CA2724777A1 - Inkjet dyes exhibiting reduced kogation - Google Patents

Inkjet dyes exhibiting reduced kogation Download PDF

Info

Publication number
CA2724777A1
CA2724777A1 CA2724777A CA2724777A CA2724777A1 CA 2724777 A1 CA2724777 A1 CA 2724777A1 CA 2724777 A CA2724777 A CA 2724777A CA 2724777 A CA2724777 A CA 2724777A CA 2724777 A1 CA2724777 A1 CA 2724777A1
Authority
CA
Canada
Prior art keywords
alkyl
group
salt
ammonium cation
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2724777A
Other languages
French (fr)
Inventor
Simone Charlotte Vonwiller
Sutharsiny Indusegaram
Graciel Gonzaga
Damon Donald Ridley
Kia Silverbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silverbrook Research Pty Ltd
Original Assignee
Silverbrook Research Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silverbrook Research Pty Ltd filed Critical Silverbrook Research Pty Ltd
Publication of CA2724777A1 publication Critical patent/CA2724777A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14032Structure of the pressure chamber
    • B41J2/1404Geometrical characteristics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/065Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide having -COOH or -SO3H radicals or derivatives thereof, directly linked to the skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • C09B47/0678Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile having-COOH or -SO3H radicals or derivatives thereof directly linked to the skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/24Obtaining compounds having —COOH or —SO3H radicals, or derivatives thereof, directly bound to the phthalocyanine radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/02Dyestuff salts, e.g. salts of acid dyes with basic dyes
    • C09B69/04Dyestuff salts, e.g. salts of acid dyes with basic dyes of anionic dyes with nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/328Inkjet printing inks characterised by colouring agents characterised by dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14475Structure thereof only for on-demand ink jet heads characterised by nozzle shapes or number of orifices per chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/03Specific materials used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Abstract

A salt of a sulfonated dye comprising an ammonium cation as a counterion. The ammonium cation comprises at least 3 hydroxyl groups. The salt is useful in reducing kogation in thermal inkjet printheads. One example of these salts is the compound of formula (II): wherein M is Ga(OH); and each of Z1+, Z2+, Z3+ and Z4+ is protonated 2,2-bis(hydroxymethyl)-2,2',2''-nitrilotriethanol.

Description

INKJET DYES EXHIBITING REDUCED KOGATION

Field of the Invention The present application relates to sulfonated dyes suitable for printing inks, such as inkjet inks. It has been developed primarily for reducing kogation of such dyes in an inkjet printhead.

Background of the Invention Chemical dyes are important compounds for a range of applications. For example, inkjet inks typically comprise at least one colorant in the form of a dye.
Many dyes are charged molecules carrying either a positive or negative charge, which is balanced with a counterion. The present invention specifically relates to cationic salts of sulfonated dyes, such as sulfonated phthalocyanine dyes.
Sulfonated phthalocyanine dyes are useful in inkjet ink applications. For example, sulfonated copper phthalocyanines are well-known cyan dyes. More recently, the present Applicant has shown that sulfonated gallium naphthlocyanines are useful IR
dyes having minimal visibility and excellent ozonefastness. Accordingly, sulfonated gallium naphthlocyanines have found utility in the Applicant's Netpage and HyperlabelTM systems.
The Netpage and HyperlabelTM systems generally require a substrate having a position-coding pattern printed thereon. The coding pattern is preferably printed with an IR-absorbing ink having minimal visibility, so that it does not interfere with the visible content of the substrate. A user can interact with the substrate using an optical sensing device, which reads part of the coding pattern and generates interaction data. This interaction data is transmitted to a computer system, which uses the data to determine what action is being requested by the user. For example, a user may make handwritten input onto a form, click on a printed hyperlink, or request information relating to a product item. This input is interpreted by the computer system with reference to a page description corresponding to the printed substrate.
Position-coding patterns for Netpage and HyperlabelTM may be printed by analogue (e.g. offset) or digital (e.g. inkjet) printers. If the position-coding pattern is printed using an inkjet printer, it is important that the printhead has excellent longevity.
Preferably, an IR
channel in the printhead, used for printing the coding pattern, should have at least as good longevity as other color channels used for printing graphics, text etc.
Kogation is a term used to describe a phenomenon whereby residues are deposited over time on a heater element in an inkjet printhead. Kogation typically occurs from repeated firing of a heater element and is generally understood to result from high-temperature deposition of ink component residues. Usually, the inkjet dye (or pigment) is responsible for kogation on inkjet heater elements.
Therefore, an important characteristic of inkjet inks in thermal inkjet printing is their propensity to kogate on a heater element. Ideally, an inkjet dye should exhibit minimal kogation, which consequently improves the lifetime of an inkjet printhead.
One approach to minimizing kogation is to add relatively large amounts of surfactant or other additives to the ink vehicle. For example, US Patent No. 6,533,851 describes phosphonate additives for inkjet inks, which are claimed to reduce kogation.
However, additives of this type generally compromise print quality by increasing intercolor bleed.
Another approach to the problem of kogation is to simply ignore the kogate and `overpower' the heater elements so that water is superheated through the kogate. This approach is unsatisfactory in the Applicant's Memj et printheads, which use minimal ink ejection energy for each nozzle so as to achieve high-speed pagewidth printing. Overpowering each nozzle would inevitably compromise print speed and/or nozzle density.
It would therefore be desirable to provide an inkjet dye, which exhibits reduced kogation. It would be further desirable to provide an IR-absorbing inkjet dye, which exhibits reduced kogation.

Summary of the Invention In a first aspect, there is provided a salt of a sulfonated dye comprising at least one ammonium cation, wherein the or each ammonium cation comprises at least 3 hydroxyl groups. The ammonium cation is, of course, the counterion for the anionic sulfonate moiety in the salt.
Optionally, the ammonium cation comprises at least 4 hydroxyl groups.
Optionally, the ammonium cation comprises at least 5 hydroxyl groups.
Optionally, the ammonium cation is of formula (A):

R
Rs (A) wherein:
R5, R6, R7, R8, R9 and R10 are each independently selected from the group comprising: H and -CH2OH.
Optionally, the ammonium cation is selected from the group comprising:
protonated triethanolamine; and protonated 2,2-bis(hydroxymethyl)-2,2',2"-nitrilotriethanol.
Optionally, the dye is a sulfonated phthalocyanine dye.
Optionally, the dye is an IR-absorbing dye.
Optionally, the salt is of formula (I):
S03 Z1+

