage or other modification of the target nucleic acid or may work via occupancy-based mechanisms. In general, nucleic acids (including oligonucleotides) may be described as "DNA-like" (i.e., generally having one or more 2'-deoxy sugars and, generally, T
rather than U bases) or "RNA-like" (i.e., generally having one or more 2'- hydroxyl or 2'-modified sugars and, generally U rather than T bases). Nucleic acid helices can adopt more than one type of structure, most commonly the A- and B-forms. It is believed that, in general, oligonucleotides which have B-form-like structure are "DNA-like" and those which have A-formlike structure arc "RNA-like." In some (chimeric) embodiments, an antisense compound may contain both A- and B-form regions.
[00117] In another embodiment, the desired oligonucleotides or antisense compounds, comprise at least one of antiscnsc RNA, antisense DNA, chimeric antisense oligonucleotides, antisense oligonucleotides comprising modified linkages, interference RNA (RNAi), short interfering RNA (stRNA); a micro, interfering RNA (miRNA);
a small, temporal RNA (stRNA); or a short, hairpin RNA (shRNA); small RNA-induced gene activation (RNAa);
small activating RNAs (saRNAs), or combinations thereof.
[00118] dsRNA can also activate gene expression, a mechanism that has been termed "small RNA-induced gene activation" or RNAa. dsRNAs targeting gene promoters induce potent transcriptional activation of associated genes. RNAa was demonstrated in human cells using synthetic dsRNAs, termed "small activating RNAs"
(saRNAs).
[00119] Small double-stranded RNA (dsRNA), such as small interfering RNA
(siRNA) and microRNA
(miRNA), have been found to be the trigger of an evolutionary conserved mechanism known as RNA interference (RNAi). RNAi invariably leads to gene silencing. However, in instances described in detail in the examples section which follows, oligonucleotides are shown to increase the expression and/or function of the Down Syndrome Gene polynucleotides and encoded products thereof dsRNAs may also act as small activating RNAs (saRNA). Without wishing to be bound by theory, by targeting sequences in gene promoters, saRNAs would induce target gene expression in a phenomenon referred to as dsRNA-induced transcriptional activation (RNAa).
[00120] In a further embodiment, the "tat-get segments" identified herein may be employed in a screen for additional compounds that modulate the expression of a Down Syndrome Gene polynucleotide. "Modulators" are those compounds that decrease or increase the expression of a nucleic acid molecule encoding a Down Syndrome Gene and which comprise at least a 5-nucleotide portion that is complementary to a target segment. The screening method comprises the steps of contacting a target segment of a nucleic acid molecule encoding sense or natural antisense polynucleotides of a Down Syndrome Gene with one or more candidate modulators, and selecting for one or more candidate modulators which decrease or increase the expression of a nucleic acid molecule encoding a Down Syndrome Gene polynucleotide, e.g. SEQ ID NOS: 7 to 24. Once it is shown that the candidate modulator or modulators are capable of modulating (e.g. either decreasing or increasing) the expression of a nucleic acid molecule encoding a Down Syndrome Gene polynucleotide, the modulator may then be employed in further investigative studies of the function of a Down Syndrome Gene polynucleotide, or for use as a research, diagnostic, or therapeutic agent in accordance with the present invention.
[00121 ] Targeting the natural antisense sequence modulates the function of the target gene. For example, the Down Syndrome Gene (e.g. accession numbers NM_101395 and NM_O044.14)..in an embodiment, the target is an antisense polynucleotide of the Down Syndrome Gene. In a embodiment, an antisense oligonucleotide targets sense and/or natural antisense sequences of a Down Syndrome Gene polynucleotide (e.g. accession numbers NM 101395 and NM 00 414 ), variants, alleles, isoforms, homologs, mutants, derivatives, fragments and complementary sequences thereto. Preferably the oligonucleotide is an antisense molecule and the targets include coding and noncoding regions of antiscnse and/or sense Down Syndrome Gene polynucleotides.
[00122] The target segments of the present invention may be also be combined with their respective complementary antisense compounds of the present invention to form stabilized double-stranded (duplexed) oligonucleotides.
[00123] Such double stranded oligonucleotide moieties have been shown in the art to modulate target expression and regulate translation as well as RNA processing via an antiscnse mechanism.
Moreover, the double-stranded moieties may be subject to chemical modifications. For example, such double-stranded moieties have been shown to inhibit the target by the classical hybridization of antisense strand of the duplex to the target, thereby triggering enzymatic degradation of the target.
[00124] In a embodiment, an antiscnse oligonucleotidc targets Down Syndrome Gene polynucleotides (e.g.
accession numbers NM 101395 and NM 004414 ), variants, alleles, isoforms, homologs, mutants, derivatives, fragments and complementary sequences thereto. Preferably the oligonucleotide is an antisense molecule.
[00125] In accordance with embodiments of the invention, the target nucleic acid molecule is not limited to Down Syndrome Gene alone but extends to any of the isoforms, receptors, homologs and the like of a Down Syndrome Gene molecule.
[00126] In another embodiment, an oligonucleotidc targets a natural antisense sequence of a Down Syndrome Gene polynucleotide, for example, polynucleotides set forth as SEQ ID NO: 3 to 6, and any variants, alleles, homologs, mutants, derivatives, fragments and complementary sequences thereto.
Examples of antisense oligonucleotides are set forth as SEQ ID NOS: 7 to 24.
[00127] In one embodiment, the oligonucleotides are complementary to or bind to nucleic acid sequences of a Down Syndrome Gene antisense, including without limitation noncoding sense and/or antisense sequences associated with a Down Syndrome Gene polynucleotidc and modulate expression and/or function of a Down Syndrome Gene molecule.

[00128] In another embodiment, the oligonucleotides are complementary to or bind to nucleic acid sequences of a Down Syndrome Gene natural antiscnsc, set forth as SEQ ID NO: 3 to 6 and modulate expression and/or function of a Down Syndrome Gene molecule.
[00129] In a embodiment, oligonucleotides comprise sequences of at least 5 consecutive nucleotides of SEQ ID
NOS: 7 to 24 and modulate expression and/or function of a Down Syndrome Gene molecule.
[00130] The polynucleotide targets comprise Down Syndrome Gene, including family members thereof, variants of a Down Syndrome Gene; mutants of a Down Syndrome Gene, including SNPs;
noncoding sequences of a Down Syndrome Gene; alleles of a Down Syndrome Gene; species variants, fragments and the like. Preferably the oligonuclcotidc is an antisensc molecule.
[00131 ] In another embodiment, the oligonucleotidc targeting Down Syndrome Gene polynucleotides, comprise:
antisense RNA, interference RNA (RNAi), short interfering RNA (siRNA); micro interfering RNA (miRNA); a small, temporal RNA (siRNA); or a short, hairpin RNA (shRNA); small RNA-induced gene activation (RNAa); or, small activating RNA (saRNA).
[00132] In another embodiment, targeting of a Down Syndrome Gene polynucleotidc, e.g. SEQ ID NO: 3 to 6 modulate the expression or function of these targets. In one embodiment, expression or function is up-regulated as compared to a control. In another embodiment, expression or function is down-regulated as compared to a control.
[00133] In another embodiment, antisense compounds comprise sequences set forth as SEQ ID NOS: 7 to 24.
These oligonucleotides can comprise one or more modified nucleotides, shorter or longer fragments, modified bonds and the like.
[00134] In another embodiment, SEQ ID NOS: 7 to 24 comprise one or more LNA
nucleotides.
[00135] The modulation of a desired target nucleic acid can be carried out in several ways known in the art. For example, antisensc oligonucleotides, siRNA etc. Enzymatic nucleic acid molecules (e.g., ribozymes) are nucleic acid molecules capable of catalyzing one or more of a variety of reactions, including the ability to repeatedly cleave other separate nucleic acid molecules in a nucleotide base sequence-specific manner. Such enzymatic nucleic acid molecules can be used, for example, to target virtually any RNA
transcript.
[00136] Because of their sequence-specificity, trans-cleaving enzymatic nucleic acid molecules show promise as therapeutic agents for human disease. Enzymatic nucleic acid molecules can be designed to cleave specific RNA
targets within the background of cellular RNA. Such a cleavage event renders the mRNA non-functional and abrogates protein expression from that RNA. In this manner, synthesis of a protein associated with a disease state can be selectively inhibited.
[00137] In general, enzymatic nucleic acids with RNA cleaving activity act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets.
[00138] Several approaches such as in vitro selection (evolution) strategies have been used to evolve new nucleic acid catalysts capable of catalyzing a variety of reactions, such as cleavage and ligation of phosphodiester linkages and amide linkages.
[00139] The development of ribozymes that arc optimal for catalytic activity would contribute significantly to any strategy that employs RNA-clcaving ribozymcs for the purpose of regulating gene expression. The hammerhead ribozyme, for example, functions with a catalytic rate (kcat) of about I min-I
in the presence of saturating (10 mM) concentrations of Mg2+ cofactor. An artificial "RNA ligase" ribozyme has been shown to catalyze the corresponding self-modification reaction with a rate of about 100 min-1. In addition, it is known that certain modified hammerhead ribozymes that have substrate binding arms made of DNA
catalyze RNA cleavage with multiple turn-over rates that approach 100 min- 1. Finally, replacement of a specific residue within the catalytic core of the hammerhead with certain nucleotide analogues gives modified ribozymes that show as much as a 10-fold improvement in catalytic rate. These findings demonstrate that ribozymes can promote chemical transformations with catalytic rates that are significantly greater than those displayed in vitro by most natural self-cleaving ribozymes. It is then possible that the structures of certain selfcleaving riborymes may be optimized to give maximal catalytic activity, or that entirely new RNA motifs can be made that display significantly faster rates for RNA phosphodicster cleavage.
[00140] Intermolecular cleavage of an RNA substrate by an RNA catalyst that fits the "hammerhead" model was first shown in 1987. The RNA catalyst was recovered and reacted with multiple RNA molecules, demonstrating that it was truly catalytic.
[00141] Catalytic RNAs designed based on the "hammerhead" motif have been used to cleave specific target sequences by making appropriate base changes in the catalytic RNA to maintain necessary base pairing with the target sequences. This has allowed use of the catalytic RNA to cleave specific target sequences and indicates that catalytic RNAs designed according to the "hammerhead" model may possibly cleave specific substrate RNAs in vivo.
[00142] RNA interference (RNAi) has become a powerful tool for modulating gene expression in mammals and mammalian cells. This approach requires the delivery of small interfering RNA
(siRNA) either as RNA itself or as DNA, using an expression plasmid or virus and the coding sequence for small hairpin RNAs that are processed to siRNAs. This system enables efficient transport of the pre-siRNAs to the cytoplasm where they are active and pen-nit the use of regulated and tissue specific promoters for gene expression.
[00143] In one embodiment, an oligonucleotide or antisense compound comprises an oligomer or polymer of ribonucleic acid (RNA) and/or deoxyribonucleic acid (DNA), or a mimetic, chimera, analog or homolog thereof.

This tern includes oligonucleotides composed of naturally occurring nucleotides, sugars and covalent intemucleoside (backbone) linkages as well as oligonucleotides having non-naturally occurring portions which function similarly. Such modified or substituted oligonucleotides are often desired over native forms because of desirable properties such as, .for example, enhanced cellular uptake, enhanced affinity for a target nucleic acid and increased stability in the presence of nucleases.
[00144] According to the present invention, the oligonucleotides or "antisense compounds" include antisense oligonucleotides (e.g. RNA, DNA, mimetic, chimera, analog or homolog thereof), ribozymes, external guide sequence (EGS) oligonucleotides, siRNA compounds, single- or double-stranded RNA interference (RNAi) compounds such as siRNA compounds, saRNA, aRNA, and other oligomcric compounds which hybridize to at least a portion of the target nucleic acid and modulate its function. As such, they may be DNA, RNA, DNA-like, RNA-like, or mixtures thereof, or may be mimetics of one or more of these.
These compounds may be single-stranded, double-stranded, circular or hairpin oligomcric compounds and may contain structural elements such as internal or terminal bulges, mismatches or loops. Antisense compounds are routinely prepared linearly but can be joined or otherwise prepared to be circular and/or branched. Antisense compounds can include constructs such as, for example, two strands hybridized to form a wholly or partially double-stranded compound or a single strand with sufficient self-complementarity to allow for hybridization and formation of a fully or partially double-stranded compound. The two strands can be linked internally leaving free 3' or 5' termini or can be linked to form a continuous hairpin structure or loop. The hairpin structure may contain an overhang on either the 5' or 3' terminus producing an extension of single stranded character. The double stranded compounds optionally can include overhangs on the ends. Further modifications can include conjugate groups attached to one of the termini, selected nucleotide positions, sugar positions or to one of the internucleoside linkages. Alternatively, the two strands can be linked via a non-nucleic acid moiety or linker group. When formed from only one strand, dsRNA can take the form of a self-complementary hairpin-type molecule that doubles back on itself to form a duplex. Thus, the dsRNAs can be fully or partially double stranded. Specific modulation of gene expression can be achieved by stable expression of dsRNA hairpins in transgenic cell lines. When formed from two strands, or a single strand that takes the form of a self-complementary hairpin-type molecule doubled back on itself to form a duplex, the two strands (or duplex-forming regions of a single strand) are complementary RNA strands that base pair in Watson-Crick fashion.
[00145] Once introduced to a system, the compounds of the invention may elicit the action of one or more enzymes or structural proteins to effect cleavage or other modification of the target nucleic acid or may work via occupancy-based mechanisms. In general, nucleic acids (including oligonucleotides) may be described as "DNA-like" (i.e., generally having one or more 2'-deoxy sugars and, generally, T
rather than U bases) or "RNA-like" (i.e., generally having one or more 2'- hydroxyl or 2'-modified sugars and, generally U rather than T bases). Nucleic acid helices can adopt more than one type of structure, most commonly the A- and B-forms. It is believed that, in general, oligonucleotides which have B-form-like structure are "DNA-like" and those which have A-formlike structure are "RNA-like." In some (chimeric) embodiments, an antisense compound may contain both A- and B-form regions.
[00146] The antisense compounds in accordance with this invention can comprise an antisense portion from about to about 80 nucleotides (i.e. from about 5 to about 80 linked nucleosides) in length. This refers to the length of 5 the antisense strand or portion of the antisense compound. In other words, a single-stranded antisense compound of the invention comprises from 5 to about 80 nucleotides, and a double-stranded antisense compound of the invention (such as a dsRNA, for example) comprises a sense and an antisense strand or portion of 5 to about 80 nucleotides in length. One of ordinary skill in the art will appreciate that this comprehends antisense portions of 5, 6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32. 33, 34, 35, 36, 37, 38, 39,40,41. 42, 43, 44,45,46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 nucleotides in length, or any range them-within.
[00147] In one embodiment, the antisense compounds of the invention have antisense portions of 10 to 50 nucleotides in length. One having ordinary skill in the art will appreciate that this embodies oligonuclcotidcs having antisense portions of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length, or any range therewithin. In some embodiments, the oligonueleotides are 15 nucleotides in length.
[00148] In one embodiment, the antisense or oligonucleotide compounds of the invention have antisense portions of 12 or 13 to 30 nucleotides in length. One having ordinary skill in the art will appreciate that this embodies antisense compounds having antisense portions of 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 nucleotides in length, or any range therewithin.
[00149] In another embodiment, the oligomeric compounds of the present invention also include variants in which a different base is present at one or more of the nucleotide positions in the compound. For example, if the first nucleotide is an adenosine, variants may be produced which contain thymidinc, guanosinc or cytidinc at this position. This may be done at any of the positions of the antisense or dsRNA
compounds. These compounds arc then tested using the methods described herein to determine their ability to inhibit expression of a target nucleic acid.
[00150] In some embodiments, homology, sequence identity or complementarity, between the antisense compound and target is from about 40% to about 60%. In some embodiments, homology, sequence identity or complementarity, is from about 60% to about 70%. In some embodiments, homology, sequence identity or complementarity, is from about 70% to about 80%. In some embodiments, homology, sequence identity or complementarity, is from about 80% to about 90%. In some embodiments, homology, sequence identity or complcmcntarity, is about 90%, about 92%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%
or about 100%.

