CA2655942C - Structural reinforcement system for automotive vehicles - Google Patents

Structural reinforcement system for automotive vehicles Download PDF

Info

Publication number
CA2655942C
CA2655942C CA2655942A CA2655942A CA2655942C CA 2655942 C CA2655942 C CA 2655942C CA 2655942 A CA2655942 A CA 2655942A CA 2655942 A CA2655942 A CA 2655942A CA 2655942 C CA2655942 C CA 2655942C
Authority
CA
Canada
Prior art keywords
skeleton member
reinforcement
expandable material
automotive vehicle
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2655942A
Other languages
French (fr)
Other versions
CA2655942A1 (en
Inventor
William J. Barz
Thomas L. Coon
Michael J. Czaplicki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zephyros Inc
Original Assignee
Zephyros, Inc.
William J. Barz
Thomas L. Coon
Michael J. Czaplicki
L&L Products, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zephyros, Inc., William J. Barz, Thomas L. Coon, Michael J. Czaplicki, L&L Products, Inc. filed Critical Zephyros, Inc.
Priority claimed from CA002399457A external-priority patent/CA2399457C/en
Publication of CA2655942A1 publication Critical patent/CA2655942A1/en
Application granted granted Critical
Publication of CA2655942C publication Critical patent/CA2655942C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/001Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material
    • B62D29/002Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material a foamable synthetic material or metal being added in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/04Door pillars ; windshield pillars

Abstract

An automotive vehicle frame reinforcement system has a skeleton member (16) designed to be placed in a cavity defined in a vehicle frame, such as a roof or pillar section. An expandable material (30), such as an epoxy-based reinforcement foam, is disposed on the skeleton member (16). Once the system is attached to the frame, the foam expands and cures during an automobile assembly operation, bonding the reinforcement system to the frame. As a result, the reinforcement system provides enhanced load distribution over the vehicle frame without adding excessive weight.

Description

STRUCTURAL REINFORCEMENT SYSTEM
FOR AUTOMOTIVE VEHICLES
FIELD OF THE INVENTION
The present invention relates generally to a reinforced structural member for use in strengthening the stiffness and strength of a frame assembly. More particularly, the invention relates to a vehicle frame system of an automotive vehicle that is reinforced by a member coated over a portion of its surface with an expandable material, the combination of which increases the structural stiffness and 1o strength of the automotive vehicle.

BACKGROUND OF THE INVENTION
For many years the transportation industry has been concerned with designing reinforced structural members that do not add significantly to the weight of a vehicle. United States Patent Nos. 5,755,486; 4,901,500; and 4,751,249 described prior art reinforcing devices. While these prior art devices may be advantageous in some circumstances, there is needed a simple low cost structure that permits coupling the reinforcement member to a variety of structures of varying geometric configurations. In the automotive industry there is also a need for a relatively low cost system for reinforcing automotive vehicle frame structures.
SUMMARY OF THE INVENTION
The present invention is directed to a structural reinforcement system, and particularly one for reinforcing automotive vehicle frame structures, such as (without limitation) vehicle roof and pillar structures. The system generally employs a skeleton member adapted for stiffening the structure to be reinforced and helping to redirect applied loads. In use, the skeleton member is in contact, over at least a portion of its outer surface, with an energy absorbing medium, and particularly heat activated bonding material. In a particular preferred embodiment, the skeleton member is a molded metal, or composite frame and it is at least partially coated with foamable epoxy-based resin, such as L5206, L5207, L5208 or L5209 structural foam commercially available from L & L Products of Romeo, Michigan.
In one embodiment the skeleton member along with a suitable amount of bonding or load transfer medium is placed in a cavity defined within an automotive vehicle, such as a vehicle roof structure, pillar structure or both. The bonding medium is activated to accomplish expansion of the resin in the space defined between the skeleton member and the wall structure defining the cavity. The resulting structure includes the wall structure joined to the skeleton member with the aid of the structural foam.
DETAILED DESCRIPTION OF THE DRAWINGS
The features and inventive aspects of the present invention will become more apparent upon reading the following detailed description, claims, and drawings, of which the following is a brief description:
Fig. 1 is a perspective view of aspects of an automotive vehicle roof and pillar structure, illustrating an A-Pillar and B-Pillar.
Fig. 2 is a perspective view of a skeleton member coated with an expandable resin in accordance with the present inventions.
Fig. 3 is another perspective view of the structure shown in Fig. 2.
Fig. 4 is a sectional view showing a coated skeleton member prior to activation of an expandable resin.
Fig. 5 illustrates the structure of Fig. 4 after the expandable resin has been expanded.
Fig. 6 is a perspective view of another illustrative structure in accordance with the present invention.
Fig. 7 is a side elevation view of the structure of Fig. 6.
Fig. 8 illustrates yet another structure in accordance with the present invention.
Fig. 9 illustrates the structure of Fig. 8 employed combination with a vehicle pillar structure.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENT
Fig. 1 illustrates an example of an automotive vehicle 10 showing portions of a frame structure. As will be appreciated, it is common for such structures to include a plurality of hollow vehicle frame members that are joined to define the frame.
One such structure, for purposes of illustration (without limitation) is a vehicle roof and pillar structure. As will be recognized, included in the roof and pillar structure may also be windows, sunroofs or other removable tops, vehicle doors and door components, headliners (with or without overhead accessories), or the like. As discussed later, other vehicle frame members are also contemplated within the io scope of the present invention.
While Fig. 1 illustrates an A-Pillar 12 and B-Pillar 14, other pillars may likewise be employed in accordance with the present invention. In Fig. 1 there is shown also a portion of the roof structure that bridges the A-Pillar 12 and B-Pillar 14.
Depending upon vehicle design, it is possible that the roof structure bridging the A-Pillar and B-Pillar is relatively indistinguishable between the A-Pillar and B-Pillar such that the A-Pillar structure and B-Pillar structure effectively adjoin one another. In such instances the uppermost portion of the pillar structure is deemed the roof structure.
Reinforcement of the roof and pillar sections is accomplished by locating one or more skeleton members In accordance with the present invention in a hollow or cavity portion of the roof or pillar. Fig. 1 illustrates examples of this by showing a first member 16, a second member 18 and a third member 20 in such locations. The members 16, 18 and 20 preferably are sealingly secured to at least one of the roof and pillar sections by a bonding material, which upon heat activation produces adhesion to skeleton members to help secure the members and the walls defining the hollow from movement within the hollow portion.
Though other heat activated materials are possible, a preferred heat activated material is an expandable plastic, and preferably one that is foamable. A
particularly preferred material is an epoxy-based structural foam. For example, without limitation, in one embodiment, the structural foam is an epoxy-based material, including an ethylene copolymer or terpolymer that may possess an alpha-olefin. As a copolymer or terpolymer, the polymer is composed of two or three different monomers, i.e., small molecules with high chemical reactivity that are capable of linking up with similar molecules.
A number of epoxy-based structural reinforcing foams are known in the art and may also be used to produce the structural foam. A typical structural foam includes a polymeric base material, such as an epoxy resin or ethylene-based polymer which, when compounded with appropriate ingredients (typically a blowing and curing agent), expands and cures in a reliable and predicable manner upon the application of heat or the occurrence of a particular ambient condition. From a chemical standpoint for a thermally-activated material, the structural foam is usually initially processed as a flowable thermoplastic material before curing. It will cross-link upon curing, which makes the material incapable of further flow.
An example of a preferred structural foam formulation is an epoxy-based material that is commercially available from L&L Products of Romeo, Michigan, under the designations L5206, L5207, L5208 and L5209. One advantage of the preferred structural foam materials 14 over prior art materials is that the preferred materials can be processed in several ways. The preferred materials can be processed by injection molding, extrusion compression molding or with a mini-applicator. This enables the formation and creation of part designs that exceed the capability of most prior art materials. In one preferred embodiment, the structural foam (in its uncured state) generally is dry or relatively free of tack to the touch.