S03 Z2+
N "N

N M N
N N

Q4 \ Q3 N

S03 -Z4 S03 Z3+
wherein:
Q1, Q2, Q3 and Q4 are the same or different and are independently selected from a C3_20 arylene group or a C3_20 heteroarylene group;
M is (H2) or a metal selected from the group comprising: Si(A')(A2), Ge(A')(A) , Ga(A'), Mg, A1(A'), TiO, Ti(A')(A2), ZrO, Zr(A')(A2), VO, V(Al)(A2), Mn, Mn(A'), Fe, Fe(A'), Co, Ni, Cu, Zn, Sn, Sn(A)(A2), Pb, Pb(A)(A2), Pd and Pt;
A' and A2 are axial ligands, which may be the same or different, and are selected from the group comprising: -OH, halogen, -OR3, -OC(O)R4 and -O(CH2CH2O)eRe wherein e is an integer from 2 to 10 and Re is H, Ci-g alkyl or -C(O)Ci-g alkyl;
R3 is C1-2o alkyl, C5-12 aryl, C5-2o arylalkyl or Si(RX)(Ry)(Rz);
R4 is C1-2o alkyl, C5-12 aryl or C5-2o arylalkyl;
RX, RY and Rz are the same or different and are selected from C1-12 alkyl, C5-12 aryl, C5-12 arylalkyl, C1-12 alkoxy, C5-12 aryloxy or C5-12 arylalkoxy; and Zl+, Z2+, Z3+ and Z4+ are independently selected from the group comprising: H
and an ammonium cation comprising at least 3 hydroxyl groups, wherein at least one of and Z4+ is said ammonium cation.
Optionally, the salt is of formula (II):

so3 Zi+
N N N
Z4+ / i \ \
3 N-M-N -S03 Z2+
O S\ \ `
N N N

(II) so3 Z3+

wherein M is (H2) or a metal selected from the group comprising: Si(A)(A2), Ge(A')(A) , Ga(A'), Mg, Al(A'), TiO, Ti(A')(A2), ZrO, Zr(A)(A2), VO, V(Al)(A2), Mn, Mn(A'), Fe, Fe(A'), Co, Ni, Cu, Zn, Sn, Sn(A)(A2), Pb, Pb(A)(A2), Pd and Pt;
A' is an axial ligand selected from -OH, halogen, -OR3, -OC(O)R4 or -O(CH2CH2O)eRe wherein e is an integer from 2 to 10 and Re is H, C1-g alkyl or C(O)C1-g alkyl;
R3 is selected from C1-12 alkyl, C5-12 aryl, C5-12 arylalkyl or Si(RX)(Ry)(Rz);
R4 is selected from C1-12 alkyl, C5-12 aryl or C5-12 arylalkyl;
5 RX, RY and Rz may be the same or different and are selected from C1-12 alkyl, C5-12 aryl, C5-12 arylalkyl, C1-12 alkoxy, C5-12 aryloxy or C5-12 arylalkoxy; and Z1+, Z2+, Z3+ and Z4+ are independently selected from the group comprising: H
and an ammonium cation comprising at least 3 hydroxyl groups, wherein at least one of Z1+, Z2+, Z3+
and Z4+ is said ammonium cation.
Optionally, at least three of Z1+, Z2+, Z3+ and Z4+ are said ammonium cation.
In a second aspect, there is provided an inkjet ink comprising a salt as described above.
In a third aspect, there is provided a method of reducing kogation in an inkjet printhead, the method comprising: printing from the printhead using an inkjet ink as described above.
Optionally, the printhead comprises a plurality of nozzles, each nozzle comprising: a nozzle chamber containing said ink; a heater element for heating said ink; and a nozzle opening for ejection of ink.
Optionally, the heater element is comprised of titanium nitride or a nitride of a titanium alloy.
Optionally, the heater element is comprised of titanium aluminium nitride.
Optionally, the heater element is a cantilever beam suspended across said nozzle chamber.
Optionally, the printing includes at least 50 million drop actuations.
In a fourth aspect, there is provided an inkjet printhead comprising a plurality of nozzles, each nozzle comprising: a nozzle chamber containing an inkjet ink as described above; a heater element for heating said ink; and a nozzle opening for ejection of ink.
Optionally, the heater element is comprised of titanium aluminium nitride.
In a fifth aspect, there is provided a substrate having a salt as described above disposed thereon or therein.
Brief Description of Drawings Figure 1 is a partial perspective view of an array of nozzle assemblies of a thermal inkjet printhead;
Figure 2 is a side view of a nozzle assembly unit cell shown in Figure 1; and Figure 3 is a perspective of the nozzle assembly shown in Figure 2.

Detailed Description Sulfonated Dye Salts As used herein, the term "sulfonated dye" refers to any dye molecule bearing a sulfonate group. Sulfonated dyes are a well-known class of compound. Examples of some commercially available sulfonated dyes are Food Black 1 (Brilliant Black BN), Food Black 2 (Black 7984), Allura Red AC, Amaranth, Amido Black, Food Red 3 (Azorubine), Food Brown 3 (Brown HT), Chrysoine resorcinol (Resorcinol Yellow), Congo Red, Food Yellow 2 (Fast Yellow), Hydroxynaphthol Blue, Lithol Rubine BK, Pigment Rubine, Orange B, Orange G, Orange GGN, Food Red 7, Acid Red 1 (Red 2G), Food Red 2, Orange Yellow S, Sunset Yellow, tartrazine, Yellow 2G, Food Blue 2, Food Green S, Food Green 2, Food Blue 5, and sulfonated phthalocyanines (e.g. copper phthalocyanine, Aldrich Catalogue No.
41,205-8).
The Applicant has previously described sulfonated phthalocyanine IR dyes, such as sulfonated naphthalocyanines (see US Patent Nos. 7,148,345 and 7,122,076).
As used herein, the term "phthalocyanine" refers to any compound belonging to the general class of macrocyclic phthalocyanines, and includes naphthalocyanines, quinolinephthalocyanines etc, as well as substituted derivatives thereof.
As used herein, the term "IR-absorbing dye" means a substance, which absorbs infrared radiation and which is therefore suitable for detection by an infrared sensor.
Preferably, the IR-absorbing dye absorbs in the near infrared region, and preferably has a ^ max in the range of 700 to 1000 nm, more preferably 750 to 900 nm, more preferably 780 to 850 nm. Dyes having a ^ max in this range are particularly suitable for detection by semiconductor lasers, such as a gallium aluminium arsenide diode laser.
Typically in the prior art, sulfonated dyes are provided in their salt form.
The usual salts of sulfonated dyes are sodium salts, lithium salts, potassium salts and calcium salts. Such salts are inexpensive, readily soluble in aqueous-based media and easy to prepare. However, these salts suffer from severe kogation, particularly salts of sulfonated phthalocyanines used in the Applicant's Memjet printers.
By contrast, the ammonium salts according to the present invention, where the ammonium cation comprises at least 3 hydroxyl groups, exhibit reduced kogation compared to, for example, sodium salts.
Preferably, the ammonium cation comprises at least 5 hydroxyl groups. An example of such a cation is protonated "bis-tris" (protonated 2,2-bis(hydroxymethyl)-2,2',2"-nitrilotriethanol), which exhibits vastly reduced kogation compared to sodium salts. "Bis-tris", which comprises 5 hydroxyl groups, also exhibits reduced kogation compared to, for example, triethanolamine which comprises 3 hydroxyl groups.
In the most general form of the present invention, the dye may be any sulfonated dye, such as those commonly used in printing inks. These include Food dyes, sulfonated phthalocyanines, sulfonated azo dyes and the like.
The present invention has been shown to work particularly well with sulfonated phthalocyanines, which include sulfonated naphthalocyanines. Sulfonated phthalocyanine dyes may be metal-free or may comprise a central metal atom moiety M.
Optionally, M is selected from Si(A')(A2), Ge(A')(A2), Ga(A'), Mg, Al(A'), TiO, Ti(A')(A2), ZrO, Zr(A')(A2), VO, V(A')(A), Mn, Mn(A'), Fe, Fe(A'), Co, Ni, Cu, Zn, Sn, Sn(A')(A), Pb, Pb(A')(A2), Pd and Pt. Phthalocyanines having a range of central metal atom moieties are well known in the literature (see, for example, Aldrich Catalogue). Copper phthalocyanine tetrasulfonate is a particularly well known example, used in cyan inkjet dyes. Sulfonation of phthalocyanines is readily achievable using standard sulfonation chemistry.
Optionally, M is selected from Si(A')(A2), Ge(A')(A) , Ga(A'), Al(A'), VO, Mn, Mn(A'), Cu, Zn, Sn, and Sn(A')(A2). S
Optionally, M is Ga(A').
A' and A2 are axial ligands, which may be the same or different. Optionally, A' and A2 and are selected from -OH, halogen or -OR3. Optionally, A' and A2 may be -OC(O)R4 or -O(CH2CH2O)eRe wherein e is an integer from 2 to 10 and Re is H, Ci_g alkyl or -C(O)C1_8 alkyl. Typically A' is a hydroxyl group (-OH).
R3 may be Ci-2o alkyl, C5-12 aryl, C5-20 arylalkyl or Si(RX)(Ry)(Rz).
R4 may be C1-2o alkyl, C5-12 aryl or C5-20 arylalkyl.
RX, RY and Rz may be the same or different and are selected from Ci-i2 alkyl, C5-12 aryl, C5-12 arylalkyl, C1-12 alkoxy, C5-12 aryloxy or C5-12 arylalkoxy.
An example of a sulfonated phthalocyanine dye salt, which may be used in the present invention is shown in formula (I):
S03 Zl+

