CA2531863C - Determining the position and angular orientation of food products - Google Patents

Determining the position and angular orientation of food products Download PDF

Info

Publication number
CA2531863C
CA2531863C CA 2531863 CA2531863A CA2531863C CA 2531863 C CA2531863 C CA 2531863C CA 2531863 CA2531863 CA 2531863 CA 2531863 A CA2531863 A CA 2531863A CA 2531863 C CA2531863 C CA 2531863C
Authority
CA
Canada
Prior art keywords
food product
poultry
location
line
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA 2531863
Other languages
French (fr)
Other versions
CA2531863A1 (en
Inventor
Robert L. Bottemiller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
John Bean Technologies Corp
Original Assignee
John Bean Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by John Bean Technologies Corp filed Critical John Bean Technologies Corp
Publication of CA2531863A1 publication Critical patent/CA2531863A1/en
Application granted granted Critical
Publication of CA2531863C publication Critical patent/CA2531863C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/28Splitting layers from work; Mutually separating layers by cutting
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C17/00Other devices for processing meat or bones
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C17/00Other devices for processing meat or bones
    • A22C17/0073Other devices for processing meat or bones using visual recognition, X-rays, ultrasounds, or other contactless means to determine quality or size of portioned meat
    • A22C17/0086Calculating cutting patterns based on visual recognition
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C21/00Processing poultry
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C21/00Processing poultry
    • A22C21/0023Dividing poultry
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C25/00Processing fish ; Curing of fish; Stunning of fish by electric current; Investigating fish by optical means
    • A22C25/18Cutting fish into portions
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C7/00Apparatus for pounding, forming, or pressing meat, sausage-meat, or meat products
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C7/00Apparatus for pounding, forming, or pressing meat, sausage-meat, or meat products
    • A22C7/0023Pressing means
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N15/00Machines or apparatus for other treatment of fruits or vegetables for human purposes; Machines or apparatus for topping or skinning flower bulbs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/007Control means comprising cameras, vision or image processing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/20Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
    • B26D5/30Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed having the cutting member controlled by scanning a record carrier
    • B26D5/32Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed having the cutting member controlled by scanning a record carrier with the record carrier formed by the work itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/20Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
    • B26D5/30Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed having the cutting member controlled by scanning a record carrier
    • B26D5/34Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed having the cutting member controlled by scanning a record carrier scanning being effected by a photosensitive device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/06Arrangements for feeding or delivering work of other than sheet, web, or filamentary form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/06Arrangements for feeding or delivering work of other than sheet, web, or filamentary form
    • B26D7/0625Arrangements for feeding or delivering work of other than sheet, web, or filamentary form by endless conveyors, e.g. belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/26Means for mounting or adjusting the cutting member; Means for adjusting the stroke of the cutting member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/27Means for performing other operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/27Means for performing other operations combined with cutting
    • B26D7/28Means for performing other operations combined with cutting for counting the number of cuts or measuring cut lenghts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/27Means for performing other operations combined with cutting
    • B26D7/30Means for performing other operations combined with cutting for weighing cut product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/3806Cutting-out; Stamping-out wherein relative movements of tool head and work during cutting have a component tangential to the work surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/30Details; Auxiliary devices
    • B65G17/38Chains or like traction elements; Connections between traction elements and load-carriers
    • B65G17/40Chains acting as load-carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • B65G47/26Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles
    • B65G47/30Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles during transit by a series of conveyors
    • B65G47/31Devices influencing the relative position or the attitude of articles during transit by conveyors arranging the articles, e.g. varying spacing between individual articles during transit by a series of conveyors by varying the relative speeds of the conveyors forming the series
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D2210/00Machines or methods used for cutting special materials
    • B26D2210/02Machines or methods used for cutting special materials for cutting food products, e.g. food slicers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D9/00Cutting apparatus combined with punching or perforating apparatus or with dissimilar cutting apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/004Severing by means other than cutting; Apparatus therefor by means of a fluid jet
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37555Camera detects orientation, position workpiece, points of workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45044Cutting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30128Food products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0524Plural cutting steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/525Operation controlled by detector means responsive to work
    • Y10T83/533With photo-electric work-sensing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/525Operation controlled by detector means responsive to work
    • Y10T83/536Movement of work controlled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/525Operation controlled by detector means responsive to work
    • Y10T83/538Positioning of tool controlled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/647With means to convey work relative to tool station

Abstract

A portioning system (10) includes a scanner (16) for scanning a passing poultry breast (14). A cutting device (18), a slicing device (20) and/or other equipment may be used to portion, trim, or otherwise process the poultry breast under the control of a computer (22). The computer also utilizes the information from the scanner to determine position and the angular orientation of the poultry breast relative to a reference line by determining directional lines corresponding to physical attributes of the poultry breast. One directional line is related to the principal axis of the poultry breast, determined from the axis of least inertia of the poultry breast. Other directional lines may correspond to the locations of notches, projections, linear depressions, or other physical anatomical features of the poultry breast.