While the preferred materials for fabricating the structural foam have been disclosed, the structural foam can be formed of other materials provided that the material selected is heat-activated or otherwise activated by an ambient condition (e.g. moisture, pressure, time or the like) and cures in a predictable and reliable manner under appropriate conditions for the selected application. One such material is the epoxy based resin disclosed in U.S. Patent Application Serial No. 09/268,810, filed with the United States Patent and Trademark Office on March 8, 1999 by the assignee of this application. Some other possible materials include, but are not limited to, polyolefin materials, copolymers and terpolymers with at least one monomer type an alphaolephin, phenol/formaldehyde materials, phenoxy materials, and polyurethane materials with high glass transition temperatures. See also, U.S.
Patent Nos.
5,766,719; 5,755,486; 5,575,526; and 5,932,680. In general, the desired characteristics of the structural foam include relatively high stiffness, high strength, high glass transition temperature (typically greater that 70 degrees Celsius), and good corrosion resistance properties. In this manner, the material does not generally interfere with the materials systems employed by automobile manufacturers.
In applications where a heat activated, thermally expanding material is employed, an important consideration involved with the selection and formulation of the material comprising the structural foam is the temperature at which a material reaction or expansion, and possibly curing, will take place. For instance, in most applications, it is undesirable for the material to be reactive at room temperature or otherwise at the ambient temperature in a production line environment. More typically, the structural foam becomes reactive at higher processing temperatures, io such as those encountered in an automobile assembly plant, when the foam is processed along with the automobile components at elevated temperatures or at higher applied energy levels, e.g., during painting preparation steps. While temperatures encountered in an automobile assembly operation may be in the range of about 148.89 C to 204.44 C (about 300('F to 400 F), body and paint shop applications are commonly about 93.33 C (about 200 F) or slightly higher. If needed, blowing agent activators can be incorporated into the composition to cause expansion at different temperatures outside the above ranges.
Generally, suitable expandable foams have a range of expansion ranging from approximately 0 to over 1000 percent. The level of expansion of the structural foam 14 may be increased to as high as 1500 percent or more. Typically, strength is obtained from products that possess low expansion.
Referring now to Fig. 2, there is shown one example of a first reinforcement member 16 in accordance with the present invention. This illustrated embodiment is useful, for instance, for reinforcing the juncture between an automotive vehicle roof 22 and the A-Pillar. The first member 16 has a first portion 24 adapted for placement in a cavity defined in a vehicle roof structure, and a second portion 26 adapted for placement in a cavity defined in a vehicle pillar, such as an A-Pillar as illustrated.
Preferably the cross sectional silhouette of both the first portion 24 and the second portion 26 is generally complementary to the walls of the cavity defined in opposing 3o roof or pillar structure. Though the member may also be solid, the member preferably includes a skeleton frame that is prepared to minimize weight while still achieving desired rigidity. Accordingly, the skeleton frame preferably is designed to employ a plurality of ribs that effectively are beamlike (e.g. I-beam) in function, thus helping to selectively strengthen the member. The ribs are illustrated in Fig 2 and 3 generally running orthogonal to one another. However, this is not intended as limiting, as the rib configuration may be varied depending upon the desired outcome.
In general, however, a rib is placed adjacent to, and in generally non-parallel relationship to a surface over which loads will be distributed. In Fig. 2, by way of illustration, a plurality of first ribs 28 are located adjacent to a surface of the member (shown covered with expandable material 30). Fig 3 also shows how the ribs 28 (reference numerals illustrating some of the ribs, but not all) can be configured relative to one another to provide additional stabilization. In general, because of the relatively high bending moment of the ribs, without unduly increasing weight of the to member, rigidity can be increased in locations where loads are anticipated by selective design and placement of the ribs. At the same time, enhanced load distribution is possible from the continuous surfaces and foam employed with the ribs to spread energy. Moreover, weight savings can be achieved by such design. For instance, the structure of the member is also such that over at least one quarter, is preferably one half and more preferably greater than about three quarter of the length of the member at any given point between the ends of said member, the cross-sectional area of the member is less than 75%, more preferably less than 50%
and still more preferably less than 20% of the overall area for a silhouette profile taken such point. In this manner, weight reductions of up to about 50%, more 20 preferably about 70%, and still more preferably about 90%, are possible as compared with a solid structure of the same material.
It should be appreciated that other devices for securing the members 16, 18, and 20 to the vehicle frame may be employed, including suitable fasteners, straps, or other mechanical interlocks. Through-holes 32 may also be defined within the 25 structure to assist in vehicle manufacturing. In a particularly preferred embodiment, the skeleton members of the present invention are injection molded plastics, such as nylons. However, other materials and manufacturing techniques may be employed similarly to achieve like results. For instance, high strength to weight metal components, such as aluminum, titanium, magnesium or the like, may be employed, 3o as well as polymer composites such as a layered polymer with fibers capable of compression molding to generate strength.
Returning to Fig. 1, when employed in an automotive vehicle in accordance with the present invention, the skeleton members, particularly when coated with an expandable material (such as a heat activated epoxy based foam) can reinforce the region for which it is used by the combination of increased stiffening from the presence of beam-like ribs and load distribution through the combination of relatively high surface area continuous surfaces and an expandable material.
In another preferred embodiment, the expandable material, upon expansion will serve as a sealant for blocking the passage of fluids or other elements through the cavity. Thus, in such embodiment, it is preferred that the expandable material is provided continuously about generally the entirety of the periphery of any portion of the skeleton member that does not sealingly contact the automobile frame structure.
Fig. 5 illustrates this by showing how skeleton member 16 coated with an io expandable material 30 (shown in Fig. 4) is sealed in place upon activation of the material 30 (shown expanded in Fig. 5).
Figs. 6 through 9 illustrate other embodiments in accordance with the present invention. In Figs. 6 and 7, there is shown a reinforcement member 18 adapted for a pillar of an automotive vehicle. The structure of the skeleton member employs a is plurality of ribs 34 adjoining one or more continuous surfaces 36 (shown coated with an expandable material 38).
The expandable material is shown in its expanded state. As the skilled artisan will appreciate, not all ribs are shown, and the specific design of each rib configuration will vary depending upon its intended use, and the geometry of the 20 region being reinforced (e.g. walls 40 and 42 of the vehicle frame structure defining the cavity). Further expandable material may be employed in contact with the ribs.
Figs. 8 and 9 illustrate yet another embodiment according to the present invention. In this embodiment, a skeleton member 20 having a plurality ribs 44 and generally continuous surfaces (shown coated with a layer 46) is fabricated to also 25 include structure for facilitating vehicle manufacture. Specifically, the embodiment shown includes a plurality of through-holes 48, for enabling body shop weld access or the like. As shown in Fig. 9, in this embodiment, the expandable material layer 46, upon expansion, covers the circumference of a cross section of the structure.
The skilled artisan will appreciate that the use of the reinforcements disclosed 3o herein is not intended as being limited only to Illustrate the locations shown in Fig 1.
They can be used in any location within an automotive vehicle frame. For Instance, other reinforced locations are also possible including but not limited to pillar to door regions, roof to pillar, mid-pillar, roof rails, windshield or other window frames, deck lids, hatches, removable top to roof locations, other vehicle beltline locations, motor rails, lower sills, cross members, lower rails, and the like. Moreover, vehicle roof tops may be reinforced to support additional loads in accordance with the present invention. In the same manner as was described above in the context of a roof and pillar system, a reinforcement frame member having an expandable material thereon is placed in a cavity defined in the vehicle frame structure. The material is expanded to help secure the reinforcement in place.
The preferred embodiment of the present invention has been disclosed. A
person of ordinary skill in the art would realize however, that certain notifications would come within the teachings of this invention. Therefore, the following claims io should be studied to determine the true scope and content of the invention.