S03 Z2+
N "N

N M N
N N

Q4 \ Q3 N

S03 -Z4 S03 Z3+
wherein:
Q', Q2, Q3 and Q4 are the same or different and are independently selected from a C3-20 arylene group or a C3-20 heteroarylene group (e.g. C4 arylene to provide typical phthalocyanines or Cg arylene to provide naphthalocyanines);
M is (H2) or a metal selected from the group comprising: Si(A)(A2), Ge(A)(A2), Ga(A'), Mg, Al(A')5 TiO, Ti(A)(A), ZrO, Zr(A)(A2), VO, V(Al)(A2), Mn, Mn(A'), Fe, Fe(A'), Co, Ni, Cu, Zn, Sn, Sn(A)(A2)5 Pb, Pb(A)(A2)5 Pd and Pt;
A' and A2 are axial ligands, which may be the same or different, and are selected from the group comprising: -OH, halogen, -OR3, -OC(O)R4 and -O(CH2CH2O)eRe wherein e is an integer from 2 to 10 and Re is H, Cl-g alkyl or -C(O)C1-g alkyl;
R3 is C1-2o alkyl, C5-12 aryl, C5-2o arylalkyl or Si(RX)(RY)(Rz);
R4 is C1-20 alkyl, C5-12 aryl or C5-2o arylalkyl;
RX, R" and Rz are the same or different and are selected from Ci-i2 alkyl, C5-12 aryl, C5-12 arylalkyl, C1-12 alkoxy, C5-i2 aryloxy or C5-12 arylalkoxy; and Zl+, Z2+, Z3+ and Z4+ are independently selected from the group comprising: H
and an ammonium cation comprising at least 3 hydroxyl groups, wherein at least one of Z1+, Z2+, Z3+
and Z4+ is said ammonium cation.
Usually, either three of Z1+, Z2+, Z3+ and Z4+ or all of Z1+, Z2+, Z3 + and Z4+ are the ammonium cation, depending on the exact nature of the cation and the method of salt precipitation used in the preparation.
Optionally, Q1, Q2, Q3 and Q4 are the same and are each a C4-10 arylene group (e.g.
phthalocyanines and naphthalocyanines). Q1, Q2, Q3 and Q4 may, of course, be substituted in accordance with the optional aryl substituents described below.
The general synthesis of phthalocyanines in accordance with formula (I) are described in, for example, the Applicant's earlier US Patent Nos. 7,148,345 and 7,122,076, the contents of which are herein incorporated by reference. Specific salt syntheses are described hereinbelow.
Optionally, the groups represented as Q1, Q2, Q3 and Q4 are each selected from an arylene group of formula (i) or (ii) below:

\SOg Z+ S03-Z+

(i) (ii) wherein:
RI and R2 may be the same or different and are selected from hydrogen, hydroxyl, C1-12 alkyl, C1-12 alkoxy, amino, C1-12 alkylamino, di(C1-12 alkyl)amino, halogen, cyano, thiol, C1-12 alkylthio, C5-12 arylthio, nitro, carboxy, C1-12 alkylcarbonyl, C1-12 alkoxycarbonyl, C1-12 alkylcarbonyloxy or C1-12 alkylcarbonylamino; and Z = Z1+, Z2+, Z3+ or Z4+.

A more specific example of a sulfonated dye salt, which may be used in the present invention is the sulfonated naphthalocyanine salt shown in formula (II):

so3 Zi+
N N N
Z4+ / i \ \
3 N-M-N -S03 Z2+
O S\ \ `
N N N

(II) so3 Z3+

wherein 5 M is (H2) or a metal selected from the group comprising: Si(A)(A2), Ge(A')(A) , Ga(A'), Mg, Al(A'), TiO, Ti(A')(A2), ZrO, Zr(A)(A2), VO, V(Al)(A2), Mn, Mn(A'), Fe, Fe(A'), Co, Ni, Cu, Zn, Sn, Sn(A)(A2), Pb, Pb(A)(A2), Pd and Pt;
A' is an axial ligand selected from -OH, halogen, -OR3, -OC(O)R4 or -O(CH2CH2O)eRe wherein e is an integer from 2 to 10 and Re is H, Ci-g alkyl or C(O)C1-g alkyl;
10 R3 is selected from C1-12 alkyl, C5-12 aryl, C5-12 arylalkyl or Si(RX)(Ry)(Rz);
R4 is selected from C1-12 alkyl, C5-12 aryl or C5-12 arylalkyl;
RX, RY and Rz may be the same or different and are selected from C1-12 alkyl, C5-12 aryl, C5-i2 arylalkyl, C1-12 alkoxy, C5-12 aryloxy or C5-12 arylalkoxy; and Z1-% Z2+, Z3+ and Z4+ are independently selected from the group comprising: H
and an ammonium cation comprising at least 3 hydroxyl groups, wherein at least one of Z1+, Z2+, Z3+
and Z4+ is said ammonium cation.