[00151 ] In another embodiment, the antisense oligonuclcotides, such as for example, nucleic acid molecules set forth in SEQ ID NOS: 4 to 30 comprise one or more substitutions or modifications. In one embodiment, the nucleotides are substituted with locked nucleic acids (LNA).
[00152] In another embodiment, the oligonuclcotides target one or more regions of the nucleic acid molecules sense and/or antisense of coding and/or non-coding sequences associated with Down Syndrome Gene and the sequences set forth as SEQ ID NOS: I to 6. The oligonuclcotides are also targeted to overlapping regions of SEQ
ID NOS: I to 6.
[00153] Certain oligonuclcotides of this invention are chimeric oligonucleotides. "Chimeric oligonuclcotides" or "chimeras," in the context of this invention, are oligonucleotides which contain two or more chemically distinct regions, each made up of at least one nucleotide. These oligonucleotides typically contain at least one region of modified nucleotides that confers one or more beneficial properties (such as, for example, increased nuclease resistance, increased uptake into cells, increased binding affinity for the target) and a region that is a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of antisense modulation of gene expression.
Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioatc deoxyoligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art. In one embodiment, a chimeric oligonucleotide comprises at least one region modified to increase target binding affinity, and, usually, a region that acts as a substrate for RNAsc H. Affinity of an oligonucleotide for its target (in this case, a nucleic acid encoding ras) is routinely determined by measuring the Tm of an oligonuclcotide/target pair, which is the temperature at which the oligonucleotide and target dissociate; dissociation is detected spectrophotometrically. The higher the Tm, the greater is the affinity of the oligonucleotide for the target.
[00154] Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonuclcotides, modified oligonucleotides, oligonucleotides and/or oligonuclcotides mimetics as described above. Such; compounds have also been referred to in the art as hybrids or gapmcrs. Representative United States patents that teach the preparation of such hybrid structures comprise, but are not limited to, US patent nos.
5,013,830; 5,149,797; 5, 220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133;
5,565,350; 5,623,065; 5,652,355;
5,652,356; and 5,700,922, each of which is herein incorporated by reference.
[00155] In another embodiment, the region of the oligonucleotide which is modified comprises at least one nucleotide modified at the 2' position of the sugar, most preferably a 2'-Oalkyl, 2'-O-alkyl-O-alkyl or 2'-fluoro-modified nucleotide. In other embodiments, RNA modifications include 2'-fluoro, 2'-amino and 2' 0-methyl modifications on the ribose of pyrimidines, abasic residues or an inverted base at the 3' end of the RNA. Such modifications are routinely incorporated into oligonucleotides and these oligonucleotides have been shown to have a higher Tm (i.e., higher target binding affinity) than; 2'-deoxyoligonucleotides against a given target. The effect of such increased affinity is to greatly enhance RNAi oligonucleotide inhibition of gene expression. RNAse H is a cellular endonucleasc that cleaves the RNA strand of RNA:DNA duplexes;
activation of this enzyme therefore results in cleavage of the RNA target, and thus can greatly enhance the efficiency of RNAi inhibition. Cleavage of the RNA target can be routinely demonstrated by gel electrophoresis. In another embodiment, the chimeric oligonuclcotidc is also modified to enhance nuclease resistance. Cells contain a variety of exo- and endo-nucleases which can degrade nucleic acids. A number of nucleotide and nucleoside modifications have been shown to make the oligonucleotide into which they are incorporated more resistant to nuclease digestion than the native oligodeoxynucleotide. Nuclease resistance is routinely measured by incubating oligonucleotides with cellular extracts or isolated nuclease solutions and measuring the extent of intact oligonucleotide remaining over time, usually by gel electrophoresis. Oligonuclcotides which have been modified to enhance their nuclease resistance survive intact for a longer time than unmodified oligonucleotides. A variety of oligonucleotide modifications have been demonstrated to enhance or confer nuclease resistance. Oligonucleotides which contain at least one phosphorothioate modification are presently more preferred. In some cases, oligonucleotide modifications which enhance target binding affinity are also, independently, able to enhance nuclease resistance. Some desirable modifications can be found in Dc Mesmaeker eta!. (1995) Acc. diem. Res., 28:366-374.
[00156] Specific examples of some oligonucleotides envisioned for this invention include those comprising modified backbones, for example, phosphorothioates, phosphotriesters, methyl phosphonatcs, short chain alkyl or cycloalkyl intersugar linkages or short chain heteroatomic or heterocyclic intersugar linkages. Most are oligonucleotides with phosphorothioate backbones and those with heteroatom backbones, particularly CH2 --NH--O--CH2, CH,-N(CH3)--O-CH2 [known as a methylene(methylimino) or MMI backbone], CH2 --O--N (CH3)--CH2, CH2 -N (CH3)--N (CH3)--CH2 and 0--N (CH3)--CH2 --CH2 backbones, wherein the native phosphodiester backbone is represented as 0--P--O--CH.). The amide backbones disclosed by Dc Mesmacker et a!. (1995) Acc. Chem. Res. 28:366-374 are also preferred. Also are oligonucleotidcs having morpholino backbone structures (Summerton and Weller, U.S. Pat. No. 5,034,506). In other embodiments, such as the peptide nucleic acid (PNA) backbone, the phosphodiester backbone of the oligonucleotide is replaced with a polyamide backbone, the nucleotides being bound directly or indirectly to the aza nitrogen atoms of the polyamide backbone.
Oligonucleotides may also comprise one or more substituted sugar moieties.
oligonucleotides comprise one of the following at the 2' position: OH, SH, SCH3, F, OCN, OCH3 OCH3, OCH3 O(CH2)n CH3, O(CH2)n NH2 or O(CH2)n CH3 where n is fromt to about 10; Cl to CIO lower alkyl, alkoxyalkoxy, substituted lower alkyl, alkaryl or aralkyl; Cl; Br; CN; CF3 ; OCF3; 0--, 5--, or N-alkyl; 0--, 5--, or N-alkenyl; SOCH3; S02 CH3; ONO2; N02;
N3; NH2; heterocycloalkyl; heterocycloalkaryl; aminoalkylamino;
polyalkylamino; substituted silyl; an RNA
cleaving group; a reporter group; an intercalator; a group for improving the pharmacokinetic properties of an oligonuclcotide; or a group for improving the pharniacodynamic properties of an oligonucleotide and other substituents having similar properties. A modification includes 2'-methoxyethoxy [2'-O-CH2 CH2 OCH3, also known as 2'-O-(2-methoxyethyl)]. Other modifications include 2'-methoxy (2'-O-CH3), 2'- propoxy (2'-OCH2 CH2CH3) and 2'-fluoro (2'-F). Similar modifications may also be made at other positions on the oligonuclcotide, particularly the 3' position of the sugar on the 3' terminal nucleotide and the 5' position of 5' terminal nucleotide.
Oligonuclcotides may also have sugar mimetics such as cyclobutyls in place of the pentofuranosyl group.
[00157] Oligonucleotides may also include, additionally or alternatively, nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified"
or "natural" nucleotides include adenine (A), guanine (G), thyminc (T), cytosine (C) and uracil (U). Modified nucleotides include nucleotides found only infrequently or transiently in natural nucleic acids, e.g., hypoxanthine, 6-methyladenine, 5-Me pyrimidines, particularly 5-methylcytosine (also referred to as 5-methyl-2' deoxycytosine and often referred to in the art as 5-Me-C), 5- hydroxymethylcytosine (HMC), glycosyl HMC and gcntobiosyl HMC, as well as synthetic nuctcotides, e.g., 2-aminoadenine, 2-(methylamino)adenine, 2-(imidazolylalkyl)adenine, 2-(aminoalklyamino)adenine or other heterosubstituted alkyladenines, 2-thiouracil, 2-thiothymine, 5- bromouracil, 5-hydroxymedryluracil, 8-azaguanine, 7-deazaguanine, N6 (6-aminohexyl)adenine and 2,6-diaminopurinc.. A "universal"
base known in the art, e.g., inosine, may be included. 5-Me-C substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2 C. (Sanghvi, Y. S., in Crooke, S. T. and Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton. 1993, pp. 276-278) and are presently base substitutions.
[00158] Another modification of the oligonuclcotides of the invention involves chemically linking to the oligonuclcotide one or more moieties or conjugates which enhance the activity or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety, a cholesteryl moiety, a thioether, e.g., hexyl-S-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium I,2-di-O-hexadecyl-rac-glyccro- 3-H-phosphonatc, a polyaminc or a polyethylene glycol chain, or adamantane acetic acid .
Oligonuclcotides comprising lipophilic moieties, and methods for preparing such oligonucleotides are known in the art, for example, U.S. Pat. Nos. 5,138,045, 5,218,105 and 5,459,255.
[00159] It is not necessary for all positions in a given oligonucleotide to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single oligonucleotide or even at within a single nucleoside within an oligonucleotide. The present invention also includes oligonuclcotides which are chimeric oligonuclcotides as licreinbeforc defined.
[00160] In another embodiment, the nucleic acid molecule of the present invention is conjugated with another moiety including but not limited to abasic nucleotides, polyethcr, polyamine, polyamides, peptides, carbohydrates, lipid, or polyhydrocarbon compounds. Those skilled in the art will recognize that these molecules can be linked to one or more of any nucleotides comprising the nucleic acid molecule at several positions on the sugar, base or phosphate group.
[00161 ] The oligonucleotides used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including Applied Biosystems. Any other means for such synthesis may also be employed: the actual synthesis of the oligonucleotides is well within the talents of one of ordinary skill in the art. It is also well known to use similar techniques to prepare other oligonucleotides such as the phosphorothioates and al.kylated derivatives. It is also well known to use similar techniques and commercially available modified amidites and controlled-pore glass (CPG) products such as biotin, fluorescein, acridine or psoralen-modified amidites and/or CPG (available from Glen Research, Sterling VA) to synthesize fluorescently labeled, biotinylated or other modified oligonucleotides such as cholesterol-modified oligonucleotides.
[00162] In accordance with the invention, use of modifications such as the use of LNA monomers to enhance the potency, specificity and duration of action and broaden the routes of administration of oligonucleotides comprised of current chemistries such as MOE, ANA, FANA, PS etc. This can be achieved by substituting some of the monomers in the current oligonucleotides by LNA monomers. The LNA modified oligonucleotide may have a size similar to the parent compound or may be larger or preferably smaller. It is that such LNA-modified oligonucleotides contain less than about 70%, more preferably less than about 60%, most preferably less than about 50% LNA monomers and that their sizes are between about 5 and 25 nucleotides, more preferably between about 12 and 20 nucleotides.
[00163] Modified oligonucleotide backbones comprise, but are not limited to, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates comprising 3'alkylcne phosphonates and chiral phosphonates, phosphinates, phosphoramidates comprising 3'-amino phosphoramidate and aminoalkylphosphorunidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphatcs having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are also included.
[00164] Representative United States patents that teach the preparation of the above phosphorus containing linkages comprise, but arc not limited to, US patent nos. 3,687,808;
4,469,863; 4,476,301; 5,023,243; 5, 177,196;
5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717-,5,321,131; 5,399,676;
5,405,939; 5,453,496; 5,455, 233;
5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563, 253;
5,571,799; 5,587,361; and 5,625,050, each of which is herein incorporated by reference.
[00165] Modified oligonucleotidc backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl intemucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internuclcoside linkages, or one or more short chain heteroatomic or heterocyclic intemucleoside linkages. These comprise those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones;
sulfamate backbones; rnethylencimino and mcthylenchydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, 0, S and CH2 component parts.
[00166] Representative United States patents that teach the preparation of the above oligonucleosides comprise, but are not limited to, US patent nos. 5,034,506; 5,166,315; 5,185,444;
5,214,134; 5,216,141, 5,235,033; 5,264, 562; 5, 264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677;
5,541,307; 5,561,225; 5,596, 086;
5,602,240; 5,610,289; 5,602,240, 5,608,046; 5,610 289; 5,618,704; 5,623, 070;
5,663,312; 5,633,360; 5,677,437;
and 5,677,439, each of which is herein incorporated by reference.
[00167] In other oligonuclcotide mimetics, both the sugar and the intemucleoside linkage, i.e., the backbone, of the nucleotide units arc replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonuclcotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA
compounds, the sugar-backbone of an oligonuclcotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA
compounds comprise, but are not limited to, US patent nos. 5,539,082;
5,714,331; and 5,719,262, each of which is herein incorporated by reference . Further teaching of PNA compounds can be found in Nielsen, el a!. (1991) Science 254. 1497-1500.
[00168] In another embodiment of the invention the oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular- CH2-NH-O-CH2-,-CH2-N (CH3)-O-CH2-known as a methylene (methylimino) or MMI backbone,- CH2-O-N (CH3)-CH2-,-CH2N(CH3)-N(CH3) CH2-and-O-N(CH3)-CH2-CH2- wherein the native phosphodiester backbone is represented as-O-P-O-CH2- of the above referenced US patent no. 5,489,677, and the amide backbones of the above referenced US patent no. 5,602,240.
Also arc oligonucleotides having morpholino backbone structures of the above-referenced US patent no.
5,034,506.
[00169] Modified oligonucleotides may also contain one or more substituted sugar moieties. oligonucleotides comprise one of the following at the 2' position: OH; F; 0-, S-, or N-alkyl; 0-, S-, or N-alkenyl; 0-, S-or N-alkynyl; or 0 alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C to CO
alkyl or C2 to CO alkenyl and alkynyl. Particularly arc 0 (CH2)n OmCH3, O(CH2)n,OCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2nON(CH2)nCH3)2 where n and in can be from I
to about 10. Other oligonucleotides comprise one of the following at the 2' position: C to CO, (lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, S02CH3, ON02, N02, N3, NH2, heterocycloalkyl, hetcrocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA
cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinctic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A modification comprises 2'-methoxycthoxy (2'-O-C:H2CH2OC:H3, also known as 2'-O-(2- mcthoxycthyl) or 2'-MOE) i.e., an alkoxyalkoxy group. A
further modification comprises 2'-dimethylaminooxyethoxy, i.e. , a O(CH2)20N(C:H3)2 group, also known as 2'-DMAOE, as described in examples herein below, and 2'- dimethylaminocthoxycthoxy (also known in the art as 2'-O-dimethylaminocthoxycthyl or 2'-DMAEOE), i.e., 2'-O-CH2-O-CH2-N (CH2)2.
[00170] Other modifications comprise 2'-methoxy (2'-0 CH3), 2'-aminopropoxy (2'-O CH2CH2CH2NH2) and 2'-fluoro (2'-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures comprise, but are not limited to, US patent nos. 4,981,957;
5,118,800; 5,319,080; 5,359,044; 5,393,878;
5,446,137; 5,466,786; 5,514, 785; 5,519,134; 5,567,811; 5,576,427; 5,591,722;
5,597,909; 5,610,300; 5,627,053;
5,639,873:5,646, 265; 5,658,873; 5,670,633; and 5,700,920, each of which is herein incorporated by reference.
[00171 ] Oligonucleotides may also comprise nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural"
nuclcotides comprise the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleotides comprise other synthetic and natural nucleotides such as 5-methylcytosine (5-nee-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2- aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudo-uracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylduanine and 7-mcthyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine.
[00172] Further, nucleotides comprise those disclosed in United States Patent No. 3,687,808, those disclosed in 'The Concise .Encyclopedia of Polymer Science And Engineering', pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al.,'Angewandle Chcmic, International Edition', 1991, 30, page 613, and those disclosed by Sanghvi, Y.S., Chapter 15, 'Antisensc Research and Applications', pages 289-302, Crooke, S.T. and Lcblcu, B. ca., CRC Press, 1993. Certain of these nucleotides are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These comprise 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, comprising 2-aminopropyladenine, 5- propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2 C (Sanghvi, Y.S., Crooke, ST. and Lebleu, B., eds, 'Antisense Research and Applications', CRC Press, Boca Raton, 1993, pp. 276-278) and are presently base substitutions, even more particularly when combined with 2'-Omethoxycthyl sugar modifications.
[00173] Representative United States patents that teach the preparation of the above noted modified nucleotides as well as other modified nucleotides comprise, but are not limited to, US patent nos. 3,687,808, as well as 4,845,205;
5,130,302-,5,134,066. 5,175, 273; 5, 367,066-,5,432,272,,5,457,197-,5,459255;
5,484,908; 5,502,177; 5,525,711;
5,552,540; 5,587,469; 5,596,091; 5,614,617; 5,750,692, and 5,681,941, each of which is herein incorporated by reference.
[00174] Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates, which enhance the activity, cellular distribution, or cellular uptake of the oligonucleotide.
[0017.5] Such moieties comprise but are not limited to, lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-S-tritylthiol, a thiocholesterol , an aliphatic chain, e.g., dodecandiol or undecyl residues , a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadccyl-rac-glycero-3-11-phosphonate , a polyamine or a polyethylene glycol chain , or adamantane acetic acid , a palmityl moiety , or an octadecylamine or hexylamino-carbonyl-t oxycholestcrol moiety .
[00176] Representative United States patents that teach the preparation of such oligonucleotides conjugates comprise, but are not limited to, US patent nos. 4,828,979; 4,948,882;
5,218,105; 5,525,465; 5,541,313; 5,545,730;
5,552, 538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802;
5,138,045; 5,414,077; 5,486, 603;
5,512,439; 5,578,718; 5,608,046, 4,587,044; 4,605,735; 4,667,025; 4,762, 779;
4,789,737; 4,824,941; 4,835,263;
4,876,335; 4,904,582; 4,958,013; 5,082, 830; 5,112,963; 5,214,136; 5,082,830;
5,112,963; 5,214,136-.5, 245,022;
5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391, 723; 5,416,203, 5,451,463;
5,510,475; 5,512,667; 5,514,785; 5, 565,552; 5,567,810; 5,574,142; 5,585,481;
5,587,371; 5,595,726; 5,597,696;
5,599,923; 5,599, 928 and 5,688,941, each of which is herein incorporated by reference.
[00177] Drug discovery: The compounds of the present invention can also be applied in the areas of drug discovery and target validation. The present invention comprehends the use of the compounds and target segments identified herein in drug discovery efforts to elucidate relationships that exist between a Down Syndrome Gene polynuclcotide and a disease state, phenotype, or condition. These methods include detecting or modulating a Down Syndrome Genc polynucleotide comprising contacting a sample, tissue, cell, or organism with the compounds of the present invention, measuring the nucleic acid or protein level of a Down Syndrome Gene polynuclcotide and/or a related phenotypic or chemical endpoint at some time after treatment, and optionally comparing the measured value to a non-treated sample or sample treated with a further compound of the invention.
These methods can also be performed in parallel or in combination with other experiments to determine the function of unknown genes for the process of target validation or to determine the validity of a particular gene product as a target for treatment or prevention of a particular disease, condition, or phenotype.
Assessing Up-regulation or Inhibition of Gene Exptttscion:
[00178] Transfer of an exogenous nucleic acid into a host cell or organism can be assessed by directly detecting the presence of the nucleic acid in the cell or organism. Such detection can be achieved by several methods well known in the art. For example, the presence of the exogenous nucleic acid can be detected by Southern blot or by a polymerase chain reaction (PCR) technique using primers that specifically amplify nucleotide sequences associated with the nucleic acid. Expression of the exogenous nucleic acids can also be measured using conventional methods including gene expression analysis. For instance. mRNA produced from an exogenous nucleic acid can be detected and quantified using a Northern blot and reverse transcription PCR (RT-PCR).
[00179] Expression of RNA from the exogenous nucleic acid can also be detected by measuring an enzymatic activity or a reporter protein activity. For example, antisense modulatory activity can be measured indirectly as a decrease or increase in target nucleic acid expression as an indication that the exogenous nucleic acid is producing the effector RNA. Based on sequence conservation, primers can be designed and used to amplify coding regions of the target genes. Initially, the most highly expressed coding region from each gene can be used to build a model control gene, although any coding or non coding region can be used. Each control gene is assembled by inserting each coding region between a reporter coding region and its poly(A) signal.
These plasmids would produce an mRNA with a reporter gene in the upstream portion of the gene and a potential RNAi target in the 3' non-coding region. The effectiveness of individual antisense oligonucleotides would be assayed by modulation of the reporter gene. Reporter genes usefiil in the methods of the present invention include acetohydroxyacid synthase (AHAS), alkaline phosphatase (AP), beta galactosidase (LacZ), beta glucoronidase (GUS), chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), horseradish peroxidase (HRP), luciferase (Luc), nopaline synthase (NOS), octopine synthasc (OCS), and derivatives thereof. Multiple selectable markers are available that confer resistance to ampicillin, bleomycin, chloramphenicol, gentamycin, hygromycin, kanamycin, lincomycin, methotrexate, phosphinothricin, puromycin, and tetracycline. Methods to determine modulation of a reporter gene are well known in the art, and include, but are not limited to, fluorometric methods (e.g. fluorescence spectroscopy.
Fluorescence Activated Cell Sorting (FACS), fluorescence microscopy), antibiotic resistance determination.
[00180] DYRKI, DSCRI proteins and mRNA expression can be assayed using methods known to those of skill in the art and described elsewhere herein. For example, immunoassays such as the ELISA can be used to measure protein levels. Down Syndrome Gene antibodies for ELISAs are available commercially, e.g., from R&D Systems (Minneapolis, MN). Abeam, Cambridge, MA.
[00181] In embodiments, DYRK1, DSCRI expression (e.g., mRNA or protein) in a sample (e.g., cells or tissues in vivo or in vitro) treated using an antisense oligonucleotide of the invention is evaluated by comparison with Down Syndrome Gene expression in a control sample. For example, expression of the protein or nucleic acid can be compared using methods known to those of skill in the art with that in a mock-treated or untreated sample.
Alternatively, comparison with a sample treated with a control antiscnse oligonucleotide (e.g., one having an altered or different sequence) can be made depending on the information desired. In another embodiment, a difference in the expression of the Down Syndrome Gene protein or nucleic acid in a treated vs. an untreated sample can be compared with the difference in expression of a different nucleic acid (including any standard deemed appropriate by the researcher, c.g., a housekeeping gene) in a treated sample vs. an untreated sample.
[00182] Observed differences can be expressed as desired, e.g., in the form of a ratio or fraction, for use in a comparison with control. In embodiments, the level of a Down Syndrome Gene mRNA or protein, in a sample treated with an antisense oligonucleotide of the present invention, is increased or decreased by about 1.25-fold to about 10-fold or more relative to an untreated sample or a sample treated with a control nucleic acid. In embodiments, the level of a Down Syndrome Gene mRNA or protein is increased or decreased by at least about 1.25-fold, at least about 1.3-fold, at least about 1.4-fold, at least about 1.5-fold, at least about 1.6-fold, at least about 1.7-fold, at least about 1.8-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 4.5-fold, at least about 5-fold, at least about 5.5-fold, at least about 6-fold, at least about 6.5-fold, at least about 7-fold, at least about 7.5-fold, at least about 8-fold, at least about 8.5-fold, at least about 9-fold, at least about 9.5-fold, or at least about 10-fold or more.
Kits, Research Reagents, Diagnostics, and Therapeutics [00183] The compounds of the present invention can be utilized for diagnostics, therapeutics, and prophylaxis, and as research reagents and components of kits. Furthermore, antiscnse oligonucleotides, which are able to inhibit gene expression with exquisite specificity, arc often used by those of ordinary skill to elucidate the function of particular genes or to distinguish between functions of various members of a biological pathway.
[00184] For use in kits and diagnostics and in various biological systems, the compounds of the present invention, either alone or in combination with other compounds or therapeutics, are useful as tools in differential and/or combinatorial analyses to elucidate expression patterns of a portion or the entire complement of genes expressed within cells and tissues.
[00185] As used herein the term "biological system" or "system" is defined as any organism, cell, cell culture or tissue that expresses, or is made competent to express products of the Down Syndrome Genes. These include, but are not limited to, humans, transgcnic animals, cells, cell cultures, tissues, xenografts, transplants and combinations thereof.
[00186] As one non limiting example, expression patterns within cells or tissues treated with one or more antiscnse compounds are compared to control cells or tissues not treated with antiscnse compounds and the patterns produced are analyzed for differential levels of gene expression as they pertain, for example, to disease association, signaling pathway, cellular localization, expression level, size, structure or function of the genes examined. These analyses can be performed on stimulated or unstimulated cells and in the presence or absence of other compounds that affect expression patterns.
[00187] Examples of methods of gene expression analysis known in the art include DNA arrays or microarrays (Brazma and Vilo, (2000) F'F'BS Lett., 480, 17-24; Celis, el al., (2000) FFBS
Lett., 480, 2-16), SAGE (serial analysis of gene expression) (Madden, el. al., (2000) Drug Discov. Today, 5, 415- 425), READS (restriction enzyme amplification of digested cDNAs) (Prashar and Weissman, (1999) Methods FnzvmvL, 303, 258-72), TOGA (total gene expression analysis) (Sutcliffe, el al., (2000) Proc. Nail.
Acad. Sc!. U.S.A., 97, 1976-81), protein arrays and proteomics (Cclis, et al.. (2000) h-1,115 Lett., 480, 2-16;
Jungblut, et al., Electrophoresis, 1999, 20, 2100-10), expressed sequence tag (EST) sequencing (Cells, et al., FEBS Lett., 2000, 480, 2-16; Larsson, ct al., J.
Biotechnol., 2000, 80, 143-57), subtractive RNA fingerprinting (SuRF) (Fuchs, ei al., (2000) Anal. Biochem. 286, 91-98; Larson, at al., (2000) Cytomeny 41, 203-208), subtractive cloning, differential display (DD) (Jurecic and Belmont, (2000) Curs Opin. Microbiol. 3, 316-21), comparative genornic hybridization (Carulli, et al., (1998) J.
Cell Bio chem. Suppl., 31, 286-96), FISH (fluorescent in situ hybridization) techniques (Going and Gusterson, (1999) Fur. J. Cancer, 35, 1895-904) and mass spectrometry methods (To, Comb.
(2000) Chein. High Throiighpui Screen, 3, 235-41).
[00188] The compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding a Down Syndrome Gene. For example, oligonucleotides that hybridize with such efficiency and under such conditions as disclosed herein as to be effective Down Syndrome Gene modulators arc effective primers or probes under conditions favoring gene amplification or detection, respectively. These primers and probes are useful in methods requiring the specific detection of nucleic acid molecules encoding a Down Syndrome Gene and in the amplification of said nucleic acid molecules for detection or for use in further studies of a Down Syndrome Gene. Hybridization of the antisense oligonucleotides, particularly the primers and probes, of the invention with a nucleic acid encoding a Down Syndrome Gene can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonuclcotidc, radiolabeling of the oligonucleotide, or any other suitable detection means. Kits using such detection means for detecting the level of a Down Syndrome Gene in a sample may also be prepared.
[00189] The specificity and sensitivity of antisensc are also harnessed by those of skill in the art for therapeutic uses. Antisense compounds have been employed as therapeutic moieties in the treatment of disease states in animals, including humans. Antisense oligonucleotide drugs have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that antisense compounds can be useful therapeutic modalities that can be configured to be useful in treatment regimes for the treatment of cells, tissues and animals, especially humans.
[00190] For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of a Down Syndrome Gene polynucleotide is treated by administering antisense compounds in accordance with this invention. For example, in one non-limiting embodiment, the methods comprise the step of administering to the animal in need of treatment, a therapeutically effective amount of a Down Syndrome Gene modulator. The Down Syndrome Gene modulators of the present invention effectively modulate the activity of a Down Syndrome Gene or modulate the expression of a Down Syndrome Gene protein.
In one embodiment, the activity or expression of a Down Syndrome Gene in an animal is inhibited by about 10%
as compared to a control-:Preferably, the activity or expression of a Down Syndrome Gene in an animal is inhibited by about 30%. More preferably, the activity or expression of a Down Syndrome Gene in an animal is inhibited by 50% or more. Thus, the oligomeric compounds modulate expression of a Down Syndrome Gene mRNA by at least 10%, by at least 50%, by at least 25%, by at least 30%, by at least 40%, by at least 50%, by at least 60%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, by at least 98%, by at least 99%, or by 100% as compared to a control.
[00191] In one embodiment, the activity or expression of a Down Syndrome Gene and/or in an animal is increased by about 10% as compared to a control-Preferably, the activity or expression of a Down Syndrome Gene in an animal is increased by about 30%. More preferably, the activity or expression of a Down Syndrome Gene in an animal is increased by 50% or more. Thus, the oligomeric compounds modulate expression of a Down Syndrome Gene mRNA by at least 10%, by at least 50%, by at least 25%, by at least 30%, by at least 40%, by at least 50%, by at least 60%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, by at least 98%, by at least 99%, or by 100% as compared to a control.
[00192] For example, the reduction of the expression of a Down Syndrome Gene may be measured in serum, blood, adipose tissue, liver or any other body fluid, tissue or organ of the animal. Preferably, the cells contained within said fluids, tissues or organs being analyzed contain a nucleic acid molecule encoding Down Syndrome Gene peptides and/or the Down Syndrome Gene protein itself.
[00193] The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of a compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the compounds and methods of the invention may also be useful prophylactically.
[00194] Conjugates: Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates that enhance the activity, cellular distribution or cellular uptake of the oligonuclcotidc. These moieties or conjugates can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxyl groups. Conjugate groups of the invention include intercalators, reporter molecules, polyamincs, polyamides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typicalconjugate groups include cholesterols, lipids, phospholipids, biotin, phenazine, folatc, phenanthridine, anthra, quinone, acridine, fluoresecins, rhodanunes, cotuna ins, and dyes. Groups that enhance the phannacodynamic properties, in the context of this invention, include groups that improve uptake, enhance resistance to degradation, and/or strengthen sequence-specific hybridization with the target nucleic acid. Groups that enhance the phannacokinetic properties, in the context of this invention, include groups that improve uptake, distribution, metabolism or excretion of the compounds of the present invention. Representative conjugate groups are disclosed in International Patent Application No. PCT/US92/09196, filed Oct. 23, 1992, and U.S. Pat. No.
6,287,860, which are incorporated herein by reference. Conjugate moieties include, but are not limited to, lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-5-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadccyl-rac-glycerol or triethylammonium 1,2-di-O-hcxadecyl-rac-glycero-3-Hphosphonate, a polytminc or a polyethylene glycol chain, or adamantane acetic acid, a palmityl moiety, or an octadecylamine or hexyla;Wino-carbonyl-oxycholesterol moiety.
Oligonucleotides of the invention may also be conjugated to active drug substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen, (S)-(+)-pranoprofen, carprofen, dansylsarcosine, 2,3,5-triiodobenzoic acid, flufentmic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepinc, indomethicin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic.
[00195] Representative United States patents that teach the preparation of such oligonucleotides conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,9719; 4,948,882, 5,218,105; 5,525,465; 5,541,313; 5,545,730;
5,552,538: 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124, 5,118,802;
5,138,045; 5,414,077, 5,486,603;
5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779;
4,789,737; 4,824,941, 4,835,263;
4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5 .214,136, 5,082,830;
5,112,963; 5,214,136; 5,245,022;
5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463;
5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481;
5,587,371; 5,595,726; 5,597,696;
5,599,923; 5,599,928 and 5,688,941.
[00196] Farmrrlulions: The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as forexample, liposomes, receptor-targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption-assisting formulations include, but are not limited to, U.S. Pat. Nos. 5,108,921;
5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,165; 5,547,932; 5,583,020;
5,591,721; 4,426,330; 4,534,899;
5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619;
5,416,016; 5,417,978; 5,462,854;
5,469,854: 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575;
and 5,595,756, each of which is herein incorporated by reference.
[00197] Although, the antisense oligonucleotides do not need to be administered in the context of a vector in order to modulate a target expression and/or function, embodiments of the invention relates to expression vector constructs for the expression of antisense oligonucleotides, comprising promoters, hybrid promoter gene sequences and possess a strong constitutive promoter activity, or a promoter activity which can be induced in the desired case.