R

Claims (55)

WE CLAIM:
1. A system for reinforcement of an automotive vehicle frame, comprising:
a skeleton member configured for placement in a cavity defined in the automotive vehicle frame, said skeleton member having an axis extending along a length of said skeleton member, said skeleton member having a plurality of ribs, said skeleton member having a first cross-sectional area taken generally perpendicular to said axis at first end of said length that is less than about seventy-five percent of a second cross-sectional area taken generally perpendicular to said axis at a second end of said length, said first end generally opposite said second end; and an expandable material over at least a portion of said skeleton member, said expandable material configured to secure said skeleton member to said cavity defined in the automotive vehicle frame and provide an energy distribution in conjunction with said plurality of ribs wherein said plurality of ribs is substantially devoid of said expandable material.
2. A reinforcement system as in claim 1, wherein said skeleton member includes a first portion and a second portion extending substantially parallel to said axis, said plurality of ribs adjoining said first portion and said second portion, said plurality of ribs extending generally non-parallel to said first portion and said second portion.
3. A reinforcement system as in claim 2, wherein said plurality of ribs extend substantially perpendicular to said first portion and said second portion.
4. A reinforcement system as in claim 1, wherein cross-sectional areas taken generally perpendicular to said axis at different locations between said first and said second ends are substantially continuously variable.
5. A reinforcement system as in claim 4, wherein said axis extends generally centrally through said skeleton member and said skeleton member is substantially asymmetrical about said axis.
6. A reinforcement system as in claim 1, wherein said skeleton member is at least partially formed of molded plastic.
7. A reinforcement system as in claim 1, wherein said expandable material is substantially tack-free to the touch.
8. A reinforcement system as in claim 1, wherein said first cross-sectional area is about less than fifty percent of said second cross-sectional area.
9. A reinforcement system as in claim 1, wherein said first cross-sectional area is about less than twenty five percent of said second cross-sectional area.
10. A reinforcement system of an automotive vehicle frame comprising:
an automotive vehicle frame for a roof and pillar of the automotive vehicle, the frame having a roof rail with a plurality of wall portions defining a cavity therein, the roof rail extending longitudinally relative to the vehicle;
a skeleton member at least partially disposed within the cavity as defined by the roof rail, the skeleton member having a length and a longitudinal axis extending along the roof rail, the skeleton member comprising a first portion with a plurality of ribs and a second portion extending away from the first portion, the second portion also including a plurality of ribs, the skeleton member including a first outwardly facing surface opposing at least one of the wall portions and a second outwardly facing surface opposite the first outwardly facing surface wherein the first outwardly facing surface substantially extends along the entire length of the skeleton member; and a structural foam material in sealing contact with the skeleton member and at least one of the plurality of wall portions, wherein:
i) at least two of the plurality of ribs of the first portion are in spaced apart opposing relation to each other; and ii) the structural foam material sealingly contacts the first outwardly facing surface along substantially the entire length of the skeleton member and the structural foam material sealingly contacts the second outwardly facing surface along a substantial portion of the length of the skeleton member.
11. A reinforcement system as in claim 10, wherein the automotive vehicle frame includes a roof rail adjoining an A-pillar and the first portion of the skeleton member is located in the roof rail and the second portion of the skeleton member extends into the A-pillar.
12. A reinforcement system as in claim 11, wherein the second portion has a cross-sectional area taken generally perpendicular to the axis that is less than about fifty percent of a cross-sectional area of the first portion taken generally perpendicular to the axis.
13. A reinforcement system as in claim 10, wherein the first portion has a first cross-sectional area taken generally perpendicular to the axis at one end of the length that is less than about fifty percent of a second cross-sectional area of the second portion taken generally perpendicular to the axis at an opposite end of the length.
14. A reinforcement system as in claim 10, wherein the automotive vehicle frame includes a roof rail and wherein the first and second portions of the skeleton member are located in the roof rail.
15. A reinforcement system as in claim 14, wherein the first portion and the second portion are separated by a third portion, the third portion including a through-hole extending through a substantial amount of the third portion, the substantial amount being greater than half of the third portion.
16. A reinforcement system as in claim 10, wherein at least two of said plurality of ribs in the first portion intersect with each other and the plurality of ribs in the first portion are substantially devoid of the foam.
17. A reinforcement system as in claim 12, wherein the skeleton member and the structural foam material cooperatively seal the cavity to block passage of materials through the cavity.
18. A reinforcement system as in claim 14, wherein the skeleton member and the structural foam cooperatively seal the cavity to block passage of materials through the cavity.
19. A reinforcement system as in claim 10, wherein the first portion is contiguous with the second portion and the first portion and the second portion are substantially aligned with each other along the longitudinal axis.
20. A reinforcement system as in claim 19, wherein the skeleton member is formed as a singular molded plastic component.
21. A reinforcement system as in claim 18, wherein at least two of said plurality of ribs in the first portion intersect with each other and the plurality of ribs in the first portion are substantially devoid of the foam.
22. A reinforcement system as in claim 10, wherein at least three of the plurality of ribs of the first portion and at least three of the plurality of ribs of the second portion are in spaced apart opposing relation to each other and the at least three of plurality of ribs of the first portion each extend between the first outwardly facing surface and the second outwardly facing surface.
23. A reinforcement system as in claim 10, wherein the outwardly facing surface of the first portion and the outwardly facing surface of the second portion are coextensive with the longitudinal axis and the structural foam material is coextensive with the outwardly facing surface of the first portion and the outwardly facing surface of the second portion.
24. A system for reinforcement of an automotive vehicle, comprising:
an automotive vehicle frame, the frame having a plurality of wall portions defining a cavity therein;
a skeleton member disposed within the cavity, the skeleton member having a longitudinal axis, the skeleton member comprising a first portion intermediate a second portion and a third portion; and a structural foam material in sealing contact with the skeleton member and at least one of the plurality of wall portions, wherein:
i) the first portion and the second portion each include at least one laterally extending rib and at least one longitudinally extending rib;
ii) the skeleton member includes a first longitudinal outwardly facing surface opposite a second outward facing longitudinal surface; and iii) the first portion includes an opening suitable for passage of a component therethrough.
25. A system for reinforcement of an automotive vehicle as in claim 24, wherein the first portion has a first cross-sectional area taken generally perpendicular to the axis that is less than about fifty percent of a second cross-sectional area of the second portion taken generally perpendicular to the axis or less than about fifty percent of a third cross-sectional area of the third portion taken generally perpendicular to the axis.
26. A system for reinforcement of an automotive vehicle as in claim 24, wherein the first portion has a first cross-sectional area taken generally perpendicular to the axis that is less than about fifty percent of a second cross-sectional area of the second portion taken generally perpendicular to the axis and less than about fifty percent of a third cross-sectional area of the third portion taken generally perpendicular to the axis.
27. A system for reinforcement of an automotive vehicle as in claim 24, wherein the longitudinal axis extends horizontally.
28. A system for reinforcement of an automotive vehicle as in claim 24, wherein the opening extends through a substantial amount of the first portion.
29. A system for reinforcement of an automotive vehicle as in claim 24, wherein the at least one laterally extending rib of the first portion intersects the at least one longitudinally extending rib of the first portion or the at least one laterally extending rib of the second portion intersects the at least one longitudinally extending rib of the second portion.
30. A system for reinforcement of an automotive vehicle as in claim 24, wherein the at least one laterally extending rib of the first portion intersects the at least one longitudinally extending rib of the first portion and the at least one laterally extending rib of the second portion intersects the at least one longitudinally extending rib of the second portion.
31. A system for reinforcement of an automotive vehicle as in claim 24, wherein the at least one laterally extending rib and the at least one longitudinally extending rib of the first portion and second portion are substantially devoid of the foam.
32. A system for reinforcement of an automotive vehicle as in claim 24, wherein the skeleton member and the structural foam cooperatively seal the cavity to block passage of materials through the cavity.
33. A system for reinforcement of an automotive vehicle as in claim 24, wherein both the first surface and second surface extending at least along the first portion and second portion of the skeleton member.
34. A system for reinforcement of an automotive vehicle as in claim 24, the skeleton member includes one or more extensions extending therefrom.
35. A system for reinforcement of an automotive vehicle as in claim 24, the plurality of walls of the automotive vehicle frame are art of a rail of the automotive vehicle.
36. A method of reinforcing a structure of an automotive vehicle, the method comprising:
molding a plastic skeleton member, the skeleton member having a plurality of ribs disposed along a length of the skeleton member wherein each of the plurality of ribs extends transverse relative to the length and the plurality of ribs are spaced a part from each other;
attaching a substantially non-tacky expandable material to the skeleton member to form a reinforcement member;
locating the reinforcement member within a cavity of the structure of the automotive vehicle; and activating the expandable material by exposure to elevated temperature to foam, cure and adhere to walls of the structure defining the cavity thereby forming a reinforced system.
37. The method of claim 36, wherein the skeleton member includes a first longitudinal outwardly facing surface opposite a second outward facing longitudinal surface and wherein both the first surface and the second surface are interconnected by the plurality of ribs and are substantially entirely covered by the expandable material.
38. The method of claim 36, wherein the step of activating the expandable material includes activating the expandable material to form a structural foam.
39. The method of claim 36, wherein the skeleton members includes at least one laterally extending rib and at least one longitudinally extending rib and the at least one laterally extending rib intersects the at least one longitudinally extending rib.
40. The method of claim 39, wherein the at least one laterally extending rib and the at least one longitudinally extending rib of the first portion and are substantially devoid of the expandable material.
41. The method of claim 36, wherein the expandable material is epoxy based.
42. The method of claim 36, wherein the step of attaching the expandable material includes molding the expandable material upon the skeleton member.
43. The method of claim 36, wherein the step of attaching the expandable material includes extruding the expandable material upon the skeleton member.
44. A method of reinforcing a structure of an automotive vehicle, the method comprising:
providing a plastic skeleton member, wherein:
i. the skeleton member includes a plurality of ribs disposed and spaced apart along the length of the skeleton member;
attaching an expandable material to the skeleton member to form a reinforcement member, wherein:
i. the expandable material is substantially non-tacky to the touch; and ii.the step of attaching the expandable material to the skeleton member includes molding of the expandable material;

locating the reinforcement member within a cavity of the structure of the automotive vehicle; and adhering the expandable material to walls of the structure defining the cavity for forming a reinforced system, wherein:
i. the step of adhering the expandable material includes activating the expandable material to foam.
45. The method of claim 44, wherein the skeleton member includes an opening suitable for passage of a component therethrough.
46. The method of claim 44, wherein the skeleton member and the structural foam cooperatively seal the cavity to block passage of materials through the cavity.
47. The method of claim 44, wherein the structure of the automotive vehicle is selected from a roof rail, a pillar or a frame member.
48. The method of claim 44, wherein the expandable material is in sealing contact with the skeleton member.
49. The method of claim 44, wherein the expandable material is epoxy based and the skeleton members includes at least one laterally extending rib and at least one longitudinally extending rib and the at least one laterally extending rib intersects the at least one longitudinally extending rib.
50. The method of claim 44, wherein the skeleton member is formed of a fiber reinforced polyamide.
51. The method of claim 44, wherein the expandable material is designed to expand in a paint or e-coat oven.
52. A method of reinforcing a structure of an automotive vehicle, the method comprising:
providing a skeleton member, wherein:

i. the step of providing the skeleton member includes injection molding the carrier to a desired shape;
ii. the skeleton member is formed of a plastic; and iii. the skeleton member includes a plurality of ribs disposed along the length of the skeleton member;
attaching a expandable material to the skeleton member to form a reinforcement member, wherein:
i. the expandable material is a heat activatable material;
ii. the expandable material is epoxy-based;
iii. the plurality of ribs is substantially devoid of the expandable material;

and iv. the expandable material is substantially non-tacky to the touch;
locating the reinforcement member within a cavity of the structure of the automotive vehicle; and adhering the expandable material to walls of the structure defining the cavity for forming a reinforced system, wherein:
i. the step of adhering the expandable material includes activating the expandable material to foam; and ii. curing the expandable material to bond the expandable material to the walls of the structure.
53. The method of claim 52 wherein the skeleton member includes one or more extensions extending therefrom.
54. The method of claim 52 wherein at least two of the plurality of ribs are in spaced apart opposing relation to each other and wherein the expandable material extends substantially continuously about a circumference of the skeleton member.
55. The method of claim 52 wherein the step of attaching the expandable material includes molding the expandable material upon the skeleton member.
CA2655942A 2000-02-11 2001-01-18 Structural reinforcement system for automotive vehicles Expired - Fee Related CA2655942C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/502,686 2000-02-11
US09/502,686 US6467834B1 (en) 2000-02-11 2000-02-11 Structural reinforcement system for automotive vehicles
US09/655,965 US6619727B1 (en) 2000-02-11 2000-09-06 Structural reinforcement system for automotive vehicles
US09/655,965 2000-09-06
CA002399457A CA2399457C (en) 2000-02-11 2001-01-18 Structural reinforcement system for automotive vehicles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002399457A Division CA2399457C (en) 2000-02-11 2001-01-18 Structural reinforcement system for automotive vehicles

Publications (2)

Publication Number Publication Date
CA2655942A1 CA2655942A1 (en) 2001-08-16
CA2655942C true CA2655942C (en) 2011-08-02

Family

ID=23998919

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2655942A Expired - Fee Related CA2655942C (en) 2000-02-11 2001-01-18 Structural reinforcement system for automotive vehicles

Country Status (3)

Country Link
US (2) US6467834B1 (en)
JP (1) JP4780634B2 (en)
CA (1) CA2655942C (en)