Typically, Z1+ = H; and Z2+ = Z3-'= Z4-'= the ammonium cation comprising at least 3 hydroxyl groups.
Alternatively, Z1+ = Z2+ = Z3+ = Z4+ = the ammonium cation comprising at least 3 hydroxyl groups.
Optionally, M is Ga(OH).
The term "aryl" is used herein to refer to an aromatic group, such as phenyl, naphthyl or triptycenyl. C6_12 aryl, for example, refers to an aromatic group having from 6 to 12 carbon atoms, excluding any substituents. The term "arylene", of course, refers to divalent groups corresponding to the monovalent aryl groups described above. Any reference to aryl implicitly includes arylene, where appropriate.
The term "heteroaryl" refers to an aryl group, where 1, 2, 3 or 4 carbon atoms are replaced by a heteroatom selected from N, 0 or S. Examples of heteroaryl (or heteroaromatic) groups include pyridyl, benzimidazolyl, indazolyl, quinolinyl, isoquinolinyl, indolinyl, isoindolinyl, indolyl, isoindolyl, pyrrolyl, imidazolyl, oxazolyl, isoxazolyl, pyrazolyl, isoxazolonyl, piperazinyl, pyrimidinyl, pyridyl, pyrimidinyl, benzopyrimidinyl, benzotriazole, quinoxalinyl, pyridazyl etc. The term "heteroarylene", of course, refers to divalent groups corresponding to the monovalent heteroaryl groups described above. Any reference to heteroaryl implicitly includes heteroarylene, where appropriate.
Unless specifically stated otherwise, aryl and heteroaryl groups may be optionally substituted with 1, 2, 3, 4 or 5 of the substituents described below. The optional substituent(s) are independently selected from C1_g alkyl, C1_g alkoxy, -(OCH2CH2)dORd (wherein d is an integer from 2 to 5000 and Rd is H, C1_8 alkyl or C(O)C1_g alkyl), cyano, halogen, amino, hydroxyl, thiol, -SR', -NR"Rv, nitro, phenyl, phenoxy, -CO2Rv, -C(O)R', -OCORv, -SO2Rv, -SO2Rv, -SO2ORv, -NHC(O)Rv, -CONRIRv,-CONRuRv, -SO2NRuRv, wherein R' and Rv are independently selected from hydrogen, C1_12 alkyl, phenyl or phenyl-C1_8 alkyl (e.g. benzyl).
Where, for example, a group contains more than one substituent, different substituents can have different Ru or Rv groups. For example, a naphthyl group may be substituted with three substituents: -SO2NHPh, -CO2Me group and -NH2.
The term "alkyl" is used herein to refer to alkyl groups in both straight and branched forms. Unless stated otherwise, the alkyl group may be interrupted with 1, 2, 3 or 4 heteroatoms selected from 0, NH or S. Unless stated otherwise, the alkyl group may also be interrupted with 1, 2 or 3 double and/or triple bonds. However, the term "alkyl" usually refers to alkyl groups having double or triple bond interruptions. Where "alkenyl"
groups are specifically mentioned, this is not intended to be construed as a limitation on the definition of "alkyl" above.
Where reference is made to, for example, CI-20 alkyl, it is meant the alkyl group may contain any number of carbon atoms between 1 and 20. Unless specifically stated otherwise, any reference to "alkyl" means C1_20 alkyl, preferably Ci_12 alkyl or C1.6 alkyl.
The term "alkyl" also includes cycloalkyl groups. As used herein, the term "cycloalkyl" includes cycloalkyl, polycycloalkyl, and cycloalkenyl groups, as well as combinations of these with linear alkyl groups, such as cycloalkylalkyl groups. The cycloalkyl group may be interrupted with 1, 2 or 3 heteroatoms selected from 0, N or S
and may be specifically indicated as a heterocycloalkyl group. Examples of heterocycloalkyl groups are pyrrolidino, morpholino, piperidino etc. However, the term "cycloalkyl"
usually refers to cycloalkyl groups having no heteroatom interruptions. Examples of cycloalkyl groups include cyclopentyl, cyclohexyl, cyclohexenyl, cyclohexylmethyl and adamantyl groups.
The term "arylalkyl" refers to groups such as benzyl, phenylethyl and naphthylmethyl.
The term "halogen" or "halo" is used herein to refer to any of fluorine, chlorine, bromine and iodine. Usually, however, halogen refers to chlorine or fluorine substituents.
Any chiral compounds described herein have not been given stereo-descriptors.
However, when compounds may exist in stereoisomeric forms, then all possible stereoisomers and mixtures thereof are included (e.g. enantiomers, diastereomers and all combinations including racemic mixtures etc.).
Likewise, when compounds may exist in a number of regioisomeric forms, then all possible regioisomers and mixtures thereof are included.
For the avoidance of doubt, the term "a" (or "an"), in phrases such as "comprising a", means "at least one" and not "one and only one". Where the term "at least one"
is specifically used, this should not be construed as having a limitation on the definition of "a".
Throughout the specification, the term "comprising", or variations such as "comprise"
or "comprises", should be construed as including a stated element, integer or step, but not excluding any other element, integer or step.