[00198] In an embodiment, invention practice involves administering at least one of the foregoing antisense oligonuclcotides with a suitable nucleic acid delivery system..In one embodiment, that system includes a non-viral vector operably linked to the polynucleotide. Examples of such nonviral vectors include the oligonucleotidc alone (e.g. any one or more of SEQ ID NOS: 7 to 24) or in combination with a suitable protein, polysaccharide or lipid formulation.
[00199] Additionally suitable nucleic acid delivery systems include viral vector, typically sequence from at least one of an adenovirus, adenovirus-associated virus (AAV), helper-dependent adenovirus, rctrovirus, or hcmagglutinatin virus of Japan-liposomc (HVJ) complex. Preferably, the viral vector comprises a strong cukaryotic promoter operably linked to the polynucleotide e.g., a cytomegalovirus (CMV) promoter.
[00200] Additionally vectors include viral vectors, fusion proteins and chemical conjugates. Retroviral vectors include Moloney marine leukemia viruses and HIV based viruses. One HIV-based viral vector comprises at least two vectors wherein the gag and pol genes arc from an HIV genome and the env gene is from another virus. DNA
viral vectors are preferred. These vectors include pox vectors such as orthopox or avipox vectors, herpesvirus vectors such as a herpes simplex I virus (.HSV) vector, Adenovirus Vectors and Adeno-associated Virus Vectors).
[00201 ] The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof.
[00202] The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto. For oligonucleotides, examples of pharmaceutically acceptable salts and their uses are further described in U.S. Pat. No.
6,287,860, which is incorporated herein by reference.
[00203] The present invention also includes pharmaceutical compositions and formulations that include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insulation of powders or aerosols, including by ncbulizer;
intratrachcal, intranasal, epidermal and transdennal), oral or parenteral.
Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.
[00204] For treating tissues in the central nervous system, administration can be made by, e.g., injection or infusion into the cerebrospinal fluid. Administration of antisense RNA into cerebrospinal fluid is described, e.g., in U.S. Pat. App. Pub. No. 2007/0117772, "Methods for slowing familial ALS
disease progression," incorporated herein by reference in its entirety.

[00205] When it is intended that the antisense oligonucleotidc of the present invention be administered to cells in the central nervous system, administration can be with one or more agents capable of promoting penetration of the subject antisense oligonucleotide across the blood-brain barrier. Injection can be made, e.g., in the entorhinal cortex or hippocvnpus. Delivery of neurotrophic factors by administration of an adenovirus vector to motor neurons in muscle tissue is described in, e.g., U.S. Pat. No. 6,632,427, "Adenoviral-vector-mediated gene transfer into medullary motor neurons," incorporated herein by reference. Delivery of vectors directly to the brain, e.g., the striatum, the thalamus, the hippocampus, or the substantia nigra, is known in the art and described, e.g., in U.S. Pat.
No. 6,756,523, "Adenovirus vectors for the transfer of foreign genes into cells of the central nervous system particularly in brain," incorporated herein by reference. Administration can be rapid as by injection or made over a period of time as by slow infusion or administration of slow release formulations.
[00206] The subject antisense oligonucleotides can also be linked or conjugated with agents that provide desirable pharmaceutical or pharmacodynamic properties. For example, the antisense oligonucleotide can be coupled to any substance, known in the art to promote penetration or transport across the blood-brain barrier, such as an antibody to the transferrin receptor, and administered by intravenous injection. The antisense compound can be linked with a viral vector, for example, that makes the antisense compound more effective and/or increases the transport of the antisense compound across the blood-brain barrier. Osmotic blood brain barrier disruption can also be accomplished by, e.g., infusion of sugars including, but not limited to, meso crythritol, xylitol, D(+) galactose, D(+) lactose, D(+) xylosc, dulcitol, myo-inositol, L(-) fructose, D(-) mannitol, D(+) glucose, D(+) arabinose, D(-) arabinose, cellobiose, D(+) maltose, D(+) ramose, L(+) rhamnose, D(+) melibiose, D(-) ribose, adonitol, D(+) arabitol, L(-) arabitol, D(+) fucose, L(-) fucose, D(-) lyxose, L(+) lyxose, and L(-) lyxose, or amino acids including, but not limited to, glutamine, lysine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glycine, histidine, leucine, methionine, phenylalanine, proline, serine, threonine, tyrosine, valinc, and taurinc. Methods and materials for enhancing blood brain barrier penetration arc described, e.g., in U. S. Patent No. 4,866,042, "Method for the delivery of genetic material across the blood brain barrier,"
6,294,520, "Material for passage through the blood-brain barrier," and 6,936,589, "Parenteral delivery systems," all incorporated herein by reference in their entirety.
[00207] The subject antisense compounds may be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, for example, liposomcs, receptor-targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. For example, cationic lipids may be included in the formulation to facilitate oligonucleotide uptake. One such composition shown to facilitate uptake is LIPOFECTiN (available from GIBCO-BRL, Bethesda, MD).
[00208] Oligonucleotides with at least one 2'-O-methoxyethyl modification are believed to be particularly useful for oral administration. Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.