Families Citing this family (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668457B1 (en) * 1999-12-10 2003-12-30 L&L Products, Inc. Heat-activated structural foam reinforced hydroform
AU2001230965A1 (en) 2000-02-11 2001-08-20 L And L Products, Inc. Structural reinforcement system for automotive vehicles
US6482486B1 (en) 2000-03-14 2002-11-19 L&L Products Heat activated reinforcing sleeve
US6820923B1 (en) * 2000-08-03 2004-11-23 L&L Products Sound absorption system for automotive vehicles
US6634698B2 (en) 2000-08-14 2003-10-21 L&L Products, Inc. Vibrational reduction system for automotive vehicles
US6471285B1 (en) 2000-09-29 2002-10-29 L&L Products, Inc. Hydroform structural reinforcement system
DE10112688A1 (en) * 2001-03-16 2002-09-26 Sika Ag, Vormals Kaspar Winkler & Co Reinforcement for vehicle bodywork pillars, and other hollow components, is a strengthening skeleton of injection molded heat-resistant plastics with support surfaces held by lateral ribs and longitudinal bars
GB0106911D0 (en) * 2001-03-20 2001-05-09 L & L Products Structural foam
US7473715B2 (en) 2001-05-02 2009-01-06 Zephyros, Inc. Two component (epoxy/amine) structural foam-in-place material
GB2375328A (en) 2001-05-08 2002-11-13 L & L Products Reinforcing element for hollow structural member
EP1277647A1 (en) * 2001-07-18 2003-01-22 Mazda Motor Corporation Body structure for convertible car
US6682818B2 (en) * 2001-08-24 2004-01-27 L&L Products, Inc. Paintable material
US6855652B2 (en) 2001-08-24 2005-02-15 L&L Products, Inc. Structurally reinforced panels
US7063376B2 (en) * 2001-08-28 2006-06-20 Daimlerchrysler Corporation Structural member for a vehicle frame assembly
US6729425B2 (en) 2001-09-05 2004-05-04 L&L Products, Inc. Adjustable reinforced structural assembly and method of use therefor
US6887914B2 (en) * 2001-09-07 2005-05-03 L&L Products, Inc. Structural hot melt material and methods
US6786533B2 (en) 2001-09-24 2004-09-07 L&L Products, Inc. Structural reinforcement system having modular segmented characteristics
US6942262B2 (en) * 2001-09-27 2005-09-13 Shape Corporation Tubular energy management system for absorbing impact energy
JP3969054B2 (en) * 2001-10-25 2007-08-29 三菱自動車エンジニアリング株式会社 Vehicle pillar substructure
US6793274B2 (en) 2001-11-14 2004-09-21 L&L Products, Inc. Automotive rail/frame energy management system
US7041355B2 (en) 2001-11-29 2006-05-09 Dow Global Technologies Inc. Structural reinforcement parts for automotive assembly
JP3610952B2 (en) * 2002-01-16 2005-01-19 日産自動車株式会社 Automobile pillar structure
WO2003061934A1 (en) * 2002-01-22 2003-07-31 Dow Global Technologies Inc. Reinforced structural body and manufacturing method therefor
US6774171B2 (en) * 2002-01-25 2004-08-10 L&L Products, Inc. Magnetic composition
US7043815B2 (en) * 2002-01-25 2006-05-16 L & L Products, Inc. Method for applying flowable materials
US20030176128A1 (en) * 2002-03-15 2003-09-18 L&L Products, Inc. Structurally reinforced panels
US7318873B2 (en) 2002-03-29 2008-01-15 Zephyros, Inc. Structurally reinforced members
US6846559B2 (en) * 2002-04-01 2005-01-25 L&L Products, Inc. Activatable material
KR100931762B1 (en) 2002-04-15 2009-12-14 다우 글로벌 테크놀로지스 인크. Foam products and methods for forming hollow-filled vehicle hollow members using the same
US6969551B2 (en) 2002-04-17 2005-11-29 L & L Products, Inc. Method and assembly for fastening and reinforcing a structural member
US7169344B2 (en) * 2002-04-26 2007-01-30 L&L Products, Inc. Method of reinforcing at least a portion of a structure
US7077460B2 (en) 2002-04-30 2006-07-18 L&L Products, Inc. Reinforcement system utilizing a hollow carrier
GB0211287D0 (en) * 2002-05-17 2002-06-26 L & L Products Inc Improved baffle precursors
GB0211268D0 (en) * 2002-05-17 2002-06-26 L & L Products Inc Hole plugs
GB0211775D0 (en) 2002-05-23 2002-07-03 L & L Products Inc Multi segment parts
US6920693B2 (en) 2002-07-24 2005-07-26 L&L Products, Inc. Dynamic self-adjusting assembly for sealing, baffling or structural reinforcement
US7004536B2 (en) 2002-07-29 2006-02-28 L&L Products, Inc. Attachment system and method of forming same
US6923499B2 (en) 2002-08-06 2005-08-02 L & L Products Multiple material assembly for noise reduction
DE10237962A1 (en) * 2002-08-20 2004-03-04 Dr.Ing.H.C. F. Porsche Ag Structure for a motor vehicle
US6883858B2 (en) * 2002-09-10 2005-04-26 L & L Products, Inc. Structural reinforcement member and method of use therefor
US20040056472A1 (en) * 2002-09-25 2004-03-25 L&L Products, Inc. Fuel fill assembly and method of forming same
KR20050092021A (en) 2002-12-27 2005-09-16 다우 글로벌 테크놀로지스 인크. Heat activated epoxy adhesive and use in a structural foam insert
GB0300159D0 (en) 2003-01-06 2003-02-05 L & L Products Inc Improved reinforcing members
US7313865B2 (en) 2003-01-28 2008-01-01 Zephyros, Inc. Process of forming a baffling, sealing or reinforcement member with thermoset carrier member
US7250124B2 (en) 2003-03-05 2007-07-31 Dow Global Technologies Inc. Structural reinforcement article and process for preparation thereof
US6902227B2 (en) * 2003-03-17 2005-06-07 Autoliv Asp, Inc. Extrudable energy absorber
US7111899B2 (en) 2003-04-23 2006-09-26 L & L Products, Inc. Structural reinforcement member and method of use therefor
US7125461B2 (en) 2003-05-07 2006-10-24 L & L Products, Inc. Activatable material for sealing, baffling or reinforcing and method of forming same
GB2401349A (en) 2003-05-08 2004-11-10 L & L Products Reinforcement for a vehicle panel
US7041193B2 (en) 2003-05-14 2006-05-09 L & L Products, Inc. Method of adhering members and an assembly formed thereby
US7249415B2 (en) * 2003-06-26 2007-07-31 Zephyros, Inc. Method of forming members for sealing or baffling
US7199165B2 (en) 2003-06-26 2007-04-03 L & L Products, Inc. Expandable material
US6979052B2 (en) * 2003-09-09 2005-12-27 Autoliv Asp, Inc. Energy absorption bracket
US7469459B2 (en) * 2003-09-18 2008-12-30 Zephyros, Inc. System and method employing a porous container for sealing, baffling or reinforcing
US20050102815A1 (en) * 2003-11-03 2005-05-19 L&L Products, Inc. Reinforced members formed with absorbent mediums
US20050127145A1 (en) * 2003-11-20 2005-06-16 L&L Products, Inc. Metallic foam
FR2864815B1 (en) * 2004-01-02 2006-12-22 Plastic Omnium Cie METHOD FOR MANUFACTURING A VEHICLE VEHICLE STRUCTURE PART, STRUCTURE PART, TECHNICAL FRONT FRONT TRAVERSE AND BUMPER BEAM
US20050166532A1 (en) * 2004-01-07 2005-08-04 L&L Products, Inc. Structurally reinforced panels
US7180027B2 (en) * 2004-03-31 2007-02-20 L & L Products, Inc. Method of applying activatable material to a member
DE102004016134A1 (en) * 2004-04-01 2005-11-03 Bayerische Motoren Werke Ag Motor vehicle with a roof
US20050221046A1 (en) * 2004-04-01 2005-10-06 L&L Products, Inc. Sealant material
US8070994B2 (en) 2004-06-18 2011-12-06 Zephyros, Inc. Panel structure
GB2415658A (en) 2004-06-21 2006-01-04 L & L Products Inc An overmoulding process
US7521093B2 (en) * 2004-07-21 2009-04-21 Zephyros, Inc. Method of sealing an interface
US7838589B2 (en) * 2004-07-21 2010-11-23 Zephyros, Inc. Sealant material
US7392929B1 (en) 2004-07-26 2008-07-01 Zephyros, Inc. Weldable synthetic material
US20060210736A1 (en) * 2004-08-05 2006-09-21 Wycech Joseph S Method for forming a tangible item and a tangible item which is made by a method which allows the created tangible item to efficiently absorb energy
US7000978B1 (en) * 2004-08-20 2006-02-21 Frank Messano Thin-skin ultralight recreational vehicle body system
US7374219B2 (en) 2004-09-22 2008-05-20 Zephyros, Inc. Structural reinforcement member and method of use therefor
US20060070320A1 (en) * 2004-09-24 2006-04-06 Js Chamberlain & Associates, Inc. Baffle apparatus for a hollow structural member
US7621373B2 (en) * 2004-12-15 2009-11-24 Sika Technology Ag Acoustic drain
US7494179B2 (en) * 2005-04-26 2009-02-24 Zephyros, Inc. Member for baffling, reinforcement or sealing
US20070080559A1 (en) * 2005-04-28 2007-04-12 L&L Products, Inc. Member for baffling, reinforcement of sealing
US7503620B2 (en) 2005-05-12 2009-03-17 Zephyros, Inc. Structural reinforcement member and method of use therefor
US8381403B2 (en) 2005-05-25 2013-02-26 Zephyros, Inc. Baffle for an automotive vehicle and method of use therefor
US7926179B2 (en) 2005-08-04 2011-04-19 Zephyros, Inc. Reinforcements, baffles and seals with malleable carriers
US7520560B2 (en) * 2005-08-12 2009-04-21 Ford Global Technologies, Llc Method of bonding and sealing automotive structural component joints
US8475694B2 (en) 2005-10-25 2013-07-02 Zephyros, Inc. Shaped expandable material
US8087916B2 (en) 2005-12-15 2012-01-03 Cemedine Henkel Co., Ltd. Holding jig for a foamable material
US20080160227A1 (en) * 2006-01-06 2008-07-03 Wycech Joseph S Method for forming an item having desirable energy absorption properties and an item formed by the method
GB0600901D0 (en) 2006-01-17 2006-02-22 L & L Products Inc Improvements in or relating to reinforcement of hollow profiles
US8276497B2 (en) 2006-03-09 2012-10-02 Lockheed Martin Corporation Blast attenuator and method of making same