Inks The dye salts described above may be formulated in inkjet inks. Preferably, the inkjet ink is a water-based inkjet ink.
Water-based inkjet ink compositions are well known in the literature and, in addition to water, may comprise additives, such as co-solvents, biocides, sequestering agents, humectants, viscosity modifiers, penetrants, wetting agents, surfactants etc.
Co-solvents are typically water-soluble organic solvents. Suitable water-soluble organic solvents include Ci_4 alkyl alcohols, such as ethanol, methanol, butanol, propanol, and 2-propanol; glycol ethers, such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl ether, ethylene glycol mono-isopropyl ether, diethylene glycol mono-isopropyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol mono-n-butyl ether, ethylene glycol mono-t-butyl ether, diethylene glycol mono-t-butyl ether, 1-methyl-l-methoxybutanol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-t-butyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-isopropyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol mono-isopropyl ether, propylene glycol mono-n-butyl ether, and dipropylene glycol mono-n-butyl ether; formamide, acetamide, dimethyl sulfoxide, sorbitol, sorbitan, glycerol monoacetate, glycerol diacetate, glycerol triacetate, and sulfolane; or combinations thereof.
Other useful water-soluble organic solvents include polar solvents, such as 2-pyrrolidone, N-methylpyrrolidone, ^ -caprolactam, dimethyl sulfoxide, sulfolane, morpholine, N-ethylmorpholine, 1,3-dimethyl-2-imidazolidinone and combinations thereof.
The inkjet ink may contain a high-boiling water-soluble organic solvent which can serve as a wetting agent or humectant for imparting water retentivity and wetting properties to the ink composition. Such a high-boiling water-soluble organic solvent includes one having a boiling point of 180 C or higher. Examples of the water-soluble organic solvent having a boiling point of 180 C or higher are ethylene glycol, propylene glycol, diethylene glycol, pentamethylene glycol, trimethylene glycol, 2-butene- 1,4-diol, 2-ethyl-1,3-hexanediol, 2-methyl-2,4-pentanediol, tripropylene glycol monomethyl ether, dipropylene glycol monoethyl glycol, dipropylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol, triethylene glycol monomethyl ether, tetraethylene glycol, triethylene glycol, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, tripropylene glycol, polyethylene glycols having molecular weights of 2000 or lower, 1,3-propylene glycol, isopropylene glycol, isobutylene glycol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, glycerol, erythritol, pentaerythritol and combinations thereof.
The total water-soluble organic solvent content in the inkjet ink is preferably about 5 to 50% by weight, more preferably 10 to 30% by weight, based on the total ink composition.
Other suitable wetting agents or humectants include saccharides (including monosaccharides, oligosaccharides and polysaccharides) and derivatives thereof (e.g. maltitol, sorbitol, xylitol, hyaluronic salts, aldonic acids, uronic acids etc.) The inkjet ink may also contain a penetrant for accelerating penetration of the aqueous ink into the recording medium. Suitable penetrants include polyhydric alcohol alkyl ethers (glycol ethers) and/or 1,2-alkyldiols. Examples of suitable polyhydric alcohol alkyl ethers are ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-isopropyl ether, diethylene glycol mono-isopropyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol mono-n-butyl ether, ethylene glycol mono-t-butyl ether, diethylene glycol mono-t-butyl ether, 1-methyl-l-methoxybutanol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-t-butyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-isopropyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol mono-isopropyl ether, propylene glycol mono-n-butyl ether, and dipropylene glycol mono-n-butyl ether. Examples of suitable 1,2-alkyldiols are 1,2-pentanediol and 1,2-hexanediol. The penetrant may also be selected from straight-chain hydrocarbon diols, such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, and 1,8-octanediol. Glycerol or urea may also be used as penetrants.
The amount of penetrant is preferably in the range of 1 to 20% by weight, more preferably 1 to 10% by weight, based on the total ink composition.
The inkjet ink may also contain a surface active agent, especially an anionic surface active agent and/or a nonionic surface active agent. Useful anionic surface active agents include sulfonic acid types, such as alkanesulfonic acid salts, ^ -olefinsulfonic acid salts, alkylbenzenesulfonic acid salts, alkylnaphthalenesulfonic acids, acylmethyltaurines, and 5 dialkylsulfosuccinic acids; alkylsulfuric ester salts, sulfated oils, sulfated olefins, polyoxyethylene alkyl ether sulfuric ester salts; carboxylic acid types, e.g., fatty acid salts and alkylsarcosine salts; and phosphoric acid ester types, such as alkylphosphoric ester salts, polyoxyethylene alkyl ether phosphoric ester salts, and glycerophosphoric ester salts. Specific examples of the anionic surface active agents are sodium dodecylbenzenesulfonate, sodium 10 laurate, and a polyoxyethylene alkyl ether sulfate ammonium salt.
Suitable nonionic surface active agents include ethylene oxide adduct types, such as polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene alkyl esters, and polyoxyethylene alkylamides; polyol ester types, such as glycerol alkyl esters, sorbitan alkyl esters, and sugar alkyl esters; polyether types, such as polyhydric alcohol alkyl 15 ethers; and alkanolamide types, such as alkanolamine fatty acid amides.
Specific examples of nonionic surface active agents are ethers such as polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene dodecylphenyl ether, polyoxyethylene alkylallyl ether, polyoxyethylene oleyl ether, polyoxyethylene lauryl ether, and polyoxyalkylene alkyl ethers (e.g. polyoxyethylene alkyl ethers); and esters, such as polyoxyethylene oleate, polyoxyethylene oleate ester, polyoxyethylene distearate, sorbitan laurate, sorbitan monostearate, sorbitan mono-oleate, sorbitan sesquioleate, polyoxyethylene mono-oleate, and polyoxyethylene stearate. Acetylene glycol surface active agents, such as 2,4,7,9-tetramethyl-5 -decyne-4,7-diol, 3,6-dimethyl-4-octyne-3,6-diol or 3,5-dimethyl-l-hexyn-3-ol, may also be used.
The inkjet ink may also include a biocide, such as benzoic acid, dichlorophene, hexachlorophene, sorbic acid, hydroxybenzoic esters, sodium dehydroacetate, 1,2-benthiazolin-3-one, 3,4-isothiazolin-3-one or 4,4-dimethyloxazolidine.
The inkj et ink may also contain a sequestering agent, such as ethylenediaminetetraacetic acid (EDTA).
The inkjet ink may also contain a singlet oxygen quencher. The presence of singlet oxygen quencher(s) in the ink reduces the propensity for the IR-absorbing dye to degrade. The quencher consumes any singlet oxygen generated in the vicinity of the dye molecules and, hence, minimizes their degradation. An excess of singlet oxygen quencher is advantageous for minimizing degradation of the dye and retaining its IR-absorbing properties over time.
Preferably, the singlet oxygen quencher is selected from ascorbic acid, 1,4-diazabicyclo-[2.2.2]octane (DABCO), azides (e.g. sodium azide), histidine or tryptophan.

Substrates As mentioned above, the dyes of the present invention are especially suitable for use in HyperlabelTM and Netpage systems. Such systems are described in more detail below and in the patent applications listed above, all of which are incorporated herein by reference in their entirety.
In the case of HyperlabelTM and Netpage application, the IR dye is disposed on a substrate in the form of a coding pattern readable by an optically imaging sensing device. An example of a suitable coding pattern is described in US Patent No. 6,832,717, the contents of which is herein incorporated by reference. Typically, the coding pattern is disposed over a substantial portion of an interface surface of the substrate (e.g. greater than 20%, greater than 50% or greater than 90% of the surface).
Preferably, the substrate is IR reflective so that the dye disposed thereon may be read by a sensing device. The substrate may be comprised of any suitable material such as plastics (e.g. polyolefins, polyesters, polyamides etc.), paper, metal or combinations thereof. The substrate may be laminated.
For netpage applications, the substrate is preferably a paper sheet. For HyperlabelTM
applications, the substrate is preferably a tag, a label, a packaging material or a surface of a product item. Typically, tags and labels are comprised of plastics, paper or combinations thereof.