.CA 02765815 2011-12-16 Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.
[00209] The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry.
Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipicnt(s). In general, the formulations arc prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
[002 10] The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances that increase the viscosity of the suspension including, for example, sodium carboxymcthylccllulosc, sorbitol and/or dextran. The suspension may also contain stabilizers.
[00211 ] Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, foams and liposome-containing formulations. The pharmaceutical compositions and formulations of the present invention may comprise one or more penetration enhancers, carriers, excipients or other active or inactive ingredients.
[00212] Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0. I pert in diameter. Emulsions may contain additional components in addition to the dispersed phases, and the active drug that may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Microemulsions are included as an embodiment of the present invention. Emulsions and their uses are well known in the art and are further described in U.S. Pat. No.
6,287,860.
[00213] Formulations of the present invention include liposomal formulations.
As used in the present invention, the tern "liposome" means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.
Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior that contains the composition to be delivered. Cationic liposomcs are positively charged liposomcs that are believed to interact with negatively charged DNA molecules to form a stable complex.
Liposomes that are pH-sensitive or negatively-charged are believed to entrap DNA rather than complex with it.
Both cationic and noncationic liposomcs have been used to deliver DNA to cells.
[00214] Liposomes also include "sterically stabilized" liposomes, a term which, as used herein, refers to liposomcs comprising one or more specialized lipids. When incorporated into liposomes, these specialized lipids result in liposomcs with enhanced circulation lifetimes relative to liposomeslacking such specialized lipids.
Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome comprises one or more glycolipids or is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. Liposomes and their uses are further described in U.S. Pat. No. 6,287,860.
[00215] The pharmaceutical formulations and compositions of the present invention may also include surfactants.
The use of surfactants in drug products, formulations and in emulsions is well known in the an. Surfactants and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein by reference.
[00216] In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly oligonucleotides. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs. Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating nonsurfactants. Penetration enhancers and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein by reference.
[00217] One of skill in the art will recognize that formulations are routinely designed according to their intended use, i.e. route of administration.
[00218] formulations for topical administration include those in which the oligonucleotides of the invention are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. lipids and liposomes include neutral (e.g. dioleoyl-phosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearolyphosphatidyl choline) negative (e.g. dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g. dioleoyltetramethylaminopropyl DOTAP and dioleoyl-phosphatidyl ethanolamne DOTMA).
[00219] For topical or other administration, oligonucleotides of the invention may be encapsulated within liposomcs or may fora complexes thereto, in particular to cationic liposomes.
Alternatively, oligonucleotides may be complexed to lipids, in particular to cationic lipids. fatty acids and esters, pharmaceutically acceptable salts thereof, and their uses are further described in U.S. Pat. No. 6,287,860.
[00220] Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. oral formulations are those in which oligonucleotides of the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators. surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. bile acids/salts and fatty acids and their uses arc further described in U.S. Pat. No.
6,287,860, which is incorporated herein by reference. Also arc combinations of penetration enhancers, for example, fatty acids/salts in combination with bile acids/salts. A particularly combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxycthylene-20-ceryl ether. Oligonucleotides of the invention may be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. Oligonucleotide complexing agents and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein by reference.
[00221 ] Compositions and formulations for parentcral, intrathecal or intraventricular administration may include sterile aqueous solutions that may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.
[00222] Certain embodiments of the invention provide pharmaceutical compositions containing one or more oligomeric compounds and one or more other chemotherapeutic agents that function by a non-antisense mechanism. Examples of such chemotherapeutic agents include but arc not limited to cancer chemotherapeutic drugs such as daunorubicin, dcunomycin, dactinomycin, doxorubicin, epirubicin, idarubicin, esonibicin, bleomycin, mafosfamide, ifosfamide, cytosine arabinoside, bischloroethyl-nitrosurca, busulfan, mitomycin C, actinomycin D, mithramycin, prednisone, hydroxyprogesterone, testosterone, tamoxifen, dacarbazinc, procarbazine, hexamethylmelaminc, pentamethylmelaminc, mitoxantrone, amsacrine, chlorambucil, mcthylcyclohcxylnitrosurea, nitrogen mustards, mclphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguaninc, cytarabine, 5- azacytidine, hydroxyurea, deoxycofonnycin, 4-hydroxyperoxycyclo-phosphoramide, 5-fluorouracil (5-FU), 5-fluorodeoxyuridine (5-FUdR), methotrexate (MTX), colchicine, taxol, vincristine, vinblastine, etoposide (VP-16), trimetrexate, irinotecan, topotecan, gemcitabine, teniposide, cisplatin and diethylstilbestrol (DES). When used with the compounds of the invention, such chemotherapeutic agents may be used individually (e.g., 5-FU and oligonucleotidc), sequentially (e.g., 5-FU and oligonucleotidc for a period of time followed by MTX and oligonucleotide), or in combination with one or more other such chemotherapeutic agents (e.g., 5-FU, MTX and oligonucleotidc, or 5-FU, radiotherapy and oligonucleotidc). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticostcroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. Combinations of antisensc compounds and other non-antisense drugs arc also within the scope of this invention. Two or more combined compounds may be used together or sequentially.
[00223] In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotidcs, targeted to a first nucleic acid and one or more additional antisensc compounds targeted to a second nucleic acid target. For example, the first target may be a particular antisensc sequence of a Down Syndrome Gene, and the second target may be a region from another nucleotide sequence.
Alternatively, compositions of the invention may contain two or more antisensc compounds targeted to different regions of the same Down Syndrome Gene nucleic acid target. Numerous examples of antisense compounds are illustrated herein and others may be selected from among suitable compounds known in the art. Two or more combined compounds may be used together or sequentially.
Dosing:

[00224] The formulation of therapeutic compositions and their subsequent administration (dosing) is believed to be within the skill of those in the art..Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotidcs, and can generally be estimated based on EC50s found to be effective in in vitro and in vivo animal models. In general, dosage is from 0.01 pg to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 pg to 100 g per kg of body weight, once or more daily, to once every 20 years.
[00225] In embodiments, a patient is treated with a dosage of drug that is at least about 1, at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, at least about 10, at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50, at least about 60, at least about 70, at least about 80, at least about 90, or at least about IN) mg/kg body weight. Certain injected dosages of antisensc oligonuclcotides are described, e.g., in U.S.
Pat. No. 7,563,884, "Antisense modulation of PTP I B expression," incorporated herein by reference in its entirety.
[00226] While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation.
Numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit or scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above described embodiments.
[00227] All documents mentioned herein are incorporated herein by reference.
All publications and patent documents cited in this application are incorporated by reference for all purposes to the same extent as if each individual publication or patent document were so individually denoted. By their citation of various references in this document, Applicants do not admit any particular reference is "prior art"
to their invention. Embodiments of inventive compositions and methods are illustrated in the following examples.
EXAMPLES
[00228] The following non-limiting Examples serve to illustrate selected embodiments of the invention. It will be appreciated that variations in proportions and alternatives in elements of the components shown will be apparent to those skilled in the art and are within the scope of embodiments of the present invention.

&ample 1: Des i n of antisense oligonucleotides .specific for a nucleic acid molecule antisense to a Down Syndrome Gene and/or a sense strand ofa Down Syndrome Gene polynrrcleotide [00229] As indicated above the term "oligonuclcotide specific for" or "oligonuclcotide targets" refers to an oligonuclcotide having a sequence (i) capable of forming a stable complex with a portion of the targeted gene, or (ii) capable of forming a stable duplex with a portion of an mRNA transcript of the targeted gene.
[00230] Selection of appropriate oligonucleotides is facilitated by using computer programs that automatically align nucleic acid sequences and indicate regions of identity or homology.
Such programs arc used to compare nucleic acid sequences obtained, for example, by searching databases such as GcnBank or by sequencing PCR
products. Comparison of nucleic acid sequences from a range of species allows the selection of nucleic acid sequences that display an appropriate degree of identity between species. In the case of genes that have not been sequenced, Southern blots arc performed to allow a determination of the degree of identity between genes in target species and other species. By performing Southern blots at varying degrees of stringency, as is well known in the art, it is possible to obtain an approximate measure of identity. These procedures allow the selection of oligonucleotides that exhibit a high degree of complementarity to target nucleic acid sequences in a subject to be controlled and a lower degree of complementarity to corresponding nucleic acid sequences in other species. One skilled in the art will realize that there is considerable latitude in selecting appropriate regions of genes for use in the present invention.
[00231 ] An antisense compound is "specifically hybridizable" when binding of the compound to the target nucleic acid interferes with the normal function of the target nucleic acid to cause a modulation of function and/or activity, and there is a sufficient degree of complcmentarity to avoid non-specific binding of the antisense compound to non-target nucleic acid sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and under conditions in which assays are performed in the case of in vitro assays [00232] The hybridization properties of the oligonucleotides described herein can be determined by one or more in vitro assays as known in the art. For example, the properties of the oligonucleotides described herein can be obtained by determination of binding strength between the target natural antiscnsc and a potential drug molecules using melting curve assay.
[00233] The binding strength between the target natural antisense and a potential drug molecule (Molecule) can be estimated using any of the established methods of measuring the strength of intermolecular interactions, for example, a melting curve assay.
[00234] Melting curve assay determines the temperature at which a rapid transition from double-stranded to single-stranded conformation occurs for the natural antisense/Molecule complex. This temperature is widely accepted as a reliable measure of the interaction strength between the two molecules.

[00235] A melting curve assay can be performed using a cDNA copy of the actual natural antisense RNA
molecule or a synthetic DNA or RNA nucleotide corresponding to the binding site of the Molecule. Multiple kits containing all necessary reagents to perform this assay arc available (e.g.
Applied Biosystems Inc. MeltDoctor kit).
These kits include a suitable buffer solution containing one of the double strand DNA (dsDNA) binding dyes (such as ABI HRM dyes, SYBR Green, SYTO, etc.). The properties of the dsDNA dyes are such that they emit almost no fluorescence in free form, but are highly fluorescent when bound to dsDNA.
[00236] To perform the assay the eDNA or a corresponding oligonucleotide are mixed with Molecule in concentrations defined by the particular manufacturer's protocols. The mixture is heated to 95 C to dissociate all pre-formed dsDNA complexes, then slowly cooled to room temperature or other lower temperature defined by the kit manufacturer to allow the DNA molecules to anneal. The newly formed complexes arc then slowly heated to 95 C with simultaneous continuous collection of data on the amount of fluorescence that is produced by the reaction.
The fluorescence intensity is inversely proportional to the amounts of dsDNA
present in the reaction. The data can be collected using a real time PCR instrument compatible with the kit (e.g.ABI's StepOne Plus Real Time PCR
System or LightTyper instrment, Roche Diagnostics, Lewes, UK).
[00237] Melting peaks are constructed by plotting the negative derivative of fluorescence with respect to temperature (-d(Fluorescence)/dT) on the y-axis) against temperature (x-axis) using appropriate software (for example LightTyper (Roche) or SDS Dissociation Curve, ABI). The data is analyzed to identify the temperature of the rapid transition from dsDNA complex to single strand molecules. This temperature is called Tm and is directly proportional to the strength of interaction between the two molecules.
Typically, Tm will exceed 40 C.
F_vample 2:.Modulation of a Down Syndrome Gene polvmrcleoticle Treatment of 1cp(12 cells with antisense oligonucleotides [00238] HepG2 cells from ATCC (cat# HB-8065) were grown in growth media (MEM/EBSS (Hyclone cat #SH30024, or Mediatech cat # MT-10-010-CV) +10% FBS (Mcdiatech cat4. MT35- 01l-CV)+
penicillin/streptomycin (Mcdiatech cat# MT30-002-Cl)) at 37 C and 5% C02. One day before the experiment the cells were replated at the density of 1.5 x 105/ml into 6 well plates and incubated at 37 C and 5% C02. On the day of the experiment the media in the 6 well plates was changed to fresh growth media. All antisense oligonucleotides were diluted to the concentration of 20 M. Two pi of this solution was incubated with 400 pi of Opti-MEM media (Gibco cat#31985-070) and 4 pl of Lipofectamine 2000 (Invitrogen cat#
11668019) at room temperature for 20 min and applied to each well of the 6 well plates with HepG2 cells. A Similar mixture including 2 pl of water instead of the oligonucleotide solution was used for the mock-transfected controls. After 3-18 h of incubation at 37 C and 5% C02 the media was changed to fresh growth media. 48 h after addition of antisensc oligonucleotides the media was removed and RNA was extracted from the cells using SV Total RNA
Isolation System from Promega (cat # Z3105) or RNeasy Total RNA Isolation kit from Qiagen (cat#
74181) following the manufacturers' instructions. 600 ng of RNA was added to the reverse transcription reaction performed using Verso eDNA kit from Thermo Scientific (cat#AB I453B) or High Capacity cDNA Reverse Transcription Kit (cat# 4368813) as described in the manufacturer's protocol. The cDNA from this reverse transcription reaction was used to monitor gene expression by real time PCR using ABI Tagman Gene Expression Mix (cat#4369510) and primers/probes designed by ABI (Applied Biosystems Taqman Gene Expression Assay::Hs00176369_m l and HsO0176369 m l , by Applied Biosystems Inc., Foster City CA). The following PCR cycle was used: 50 C for 2 min, 95 C for 10 min, 40 cycles of (95 C for 15 seconds, 60 C .for 1 min) using.Mx40(X) thermal cycler (Stratagcne).
[00239] Fold change in gene expression after treatment with antisense oligonucleotides was calculated based on the difference in 18S-normalized dCt values between treated and mock-transfected samples.
Results [00240] Real time PCR results show that the levels of DYRKIa mRNA in HepG2 cells are significantly increased 48h after treatment with one of the oliogs designed to DYRK I a antisense Hs.
713879 (CUR-0885-CUR-0890).
(Fig 1).
[00241 ] Real time PCR results show that the levels of DSCR1 mRNA in HepG2 cells are significantly increased 48h after treatment with one of the oligos designed to DSCRI antisense DA403464 (Fig 2).
Treatment of hero 76 cells with antisense oligonucleotides [00242] Vero 76 cells from ATCC (cat# CRL-1587) were grown in growth media (M.EM/EBSS (Hyclone cat #SH30024, or Mediatech cat # MT-10-010-CV) +10% FBS (Mediatech cat# MT35- 011-CV)+
penicillin/streptomycin (Mediatech cat# MT30-002-CT)) at 37 C and 5% C02. One day before the experiment the cells were replatcd at the density of 1.5 x 105/ml into 6 well plates and incubated at 37 C and 5% C02. On the day of the experiment the media in the 6 well plates was changed to fresh growth media. All antisense oligonucleotides were diluted to the concentration of 20 M. Two pl of this solution was incubated with 400 pi of Opti-MEM media (Gibco cat#31985-070) and 4 pl of Lipofectaminc 2000 (Invitrogen cat#
11668019) at room temperature for 20 min and applied to each well of the 6 well plates with Vero 76 cells. A
Similar mixture including 2 l of water instead of the oligonucleotide solution was used for the mock-transfected controls. After 3-18 h of incubation at 37 C and 5% CO2 the media was changed to fresh growth media. 48 h after addition of antisense oligonucleotides the media was removed and RNA was extracted from the cells using SV Total RNA
Isolation System from Promega (cat # Z3105) or RNeasy Total RNA Isolation kit from Qiagen (cat#
74181) following the manufacturers' instructions. 600 ng of RNA was added to the reverse transcription reaction performed using Verso cDNA kit from Thermo Scientific (cat9AB1453B) or High Capacity cD.NA Reverse Transcription Kit (cat# 4368813) as described in the manufacturer's protocol. The eDNA from this reverse transcription reaction was used to monitor gene expression by real time PCR using ABI Taqman Gene Expression Mix (cat#4369510) and primers/probes designed by ABI (Applied Biosystems Taqman Gene Expression Assay::Hs00176369_tnI and HsOO176369_r171 I, by Applied Biosystems Inc., Foster City CA). The following PCR cycle was used: 50 C for 2 min, 95 C for 10 min, 40 cycles of (95 C for 15 seconds, 60 C for I min) using using Mx4000 thermal cycler (Stratagene) or StepOne Plus Real Time PCR Machine (Applied Biosystems).
[00243] Fold change in gene expression after treatment with antisense oligonucleotides was calculated based on the difference in 18S-normalized dCt values between treated and mock-transfected samples.
[00244] Real time PCR results show that the levels of DYRKIa mRNA in Vero cells are significantly increased 48h after treatment with I of the oliogs designed to DYRKI a antiscnse Hs.
713879. (Fig 3).
[00245] Real time PCR results show that the levels of DSCRI mRNA in Vero cells cells are significantly increased 48h after treatment with one of the oligos designed to DSCR I
antiscnse DA403464. (Fig 4).
[00246] Although the invention has been illustrated and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application.
[00247] The Abstract of the disclosure will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the following claims.