US7631589B2 (en) * 2006-03-09 2009-12-15 Lockheed Martin Corporation Apparatus for inhibiting effects of an explosive blast
US8163116B2 (en) * 2006-05-09 2012-04-24 Zephyros, Inc. Joints and a system and method of forming the joints
US7892396B2 (en) * 2006-06-07 2011-02-22 Zephyros, Inc. Toughened activatable material for sealing, baffling or reinforcing and method of forming same
US7438782B2 (en) * 2006-06-07 2008-10-21 Zephyros, Inc. Activatable material for sealing, baffling or reinforcing and method of forming same
JP4227153B2 (en) * 2006-06-20 2009-02-18 小島プレス工業株式会社 Shock absorbing structure for vehicle
US7913467B2 (en) 2006-07-25 2011-03-29 Zephyros, Inc. Structural reinforcements
US8105460B2 (en) * 2006-09-08 2012-01-31 Zephyros, Inc. Handling layer and adhesive parts formed therewith
US7857377B2 (en) * 2006-10-09 2010-12-28 Ford Global Technologies, Llc Tubular B-pillar to stamped rocker joint and method of assembling the same
US8236128B2 (en) * 2006-10-26 2012-08-07 Zephyros, Inc. Adhesive materials, adhesive parts formed therewith and their uses
ES2326095T3 (en) * 2006-12-05 2009-09-30 HENKEL AG & CO. KGAA REINFORCEMENT ELEMENT.
US7673930B2 (en) * 2006-12-22 2010-03-09 Sika Technology Ag RT reinforcer
US8002332B2 (en) 2007-01-30 2011-08-23 Zephyros, Inc. Structural mounting insert
US20080202674A1 (en) * 2007-02-28 2008-08-28 L&L Products, Inc. Structural reinforcements
DE102007015394A1 (en) * 2007-03-28 2008-10-02 Henkel Ag & Co. Kgaa Soundproof partition for sealing a cavity
EP2176113B1 (en) * 2007-08-16 2011-05-04 Henkel AG & Co. KGaA Acoustic baffle
US7735906B2 (en) * 2007-09-28 2010-06-15 Zephyros, Inc. Reinforcement system for an automotive vehicle
US7641264B2 (en) * 2007-10-05 2010-01-05 Sika Technology, AG Reinforcement device
US8966766B2 (en) 2007-10-25 2015-03-03 Zephyros, Inc. Reinforcement structure and method employing bulkheads
US8020924B2 (en) 2007-12-26 2011-09-20 Sika Technology Ag Integrated reinforcing crossmember
BRPI0820512B1 (en) * 2008-02-06 2019-03-06 Plasticos Tecnicos Mexicanos, S.A. De C.V. "PERFECT PLASTIC PLATFORM"
US8181327B2 (en) 2008-02-08 2012-05-22 Zephyros, Inc Mechanical method for improving bond joint strength
US9194408B2 (en) 2008-02-08 2015-11-24 Zephyros, Inc. Mechanical method for improving bond joint strength
US8293360B2 (en) * 2008-02-27 2012-10-23 Sika Technology Ag Baffle
GB0806434D0 (en) 2008-04-09 2008-05-14 Zephyros Inc Improvements in or relating to structural adhesives
US8133929B2 (en) * 2008-04-15 2012-03-13 Sika Technology Ag Method for incorporating long glass fibers into epoxy-based reinforcing resins
CA2734282A1 (en) * 2008-07-15 2010-01-21 Sergio Sosa Bravo Process for producing moulded plastic articles having walls reinforced with the injection of foamed thermoplastics
US8029222B2 (en) * 2008-07-24 2011-10-04 Zephyros, Inc. Push-pin fastening system
EP2154052A1 (en) 2008-08-12 2010-02-17 Sika Technology AG Structural reinforcement system
EP2159136A1 (en) * 2008-09-01 2010-03-03 Sika Technology AG Bonding with adhesive beads or plots
JP5210117B2 (en) * 2008-10-27 2013-06-12 アイシン精機株式会社 Bumperin force for vehicles
KR101552752B1 (en) * 2008-11-07 2015-09-11 제피로스, 인크. Hybrid reinforcement structure
DE102009005763A1 (en) * 2009-01-23 2010-07-29 Lanxess Deutschland Gmbh Frame side part of a motor vehicle body
US8167363B2 (en) * 2009-04-15 2012-05-01 Toyota Motor Engineering & Manufacturing North America, Inc. Prestressed structural members and methods of making same
EP2251250A1 (en) * 2009-05-05 2010-11-17 Sika Technology AG Bonding with adhesive beads or plots
US7984919B2 (en) * 2009-05-18 2011-07-26 Zephyros, Inc. Structural mounting insert having a non-conductive isolator
GB0916205D0 (en) 2009-09-15 2009-10-28 Zephyros Inc Improvements in or relating to cavity filling
CA2783870C (en) * 2010-01-05 2020-06-16 Van M. Kassouni Elongated composite element with outer layer and inner core material
BR112012022319B1 (en) 2010-03-04 2020-01-28 Zephyros Inc composite structural laminate
US8235459B2 (en) * 2010-04-07 2012-08-07 Honda Motor Co., Ltd.. Seat support assembly
JP2013530271A (en) * 2010-05-21 2013-07-25 ゼフィロス インコーポレイテッド Structural material application method
GB201016530D0 (en) 2010-09-30 2010-11-17 Zephyros Inc Improvements in or relating to adhesives
JP5516345B2 (en) * 2010-11-11 2014-06-11 マツダ株式会社 Vehicle frame structure
GB201102672D0 (en) 2011-02-15 2011-03-30 Zephyros Inc Improved structural adhesives
JP2012188074A (en) * 2011-03-14 2012-10-04 Yorozu Corp Coupling arm for vehicle
US8689516B2 (en) 2011-03-17 2014-04-08 Zephyros, Inc. Bonding assembly
GB201207481D0 (en) 2012-04-26 2012-06-13 Zephyros Inc Applying flowable materials to synthetic substrates
WO2013177377A1 (en) 2012-05-24 2013-11-28 Zephyros, Inc. Vehicle body structure cut zones
JP6148915B2 (en) * 2012-09-26 2017-06-14 株式会社Subaru vehicle
JP6172848B2 (en) 2012-09-26 2017-08-02 株式会社Subaru vehicle
JP5970315B2 (en) * 2012-09-26 2016-08-17 富士重工業株式会社 vehicle
US9033404B2 (en) 2013-03-14 2015-05-19 Honda Motor Co., Ltd. Encapsulated aluminum honeycomb structural stiffener
CA2852501A1 (en) 2013-05-28 2014-11-28 Continental Structural Plastics, Inc. Hydro-form bonded bolster
US10577522B2 (en) 2013-07-26 2020-03-03 Zephyros, Inc. Thermosetting adhesive films including a fibrous carrier
DE102013214787A1 (en) * 2013-07-29 2015-01-29 Bayerische Motoren Werke Aktiengesellschaft Profile strip of a vehicle body
US8911008B1 (en) 2013-08-30 2014-12-16 Honda Motor Co., Ltd. Acoustic spray foam control system and method
GB201318595D0 (en) 2013-10-21 2013-12-04 Zephyros Inc Improvements in or relating to laminates
CN105916651B (en) 2013-12-17 2018-11-02 泽菲罗斯公司 A kind of reinforced structure and its manufacturing method including fiber insert
JP5928491B2 (en) * 2014-01-14 2016-06-01 トヨタ自動車株式会社 Vehicle skeleton structure
WO2015157250A1 (en) 2014-04-09 2015-10-15 Honda Motor Co., Ltd. Vehicle frame construction and method
GB201417985D0 (en) 2014-10-10 2014-11-26 Zephyros Inc Improvements in or relating to structural adhesives
EP3218157A1 (en) 2014-11-14 2017-09-20 Zephyros Inc. Multi-shot injection molded method and product
USD752952S1 (en) 2015-01-26 2016-04-05 Zephyros, Inc. Fastener
USD751887S1 (en) 2015-01-26 2016-03-22 Zephyros, Inc. Sealer
US9764769B2 (en) 2015-02-09 2017-09-19 Honda Motor Co., Ltd. Vehicle frame structural member assembly and method
DE102015005895A1 (en) * 2015-05-08 2016-11-10 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Motor vehicle body with packing
JP6187537B2 (en) * 2015-05-15 2017-08-30 マツダ株式会社 Upper body structure of the vehicle
USD778715S1 (en) 2015-07-08 2017-02-14 Zephyros, Inc. Tree fastener for use of automobile cavity
JP6447535B2 (en) * 2016-02-22 2019-01-09 トヨタ自動車株式会社 Pillar structure for vehicles
US10695962B2 (en) 2016-03-18 2020-06-30 Zephyros, Inc. Members for directing expandable material for baffling, sealing, reinforcing
WO2018017978A1 (en) 2016-07-21 2018-01-25 Zephyros, Inc. Reinforcement structure
CN109982917B (en) 2016-07-28 2022-04-05 泽菲罗斯有限公司 Multi-stage deformation reinforcement structure for absorbing impact
WO2018132579A1 (en) 2017-01-11 2018-07-19 Zephyros, Inc. Reinforcing devices
BR112019015163B1 (en) 2017-01-23 2023-10-31 Zephyros, Inc STRUCTURAL REINFORCEMENT
US10661838B2 (en) 2017-05-31 2020-05-26 Honda Motor Co., Ltd. Multi-material vehicle roof stiffener
EP3642098B1 (en) * 2017-06-22 2022-11-16 Sika Technology AG Reinforcing element, system of a reinforced structural element and method for reinforcing a structural element
EP3421331B1 (en) * 2017-06-29 2021-06-16 Sika Technology Ag System of a reinforced structural element of a motor vehicle
JP6898169B2 (en) * 2017-08-02 2021-07-07 トヨタ自動車株式会社 Body skeletal structure
US10308286B2 (en) * 2017-09-11 2019-06-04 Ford Global Technologies, Llc Light weight rocker reinforcement
EP3710340B1 (en) * 2017-11-15 2022-06-29 Sika Technology AG Device for reinforcing a structural element
WO2019100116A1 (en) * 2017-11-27 2019-05-31 Ian Gray Simple rotary steerable drilling system
JP6676092B2 (en) * 2018-03-28 2020-04-08 株式会社豊田自動織機 Body reinforcing structure and method of manufacturing body reinforcing structure
EP3793825A4 (en) * 2018-05-14 2022-01-05 Magna International Inc. Adhesively bonded joint
BR112020025397A2 (en) 2018-06-13 2021-03-09 Zephyros, Inc. MOLDED AND PULTRUDED HYBRID DEVICES
EP3833704A1 (en) 2018-08-06 2021-06-16 Zephyros, Inc. High elastic modulus structural foam materials with improved strain to failure
DE102018127011A1 (en) * 2018-10-30 2020-04-30 Bayerische Motoren Werke Aktiengesellschaft Vehicle structural component, modular system and method for producing vehicle structural components
EP3666617B1 (en) 2018-11-22 2022-09-28 Bombardier Transportation GmbH Double-walled envelope structure for a cart box
BR112021010834A2 (en) 2018-12-03 2021-08-24 Zephyros, Inc. Structural reinforcement
WO2020205192A1 (en) 2019-04-02 2020-10-08 Zephyros, Inc. Reinforcement structure
US11136065B2 (en) 2020-02-24 2021-10-05 Ford Global Technologies, Llc Extended roof reinforcement structure
WO2024039714A1 (en) 2022-08-18 2024-02-22 Zephyros, Inc. Reinforcement device