Thermal Bubble-Forming Ink jet Printhead As mentioned above, the dyes of the present invention are especially suitable for use in the Applicant's thermal inkjet ("Memjet ") printheads. A brief description of a thermal inkjet printhead now follows. Further details of such printheads may be found in the cross-referenced patents and patent applications listed above, which are incorporated herein by reference.
Referring to Figure 1, there is shown a part of printhead comprising a plurality of nozzle assemblies. Figures 2 and 3 show one of these nozzle assemblies in side-section and cutaway perspective views.
Each nozzle assembly comprises a nozzle chamber 24 formed by MEMS fabrication techniques on a silicon wafer substrate 2. The nozzle chamber 24 is defined by a roof 21 and sidewalls 22 which extend from the roof 21 to the silicon substrate 2. As shown in Figure 1, each roof is defined by part of a nozzle plate 56, which spans across an ejection face of the printhead. The nozzle plate 56 and sidewalls 22 are formed of the same material, which is deposited by PECVD over a sacrificial scaffold of photoresist during MEMS
fabrication.
Typically, the nozzle plate 56 and sidewalls 21 are formed of a ceramic material, such as silicon dioxide or silicon nitride. These hard materials have excellent properties for printhead robustness, and their inherently hydrophilic nature is advantageous for supplying ink to the nozzle chambers 24 by capillary action.
Returning to the details of the nozzle chamber 24, it will be seen that a nozzle opening 26 is defined in a roof of each nozzle chamber 24. Each nozzle opening 26 is generally elliptical and has an associated nozzle rim 25. The nozzle rim 25 assists with drop directionality during printing as well as reducing, at least to some extent, ink flooding from the nozzle opening 26.
The actuator for ejecting ink from the nozzle chamber 24 is a heater element 29 positioned beneath the nozzle opening 26 and suspended across a pit 8.
Typically, the heater element 29 is comprised of a titanium nitride or a nitride of a titanium alloy. An example of titanium alloy nitride is titanium aluminium nitride. However, it will be appreciated that other materials may be used as the heater element 29, and the present invention is not restricted to those materials specifically recited herein.
Current is supplied to the heater element 29 via electrodes 9 connected to drive circuitry in underlying CMOS layers of the substrate 2. When a current is passed through the heater element 29, it rapidly superheats surrounding ink to form a gas bubble, which forces ink through the nozzle opening. By suspending the heater element 29, it is completely immersed in ink when the nozzle chamber 24 is primed. This improves printhead efficiency, because less heat dissipates into the underlying substrate 2 and more input energy is used to generate a bubble.
The heater element 29 shows less kogation using inks in accordance with the present invention, when compared with inks comprising, for example, sodium salts of sulfonated dyes.
Less kogation is observed after about 20 million drop ejections, about 30 million drop ejections, about 40 million drop ejections or about 50 million drop ejections.
Consequently, the lifetime of the printhead is increased by at least 2-fold, at least 3-fold, at least 4-fold or at least 5-fold when compared with inks comprising sodium salts of sulfonated dyes.
As seen most clearly in Figure 1, the nozzles are arranged in rows and an ink supply channel 27, extending longitudinally along the row, supplies ink to each nozzle in the row. The ink supply channel 27 delivers ink to an ink inlet passage 15 for each nozzle, which supplies ink from the side of the nozzle opening 26 via an ink conduit 23 in the nozzle chamber 24.
A MEMS fabrication process for manufacturing such printheads was described in detail in US Application No. 11/246,684 filed on October 11, 2005, the contents of which is herein incorporated by reference.
The invention will now be described with reference to the following examples.
However, it will of course be appreciated that this invention may be embodied in many other forms without departing from the scope of the invention, as defined in the accompanying claims.

Examples In our earlier US Patent No. 7,148,345 and US Patent Application No.
60/851,754 (Attorney Docket No. IRB022US, filed on October 16, 2006), the contents of which are herein incorporated by reference, we described the preparation of various salts of gallium naphthalocyanine tetrasulfonic acid 1. The skilled person will readily appreciate that salts according to the present invention may be readily prepared from corresponding sulfonic acids by conventional methods.
In testing a range of alternative salts, including those of the alkali metals it was unexpectedly found that when the salt of acid 1 comprises protonated "bis-tris" [2,2-bis(hydroxymethyl)-2,2',2"-nitrilotriethanol] 2 as the counterion, kogation on TiA1N heaters is greatly reduced and the effective lifetime of a thermal inkjet printhead is increased by at least 3-5-fold.

N
/ / OH \ \ \ OH
N H
\ \ ~/"
HO $1+ OH

A further advantage of the protonated bis-tris counterion is that it greatly facilitates the preparation and isolation of the corresponding salt of the acid 1. In general, salts of acid 1 are conveniently prepared by mixing an amine or metal hydroxide with the acid in methanol/water (ca. 80:20), diluting with a fixed amount of ethyl acetate and filtering the product. Most of the salts, especially the alkali metal salts, precipitate as fine solids that are slow to filter, clogging membranes easily. However, in the case of bis-tris salts, these have a lower solubility in the reaction medium and flocculate readily to afford a much coarser precipitate that filters easily.
This lower solubility causes the product to precipitate and stop at the tris(bis-tris) inner salt (3) stage rather than proceed on to the tetrakis(bis-tris) salt (4) form.

OH OH
OHH.H OHH
/N~~OH OH N~~ OH
HO`_/1` _ + OH
OH O3S I OHH .H HO OH O3S I OHH H
N~'OH
HON~\OH Ho-`OH - OH
N N H H N so, N C N S03 N-Ga-N NGaN

+ N N N OH N N _N
S03 H' OH~ S03 OH O~N'- OH
H
SO3 OH NH OH SO3 OH~ H
HA+\~OH HA+N~ OH

5 Example 1 Preparation of the bis-tris salt (3) Bis-tris 2 (26.3 g; 0.125 mol, 7 equiv.) was dissolved completely in methanol (150 mL) and water (40 mL) and then gallium naphthalocyanine tetrasulfonic acid 1 (20.1 g;
0.018 mol) was added with stirring to give a green suspension. The reaction mixture was allowed to stir for 20 h and then ethyl acetate (350 mL) was added. After stirring for another 10 min. the reaction 10 mixture was poured into ethyl acetate (250 mL) in a 2 L conical flask with vigorous stirring.
The precipitated salt was filtered off on a sintered glass funnel under gravity, the filtrate draining readily at a fast rate. The moist solid was then washed with methanol (4 x 50 mL) under gravity and then the last traces were removed by suction. The resulting solid was air-dried before being dried under high vacuum at 65 C. The bis-tris salt was obtained as a green 15 powder (23.7 g; 76%).

Example 2 Formulation of IR inks OH

HH
HO"- N~~OH OH \
O3S Na O3S

HO + ----'OH
N N so3 N N N SO3 Na N ~urT4N_Ncd OH
SO3- N N N SO3 Na+ N N N
H.H
HN~~OH OH

SO3 H H h SO3 Na +
H0,-__N +---"'OH

Dye salts 5 and 6 were prepared similarly to salt 3 prepared in Example 1.

5 Each IR dye salt (3, 5, 6) was formulated according to the components listed in Table 1 and filtered through a 0.2 m PTFE filter membrane.

Table 1 Composition of an ink vehicle used for making up IR inks containing IR
dye at 4 mM
Ink component % w/w ethylene glycol 5-15 1-propanol 5-15 2-pyrrolidinone 5-15 biocide 0.2 water balance Example 3 Kogation Testing Each IR ink containing the respective dye salt (3, 5 or 6) was printed using the thermal inkjet printhead described in connection with Figures 1-3. The heater elements 29 were observed under high magnification after 50 million actuations.

The ink containing the sodium salt 6 performed the worst and a high degree of kogation was observed after 50 million actuations. The ink containing the triethanolamine salt performed better than the sodium salt 6, although a moderate amount of kogation was still observed after 50 million actuations. However, the ink containing the "bis-tris" salt 3 5 performed excellently with minimal or no kogation observed after 50 million actuations.
It will be appreciated by ordinary workers in this field that numerous variations and/or modifications may be made to the present invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects to be illustrative and not restrictive.