Claims (37)

1. A method of modulating a function of and/or the expression of a Down Syndrome Gene polynucleotide in patient cells or tissues in vivo or in vitro comprising:
contacting said cells or tissues with at least one antisense oligonucleotide 5 to 30 nucleotides in length wherein said at least one oligonucleotide has at least 50% sequence identity to a reverse complement of a polynucleotide comprising 5 to 30 consecutive nucleotides within nucleotides 1 to 3814 of SEQ ID SEQ ID
NO: 3, 1 to 633 of SEQ ID NO: 4, 1 to 497 of SEQ ID SEQ ID NO: 5 and 1 to 545 of SEQ ID NO: 6; thereby modulating a function of and/or the expression of the Down Syndrome Gene polynucleotide in patient cells or tissues in vivo or in vitro.
2. A method of modulating a function of and/or the expression of a Down Syndrome Gene polynucleotide in patient cells or tissues in vivo or in vitro comprising:
contacting said cells or tissues with at least one antisense oligonucleotide 5 to 30 nucleotides in length wherein said at least one oligonucleotide has at least 50% sequence identity to a reverse complement of a natural antisense of a Down Syndrome Gene polynucleotide; thereby modulating a function of and/or the expression of the Down Syndrome Gene polynucleotide in patient cells or tissues in vivo or in vitro.
3. A method of modulating a function of and/or the expression of a Down Syndrome Gene polynucleotide in patient cells or tissues in vivo or in vitro comprising:
contacting said cells or tissues with at least one antisense oligonucleotide 5 to 30 nucleotides in length wherein said oligonucleotide has at least 50% sequence identity to an antisense oligonucleotide to the Down Syndrome Gene polynucleotide; thereby modulating a function of and/or the expression of the Down Syndrome Gene polynucleotide in patient cells or tissues in vivo or in vitro.
4. A method of modulating a function of and/or the expression of a Down Syndrome Gene polynucleotide in patient cells or tissues in vivo or in vitro comprising:
contacting said cells or tissues with at least one antisense oligonucleotide that targets a region of a natural antisense oligonucleotide of the Down Syndrome Gene polynucleotide; thereby modulating a function of and/or the expression of the Down Syndrome Gene polynucleotide in patient cells or tissues in vivo or in vitro.
5. The method of claim 4, wherein a function of and/or the expression of the Down Syndrome Gene is increased in vivo or in vitro with respect to a control.
6. The method of claim 4, wherein the at least one antisense oligonucleotide targets a natural antisense sequence of a Down Syndrome Gene polynucleotide.
7. The method of claim 4, wherein the at least one antisense oligonucleotide targets a nucleic acid sequence comprising coding and/or non-coding nucleic acid sequences of a Down Syndrome Gene polynucleotide.
8. The method of claim 4, wherein the at least one antisense oligonucleotide targets overlapping and/or non-overlapping sequences of a Down Syndrome Gene polynucleotide.
9. The method of claim 4, wherein the at least one antisense oligonucleotide comprises one or more modifications selected from: at least one modified sugar moiety, at least one modified internucleoside linkage, at least one modified nucleotide, and combinations thereof.
10. The method of claim 9, wherein the one or more modifications comprise at least one modified sugar moiety selected from: a 2'-O-methoxyethyl modified sugar moiety, a 2'-methoxy modified sugar moiety, a 2'-O-alkyl modified sugar moiety, a bicyclic sugar moiety, and combinations thereof.
11. The method of claim 9, wherein the one or more modifications comprise at least one modified internucleoside linkage selected from: a phosphorothioate, 2'- Omethoxyethyl (MOE), 2'-fluoro, alkylphosphonate, phosphorodithioate, alkylphosphonothioate, phosphoramidate, carbamate, carbonate, phosphate triester, acetamidate, carboxymethyl ester, and combinations thereof.
12. The method of claim 9, wherein the one or more modifications comprise at least one modified nucleotide selected from: a peptide nucleic acid (PNA), a locked nucleic acid (LNA), an arabino-nucleic acid (FANA), an analogue, a derivative, and combinations thereof.
13. The method of claim 1, wherein the at least one oligonucleotide comprises at least one oligonucleotide sequences set forth as SEQ ID NOS: 7 to 24.
14. A method of modulating a function of and/or the expression of a Down Syndrome Gene in mammalian cells or tissues in vivo or in vitro comprising:
contacting said cells or tissues with at least one short interfering RNA
(siRNA) oligonucleotide 5 to 30 nucleotides in length, said at least one siRNA oligonucleotide being specific for an antisense polynucleotide of a Down Syndrome Gene polynucleotide, wherein said at least one siRNA
oligonucleotide has at least 50%
sequence identity to a complementary sequence of at least about five consecutive nucleic acids of the antisense and/or sense nucleic acid molecule of the Down Syndrome Gene polynucleotide;
and, modulating a function of and/or the expression of a Down Syndrome Gene in mammalian cells or tissues in vivo or in vitro.
15. The method of claim 14, wherein said oligonucleotide has at least 80%
sequence identity to a sequence of at least about five consecutive nucleic acids that is complementary to the antisense and/or sense nucleic acid molecule of the Down Syndrome Gene polynucleotide.
16. A method of modulating a function of and/or the expression of a Down Syndrome Gene in mammalian cells or tissues in vivo or in vitro comprising:
contacting said cells or tissues with at least one antisense oligonucleotide of about 5 to 30 nucleotides in length specific for noncoding and/or coding sequences of a sense and/or natural antisense strand of a Down Syndrome Gene polynucleotide wherein said at least one antisense oligonucleotide has at least 50% sequence identity to at least one nucleic acid sequence set forth as SEQ ID NOS: 1 to 6: and, modulating the function and/or expression of the Down Syndrome Gene in mammalian cells or tissues in vivo or in vitro.
17. A synthetic, modified oligonucleotide comprising at least one modification wherein the at least one modification is selected from: at least one modified sugar moiety; at least one modified internucleotide linkage; at least one modified nucleotide, and combinations thereof; wherein said oligonucleotide is an antisense compound which hybridizes to and modulates the function and/or expression of a Down Syndrome Gene in vivo or in vitro as compared to a normal control.
18. The oligonucleotide of claim 17, wherein the at least one modification comprises an internucleotide linkage selected from the group consisting of: phosphorothioate, alkylphosphonate, phosphorodithioate, alkylphosphonothioate, phosphoramidate, carbamate, carbonate, phosphate triester, acetamidate, carboxymethyl ester, and combinations thereof.
19. The oligonucleotide of claim 17, wherein said oligonucleotide comprises at least one phosphorothioate internucleotide linkage.
20. The oligonucleotide of claim 17, wherein said oligonucleotide comprises a backbone of phosphorothioate internucleotide linkages.
21. The oligonucleotide of claim 17, wherein the oligonucleotide comprises at least one modified nucleotide, said modified nucleotide selected from: a peptide nucleic acid, a locked nucleic acid (LNA), analogue, derivative, and a combination thereof.
22. The oligonucleotide of claim 17, wherein the oligonucleotide comprises a plurality of modifications, wherein said modifications comprise modified nucleotides selected from:
phosphorothioate, alkylphosphonate, phosphorodithioate, alkylphosphonothioate, phosphoramidate, carbamate, carbonate, phosphate triester, acetamidate, carboxymethyl ester, and a combination thereof.
23. The oligonucleotide of claim 17, wherein the oligonucleotide comprises a plurality of modifications, wherein said modifications comprise modified nucleotides selected from: peptide nucleic acids, locked nucleic acids (LNA), analogues, derivatives, and a combination thereof.
24. The oligonucleotide of claim 17, wherein the oligonucleotide comprises at least one modified sugar moiety selected from: a 2'-O-methoxyethyl modified sugar moiety, a 2'-methoxy modified sugar moiety, a 2'-O-alkyl modified sugar moiety, a bicyclic sugar moiety, and a combination thereof.
25. The oligonucleotide of claim 17, wherein the oligonucleotide comprises a plurality of modifications, wherein said modifications comprise modified sugar moieties selected from: a 2'-O-methoxyethyl modified sugar moiety, a 2'-methoxy modified sugar moiety, a 2'-O-alkyl modified sugar moiety, a bicyclic sugar moiety, and a combination thereof.
26. The oligonucleotide of claim 17, wherein the oligonucleotide is of at least about 5 to 30 nucleotides in length and hybridizes to an antisense and/or sense strand of a Down Syndrome Gene polynucleotide wherein said oligonucleotide has at least about 20% sequence identity to a complementary sequence of at least about five consecutive nucleic acids of the antisense and/or sense coding and/or noncoding nucleic acid sequences of the Down Syndrome Gene polynucleotide.
27. The oligonucleotide of claim 17, wherein the oligonucleotide has at least about 80% sequence identity to a complementary sequence of at least about five consecutive nucleic acids of the antisense and/or sense coding and/or noncoding nucleic acid sequence of the Down Syndrome Gene polynucleotide.
28. The oligonucleotide of claim 17, wherein said oligonucleotide hybridizes to and modulates expression and/or function of at least one Down Syndrome Gene polynucleotide in vivo or in vitro, as compared to a normal control.
29. The oligonucleotide of claim 17, wherein the oligonucleotide comprises the sequences set forth as SEQ ID
NOS: 7 to 24.
30. A composition comprising one or more oligonucleotides specific for one or more Down Syndrome Gene polynucleotides, said polynucleotides comprising antisense sequences, complementary sequences, alleles, homologs, isoforms, variants, derivatives, mutants, fragments, or combinations thereof.
31. The composition of claim 30, wherein the oligonucleotides have at least about 40% sequence identity as compared to any one of the nucleotide sequences set forth as SEQ ID NOS: 7 to 24.
32. The composition of claim 30, wherein the oligonucleotides comprise nucleotide sequences set forth as SEQ ID
NOS: 7 to 24.
33. The composition of claim 32, wherein the oligonucleotides set forth as SEQ
ID NOS: 7 to 24 comprise one or more modifications or substitutions.
34. The composition of claim 33, wherein the one or more modifications are selected from: phosphorothioate, methylphosphonate, peptide nucleic acid, locked nucleic acid (LNA) molecules, and combinations thereof.
35. A method of preventing or treating a disease associated with at least one Down Syndrome Gene polynucleotide and/or at least one encoded product thereof, comprising:
administering to a patient a therapeutically effective dose of at least one antisense oligonucleotide that binds to a natural antisense sequence of said at least one Down Syndrome Gene polynucleotide and modulates expression of said at least one Down Syndrome Gene polynucleotide; thereby preventing or treating the disease associated with the at least one Down Syndrome Gene polynucleotide and/or at least one encoded product thereof.
36. The method of claim 35, wherein a disease associated with the at least one Down Syndrome Gene polynucleotide is selected from: a disease or disorder associated with mutant, aberrant expression or function of DYRK1a or DSCR1; cancer, an angiogenic disease or disorder, an apoptotic disease or disorder, a cell proliferative disease or disorder, inflammation, a cardiovascular disease or disorder, a neurological disease or disorder, Down's syndrome, Alzheimer's disease, mental retardation, memory impairment, trisomy, neuropathology, a neurodegenerative disease or disorder, cardiomyocyte hypertrophy, a vascular anomaly (e.g., infantile hemangioma, an angiogenesis-dependent vascular tumor, vascular malformation etc.), Hyperhomocysteinemia, impaired osteoblast differentiation, osteoclastogenesis, impaired mitochondrial function, oxidative stress, a disease or disorder associated with impaired calcineurin-mediated signaling pathway, a disease or disorder associated with impaired regulation of angiogenesis, calcium-mediated stress and a disease or disorder associated with defective or impaired APC and/or Axin function.
37. A method of identifying and selecting at least one oligonucleotide for in vivo administration comprising:
selecting a target polynucleotide associated with a discase state; identifying at least one oligonucleotide comprising at least five consecutive nucleotides which are complementary to the selected target polynucleotide or to a polynucleotide that is antisense to the selected target polynucleotide; measuring the thermal melting point of a hybrid of an antisense oligonucleotide and the target polynucleotide or the polynucleotide that is antisense to the selected target polynucleotide under stringent hybridization conditions; and selecting at least one oligonucleotide for in vivo administration based on the information obtained.
CA2765815A 2009-06-26 2010-06-24 Treatment of down syndrome gene related diseases by inhibition of natural antisense transcript to a down syndrome gene Abandoned CA2765815A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US22074709P 2009-06-26 2009-06-26
US61/220,747 2009-06-26
US23575209P 2009-08-21 2009-08-21
US61/235,752 2009-08-21
PCT/US2010/039827 WO2010151674A2 (en) 2009-06-26 2010-06-24 Treatment of down syndrome gene related diseases by inhibition of natural antisense transcript to a down syndrome gene

Publications (1)

Publication Number Publication Date
CA2765815A1 true CA2765815A1 (en) 2010-12-29

Family

ID=43387128

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2765815A Abandoned CA2765815A1 (en) 2009-06-26 2010-06-24 Treatment of down syndrome gene related diseases by inhibition of natural antisense transcript to a down syndrome gene

Country Status (8)

Country Link
US (4) US8921330B2 (en)
EP (1) EP2446037B1 (en)
JP (1) JP5907866B2 (en)
KR (1) KR101807324B1 (en)
CN (1) CN102482672B (en)
CA (1) CA2765815A1 (en)
ES (1) ES2583691T3 (en)
WO (1) WO2010151674A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8212019B2 (en) 2008-07-30 2012-07-03 University Of Massachusetts Nucleic acid silencing sequences
US9920317B2 (en) 2010-11-12 2018-03-20 The General Hospital Corporation Polycomb-associated non-coding RNAs
EP2638163B1 (en) 2010-11-12 2017-05-17 The General Hospital Corporation Polycomb-associated non-coding rnas
EA201492120A1 (en) 2012-05-16 2015-10-30 Рана Терапьютикс, Инк. COMPOSITIONS AND METHODS FOR MODULATING ATP2A2 EXPRESSION
JP2015518712A (en) 2012-05-16 2015-07-06 ラナ セラピューティクス インコーポレイテッド Compositions and methods for modulating MECP2 expression
AP2014008100A0 (en) 2012-05-16 2014-12-31 Gen Hospital Corp Compositions and methods for modulating hemoglobingene family expression
CA2873809A1 (en) 2012-05-16 2013-11-21 Rana Therapeutics, Inc. Compositions and methods for modulating gene expression
US10059941B2 (en) 2012-05-16 2018-08-28 Translate Bio Ma, Inc. Compositions and methods for modulating SMN gene family expression
US10837014B2 (en) 2012-05-16 2020-11-17 Translate Bio Ma, Inc. Compositions and methods for modulating SMN gene family expression
AU2013262656A1 (en) 2012-05-16 2015-01-22 Rana Therapeutics, Inc. Compositions and methods for modulating UTRN expression
WO2014152607A2 (en) * 2013-03-14 2014-09-25 University Of Massachusetts Dosage compensating transgenes and cells
US9681646B2 (en) 2013-03-15 2017-06-20 University Of Massachusetts Dosage compensating transgenes and cells
CA2966044A1 (en) 2014-10-30 2016-05-06 The General Hospital Corporation Methods for modulating atrx-dependent gene repression
US10900036B2 (en) 2015-03-17 2021-01-26 The General Hospital Corporation RNA interactome of polycomb repressive complex 1 (PRC1)
CN108384787B (en) * 2018-03-09 2020-05-19 山东大学深圳研究院 RCAN1 aptamer RCAN1-s14