Family Cites Families (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123170A (en) 1964-03-03 Radiator with resilient mounting
US1814677A (en) 1930-05-03 1931-07-14 Fennema Albert Stopper for pipe lines
GB628863A (en) 1947-03-29 1949-09-06 Nuffield Metal Products Ltd Improvements in distance pieces for reinforcing hollow sheet metal structural members
NL270496A (en) 1960-11-10
US3493257A (en) 1967-03-22 1970-02-03 Gen Motors Corp Resilient microcellular foam bumper
NL6903871A (en) 1969-03-13 1970-09-15
US3649375A (en) 1970-01-26 1972-03-14 Western Electric Co Method of forming metallic material
DE2029665A1 (en) 1970-06-16 1971-12-23 Volkswagenwerk Ag, 3180 Wolfsburg Floor pan for motor vehicles
US3757559A (en) 1972-02-09 1973-09-11 Hughes Aircraft Co Method for making structural panel bent from laminated honeycomb
US3890108A (en) 1973-02-09 1975-06-17 Hughes Aircraft Co Structural panel bent from laminated honeycomb
US3868796A (en) 1973-04-04 1975-03-04 Ford Motor Co Side door intrusion protection
US3948407A (en) 1973-06-27 1976-04-06 Franklin Manufacturing Company Refrigerated cabinet construction
US4029128A (en) 1973-08-10 1977-06-14 Shigeharu Yamagishi Device for plugging a hollow of a concrete pile
US4019301A (en) 1974-07-15 1977-04-26 Fox Douglas L Corrosion-resistant encasement for structural members
JPS5639698Y2 (en) 1975-10-01 1981-09-16
US4025360A (en) 1976-03-04 1977-05-24 Airrigation Engineering Company, Inc. Method and apparatus for injecting foam into a pipeline, including an inflatable plug
DE2919046A1 (en) 1979-05-11 1980-11-20 Volkswagenwerk Ag Impact absorbing car bumper strip - has overlapping profiles containing hard foam aggregate granular
US4238540A (en) 1979-05-29 1980-12-09 Celanese Corporation Fiber reinforced composite shaft with metallic connector sleeves mounted by connector ring interlock
JPS6044187B2 (en) 1979-09-08 1985-10-02 日産自動車株式会社 Automotive plate material and its manufacturing method
US4352484A (en) 1980-09-05 1982-10-05 Energy Absorption Systems, Inc. Shear action and compression energy absorber
JPS57151361A (en) 1981-03-16 1982-09-18 Nissan Motor Reinforcing material and reinforcing panel
US4397490A (en) 1981-05-04 1983-08-09 Ford Motor Company Low profile bumper
US4457555A (en) 1981-07-10 1984-07-03 Cars & Concepts, Inc. Conversion of vehicle bodies
US4440434A (en) 1981-12-24 1984-04-03 Aldo Celli Vehicle body construction
DE3215616C2 (en) 1982-04-27 1984-12-13 Ford-Werke AG, 5000 Köln Method for producing composite components in sandwich construction, in particular for motor vehicles
US4610836A (en) 1983-09-12 1986-09-09 General Motors Corporation Method of reinforcing a structural member
US4732806A (en) 1983-09-12 1988-03-22 General Motors Corporation Structural member comprising glass macrospheres
US4695343A (en) 1983-09-12 1987-09-22 General Motors Corporation Method of reinforcing a structural member
US4463870A (en) 1983-10-19 1984-08-07 L & L Products, Inc. Closure plate for an opening
GB2156412B (en) 1984-03-20 1987-09-30 Bkl Extrustions Limited Frame members
US4613177A (en) 1984-06-25 1986-09-23 Michael Ladney, Jr. Vehicle bumper
CN85200688U (en) 1985-04-01 1986-09-17 唐锦生 Full monocoque car body made of composite
JPS62128852A (en) 1985-11-29 1987-06-11 Honda Motor Co Ltd Bumper made of synthetic resin for automobile
US4751249A (en) 1985-12-19 1988-06-14 Mpa Diversified Products Inc. Reinforcement insert for a structural member and method of making and using the same
US4769391A (en) 1985-12-19 1988-09-06 Essex Composite Systems Reinforcement insert for a structural member and method of making and using the same
DE3637751A1 (en) 1986-11-05 1988-05-11 Bayer Ag PLASTIC SHOCK ABSORBER WITH BUMPER
DE3639195A1 (en) 1986-11-15 1988-05-26 Daimler Benz Ag BUMPER FOR A VEHICLE
US4803108A (en) 1987-05-01 1989-02-07 Essex Specialty Products, Inc. Honeycomb reinforcing sheet for the reinforcement of panels and method of reinforcing panels
US4946737A (en) 1987-09-03 1990-08-07 Armstrong World Industries, Inc. Gasket composition having expanded microspheres
US4861097A (en) 1987-09-18 1989-08-29 Essex Composite Systems Lightweight composite automotive door beam and method of manufacturing same
US4922596A (en) 1987-09-18 1990-05-08 Essex Composite Systems Method of manufacturing a lightweight composite automotive door beam
US4901500A (en) 1987-09-18 1990-02-20 Essex Composite Systems Lightweight composite beam
US4898630A (en) 1987-11-18 1990-02-06 Toyota Jidosha Kabushiki Thermosetting highly foaming sealer and method of using it
US4813690A (en) 1987-11-24 1989-03-21 L & L Products, Inc. Sealing member
DE8800023U1 (en) 1988-01-04 1989-05-03 Irbit Research + Consulting Ag, Freiburg/Fribourg, Ch
GB8800773D0 (en) 1988-01-14 1988-02-17 Friesen P Building panel
US4923902A (en) 1988-03-10 1990-05-08 Essex Composite Systems Process and compositions for reinforcing structural members
US4995545A (en) 1988-03-10 1991-02-26 Essex Composite Systems Method of reinforcing a structure member
CA1299032C (en) 1988-03-30 1992-04-21 Herman E. Turner, Jr. Closed cell foam seals for automotive body seams, method and apparatus for making same
US4836516A (en) 1988-04-25 1989-06-06 Essex Composite Systems Filled tubular torsion bar and its method of manufacture
US4908930A (en) 1988-04-25 1990-03-20 Essex Composite Systems Method of making a torsion bar
US4853270A (en) 1988-06-27 1989-08-01 Essex Specialty Products, Inc. Knee blocker for automotive application
JPH0788175B2 (en) * 1988-12-28 1995-09-27 日産自動車株式会社 Method for strengthening injection of resin into car body structural member and damming structure for injected resin
US4901395A (en) 1989-02-27 1990-02-20 General Motors Corporation Self-sealing heat activated grommet
US4917435A (en) 1989-05-23 1990-04-17 Ford Motor Company Truck cab construction
DE3936194A1 (en) 1989-10-31 1991-05-02 Basf Ag RECYCLABLE BUMPER SYSTEM
US5124186A (en) 1990-02-05 1992-06-23 Mpa Diversified Products Co. Composite tubular door beam reinforced with a reacted core localized at the mid-span of the tube
US4978562A (en) 1990-02-05 1990-12-18 Mpa Diversified Products, Inc. Composite tubular door beam reinforced with a syntactic foam core localized at the mid-span of the tube
US4989913A (en) 1990-03-16 1991-02-05 Dan T. Moore Company Barrier for use in hollow channel in motor vehicle body and method for producing same
US5040803A (en) 1990-04-23 1991-08-20 Cieslik David R Cavity sealing arrangement and method
DE4026459A1 (en) 1990-08-17 1992-02-20 Mannesmann Ag DOOR AMPLIFIER PIPE
DE4028895C1 (en) 1990-09-12 1992-02-20 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Foamed component made of elastic, flexible plastic - used for sound insulation, consists of hollow chassis into which polyurethane foam unit is adhered inside and unit is seated
US5213391A (en) 1990-10-25 1993-05-25 Nissan Motor Co., Ltd. Body skeleton element of vehicle and manufacturing method thereof
US5344208A (en) 1991-12-09 1994-09-06 Chrysler Corporation Reinforcement assembly for vehicle panels
WO1994010406A1 (en) 1992-10-23 1994-05-11 Dicab Barracuda Pty. Limited A sandwich panel for angular forming
US5395135A (en) 1992-11-02 1995-03-07 Ford Motor Company Energy absorbing vehicle door and side panels
JPH06156317A (en) * 1992-11-25 1994-06-03 Honda Motor Co Ltd Foaming agent for blocking closed cross section part of car body
US5266133A (en) 1993-02-17 1993-11-30 Sika Corporation Dry expansible sealant and baffle composition and product
US5358397A (en) 1993-05-10 1994-10-25 L&L Products, Inc. Apparatus for extruding flowable materials