Claims (20)

1. A salt of a sulfonated dye comprising at least one ammonium cation as a counterion, wherein the or each ammonium cation comprises at least 3 hydroxyl groups.
2. The salt of claim 1, wherein the ammonium cation comprises at least 4 hydroxyl groups.
3. The salt of claim 1, wherein the ammonium cation comprises at least 5 hydroxyl groups.
4. The salt of claim 1, wherein the ammonium cation is of formula (A):
wherein:
R5, R6, R7, R8, R9 and R10 are each independently selected from the group consisting of: H and -CH2OH.
5. The salt of claim 1, wherein the ammonium cation is selected from the group consisting of: protonated triethanolamine; and protonated 2,2-bis(hydroxymethyl)-2,2',2"-nitrilotriethanol.
6. The salt of claim 1, wherein said dye is a sulfonated phthalocyanine dye.
7. The salt of claim 1, wherein said dye is an IR-absorbing dye.
8. The salt of claim 1, which is of formula (I):

wherein:
Q1, Q2, Q3 and Q4 are the same or different and are independently selected from a C3-20 arylene group or a C3-20 heteroarylene group;
M is (H2) or a metal selected from the group consisting of: Si(A1)(A2), Ge(A1)(A2), Ga(A1), Mg, Al(A1), TiO, Ti(A1)(A2), ZrO, Zr(A1)(A2), VO, V(A1)(A2), Mn, Mn(A1), Fe, Fe(A1), Co, Ni, Cu, Zn, Sn, Sn(A1)(A2), Pb, Pb(A1)(A2), Pd and Pt;
A1 and A2 are axial ligands, which may be the same or different, and are selected from the group consisting of: -OH, halogen, -OR3, -OC(O)R4 and -O(CH2CH2O)e R e wherein e is an integer from 2 to 10 and R e is H, C1-8 alkyl or -C(O)C1-8 alkyl;
R3 is C1-20 alkyl, C5-12 aryl, C5-20 arylalkyl or Si(R x)(R y)(R z);

R4 is C1-20 alkyl, C5-12 aryl or C5-20 arylalkyl;
R x, R y and R z are the same or different and are selected from the group consisting of: C1-12 alkyl, C5-12 aryl, C5-12 arylalkyl, C1-12 alkoxy, C5-12 aryloxy and C5-12 arylalkoxy; and Z1+, Z2+, Z3+ and Z4+ are independently selected from the group consisting of:
H and an ammonium cation comprising at least 3 hydroxyl groups, wherein at least one of Z1+, Z2+, Z3+
and Z4+ is said ammonium cation.
9. The salt of claim 1, which is of formula (II):

wherein M is (H2) or a metal selected from the group consisting of. Si(A1)(A2), Ge(A1)(A2), Ga(A1), Mg, Al(A1), TiO, Ti(A1)(A2), ZrO, Zr(A1)(A2), VO, V(A1)(A2), Mn, Mn(A1), Fe, Fe(A1), Co, Ni, Cu, Zn, Sn, Sn(A1)(A2), Pb, Pb(A1)(A2), Pd and Pt;
A1 is an axial ligand selected from the group consisting of: -OH, halogen, -OR3, -OC(O)R4 and -O(CH2CH2O)e R e wherein e is an integer from 2 to 10 and R e is H, C1-8 alkyl or C(O)C1-8 alkyl;
R3 is selected from the group consisting of: C1-12 alkyl, C5-12 aryl, C5-12 arylalkyl and Si(R x)(R y)(R z);
R4 is selected from the group consisting of: C1-12 alkyl, C5-12 aryl and C5-12 arylalkyl;
R x, R y and R z may be the same or different and are selected from the group consisting of: C1-12 alkyl, C5-12 aryl, C5-12 arylalkyl, C1-12 alkoxy, C5-12 aryloxy and C5-12 arylalkoxy; and Z1+, Z2+, Z3+ and Z4+ are independently selected from the group consisting of:
H and an ammonium cation comprising at least 3 hydroxyl groups, wherein at least one of Z1+, Z2+, Z3+
and Z4+ is said ammonium cation.
10. The salt of claim 9, wherein at least three of Z1+, Z2+, Z3+ and Z4+ are said ammonium cation.
11. An inkjet ink comprising a salt according to claim 1.
12. A method of reducing kogation in an inkjet printhead, said method comprising:
printing from the printhead using an inkj et ink according to claim 10.
13. The method of claim 12, wherein said printhead comprises a plurality of nozzles, each nozzle comprising: a nozzle chamber containing said ink; a heater element for heating said ink; and a nozzle opening for ejection of ink.
14. The method of claim 13, wherein said heater element is comprised of titanium nitride or a nitride of a titanium alloy.
15. The method of claim 14, wherein said heater element is comprised of titanium aluminium nitride.
16. The method of claim 13, wherein said heater element is a cantilever beam suspended across said nozzle chamber.
17. The method of claim 12, wherein said printing includes at least 50 million drop actuations.
18. An inkjet printhead comprising a plurality of nozzles, each nozzle comprising: a nozzle chamber containing an inkjet ink according to claim 9; a heater element for heating said ink;
and a nozzle opening for ejection of ink.
19. The inkj et printhead of claim 18, wherein said heater element is comprised of titanium aluminium nitride.
20. A substrate having a salt according to claim 1 disposed thereon or therein.
CA2724777A 2008-07-03 2009-05-15 Inkjet dyes exhibiting reduced kogation Abandoned CA2724777A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7831908P 2008-07-03 2008-07-03
US61/078,319 2008-07-03
PCT/AU2009/000617 WO2010000015A1 (en) 2008-07-03 2009-05-15 Inkjet dyes exhibiting reduced kogation

Publications (1)

Publication Number Publication Date
CA2724777A1 true CA2724777A1 (en) 2010-01-07

Family

ID=41464607

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2724777A Abandoned CA2724777A1 (en) 2008-07-03 2009-05-15 Inkjet dyes exhibiting reduced kogation

Country Status (9)

Country Link
US (3) US8029611B2 (en)
EP (1) EP2307512A1 (en)
JP (1) JP2011526308A (en)
KR (1) KR20110016441A (en)
CN (1) CN102066500A (en)
AU (1) AU2009266404A1 (en)
CA (1) CA2724777A1 (en)
TW (1) TWI532792B (en)
WO (1) WO2010000015A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029611B2 (en) * 2008-07-03 2011-10-04 Silverbrook Research Pty Ltd Inkjet dyes exhibiting reduced kogation
US8206496B2 (en) * 2009-09-22 2012-06-26 Hewlett-Packard Development Company, L.P. Mixed phthalocyanine and naphthalocyanine dyes for near-infrared applications
TWI518143B (en) * 2011-03-31 2016-01-21 Sumitomo Chemical Co Dye with salt
US8853780B2 (en) 2012-05-07 2014-10-07 Freescale Semiconductor, Inc. Semiconductor device with drain-end drift diminution
JP2014005374A (en) * 2012-06-25 2014-01-16 Konica Minolta Inc Infrared absorptive dye, fiber, cloth and clothing
US8808441B2 (en) 2012-12-19 2014-08-19 Hewlett-Packard Development Company, L.P. Inkjet inks
US9490322B2 (en) 2013-01-23 2016-11-08 Freescale Semiconductor, Inc. Semiconductor device with enhanced 3D resurf
CN105899346B (en) * 2014-01-16 2017-11-07 惠普发展公司,有限责任合伙企业 Three-dimensional (3D) printing process
US9543379B2 (en) 2014-03-18 2017-01-10 Nxp Usa, Inc. Semiconductor device with peripheral breakdown protection
US9211356B2 (en) * 2014-03-18 2015-12-15 The Procter & Gamble Company Ink jet delivery system comprising an improved fluid mixture
WO2016193237A1 (en) 2015-06-02 2016-12-08 Basf Se Naphthalocyanine derivatives
US9871135B2 (en) 2016-06-02 2018-01-16 Nxp Usa, Inc. Semiconductor device and method of making
US9905687B1 (en) 2017-02-17 2018-02-27 Nxp Usa, Inc. Semiconductor device and method of making