Family Cites Families (393)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US494582A (en) 1893-04-04 Edmund lunkenheimer
US3687808A (en) 1969-08-14 1972-08-29 Univ Leland Stanford Junior Synthetic polynucleotides
US4469863A (en) 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US4534899A (en) 1981-07-20 1985-08-13 Lipid Specialties, Inc. Synthetic phospholipid compounds
US4426330A (en) 1981-07-20 1984-01-17 Lipid Specialties, Inc. Synthetic phospholipid compounds
US5023243A (en) 1981-10-23 1991-06-11 Molecular Biosystems, Inc. Oligonucleotide therapeutic agent and method of making same
US4476301A (en) 1982-04-29 1984-10-09 Centre National De La Recherche Scientifique Oligonucleotides, a process for preparing the same and their application as mediators of the action of interferon
JPS5927900A (en) 1982-08-09 1984-02-14 Wakunaga Seiyaku Kk Oligonucleotide derivative and its preparation
FR2540122B1 (en) 1983-01-27 1985-11-29 Centre Nat Rech Scient NOVEL COMPOUNDS COMPRISING A SEQUENCE OF OLIGONUCLEOTIDE LINKED TO AN INTERCALATION AGENT, THEIR SYNTHESIS PROCESS AND THEIR APPLICATION
US4605735A (en) 1983-02-14 1986-08-12 Wakunaga Seiyaku Kabushiki Kaisha Oligonucleotide derivatives
US4948882A (en) 1983-02-22 1990-08-14 Syngene, Inc. Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis
NZ207394A (en) 1983-03-08 1987-03-06 Commw Serum Lab Commission Detecting or determining sequence of amino acids
US4824941A (en) 1983-03-10 1989-04-25 Julian Gordon Specific antibody to the native form of 2'5'-oligonucleotides, the method of preparation and the use as reagents in immunoassays or for binding 2'5'-oligonucleotides in biological systems
US4587044A (en) 1983-09-01 1986-05-06 The Johns Hopkins University Linkage of proteins to nucleic acids
US5118802A (en) 1983-12-20 1992-06-02 California Institute Of Technology DNA-reporter conjugates linked via the 2' or 5'-primary amino group of the 5'-terminal nucleoside
US5118800A (en) 1983-12-20 1992-06-02 California Institute Of Technology Oligonucleotides possessing a primary amino group in the terminal nucleotide
US5550111A (en) 1984-07-11 1996-08-27 Temple University-Of The Commonwealth System Of Higher Education Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof
FR2567892B1 (en) 1984-07-19 1989-02-17 Centre Nat Rech Scient NOVEL OLIGONUCLEOTIDES, THEIR PREPARATION PROCESS AND THEIR APPLICATIONS AS MEDIATORS IN DEVELOPING THE EFFECTS OF INTERFERONS
US5430136A (en) 1984-10-16 1995-07-04 Chiron Corporation Oligonucleotides having selectably cleavable and/or abasic sites
US5258506A (en) 1984-10-16 1993-11-02 Chiron Corporation Photolabile reagents for incorporation into oligonucleotide chains
US5367066A (en) 1984-10-16 1994-11-22 Chiron Corporation Oligonucleotides with selectably cleavable and/or abasic sites
US4828979A (en) 1984-11-08 1989-05-09 Life Technologies, Inc. Nucleotide analogs for nucleic acid labeling and detection
US4754065A (en) 1984-12-18 1988-06-28 Cetus Corporation Precursor to nucleic acid probe
FR2575751B1 (en) 1985-01-08 1987-04-03 Pasteur Institut NOVEL ADENOSINE DERIVATIVE NUCLEOSIDES, THEIR PREPARATION AND THEIR BIOLOGICAL APPLICATIONS
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5235033A (en) 1985-03-15 1993-08-10 Anti-Gene Development Group Alpha-morpholino ribonucleoside derivatives and polymers thereof
US5185444A (en) 1985-03-15 1993-02-09 Anti-Gene Deveopment Group Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages
US5506337A (en) 1985-03-15 1996-04-09 Antivirals Inc. Morpholino-subunit combinatorial library and method
US5405938A (en) 1989-12-20 1995-04-11 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5166315A (en) 1989-12-20 1992-11-24 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4762779A (en) 1985-06-13 1988-08-09 Amgen Inc. Compositions and methods for functionalizing nucleic acids
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US5317098A (en) 1986-03-17 1994-05-31 Hiroaki Shizuya Non-radioisotope tagging of fragments
JPS638396A (en) 1986-06-30 1988-01-14 Wakunaga Pharmaceut Co Ltd Poly-labeled oligonucleotide derivative
DE3788914T2 (en) 1986-09-08 1994-08-25 Ajinomoto Kk Compounds for cleaving RNA at a specific position, oligomers used in the preparation of these compounds and starting materials for the synthesis of these oligomers.
US5264423A (en) 1987-03-25 1993-11-23 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5276019A (en) 1987-03-25 1994-01-04 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US4904582A (en) 1987-06-11 1990-02-27 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
DE3851889T2 (en) 1987-06-24 1995-04-13 Florey Howard Inst NUCLEOSIDE DERIVATIVES.
US5585481A (en) 1987-09-21 1996-12-17 Gen-Probe Incorporated Linking reagents for nucleotide probes
US4924624A (en) 1987-10-22 1990-05-15 Temple University-Of The Commonwealth System Of Higher Education 2,',5'-phosphorothioate oligoadenylates and plant antiviral uses thereof
US5188897A (en) 1987-10-22 1993-02-23 Temple University Of The Commonwealth System Of Higher Education Encapsulated 2',5'-phosphorothioate oligoadenylates
US5525465A (en) 1987-10-28 1996-06-11 Howard Florey Institute Of Experimental Physiology And Medicine Oligonucleotide-polyamide conjugates and methods of production and applications of the same
DE3738460A1 (en) 1987-11-12 1989-05-24 Max Planck Gesellschaft MODIFIED OLIGONUCLEOTIDS
US4866042A (en) 1987-11-18 1989-09-12 Neuwelt Edward A Method for the delivery of genetic material across the blood brain barrier
US5403711A (en) 1987-11-30 1995-04-04 University Of Iowa Research Foundation Nucleic acid hybridization and amplification method for detection of specific sequences in which a complementary labeled nucleic acid probe is cleaved
ATE151467T1 (en) 1987-11-30 1997-04-15 Univ Iowa Res Found DNA MOLECULES STABILIZED BY MODIFICATIONS TO THE 3'-TERMINAL PHOSPHODIESTER BOND, THEIR USE AS NUCLEIC ACID PROBE AND AS THERAPEUTIC AGENTS FOR INHIBITING THE EXPRESSION OF SPECIFIC TARGET GENES
US5288512A (en) 1987-12-15 1994-02-22 The Procter & Gamble Company Reduced calorie fats made from triglycerides containing medium and long chain fatty acids
US5082830A (en) 1988-02-26 1992-01-21 Enzo Biochem, Inc. End labeled nucleotide probe
EP0406309A4 (en) 1988-03-25 1992-08-19 The University Of Virginia Alumni Patents Foundation Oligonucleotide n-alkylphosphoramidates
NL8800756A (en) 1988-03-25 1989-10-16 Vereniging Voor Christelijk Wetenschappelijk Onderwijs GENETICALLY MANUFACTURED PLANT CELLS AND PLANTS AND USEABLE RECOMBINANT DNA.
US5278302A (en) 1988-05-26 1994-01-11 University Patents, Inc. Polynucleotide phosphorodithioates
US5109124A (en) 1988-06-01 1992-04-28 Biogen, Inc. Nucleic acid probe linked to a label having a terminal cysteine
US5216141A (en) 1988-06-06 1993-06-01 Benner Steven A Oligonucleotide analogs containing sulfur linkages
US5175273A (en) 1988-07-01 1992-12-29 Genentech, Inc. Nucleic acid intercalating agents
US5262536A (en) 1988-09-15 1993-11-16 E. I. Du Pont De Nemours And Company Reagents for the preparation of 5'-tagged oligonucleotides
US5512439A (en) 1988-11-21 1996-04-30 Dynal As Oligonucleotide-linked magnetic particles and uses thereof
US5457183A (en) 1989-03-06 1995-10-10 Board Of Regents, The University Of Texas System Hydroxylated texaphyrins
US5599923A (en) 1989-03-06 1997-02-04 Board Of Regents, University Of Tx Texaphyrin metal complexes having improved functionalization
US5354844A (en) 1989-03-16 1994-10-11 Boehringer Ingelheim International Gmbh Protein-polycation conjugates
US6294520B1 (en) 1989-03-27 2001-09-25 Albert T. Naito Material for passage through the blood-brain barrier
US5108921A (en) 1989-04-03 1992-04-28 Purdue Research Foundation Method for enhanced transmembrane transport of exogenous molecules
US5391723A (en) 1989-05-31 1995-02-21 Neorx Corporation Oligonucleotide conjugates
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US4958013A (en) 1989-06-06 1990-09-18 Northwestern University Cholesteryl modified oligonucleotides
US5227170A (en) 1989-06-22 1993-07-13 Vestar, Inc. Encapsulation process
US6203976B1 (en) 1989-07-18 2001-03-20 Osi Pharmaceuticals, Inc. Methods of preparing compositions comprising chemicals capable of transcriptional modulation
US5451463A (en) 1989-08-28 1995-09-19 Clontech Laboratories, Inc. Non-nucleoside 1,3-diol reagents for labeling synthetic oligonucleotides
US5134066A (en) 1989-08-29 1992-07-28 Monsanto Company Improved probes using nucleosides containing 3-dezauracil analogs
US5254469A (en) 1989-09-12 1993-10-19 Eastman Kodak Company Oligonucleotide-enzyme conjugate that can be used as a probe in hybridization assays and polymerase chain reaction procedures
US5591722A (en) 1989-09-15 1997-01-07 Southern Research Institute 2'-deoxy-4'-thioribonucleosides and their antiviral activity
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5356633A (en) 1989-10-20 1994-10-18 Liposome Technology, Inc. Method of treatment of inflamed tissues
US5527528A (en) 1989-10-20 1996-06-18 Sequus Pharmaceuticals, Inc. Solid-tumor treatment method
US5399676A (en) 1989-10-23 1995-03-21 Gilead Sciences Oligonucleotides with inverted polarity
US5264562A (en) 1989-10-24 1993-11-23 Gilead Sciences, Inc. Oligonucleotide analogs with novel linkages
EP0942000B1 (en) 1989-10-24 2004-06-23 Isis Pharmaceuticals, Inc. 2'-Modified oligonucleotides
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
US5292873A (en) 1989-11-29 1994-03-08 The Research Foundation Of State University Of New York Nucleic acids labeled with naphthoquinone probe
US5177198A (en) 1989-11-30 1993-01-05 University Of N.C. At Chapel Hill Process for preparing oligoribonucleoside and oligodeoxyribonucleoside boranophosphates
US5457189A (en) 1989-12-04 1995-10-10 Isis Pharmaceuticals Antisense oligonucleotide inhibition of papillomavirus
US5130302A (en) 1989-12-20 1992-07-14 Boron Bilogicals, Inc. Boronated nucleoside, nucleotide and oligonucleotide compounds, compositions and methods for using same
US5580575A (en) 1989-12-22 1996-12-03 Imarx Pharmaceutical Corp. Therapeutic drug delivery systems
US5469854A (en) 1989-12-22 1995-11-28 Imarx Pharmaceutical Corp. Methods of preparing gas-filled liposomes
US5486603A (en) 1990-01-08 1996-01-23 Gilead Sciences, Inc. Oligonucleotide having enhanced binding affinity
US5646265A (en) 1990-01-11 1997-07-08 Isis Pharmceuticals, Inc. Process for the preparation of 2'-O-alkyl purine phosphoramidites
US5852188A (en) 1990-01-11 1998-12-22 Isis Pharmaceuticals, Inc. Oligonucleotides having chiral phosphorus linkages
US5587361A (en) 1991-10-15 1996-12-24 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
US5578718A (en) 1990-01-11 1996-11-26 Isis Pharmaceuticals, Inc. Thiol-derivatized nucleosides
US5681941A (en) 1990-01-11 1997-10-28 Isis Pharmaceuticals, Inc. Substituted purines and oligonucleotide cross-linking
US5670633A (en) 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5459255A (en) 1990-01-11 1995-10-17 Isis Pharmaceuticals, Inc. N-2 substituted purines
US5587470A (en) 1990-01-11 1996-12-24 Isis Pharmaceuticals, Inc. 3-deazapurines
US5623065A (en) 1990-08-13 1997-04-22 Isis Pharmaceuticals, Inc. Gapped 2' modified oligonucleotides
US5220007A (en) 1990-02-15 1993-06-15 The Worcester Foundation For Experimental Biology Method of site-specific alteration of RNA and production of encoded polypeptides
US5149797A (en) 1990-02-15 1992-09-22 The Worcester Foundation For Experimental Biology Method of site-specific alteration of rna and production of encoded polypeptides
WO1991013080A1 (en) 1990-02-20 1991-09-05 Gilead Sciences, Inc. Pseudonucleosides and pseudonucleotides and their polymers
US5214136A (en) 1990-02-20 1993-05-25 Gilead Sciences, Inc. Anthraquinone-derivatives oligonucleotides
US5321131A (en) 1990-03-08 1994-06-14 Hybridon, Inc. Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling
US5470967A (en) 1990-04-10 1995-11-28 The Dupont Merck Pharmaceutical Company Oligonucleotide analogs with sulfamate linkages
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
GB9009980D0 (en) 1990-05-03 1990-06-27 Amersham Int Plc Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides
US6034233A (en) 1990-05-04 2000-03-07 Isis Pharmaceuticals Inc. 2'-O-alkylated oligoribonucleotides and phosphorothioate analogs complementary to portions of the HIV genome
DK0455905T3 (en) 1990-05-11 1998-12-07 Microprobe Corp Dipsticks for nucleic acid hybridization assays and method for covalent immobilization of oligonucleotides
IE66205B1 (en) 1990-06-14 1995-12-13 Paul A Bartlett Polypeptide analogs
US5650489A (en) 1990-07-02 1997-07-22 The Arizona Board Of Regents Random bio-oligomer library, a method of synthesis thereof, and a method of use thereof
ATE154246T1 (en) 1990-07-27 1997-06-15 Isis Pharmaceuticals Inc NUCLEASE RESISTANT PYRIMIDINE MODIFIED OLIGONUCLEOTIDES THAT DETECTE AND MODULATE GENE EXPRESSION
US5618704A (en) 1990-07-27 1997-04-08 Isis Pharmacueticals, Inc. Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling
US5610289A (en) 1990-07-27 1997-03-11 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogues
US5218105A (en) 1990-07-27 1993-06-08 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5138045A (en) 1990-07-27 1992-08-11 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5608046A (en) 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
US5677437A (en) 1990-07-27 1997-10-14 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5602240A (en) 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5688941A (en) 1990-07-27 1997-11-18 Isis Pharmaceuticals, Inc. Methods of making conjugated 4' desmethyl nucleoside analog compounds
US5541307A (en) 1990-07-27 1996-07-30 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs and solid phase synthesis thereof
US5623070A (en) 1990-07-27 1997-04-22 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5489677A (en) 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
WO1992002534A2 (en) 1990-08-03 1992-02-20 Sterling Drug, Inc. Compounds and methods for inhibiting gene expression
US5245022A (en) 1990-08-03 1993-09-14 Sterling Drug, Inc. Exonuclease resistant terminally substituted oligonucleotides
US5177196A (en) 1990-08-16 1993-01-05 Microprobe Corporation Oligo (α-arabinofuranosyl nucleotides) and α-arabinofuranosyl precursors thereof
US5512667A (en) 1990-08-28 1996-04-30 Reed; Michael W. Trifunctional intermediates for preparing 3'-tailed oligonucleotides
US5214134A (en) 1990-09-12 1993-05-25 Sterling Winthrop Inc. Process of linking nucleosides with a siloxane bridge
US5561225A (en) 1990-09-19 1996-10-01 Southern Research Institute Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages
WO1992005186A1 (en) 1990-09-20 1992-04-02 Gilead Sciences Modified internucleoside linkages
US5432272A (en) 1990-10-09 1995-07-11 Benner; Steven A. Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
KR930702373A (en) 1990-11-08 1993-09-08 안토니 제이. 페이네 Addition of Multiple Reporter Groups to Synthetic Oligonucleotides
WO1992008796A1 (en) 1990-11-13 1992-05-29 Immunex Corporation Bifunctional selectable fusion genes
JP3220180B2 (en) 1991-05-23 2001-10-22 三菱化学株式会社 Drug-containing protein-bound liposomes
US5719262A (en) 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
US5539082A (en) 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
US5714331A (en) 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
US5371241A (en) 1991-07-19 1994-12-06 Pharmacia P-L Biochemicals Inc. Fluorescein labelled phosphoramidites
US5571799A (en) 1991-08-12 1996-11-05 Basco, Ltd. (2'-5') oligoadenylate analogues useful as inhibitors of host-v5.-graft response
US6307040B1 (en) 1992-03-05 2001-10-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5474796A (en) 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US5521291A (en) 1991-09-30 1996-05-28 Boehringer Ingelheim International, Gmbh Conjugates for introducing nucleic acid into higher eucaryotic cells
NZ244306A (en) 1991-09-30 1995-07-26 Boehringer Ingelheim Int Composition for introducing nucleic acid complexes into eucaryotic cells, complex containing nucleic acid and endosomolytic agent, peptide with endosomolytic domain and nucleic acid binding domain and preparation
US5576302A (en) 1991-10-15 1996-11-19 Isis Pharmaceuticals, Inc. Oligonucleotides for modulating hepatitis C virus having phosphorothioate linkages of high chiral purity
US5661134A (en) 1991-10-15 1997-08-26 Isis Pharmaceuticals, Inc. Oligonucleotides for modulating Ha-ras or Ki-ras having phosphorothioate linkages of high chiral purity
EP0538194B1 (en) 1991-10-17 1997-06-04 Novartis AG Bicyclic nucleosides, oligonucleotides, their method of preparation and intermediates therein
US6335434B1 (en) 1998-06-16 2002-01-01 Isis Pharmaceuticals, Inc., Nucleosidic and non-nucleosidic folate conjugates
US5213904A (en) 1991-11-05 1993-05-25 Explosive Fabricators, Inc. Aluminum/steel transition joint
US5605662A (en) 1993-11-01 1997-02-25 Nanogen, Inc. Active programmable electronic devices for molecular biological analysis and diagnostics
US5484908A (en) 1991-11-26 1996-01-16 Gilead Sciences, Inc. Oligonucleotides containing 5-propynyl pyrimidines
US5359044A (en) 1991-12-13 1994-10-25 Isis Pharmaceuticals Cyclobutyl oligonucleotide surrogates
US5700922A (en) 1991-12-24 1997-12-23 Isis Pharmaceuticals, Inc. PNA-DNA-PNA chimeric macromolecules
US5595726A (en) 1992-01-21 1997-01-21 Pharmacyclics, Inc. Chromophore probe for detection of nucleic acid
US5565552A (en) 1992-01-21 1996-10-15 Pharmacyclics, Inc. Method of expanded porphyrin-oligonucleotide conjugate synthesis
FR2687679B1 (en) 1992-02-05 1994-10-28 Centre Nat Rech Scient OLIGOTHIONUCLEOTIDES.
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
US5633360A (en) 1992-04-14 1997-05-27 Gilead Sciences, Inc. Oligonucleotide analogs capable of passive cell membrane permeation
IL101600A (en) 1992-04-15 2000-02-29 Yissum Res Dev Co Synthetic partially phosphorothioated antisense oligodeoxynucleotides and pharmaceutical compositions containing them
US5434257A (en) 1992-06-01 1995-07-18 Gilead Sciences, Inc. Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages
EP0577558A2 (en) 1992-07-01 1994-01-05 Ciba-Geigy Ag Carbocyclic nucleosides having bicyclic rings, oligonucleotides therefrom, process for their preparation, their use and intermediates
US5272250A (en) 1992-07-10 1993-12-21 Spielvogel Bernard F Boronated phosphoramidate compounds
US5652355A (en) 1992-07-23 1997-07-29 Worcester Foundation For Experimental Biology Hybrid oligonucleotide phosphorothioates
US5288514A (en) 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
EP0669987B1 (en) 1992-09-25 2008-08-13 Aventis Pharma S.A. Adenovirus vectors for the transfer of foreign genes into cells of the central nervous system, particularly in brain
US6710174B2 (en) 2001-09-13 2004-03-23 Isis Pharmaceuticals, Inc. Antisense inhibition of vascular endothelial growth factor receptor-1 expression
WO1994009148A1 (en) 1992-10-15 1994-04-28 Toray Industries, Inc. Process for producing major histocompatibility antigen class ii protein and material having the same immobilized thereon
US5583020A (en) 1992-11-24 1996-12-10 Ribozyme Pharmaceuticals, Inc. Permeability enhancers for negatively charged polynucleotides
US5574142A (en) 1992-12-15 1996-11-12 Microprobe Corporation Peptide linkers for improved oligonucleotide delivery
JP3351476B2 (en) 1993-01-22 2002-11-25 三菱化学株式会社 Phospholipid derivatives and liposomes containing the same
US5476925A (en) 1993-02-01 1995-12-19 Northwestern University Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups
US5395619A (en) 1993-03-03 1995-03-07 Liposome Technology, Inc. Lipid-polymer conjugates and liposomes
GB9304618D0 (en) 1993-03-06 1993-04-21 Ciba Geigy Ag Chemical compounds
EP0691968B1 (en) 1993-03-30 1997-07-16 Sanofi Acyclic nucleoside analogs and oligonucleotide sequences containing them
EP0691977B1 (en) 1993-03-31 1997-11-26 Sanofi Oligonucleotides with amide linkages replacing phosphodiester linkages
DE4311944A1 (en) 1993-04-10 1994-10-13 Degussa Coated sodium percarbonate particles, process for their preparation and detergent, cleaning and bleaching compositions containing them
US5462854A (en) 1993-04-19 1995-10-31 Beckman Instruments, Inc. Inverse linkage oligonucleotides for chemical and enzymatic processes
EP1897942A1 (en) 1993-05-11 2008-03-12 The University Of North Carolina At Chapel Hill Antisense oligonucleotides which combat aberrant splicing and methods of using the same
CA2163427A1 (en) 1993-05-21 1994-12-08 Stephen D. Lupton Bifunctional selectable fusion genes based on the cytosine deaminase (cd) gene
US5534259A (en) 1993-07-08 1996-07-09 Liposome Technology, Inc. Polymer compound and coated particle composition
US5417978A (en) 1993-07-29 1995-05-23 Board Of Regents, The University Of Texas System Liposomal antisense methyl phosphonate oligonucleotides and methods for their preparation and use
ATE247128T1 (en) 1993-09-03 2003-08-15 Isis Pharmaceuticals Inc AMINODERIVATIZED NUCLEOSIDES AND OLIGONUCLEOSIDES
US5491084A (en) 1993-09-10 1996-02-13 The Trustees Of Columbia University In The City Of New York Uses of green-fluorescent protein
US5502177A (en) 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US6184211B1 (en) 1993-11-30 2001-02-06 Methylgene Inc. Inhibition of DNA methyltransferase
US5908779A (en) 1993-12-01 1999-06-01 University Of Connecticut Targeted RNA degradation using nuclear antisense RNA
US5457187A (en) 1993-12-08 1995-10-10 Board Of Regents University Of Nebraska Oligonucleotides containing 5-fluorouracil
DE69425903T2 (en) 1993-12-09 2001-02-15 Thomas Jefferson University Ph CONNECTIONS AND METHOD FOR LOCATION-SPECIFIC MUTATION IN EUKARYOTIC CELLS
US5446137B1 (en) 1993-12-09 1998-10-06 Behringwerke Ag Oligonucleotides containing 4'-substituted nucleotides
US5595756A (en) 1993-12-22 1997-01-21 Inex Pharmaceuticals Corporation Liposomal compositions for enhanced retention of bioactive agents
US5519134A (en) 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US5593853A (en) 1994-02-09 1997-01-14 Martek Corporation Generation and screening of synthetic drug libraries
JPH10501681A (en) 1994-02-22 1998-02-17 ダナ−ファーバー キャンサー インスティチュート Nucleic acid delivery systems and methods for their synthesis and use
US5539083A (en) 1994-02-23 1996-07-23 Isis Pharmaceuticals, Inc. Peptide nucleic acid combinatorial libraries and improved methods of synthesis
US5902880A (en) 1994-08-19 1999-05-11 Ribozyme Pharmaceuticals, Inc. RNA polymerase III-based expression of therapeutic RNAs
US6551618B2 (en) 1994-03-15 2003-04-22 University Of Birmingham Compositions and methods for delivery of agents for neuronal regeneration and survival
US6015880A (en) 1994-03-16 2000-01-18 California Institute Of Technology Method and substrate for performing multiple sequential reactions on a matrix
US5596091A (en) 1994-03-18 1997-01-21 The Regents Of The University Of California Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
US5627053A (en) 1994-03-29 1997-05-06 Ribozyme Pharmaceuticals, Inc. 2'deoxy-2'-alkylnucleotide containing nucleic acid
US5625050A (en) 1994-03-31 1997-04-29 Amgen Inc. Modified oligonucleotides and intermediates useful in nucleic acid therapeutics
US5525711A (en) 1994-05-18 1996-06-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Pteridine nucleotide analogs as fluorescent DNA probes
US5807522A (en) 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5543152A (en) 1994-06-20 1996-08-06 Inex Pharmaceuticals Corporation Sphingosomes for enhanced drug delivery
US5525735A (en) 1994-06-22 1996-06-11 Affymax Technologies Nv Methods for synthesizing diverse collections of pyrrolidine compounds
US5549974A (en) 1994-06-23 1996-08-27 Affymax Technologies Nv Methods for the solid phase synthesis of thiazolidinones, metathiazanones, and derivatives thereof
US5597696A (en) 1994-07-18 1997-01-28 Becton Dickinson And Company Covalent cyanine dye oligonucleotide conjugates