JP3152267B2 (en) 1993-06-24 2001-04-03 日産自動車株式会社 Vehicle door structure
US5932680A (en) 1993-11-16 1999-08-03 Henkel Kommanditgesellschaft Auf Aktien Moisture-curing polyurethane hot-melt adhesive
FR2712950B1 (en) 1993-11-25 1995-12-29 Gec Alsthom Transport Sa Shock absorbing devices and method, frame and vehicle comprising such shock absorbing devices.
AUPM307693A0 (en) 1993-12-21 1994-01-20 Uponor N.V. Expandable plug
US5560672A (en) 1993-12-27 1996-10-01 Ford Motor Company Energy absorbing beam
EP0739367A4 (en) 1993-12-27 1997-12-10 Henkel Corp Self-dispersing curable epoxy resins and coatings
AU1602595A (en) 1994-01-12 1995-08-01 E.I. Du Pont De Nemours And Company Sealing composite for gage and drain holes
EP0679501A1 (en) 1994-03-14 1995-11-02 YMOS AKTIENGESELLSCHAFT Industrieprodukte Composite material with foamable core
EP0678544B2 (en) 1994-04-15 2004-04-07 Sika AG, vorm. Kaspar Winkler & Co. Two-component adhesive, sealing or coating composition and its application
GB2289513B (en) 1994-05-11 1998-11-25 British Gas Plc Pipe blocking technique
US5884960A (en) 1994-05-19 1999-03-23 Henkel Corporation Reinforced door beam
US6168226B1 (en) 1994-05-19 2001-01-02 Henkel Corporation Composite laminate automotive structures
US5575526A (en) 1994-05-19 1996-11-19 Novamax Technologies, Inc. Composite laminate beam for radiator support
JPH07315247A (en) * 1994-05-24 1995-12-05 Honda Motor Co Ltd Structural member for vehicle
US5577784A (en) 1994-09-01 1996-11-26 Davidson Textron Inc. Vehicle bumper
SE503705C2 (en) 1994-10-25 1996-08-05 Volvo Ab Load-bearing structure for use in a vehicle body
US5506025A (en) 1995-01-09 1996-04-09 Sika Corporation Expandable baffle apparatus
JP3954119B2 (en) 1995-01-21 2007-08-08 イイダ産業株式会社 Heated foam filling reinforcement and closed cross-section structural member reinforcement structure using the same heated foam filling reinforcement
DE19502381A1 (en) 1995-01-26 1996-08-01 Teroson Gmbh Structural raw rubber-based adhesives
JP2721327B2 (en) 1995-02-09 1998-03-04 株式会社ネオックスラボ Support structure of foamable material in hollow structure
US5580120A (en) 1995-02-23 1996-12-03 Mascotech Tubular Products, Inc. Vehicle door intrusion beam
US5642914A (en) 1995-03-24 1997-07-01 Neo-Ex Lab. Inc. Support structure for supporting foamable material on hollow structural member
DE19514964A1 (en) 1995-04-24 1996-10-31 Ymos Ag Ind Produkte Motor vehicle door
DE19518673A1 (en) 1995-05-20 1996-11-21 Henkel Teroson Gmbh Heat-curing foamed rubber compounds with high structural strength
US6165588A (en) 1998-09-02 2000-12-26 Henkel Corporation Reinforcement of hollow sections using extrusions and a polymer binding layer
US5755486A (en) 1995-05-23 1998-05-26 Novamax Technologies Holdings, Inc. Composite structural reinforcement member
US5785376A (en) 1995-06-21 1998-07-28 Mascotech Tubular Products, Inc. Vehicle door beam
DE19528825A1 (en) 1995-08-05 1997-02-06 Sika Ag Soundproofing partition
JP3073673B2 (en) 1995-08-24 2000-08-07 株式会社ネオックスラボ Mounting structure of foamable material in hollow structure
DE29520166U1 (en) 1995-12-20 1997-05-07 Karmann Gmbh W Motor vehicle body, in particular for a convertible vehicle
US5985435A (en) 1996-01-23 1999-11-16 L & L Products, Inc. Magnetized hot melt adhesive articles
KR19980703761A (en) 1996-02-13 1998-12-05 캣츠 스티븐 지. Syntactic Foam Core Materials for Composite Structural Materials
JP3409561B2 (en) 1996-02-19 2003-05-26 東海ゴム工業株式会社 Method for manufacturing vehicle structure
US6059342A (en) * 1996-02-19 2000-05-09 Nissan Motor Co., Ltd. Car body structure
FR2745523B1 (en) 1996-03-04 1998-05-22 Manducher Sa FORMING MOLD FOR A COMPOSITE STACK
DE19612781C1 (en) 1996-03-29 1997-08-21 Karmann Gmbh W Component made of metallic foam material, process for final shaping of this component and device for carrying out the process
US5934737A (en) 1996-04-15 1999-08-10 Chrysler Corporation Dynamic impact energy absorbing assembly
AU722554B2 (en) * 1996-05-10 2000-08-03 Henkel Kommanditgesellschaft Auf Aktien Internal reinforcement for hollow structural elements
US6341467B1 (en) 1996-05-10 2002-01-29 Henkel Corporation Internal reinforcement for hollow structural elements
FR2749263B1 (en) 1996-05-31 1998-07-03 Renault REINFORCED STRUCTURAL ELEMENT AND MANUFACTURING METHOD THEREOF
US5902656A (en) 1996-06-21 1999-05-11 Minnesota Mining And Manufacturing Company Dampers for internal applications and articles damped therewith
US5725272A (en) 1996-06-27 1998-03-10 Sika Corporation Drain assembly for acoustic baffle system
US6482496B1 (en) 1996-07-03 2002-11-19 Henkel Corporation Foil backed laminate reinforcement
US5888600A (en) 1996-07-03 1999-03-30 Henkel Corporation Reinforced channel-shaped structural member
US6270600B1 (en) 1996-07-03 2001-08-07 Henkel Corporation Reinforced channel-shaped structural member methods
US5819408A (en) 1996-07-10 1998-10-13 Xcorp, Inc. Recyclable, low cost, collision-resistant automobile chassis and body
JP3391635B2 (en) * 1996-08-09 2003-03-31 株式会社ネオックスラボ Blocking / reinforcing structure of hollow structures and blocking / reinforcing method
DE19637512C2 (en) 1996-09-13 1999-11-11 Daimler Chrysler Ag Bumpers
US6232433B1 (en) 1996-10-02 2001-05-15 Henkel Corporation Radiation curable polyesters
US5648401A (en) 1996-10-09 1997-07-15 L & L Products, Inc. Foamed articles and methods for making same
GB9621198D0 (en) 1996-10-11 1996-11-27 Ultraframe Limited Building elements
DE19644855A1 (en) 1996-10-29 1998-04-30 Henkel Teroson Gmbh Sulfur-free expanding, thermosetting rubber moldings
US5806919A (en) * 1996-11-04 1998-09-15 General Motors Corporation Low density-high density insert reinforced structural joints
JP2000504372A (en) 1996-11-20 2000-04-11 ジーカ ヒェミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Epoxy-amine adducts for use as emulsifiers for epoxy resins; aqueous-based epoxy resin dispersions and methods for their preparation
DE19648164C2 (en) * 1996-11-21 2000-01-27 Karmann Gmbh W Body part, in particular profile frame support
US5786394A (en) 1996-12-04 1998-07-28 Lear Corporation Durable, energy-absorptive EPP/PUR structural composites
US5885688A (en) 1996-12-26 1999-03-23 The Pullman Company Steel reinforced filled polymer torque rod
DE19707136C2 (en) 1997-02-22 2001-03-08 Moeller Plast Gmbh Process and foamable mass for the foaming or foam coating of components
US5979902A (en) * 1997-02-24 1999-11-09 Raychem Corporation Cavity sealing article and method
US5904024A (en) 1997-02-26 1999-05-18 Axxis Corp. Mount construction of foam substrate in hollow structures
US5851626A (en) 1997-04-22 1998-12-22 Lear Corporation Vehicle acoustic damping and decoupling system
US5871849A (en) 1997-04-23 1999-02-16 Lepine; Guy Joseph Wood substitute turning blank and method of making the same
DE19718531C1 (en) 1997-05-02 1998-06-25 Daimler Benz Ag Plastic cladding covering motor car sills
US6099948A (en) 1997-05-08 2000-08-08 Henkel Corporation Encapsulation of pre-expanded elastomeric foam with a thermoplastic
US6277898B1 (en) 1997-05-21 2001-08-21 Denovus Llc Curable sealant composition
US6174932B1 (en) 1998-05-20 2001-01-16 Denovus Llc Curable sealant composition
DE19721608C2 (en) 1997-05-23 2002-03-07 Daimler Chrysler Ag Energy absorbing element
JP3139984B2 (en) 1997-06-06 2001-03-05 株式会社協豊製作所 Tubular structural member, tubular structural member of vehicle body, and reinforcement thereof
DE19727907C2 (en) 1997-07-01 1999-10-14 Daimler Chrysler Ag Process for filling double-walled cavities of a double-walled exhaust pipe and double-walled, in particular exhaust pipe
US6237304B1 (en) 1997-07-18 2001-05-29 Henkel Corporation Laminate structural bulkhead