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1644601A1 (en) 1966-03-12 1970-12-17 Bayer Ag Process for the preparation of anthraquinone dyes
US3986827A (en) 1972-08-29 1976-10-19 E. I. Du Pont De Nemours And Company Storage-stable concentrated aqueous solution of disazo acid dye
DE3434921A1 (en) * 1984-09-22 1986-05-07 Sandoz-Patent-GmbH, 7850 Lörrach HETEROCYCLIC MONOAZO COMPOUNDS
US4864618A (en) 1986-11-26 1989-09-05 Wright Technologies, L.P. Automated transaction system with modular printhead having print authentication feature
DE3725082A1 (en) * 1987-07-29 1989-02-09 Bayer Ag DISAZO DYES
JP2581769B2 (en) 1988-07-13 1997-02-12 株式会社リコー Water-based ink
US5051736A (en) 1989-06-28 1991-09-24 International Business Machines Corporation Optical stylus and passive digitizing tablet data input system
DE59208643D1 (en) * 1991-09-26 1997-07-31 Ciba Geigy Ag Process for dyeing paper with disazo dyes
IT1259371B (en) * 1992-03-30 1996-03-12 Olivetti & Co Spa INK PARTICULARLY SUITABLE FOR AN INK JET PRINTER
US5852434A (en) 1992-04-03 1998-12-22 Sekendur; Oral F. Absolute optical position determination
US5477012A (en) 1992-04-03 1995-12-19 Sekendur; Oral F. Optical position determination
DE69517783T2 (en) 1994-04-25 2000-11-02 Seiko Epson Corp AQUEOUS INK COMPOSITION AND METHOD FOR RECORDING THEREFOR
US5652412A (en) 1994-07-11 1997-07-29 Sia Technology Corp. Pen and paper information recording system
US5661506A (en) 1994-11-10 1997-08-26 Sia Technology Corporation Pen and paper information recording system using an imaging pen
US6081261A (en) 1995-11-01 2000-06-27 Ricoh Corporation Manual entry interactive paper and electronic document handling and processing system
DE19609338A1 (en) 1996-03-11 1997-09-18 Hoechst Ag Benzothioxanthene dyes, their preparation and their use
US5692073A (en) 1996-05-03 1997-11-25 Xerox Corporation Formless forms and paper web using a reference-based mark extraction technique
DE19633332A1 (en) 1996-08-20 1998-02-26 Basf Ag Aqueous dye preparations
US6518950B1 (en) 1997-10-07 2003-02-11 Interval Research Corporation Methods and systems for providing human/computer interfaces
WO1999050787A1 (en) 1998-04-01 1999-10-07 Xerox Corporation Cross-network functions via linked hardcopy and electronic documents
DE19831095A1 (en) * 1998-07-10 2000-01-13 Clariant Gmbh Water-soluble black stilbene dyes, their production and use
US6964374B1 (en) 1998-10-02 2005-11-15 Lucent Technologies Inc. Retrieval and manipulation of electronically stored information via pointers embedded in the associated printed material
DE19846098A1 (en) 1998-10-07 2000-04-13 Bayer Ag Disazo dyes
DE19911536A1 (en) * 1999-03-16 2000-09-21 Clariant Gmbh Red acid dyes for inkjet printing and paper coloring
GB0004527D0 (en) * 2000-02-26 2000-04-19 Avecia Ltd Inks
CN1252190C (en) * 2000-07-17 2006-04-19 三井化学株式会社 Water-base ink and process for production of dyes
AU2003205687A1 (en) 2002-02-06 2003-09-02 Ciba Specialty Chemicals Holding Inc. Process for the coloration of aluminium
US7122076B2 (en) 2004-08-09 2006-10-17 Silverbrook Research Pty Ltd Synthetically expedient water-dispersible IR dyes
JP4598828B2 (en) * 2004-08-09 2010-12-15 シルバーブルック リサーチ ピーティワイ リミテッド Water-dispersible IR dye suitable for synthesis with improved light resistance
WO2009012514A1 (en) * 2007-07-24 2009-01-29 Silverbrook Research Pty Ltd Phthalocyanine salts suitable for use in offset inks
EP2240497A1 (en) * 2008-02-11 2010-10-20 Silverbrook Research Pty. Ltd Use of sulfonated dye salt for modulating dye stability
US8029611B2 (en) * 2008-07-03 2011-10-04 Silverbrook Research Pty Ltd Inkjet dyes exhibiting reduced kogation

Also Published As

Publication number Publication date
AU2009266404A1 (en) 2010-01-07
KR20110016441A (en) 2011-02-17
TWI532792B (en) 2016-05-11
US8029611B2 (en) 2011-10-04
US20110316936A1 (en) 2011-12-29
US20130090481A1 (en) 2013-04-11
TW201012877A (en) 2010-04-01
US20100003470A1 (en) 2010-01-07
EP2307512A1 (en) 2011-04-13
CN102066500A (en) 2011-05-18
WO2010000015A1 (en) 2010-01-07
JP2011526308A (en) 2011-10-06
US8282722B2 (en) 2012-10-09

Similar Documents

Publication Publication Date Title
US8029611B2 (en) Inkjet dyes exhibiting reduced kogation
EP1006159B1 (en) Ink jet printing with metal complex
EP1006157B1 (en) Metal complex for ink jet ink
JP5732401B2 (en) Azaphthalocyanines and their use in inkjet printing
EP1165695B1 (en) High light-fastness yellow dye composition
EP1749864B1 (en) Ink composition, and ink jet recording method and recorded matter using the same
EP1234860B1 (en) Metal complex for ink jet ink
EP2459653B1 (en) Phthalocyanines with near-ir absorptions for inkjet inks
US7691192B2 (en) Ink composition, and ink jet recording method and recorded matter using the same
EP1812517B1 (en) Phthalocyanine compounds and their use in ink-jet printing
JP4652521B2 (en) Cationic azo dyes for inkjet inks
US6524378B2 (en) Ink jet printing method
JP4701634B2 (en) Ink composition, ink jet recording method using the same, and recorded matter
EP2459652B1 (en) Phthalocyanines and naphthalocyanines with near-ir absorptions for inkjet inks
WO2008068843A1 (en) Phthalocyanine dye, ink, ink set, method of ink-jet recording with the ink or ink set, and colored object
JP2005298755A (en) Ink composition, inkjet recording method and recorded matter using the same

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued

Effective date: 20130515