US5580731A (en) 1994-08-25 1996-12-03 Chiron Corporation N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith
US5597909A (en) 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
US6645943B1 (en) 1994-10-25 2003-11-11 Hybridon, Inc. Method of down-regulating gene expression
US5591721A (en) 1994-10-25 1997-01-07 Hybridon, Inc. Method of down-regulating gene expression
US5512295A (en) 1994-11-10 1996-04-30 The Board Of Trustees Of The Leland Stanford Junior University Synthetic liposomes for enhanced uptake and delivery
FR2727867B1 (en) 1994-12-13 1997-01-31 Rhone Poulenc Rorer Sa GENE TRANSFER IN MEDULLAR MOTONURONES USING ADENOVIRAL VECTORS
GB9501465D0 (en) 1995-01-25 1995-03-15 King S College London Nucleoside phosphorothioate derivatives,synthesis and use thereof
DE19502912A1 (en) 1995-01-31 1996-08-01 Hoechst Ag G-Cap Stabilized Oligonucleotides
IT1275862B1 (en) 1995-03-03 1997-10-24 Consiglio Nazionale Ricerche ANTI-SENSE TRANSCRIPT ASSOCIATED WITH SOME TYPES OF TUMOR CELLS AND SYNTHETIC OLIGODEOXYNUCLEOTIDES USEFUL IN DIAGNOSIS AND TREATMENT
IT1276642B1 (en) 1995-03-03 1997-11-03 Consiglio Nazionale Ricerche ANTI-SENSE TRANSCRIPT PRESENT IN B LYMPHOCYTES AND SYNTHETIC OLIGODEOXYNUCLEOTIDES USEFUL FOR INHIBIRING THEIR ACTION
US5543165A (en) 1995-06-06 1996-08-06 Hill; Julie B. Process of making a soluble tea product with champagne-like properties
US5739311A (en) 1995-06-07 1998-04-14 Gen-Probe Incorporated Enzymatic synthesis of phosphorothioate oligonucleotides using restriction endonucleases
US5569588A (en) 1995-08-09 1996-10-29 The Regents Of The University Of California Methods for drug screening
US5652356A (en) 1995-08-17 1997-07-29 Hybridon, Inc. Inverted chimeric and hybrid oligonucleotides
JP4293636B2 (en) 1996-02-14 2009-07-08 アイシス・ファーマシューティカルス・インコーポレーテッド Oligonucleotide with sugar-modified gap
IL125839A0 (en) 1996-03-14 1999-04-11 Genentech Inc Uses of gdnf and gdnf receptor
CA2251945A1 (en) 1996-04-17 1997-10-23 Aronex Pharmaceuticals, Inc. Antisense inhibitors of vascular endothelial growth factor (vefg/vpf) expression
US5786213A (en) 1996-04-18 1998-07-28 Board Of Regents, The University Of Texas System Inhibition of endogenous gastrin expression for treatment of colorectal cancer
US5756710A (en) 1996-06-05 1998-05-26 The Trustees Of Columbia University In City Of New York Phosphorothioate oligonucleotides that bind to the V3-loop and uses thereof
US5898031A (en) 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
US5849902A (en) 1996-09-26 1998-12-15 Oligos Etc. Inc. Three component chimeric antisense oligonucleotides
US5739119A (en) 1996-11-15 1998-04-14 Galli; Rachel L. Antisense oligonucleotides specific for the muscarinic type 2 acetylcholine receptor MRNA
US7008776B1 (en) 1996-12-06 2006-03-07 Aventis Pharmaceuticals Inc. Compositions and methods for effecting the levels of high density lipoprotein (HDL) cholesterol and apolipoprotein AI very low density lipoprotein (VLDL) cholesterol and low density lipoprotein (LDL) cholesterol
US7235653B2 (en) 1996-12-31 2007-06-26 Isis Pharmaceuticals, Inc. Oligonucleotide compositions and methods for the modulation of the expression of B7 protein
JP3756313B2 (en) 1997-03-07 2006-03-15 武 今西 Novel bicyclonucleosides and oligonucleotide analogues
US6013786A (en) 1997-08-22 2000-01-11 Hybridon, Inc. MDM2-specific antisense oligonucleotides
CA2303299C (en) 1997-09-12 2016-02-23 Exiqon A/S Oligonucleotide analogues
US6794499B2 (en) 1997-09-12 2004-09-21 Exiqon A/S Oligonucleotide analogues
US7572582B2 (en) 1997-09-12 2009-08-11 Exiqon A/S Oligonucleotide analogues
US7285288B1 (en) 1997-10-03 2007-10-23 Board Of Regents, The University Of Texas System Inhibition of Bcl-2 protein expression by liposomal antisense oligodeoxynucleotides
US6034883A (en) 1998-01-29 2000-03-07 Tinney; Charles E. Solid state director for beams
US6175409B1 (en) 1999-04-02 2001-01-16 Symyx Technologies, Inc. Flow-injection analysis and variable-flow light-scattering methods and apparatus for characterizing polymers
US7321828B2 (en) 1998-04-13 2008-01-22 Isis Pharmaceuticals, Inc. System of components for preparing oligonucleotides
US20040186071A1 (en) 1998-04-13 2004-09-23 Bennett C. Frank Antisense modulation of CD40 expression
US6221587B1 (en) 1998-05-12 2001-04-24 Isis Pharmceuticals, Inc. Identification of molecular interaction sites in RNA for novel drug discovery
NZ507913A (en) 1998-05-26 2003-02-28 Icn Pharmaceuticals Novel nucleosides having bicyclic sugar moiety
US6833361B2 (en) 1998-05-26 2004-12-21 Ribapharm, Inc. Nucleosides having bicyclic sugar moiety
US6100090A (en) 1999-06-25 2000-08-08 Isis Pharmaceuticals Inc. Antisense inhibition of PI3K p85 expression
US20030139359A1 (en) 2001-12-04 2003-07-24 Isis Pharmaceuticals Inc. Antisense modulation of phospholipid scramblase 3 expression
US6867294B1 (en) 1998-07-14 2005-03-15 Isis Pharmaceuticals, Inc. Gapped oligomers having site specific chiral phosphorothioate internucleoside linkages
US6242589B1 (en) 1998-07-14 2001-06-05 Isis Pharmaceuticals, Inc. Phosphorothioate oligonucleotides having modified internucleoside linkages
US6214986B1 (en) 1998-10-07 2001-04-10 Isis Pharmaceuticals, Inc. Antisense modulation of bcl-x expression
WO2000027424A2 (en) 1998-11-06 2000-05-18 Alcon Laboratories, Inc. Upregulation of endogenous prostaglandins to lower intraocular pressure
US5985663A (en) 1998-11-25 1999-11-16 Isis Pharmaceuticals Inc. Antisense inhibition of interleukin-15 expression
ATE300959T1 (en) 1999-01-27 2005-08-15 Becker David Dr FORMULATIONS CONTAINING ANTISENSE NUCLEOTIDES SPECIFIC TO CONNEXINE
EP1152009B2 (en) 1999-02-12 2017-09-06 Daiichi Sankyo Company, Limited Novel nucleosides and oligonucleotide analogues
ATE385237T1 (en) 1999-02-26 2008-02-15 Univ British Columbia ANTISENSE THERAPY FOR TRPM-2
JP4726302B2 (en) 1999-03-15 2011-07-20 ユニバーシティ オブ ブリティッシュ コロンビア Methods and reagents for regulating ABC1 polypeptide and cholesterol levels
US20040137423A1 (en) 1999-03-15 2004-07-15 Hayden Michael R. Compositions and methods for modulating HDL cholesterol and triglyceride levels
US7084125B2 (en) 1999-03-18 2006-08-01 Exiqon A/S Xylo-LNA analogues
ATE501269T1 (en) 1999-03-18 2011-03-15 Exiqon As DETECTION OF GENE MUTATIONS USING LNA PRIMER
US6734291B2 (en) 1999-03-24 2004-05-11 Exiqon A/S Synthesis of [2.2.1]bicyclo nucleosides
ATE332909T1 (en) 1999-03-24 2006-08-15 Exiqon As IMPROVED SYNTHESIS FOR 2.2.1.ÖBICYCLO-NUCLEOSIDES
AU776684B2 (en) 1999-03-26 2004-09-16 Aventis Pharmaceuticals Inc. Compositions and methods for effecting the levels of high density lipoprotein (HDL) cholesterol and apolipoprotein AI, very low density lipoprotein (VLDL) cholesterol and low density lipoprotein (LDL) cholesterol
AU4077100A (en) 1999-04-08 2000-11-14 Chiron Corporation Enhancement of the immune response for vaccine and gene therapy applications
WO2000063365A1 (en) 1999-04-21 2000-10-26 Pangene Corporation Locked nucleic acid hybrids and methods of use
ATE356824T1 (en) 1999-05-04 2007-04-15 Santaris Pharma As L-RIBO-LNA ANALOGUE
US6525191B1 (en) 1999-05-11 2003-02-25 Kanda S. Ramasamy Conformationally constrained L-nucleosides
DE19925073C2 (en) 1999-06-01 2001-07-19 Stefan Weiss Nucleic acid molecules with specific recognition of native PrP · S ·· c ·, production and use
US6656730B1 (en) 1999-06-15 2003-12-02 Isis Pharmaceuticals, Inc. Oligonucleotides conjugated to protein-binding drugs
EP1189940A2 (en) 1999-06-25 2002-03-27 Genset A bap28 gene and protein
US20040006031A1 (en) 2002-07-02 2004-01-08 Isis Pharmaceuticals Inc. Antisense modulation of HMG-CoA reductase expression
US6147200A (en) 1999-08-19 2000-11-14 Isis Pharmaceuticals, Inc. 2'-O-acetamido modified monomers and oligomers
EP1218411A4 (en) 1999-09-20 2004-09-01 Millennium Pharm Inc Secreted proteins and uses thereof
US6617442B1 (en) 1999-09-30 2003-09-09 Isis Pharmaceuticals, Inc. Human Rnase H1 and oligonucleotide compositions thereof
US6986988B2 (en) 1999-10-06 2006-01-17 Quark Biotech, Inc. Method for enrichment of natural antisense messenger RNA
AU7863200A (en) 1999-10-06 2001-05-10 Quark Biotech, Inc. Method for enrichment of natural antisense messenger rna
WO2001051630A1 (en) 2000-01-07 2001-07-19 Baylor University Antisense compositions and methods
ATE336492T1 (en) 2000-01-14 2006-09-15 Us Gov Health & Human Serv METHONOCARBACYCLOALKYLANALOGUES OF NUCLEOSIDES
US6303374B1 (en) 2000-01-18 2001-10-16 Isis Pharmaceuticals Inc. Antisense modulation of caspase 3 expression
US20020055479A1 (en) 2000-01-18 2002-05-09 Cowsert Lex M. Antisense modulation of PTP1B expression
US6287860B1 (en) 2000-01-20 2001-09-11 Isis Pharmaceuticals, Inc. Antisense inhibition of MEKK2 expression
US20070026394A1 (en) * 2000-02-11 2007-02-01 Lawrence Blatt Modulation of gene expression associated with inflammation proliferation and neurite outgrowth using nucleic acid based technologies
JP2001247459A (en) 2000-03-03 2001-09-11 Oakland Uniservices Ltd Combination therapy for cancer
US6936467B2 (en) 2000-03-27 2005-08-30 University Of Delaware Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
MXPA02009627A (en) 2000-03-27 2004-05-14 Univ Delaware Targeted chromosomal genomic alterations with modified single stranded oligonucleotides.
US7402434B2 (en) 2000-05-08 2008-07-22 Newman Stuart A Splice choice antagonists as therapeutic agents
JP2004530420A (en) 2000-06-29 2004-10-07 ファーマ パシフィック プロプライエタリー リミテッド Interferon-α inducible gene
US7629308B2 (en) * 2000-07-07 2009-12-08 Board Of Regents, The University Of Texas System Methods relating to muscle selective calcineurin interacting protein (MCIP)
US6524819B1 (en) * 2000-07-11 2003-02-25 Incyte Genomics, Inc. Down syndrome critical region 1-like proteins
AU2001282717A1 (en) 2000-07-28 2002-02-13 Cancer Research Technology Limited Cancer treatment by combination therapy
EP1314734A1 (en) 2000-08-29 2003-05-28 Takeshi Imanishi Novel nucleoside analogs and oligonucleotide derivatives containing these analogs
HUP0301805A3 (en) 2000-09-02 2005-12-28 Gruenenthal Gmbh Antisense oligonucleotides against vanilloid receptor 1
US6444464B1 (en) 2000-09-08 2002-09-03 Isis Pharmaceuticals, Inc. Antisense modulation of E2F transcription factor 2 expression
AU2001289085A1 (en) 2000-09-20 2002-04-02 Isis Pharmaceuticals, Inc. Antisense modulation of flip-c expression
EP1325121A2 (en) 2000-10-13 2003-07-09 Institut de Cardiologie de Montreal Antisense oligonucleotide directed toward mammalian vegf receptor genes and uses thereof
US20030228618A1 (en) 2000-11-24 2003-12-11 Erez Levanon Methods and systems for identifying naturally occurring antisense transcripts and methods, kits and arrays utilizing same
US20050222029A1 (en) 2001-01-04 2005-10-06 Myriad Genetics, Incorporated Compositions and methods for treating diseases
US7423142B2 (en) 2001-01-09 2008-09-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
US20040175803A1 (en) 2001-02-20 2004-09-09 Jean-Francois Meritet Interferon-alpha induced gene
US20020147165A1 (en) 2001-02-22 2002-10-10 Isis Pharmaceuticals, Inc. Antisense modulation of calreticulin expression
AUPR497101A0 (en) 2001-05-14 2001-06-07 Queensland University Of Technology Polynucleotides and polypeptides linked to cancer and/or tumorigenesi
IL143379A (en) 2001-05-24 2013-11-28 Yissum Res Dev Co Antisense oligonucleotide against the r isophorm of human ache and uses thereof
US7053195B1 (en) 2001-06-12 2006-05-30 Syngenta Participatious Ag Locked nucleic acid containing heteropolymers and related methods
US20050019915A1 (en) 2001-06-21 2005-01-27 Bennett C. Frank Antisense modulation of superoxide dismutase 1, soluble expression
US7153954B2 (en) 2001-07-12 2006-12-26 Santaris Pharma A/S Method for preparation of LNA phosphoramidites
EP2345720A3 (en) 2001-07-12 2012-01-25 University of Massachusetts In vivo production of small interfering RNAs that mediate gene silencing
US7425545B2 (en) 2001-07-25 2008-09-16 Isis Pharmaceuticals, Inc. Modulation of C-reactive protein expression
US20030096772A1 (en) 2001-07-30 2003-05-22 Crooke Rosanne M. Antisense modulation of acyl CoA cholesterol acyltransferase-2 expression
US7259150B2 (en) 2001-08-07 2007-08-21 Isis Pharmaceuticals, Inc. Modulation of apolipoprotein (a) expression
EP1446412B1 (en) 2001-09-04 2012-03-07 Exiqon A/S Novel lna compositions and uses thereof
US6936589B2 (en) 2001-09-28 2005-08-30 Albert T. Naito Parenteral delivery systems
US20040214766A1 (en) 2001-10-01 2004-10-28 Kari Alitalo VEGF-C or VEGF-D materials and methods for treatment of neuropathologies
AU2002333434B2 (en) 2001-10-10 2007-12-13 Societe Des Produits Nestle S.A. Coffee plant with reduced alpha-D-galactosidase activity
AR037699A1 (en) 2001-12-04 2004-12-01 Monsanto Technology Llc TRANSGENIC CORN WITH IMPROVED PHENOTYPE
US7125982B1 (en) 2001-12-05 2006-10-24 Frayne Consultants Microbial production of nuclease resistant DNA, RNA, and oligo mixtures
US6965025B2 (en) 2001-12-10 2005-11-15 Isis Pharmaceuticals, Inc. Antisense modulation of connective tissue growth factor expression
CA2365811A1 (en) 2001-12-21 2003-06-21 Institut De Cardiologie A new gene therapy using antisense strategy to estrogen receptors (er .alpha. and/or er .beta.) to optimize vascular healing and cardioprotection after vascular injury
KR20030056538A (en) 2001-12-28 2003-07-04 주식회사 웰진 EFFECTIVE INHIBITION OF TRANSFORMING GROWTH FACTOR-β1 BY A RIBBON-TYPE ANTISENSE OLIGONUCLEOTIDE
US20030191075A1 (en) 2002-02-22 2003-10-09 Cook Phillip Dan Method of using modified oligonucleotides for hepatic delivery
AU2003212729A1 (en) 2002-02-25 2003-09-09 Gunnar Norstedt Vitamin d upregulated protein 1 (vdup-1) methods and uses thereof
WO2003077215A2 (en) 2002-03-08 2003-09-18 Glen Research Corporation Fluorescent nitrogenous base and nucleosides incorporating same
GB2386836B (en) 2002-03-22 2006-07-26 Cancer Res Ventures Ltd Anti-cancer combinations
US7169916B2 (en) 2002-04-01 2007-01-30 Isis Pharmaceuticals, Inc. Chloral-free DCA in oligonucleotide synthesis
US20050215504A1 (en) 2002-04-02 2005-09-29 Bennett C F Antisense modulation of sterol regulatory element-binding protein-1 expression
US20030211606A1 (en) * 2002-05-10 2003-11-13 Isis Pharmaceuticals Inc. Antisense modulation of DYRK4 expression
WO2003085110A2 (en) 2002-04-05 2003-10-16 Santaris Pharma A/S Oligomeric compounds for the modulation hif-1alpha expression
US7569575B2 (en) 2002-05-08 2009-08-04 Santaris Pharma A/S Synthesis of locked nucleic acid derivatives
US6808906B2 (en) 2002-05-08 2004-10-26 Rigel Pharmaceuticals, Inc. Directionally cloned random cDNA expression vector libraries, compositions and methods of use
US7199107B2 (en) 2002-05-23 2007-04-03 Isis Pharmaceuticals, Inc. Antisense modulation of kinesin-like 1 expression
US7148342B2 (en) 2002-07-24 2006-12-12 The Trustees Of The University Of Pennyslvania Compositions and methods for sirna inhibition of angiogenesis
US20040033480A1 (en) 2002-08-15 2004-02-19 Wong Norman C.W. Use of resveratrol to regulate expression of apolipoprotein A1
WO2004024079A2 (en) 2002-09-10 2004-03-25 The Samuel Roberts Noble Foundation, Inc. Methods and compositions for production of flavonoid and isoflavonoid nutraceuticals
EP1549387A1 (en) 2002-09-25 2005-07-06 Pharmacia Corporation Antisense modulation of farnesoid x receptor expression
EP1549767A4 (en) 2002-09-26 2006-06-07 Amgen Inc Modulation of forkhead box o1a expression
AU2003291678B2 (en) 2002-11-01 2009-01-15 The Trustees Of The University Of Pennsylvania Compositions and methods for siRNA inhibition of HIF-1 alpha
GB2394658A (en) 2002-11-01 2004-05-05 Cancer Rec Tech Ltd Oral anti-cancer composition
AU2003261405A1 (en) 2002-11-01 2004-06-07 University Of Massachusetts Regulation of transcription elongation factors
AU2003291753B2 (en) 2002-11-05 2010-07-08 Isis Pharmaceuticals, Inc. Polycyclic sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation
EP1578765A4 (en) 2002-11-05 2008-04-23 Isis Pharmaceuticals Inc Sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation
US20060009410A1 (en) 2002-11-13 2006-01-12 Crooke Rosanne M Effects of apolipoprotein B inhibition on gene expression profiles in animals
JP2006507841A (en) * 2002-11-14 2006-03-09 ダーマコン, インコーポレイテッド Functional and ultrafunctional siRNA
DK2752488T3 (en) 2002-11-18 2020-04-20 Roche Innovation Ct Copenhagen As Antisense design
US7250289B2 (en) * 2002-11-20 2007-07-31 Affymetrix, Inc. Methods of genetic analysis of mouse
US7144999B2 (en) 2002-11-23 2006-12-05 Isis Pharmaceuticals, Inc. Modulation of hypoxia-inducible factor 1 alpha expression
US7713738B2 (en) 2003-02-10 2010-05-11 Enzon Pharmaceuticals, Inc. Oligomeric compounds for the modulation of survivin expression
EP1592780A4 (en) * 2003-02-11 2008-11-05 Exelixis Inc Dyrks as modifiers of the apc and axin pathways and methods of use
US7598227B2 (en) 2003-04-16 2009-10-06 Isis Pharmaceuticals Inc. Modulation of apolipoprotein C-III expression
US7339051B2 (en) 2003-04-28 2008-03-04 Isis Pharmaceuticals, Inc. Compositions and methods for the treatment of severe acute respiratory syndrome (SARS)
US7709610B2 (en) 2003-05-08 2010-05-04 Facet Biotech Corporation Therapeutic use of anti-CS1 antibodies
WO2004108081A2 (en) 2003-06-02 2004-12-16 Isis Pharmaceuticals, Inc. Oligonucleotide synthesis with alternative solvents
WO2005002507A2 (en) 2003-06-03 2005-01-13 Isis Pharmaceuticals, Inc. Modulation of survivin expression
US7825235B2 (en) 2003-08-18 2010-11-02 Isis Pharmaceuticals, Inc. Modulation of diacylglycerol acyltransferase 2 expression
EP2182063A3 (en) 2003-09-18 2012-07-18 Isis Pharmaceuticals, Inc. Modulation of EIF4E expression
EP1687410A4 (en) 2003-10-07 2008-04-09 Isis Pharmaceuticals Inc Antisense oligonucleotides optimized for kidney targeting
WO2005045034A2 (en) 2003-10-23 2005-05-19 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED TREATMENT OF PARKINSON DISEASE USING SHORT INTERERING NUCLEIC ACID (siNA)
US7622453B2 (en) 2003-12-23 2009-11-24 Santaris Pharma A/S Oligomeric compounds for the modulation of Bcl-2
EP1716228A4 (en) 2004-01-12 2009-06-17 Univ Pennsylvania System and method of up-regulating bone morphogenetic protein (bmp) gene expression in bone cells via the appplication of fields generated by specific and selective electric and electromagnetic signals
US7468431B2 (en) 2004-01-22 2008-12-23 Isis Pharmaceuticals, Inc. Modulation of eIF4E-BP2 expression
GB0403041D0 (en) 2004-02-11 2004-03-17 Milner Anne J Induction of apoptosis
EP1566202A1 (en) 2004-02-23 2005-08-24 Sahltech I Göteborg AB Use of resistin antagonists in the treatment of rheumatoid arthritis
US7402574B2 (en) 2004-03-12 2008-07-22 Avi Biopharma, Inc. Antisense composition and method for treating cancer
US7374927B2 (en) * 2004-05-03 2008-05-20 Affymetrix, Inc. Methods of analysis of degraded nucleic acid samples
US8394947B2 (en) 2004-06-03 2013-03-12 Isis Pharmaceuticals, Inc. Positionally modified siRNA constructs
WO2006085987A2 (en) 2004-07-09 2006-08-17 University Of Iowa Research Foundation Rna interference in respiratory epitheial cells
WO2006023880A2 (en) 2004-08-23 2006-03-02 Isis Pharmaceuticals, Inc. Compounds and methods for the characterization of oligonucleotides
MX2007005558A (en) 2004-11-09 2008-01-31 Santaris Pharma As Potent lna oligonucleotides for the inhibition of hif-1a expression.
US7220549B2 (en) 2004-12-30 2007-05-22 Helicos Biosciences Corporation Stabilizing a nucleic acid for nucleic acid sequencing
CN101175769A (en) * 2005-03-10 2008-05-07 健泰科生物技术公司 Methods and compositions for modulating vascular integrity
AU2006261732B2 (en) 2005-06-27 2011-09-15 Alnylam Pharmaceuticals, Inc. RNAi modulation of HIF-1 and theraputic uses thereof
US20070213292A1 (en) 2005-08-10 2007-09-13 The Rockefeller University Chemically modified oligonucleotides for use in modulating micro RNA and uses thereof
EP1937312B1 (en) 2005-08-30 2016-06-29 Ionis Pharmaceuticals, Inc. Chimeric oligomeric compounds for modulation of splicing
JP2007119382A (en) * 2005-10-26 2007-05-17 National Institute Of Advanced Industrial & Technology Protein interaction, and anticancer agent and its screening method
AU2006305886C1 (en) 2005-10-28 2011-03-17 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of huntingtin gene
EP1942948A4 (en) 2005-11-04 2010-03-03 Alnylam Pharmaceuticals Inc Compositions and methods for inhibiting expression of nav1.8 gene
US7709456B2 (en) 2005-11-17 2010-05-04 Board Of Regents, The University Of Texas System Modulation of gene expression by oligomers targeted to chromosomal DNA
WO2007102861A2 (en) * 2005-12-02 2007-09-13 Sirtris Pharmaceuticals, Inc. Modulators of cdc2-like kinases (clks) and methods of use thereof
CN101374964B (en) 2005-12-09 2013-07-17 贝勒研究院 Module-level analysis of peripheral blood leukocyte transcriptional profiles
CN100356377C (en) 2005-12-20 2007-12-19 无锡永中科技有限公司 Document display method
US20070213274A1 (en) 2005-12-20 2007-09-13 Oy Jurilab Ltd Novel genes and markers associated with high-density lipoprotein-cholesterol (HDL-C)
CN101437933B (en) 2005-12-28 2013-11-06 斯克里普斯研究所 Natural antisense and non-coding RNA transcripts as drug targets
EP2314594B1 (en) 2006-01-27 2014-07-23 Isis Pharmaceuticals, Inc. 6-modified bicyclic nucleic acid analogs
US7569686B1 (en) 2006-01-27 2009-08-04 Isis Pharmaceuticals, Inc. Compounds and methods for synthesis of bicyclic nucleic acid analogs
KR101547579B1 (en) 2006-03-31 2015-08-27 알닐람 파마슈티칼스 인코포레이티드 DsRNA for inhibiting expression of Eg5 gene
US20090326041A1 (en) 2006-05-05 2009-12-31 Isis Pharmaceuticals, Inc. Compounds and methods for modulating expression of sglt2
US7666854B2 (en) 2006-05-11 2010-02-23 Isis Pharmaceuticals, Inc. Bis-modified bicyclic nucleic acid analogs
WO2007134161A2 (en) 2006-05-11 2007-11-22 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the pcsk9 gene
DK2066684T3 (en) 2006-05-11 2012-10-22 Isis Pharmaceuticals Inc 5'-Modified Bicyclic Nucleic Acid Analogs
EP1867338A1 (en) 2006-05-30 2007-12-19 Université Libre De Bruxelles Pharmaceutical composition comprising apolipoproteins for the treatment of human diseases
WO2008066672A2 (en) 2006-11-06 2008-06-05 Beth Israel Deaconess Medical Center Identification and use of small molecules to modulate transcription factor function and to treat transcription factor associated diseases
WO2008057556A2 (en) 2006-11-06 2008-05-15 Beth Israel Deaconess Medical Center Identification and use of small molecules to modulate ese-1 transcription factor function and to treat ese-1 transcription factor associated diseases
US8093222B2 (en) 2006-11-27 2012-01-10 Isis Pharmaceuticals, Inc. Methods for treating hypercholesterolemia
EP2121939B1 (en) 2007-01-19 2013-12-04 Plant Bioscience Limited Methods for modulating the sirna and rna-directed-dna methylation pathways
CA2686933A1 (en) 2007-04-06 2008-10-16 The Johns Hopkins University Methods and compositions for the treatment of cancer
US20080293142A1 (en) 2007-04-19 2008-11-27 The Board Of Regents For Oklahoma State University Multiple shRNA Expression Vectors and Methods of Construction
US7737204B2 (en) 2008-02-14 2010-06-15 The Goodyear Tire & Rubber Company Rubber with combination of silica and partially decarboxylated rosin acid and tire with component thereof
EP2924118A1 (en) 2008-07-01 2015-09-30 Monsanto Technology LLC Recombinant DNA constructs and methods for modulating expression of a target gene
JP6128732B2 (en) 2008-10-03 2017-05-17 クルナ・インコーポレーテッド Treatment of apolipoprotein-A1 related diseases by suppression of natural antisense transcripts against apolipoprotein-A1
EP2177615A1 (en) 2008-10-10 2010-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for a genome wide identification of expression regulatory sequences and use of genes and molecules derived thereof for the diagnosis and therapy of metabolic and/or tumorous diseases
US8606289B2 (en) 2008-11-10 2013-12-10 Qualcomm Incorporated Power headroom-sensitive scheduling
EP2358382A2 (en) 2008-11-22 2011-08-24 The University of Bristol NOVEL USES OF VEGFxxxB