US6096403A (en) 1997-07-21 2000-08-01 Henkel Corporation Reinforced structural members
US6233826B1 (en) 1997-07-21 2001-05-22 Henkel Corp Method for reinforcing structural members
DE19736839A1 (en) 1997-08-23 1999-02-25 Volkswagen Ag Deformation structure for occupant protection in vehicles
JPH1160900A (en) * 1997-08-26 1999-03-05 Nissan Motor Co Ltd Car body-reinforcing epoxy resin composition and method for reinforcing car body
US6102379A (en) 1997-11-17 2000-08-15 Hytec, Inc. Torsion springs with visco-elastic damping
DE19753318A1 (en) 1997-12-02 1999-06-10 Sika Ag Reinforcing element for load-bearing or load-transmitting components and method for fastening it to a component surface
US6103341A (en) 1997-12-08 2000-08-15 L&L Products Self-sealing partition
US6153709A (en) 1998-01-26 2000-11-28 Essex Specialty Products, Inc. Chip resistant, vibration damping coatings for vehicles
US6068424A (en) 1998-02-04 2000-05-30 Henkel Corporation Three dimensional composite joint reinforcement for an automotive vehicle
US6003274A (en) 1998-02-13 1999-12-21 Henkel Corporation Lightweight laminate reinforcing web
US5988734A (en) 1998-02-20 1999-11-23 General Motors Corporation Passenger vehicle structure
DE19856255C1 (en) 1998-03-20 2000-01-20 Moeller Plast Gmbh Hollow profile with internal reinforcement
DE19812288C1 (en) 1998-03-20 1999-05-27 Moeller Plast Gmbh Hollow profile for motor vehicle bodywork
US6372334B1 (en) 1998-03-30 2002-04-16 Henkel Corporation Reinforcement laminate
US6197403B1 (en) 1998-04-06 2001-03-06 Hp Pelzer (Automotive Systems), Inc. Integral sound absorber and water deflector door panel
US6129410A (en) * 1998-05-12 2000-10-10 Chrysler Corporation Apparatus for reinforcing a body side panel of a motor vehicle
US6079180A (en) * 1998-05-22 2000-06-27 Henkel Corporation Laminate bulkhead with flared edges
US5992923A (en) 1998-05-27 1999-11-30 Henkel Corporation Reinforced beam assembly
US5901752A (en) 1998-06-05 1999-05-11 Lundman; Philip L. Inflatable apparatus for sealing a pipeline
US6146565A (en) 1998-07-15 2000-11-14 Noble Polymers, L.L.C. Method of forming a heat expandable acoustic baffle
US6247287B1 (en) 1998-08-05 2001-06-19 Neo-Ex Lab, Inc. Structure and method for closing and reinforcing hollow structural members
ZA991856B (en) 1998-08-27 1999-09-22 Henkel Corp Storage-stable compositions useful for the production of structural foams.
US6103784A (en) 1998-08-27 2000-08-15 Henkel Corporation Corrosion resistant structural foam
US6272809B1 (en) 1998-09-09 2001-08-14 Henkel Corporation Three dimensional laminate beam structure
US6022066A (en) 1998-10-15 2000-02-08 Ricon Corporation Door extension for vehicle doors
US6033300A (en) 1998-10-21 2000-03-07 L & L Products, Inc. Automotive vehicle HVAC rainhat
US6387470B1 (en) 1998-11-05 2002-05-14 Sika Corporation Sound deadening and structural reinforcement compositions and methods of using the same
DE19858903B4 (en) 1998-12-19 2015-07-23 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Reinforcing element for a hollow body, in particular for a vehicle body spar, method for introducing such a reinforcing element into a hollow body and vehicle body with such a reinforced body spar
US6276105B1 (en) 1999-01-11 2001-08-21 Henkel Corporation Laminate reinforced beam with tapered polymer layer
US6110982A (en) 1999-01-13 2000-08-29 Sandia Corporation Epoxy foams using multiple resins and curing agents
US6149227A (en) 1999-01-25 2000-11-21 Henkel Corporation Reinforced structural assembly
US6092864A (en) * 1999-01-25 2000-07-25 Henkel Corporation Oven cured structural foam with designed-in sag positioning
US6189953B1 (en) 1999-01-25 2001-02-20 Henkel Corporation Reinforced structural assembly
US6131897A (en) 1999-03-16 2000-10-17 L & L Products, Inc. Structural reinforcements
JP2001018834A (en) * 1999-07-06 2001-01-23 Nippon Shiika Kk Reinforcement member for hollow car body frame
US6150428A (en) 1999-09-28 2000-11-21 Sika Corporation Expansion temperature tolerant dry expandable sealant and baffle product and method of preparing same
USH2047H1 (en) 1999-11-10 2002-09-03 Henkel Corporation Reinforcement laminate
JP4476438B2 (en) * 1999-11-12 2010-06-09 株式会社ネオックスラボ Hollow structure reinforcement
US6263635B1 (en) 1999-12-10 2001-07-24 L&L Products, Inc. Tube reinforcement having displaceable modular components
JP2001191949A (en) * 2000-01-07 2001-07-17 Neoex Lab Inc Reinforcing tool and reinforcing method for hollow structure
JP3428545B2 (en) 2000-01-07 2003-07-22 本田技研工業株式会社 Body reinforcement structure
MXPA02007372A (en) 2000-01-31 2003-02-12 Sika Corp Structural reinforcing member with ribbed thermally expansible foaming material.
US6305136B1 (en) * 2000-01-31 2001-10-23 Sika Corporation Reinforcing member with beam shaped carrier and thermally expansible reinforcing material
US6253524B1 (en) * 2000-01-31 2001-07-03 Sika Corporation Reinforcing member with thermally expansible structural reinforcing material and directional shelf
US6199940B1 (en) * 2000-01-31 2001-03-13 Sika Corporation Tubular structural reinforcing member with thermally expansible foaming material
US6475577B1 (en) 2000-02-07 2002-11-05 Sika Corporation Reinforcing member with intersecting support legs
US6482486B1 (en) 2000-03-14 2002-11-19 L&L Products Heat activated reinforcing sleeve
US6296298B1 (en) 2000-03-14 2001-10-02 L&L Products, Inc. Structural reinforcement member for wheel well
US6382635B1 (en) 2000-03-17 2002-05-07 Sika Corporation Double walled baffle
JP2002012167A (en) * 2000-04-26 2002-01-15 Neoex Lab Inc Reinforcing structure of hollow structure and reinforcing tool therefor
US6413611B1 (en) 2000-05-01 2002-07-02 Sika Corporation Baffle and reinforcement assembly
US6196621B1 (en) 2000-05-24 2001-03-06 Daimlerchrysler Corporation Apparatus for transferring impact energy from a tire and wheel assembly of a motor vehicle to a sill
US6321793B1 (en) 2000-06-12 2001-11-27 L&L Products Bladder system for reinforcing a portion of a longitudinal structure
US6319964B1 (en) 2000-06-30 2001-11-20 Sika Corporation Acoustic baffle with predetermined directional expansion characteristics
US6494525B1 (en) 2000-09-15 2002-12-17 Sika Corporation Side impact reinforcement
US6455146B1 (en) 2000-10-31 2002-09-24 Sika Corporation Expansible synthetic resin baffle with magnetic attachment
US6378933B1 (en) * 2000-11-06 2002-04-30 Daimlerchrysler Corporation Reinforced vehicle framing
USD457120S1 (en) 2001-01-08 2002-05-14 Sika Corporation Ribbed structural reinforcing member

Also Published As

Publication number Publication date
JP2003522075A (en) 2003-07-22
US6619727B1 (en) 2003-09-16
CA2655942A1 (en) 2001-08-16
US6467834B1 (en) 2002-10-22
JP4780634B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
CA2655942C (en) Structural reinforcement system for automotive vehicles
CA2399457C (en) Structural reinforcement system for automotive vehicles
EP1324910B1 (en) Automotive pillar reinforcement system
US6502821B2 (en) Automotive body panel damping system
US6786533B2 (en) Structural reinforcement system having modular segmented characteristics
EP1324908B1 (en) Hydroform structural reinforcement system
US6729425B2 (en) Adjustable reinforced structural assembly and method of use therefor
EP1607204A2 (en) Manufacture of laminar mouldings
CA2435896A1 (en) Attachment system and method of forming same
WO2009049886A1 (en) Multifunctional vehicle components
EP1650112A2 (en) Structural reinforcement system having modular segmented characteristics

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20170118