Also Published As

Publication number Publication date
EP2446037A2 (en) 2012-05-02
ES2583691T3 (en) 2016-09-21
KR101807324B1 (en) 2017-12-08
US10876117B2 (en) 2020-12-29
US20200032263A1 (en) 2020-01-30
US20150073040A1 (en) 2015-03-12
US10450567B2 (en) 2019-10-22
US20120142758A1 (en) 2012-06-07
WO2010151674A3 (en) 2011-07-21
JP2012531427A (en) 2012-12-10
KR20120086282A (en) 2012-08-02
WO2010151674A2 (en) 2010-12-29
US10036014B2 (en) 2018-07-31
US20180305693A1 (en) 2018-10-25
CN102482672B (en) 2016-11-09
CN102482672A (en) 2012-05-30
EP2446037A4 (en) 2013-11-06
US8921330B2 (en) 2014-12-30
JP5907866B2 (en) 2016-04-26
EP2446037B1 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
US10876117B2 (en) Treatment of down syndrome gene related diseases by inhibition of natural antisense transcript to a down syndrome gene
EP2524039B1 (en) Treatment of sex hormone binding globulin (shbg) related diseases by inhibition of natural antisense transcript to shbg
EP2446036B1 (en) Treatment of tumor necrosis factor receptor 2 (tnfr2) related diseases by inhibition of natural antisense transcript to tnfr2
EP2519633B1 (en) Treatment of nuclear respiratory factor 1 (nrf1) related diseases by inhibition of natural antisense transcript to nrf1
EP2982755B1 (en) Treatment of &#39;c terminus of hsp70-interacting protein&#39; (chip) related diseases by inhibition of natural antisense transcript to chip
US9528110B2 (en) Treatment of ‘IQ motif containing gtpase activating protein’ (IQGAP) related diseases by inhibition of natural antisense transcript to IQGAP
EP2515947B1 (en) Treatment of uncoupling protein 2 (ucp2) related diseases by inhibition of natural antisense transcript to ucp2
EP2462229B1 (en) Treatment of insulin gene (ins) related diseases by inhibition of natural antisense transcript to an insulin gene (ins)
CA2765509A1 (en) Treatment of paraoxonase 1 (pon1) related diseases by inhibition of natural antisense transcript to pon1
WO2011038205A2 (en) Treatment of growth hormone (gh) related diseases by inhibition of natural antisense transcript to gh

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20150616

FZDE Discontinued

Effective date: 20210111