Description

= CA 02531863 2012-05-10 DETERMINING THE POSITION AND ANGULAR ORIENTATION OF
FOOD PRODUCTS

TECHNICAL FIELD
The present invention relates generally to equipment and techniques for processing work pieces, such as food products, and more particularly to determining the angular orientation of a food product relative to a reference direction to facilitate processing of the food product.
BACKGROUND
Food products are cut or otherwise divided into smaller portions by processors in accordance with customer needs. Also, excess fat, bone or other foreign or undesirable materials are routinely trimmed from the food products. Much of the portioning/trimming of the food products, is now carried out with the use of high-speed portioning machines.
These machines use various scanning techniques to ascertain the size and shape of the food product as it is being advanced on a moving conveyor. This information is analyzed with the aid of a computer to determine how to most efficiently portion the food product into the desired sizes, weights, or other criteria being used. For example, if the food product portions of a specific weight are desired, the information from the scanner may be employed to control the operation of a cross-cutting device to cut the food product into desired sizes. If the food product changes in width or thickness along its length, the location of a cross-cut made in the food product to achieve a desired end portion weight may be controlled.
The scanning of food products and the use of the scanning data to analyze the food products and determine how to cut, slice, or otherwise process the food products is facilitated if the food products are all aligned in the same direction. The reason for this is that portioning of a food product, such as fish, poultry or meat, is carried out in relationship to the shape of the food product. For example, fish strips are cut perpendicular to the long axis of the fish fillet. Beef tip-steaks are cut from two 26660ForeignAP.doc dimensions at approximately right angles determined by the edges of the roughly triangular input product. Further, chicken sandwich portions and nuggets are cut from whole chicken breasts with regard to the left-right symmetry relative to the keel of the breast. If the food products are carefully placed on the infeed belt with all of the food products having the same orientation, then the software used to determine how to portion the food product only needs to establish food product location in one direction, i.e., transverse to the length of the conveyor belt. For food products, achieving such alignment is difficult. It requires close attention by loading personnel, which is not always feasible or realistic.
SUMMARY
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
A system for trimming and/or portioning food products includes a scanner for scanning the passing food product and a data processor for processing the data from the scanner to establish the location and thickness profile of the food product.
To facilitate determining how to trim/portion the food product, the data processor is programmed to determine the location and angular orientation of the food product relative to a reference line by making one or more determinations from the scanning data. In this regard, the orientation of the principal axis of the food product may be determined by establishing the line of least inertia from the second moment of the volume or area distribution of the food product. Also, directional lines can be determined from notches, and/or projections, and/or other physical features located on the food product corresponding to physical characteristics of the food product. A directional line in addition can be determined from the scanning data corresponding to a linear depression extending along the food product wherein the direction of the depression is geometrically related to the food product. The computer may be programmed to combine two or more of these determinations to arrive at the angular orientation of the food product.
Also the computer may be programmed to assign relative values to the determinations of the axis/directional lines, which valuations are taken into consideration 26660ForeignAP.doc to arrive at a "best determination" of the position and angular orientation of the food product. The valuations of the axis/directional lines can be based on experience as to which of the axis/directional lines historically has provided the most accurate indication of the actual angular orientation of the food product.
The system can be used to trim, portion, or otherwise process various food products, for example, poultry breasts. In this regard, the poultry breasts are scanned, and the scanning data is used by a computer to generate the area distribution and/or volume distribution of the poultry breasts, as well as the location of the poultry breast on a moving conveyor. The scanning data is also used to determine the direction of one or more directional lines related to the axis of symmetry (direction of the keel valley) of the poultry breasts. These directional lines may be determined from, for example, the line of least inertia of the poultry breasts calculated from the second moment of the area or volume distribution of the poultry breasts. A directional line can also be established from a line extending between the neck notch to the tail projection of the poultry breasts. In addition, a directional line can be determined by locating a linear depression formed in the poultry breast corresponding to the location of the keel cartilage of the poultry breast.
These various directional axis lines can be combined by mathematical techniques, which techniques may include assigning relative values to the directional axis lines based on the expected or perceived accuracy of the directional lines.
Once the location and angular orientation of the poultry breast is determined, the poultry breast can be processed. In this regard, cutting devices can be used to remove the keel cartilage from the poultry breast. In addition, fat and other waste can be trimmed from the poultry breast. These process operations can be accurately carried out without the poultry breast having to be precisely positioned on the conveyor, either transversely to the width of the conveyor or angularly relative to the length of the conveyor.
Further, with the location and angular orientation of the poultry breast known, the computer can be used to determine how to divide the poultry breast into portions of desired sizes. In addition or in the alternative, cutting and slicing and other devices can be used to portion the poultry breast to end portions of desired sizes.
26660ForeignAP.doc DESCRIPTION OF THE DRAWINGS
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
FIGURE 1 is a schematic view of a disclosed embodiment;
FIGURE 2 is a flow diagram of a disclosed embodiment;
FIGURE 3 illustrates various directional lines used to determine the location and direction of the keel line in a poultry breast;
FIGURE 4 is a plot illustrating the determination of the principal axis from the least moment of inertia of a poultry breast;

FIGURE 5 is a view similar to FIGURE 4, estimating the location of the keel line from the principal axis; and FIGURE 6 is a plot of determined directional lines corresponding to the angular orientation of a poultry breast.

DETAILED DESCRIPTION
FIGURE 1 schematically illustrates an embodiment of the present invention, designated as system 10. System 10 includes a conveyor 12 for carrying food products (poultry breasts) 14a, 14b, 14c (collectively referred to as food product 14).
The system 10 also includes a scanning system 16 for scanning the food product 14 as the food product passes by on the conveyor. Although only one conveyor 12 is illustrated, system 10 may utilize more than one conveyor, for example a loading conveyor, a processing conveyor, and an unloading conveyor. The system may also include a cutting device 18 located downstream from the scanning system 16 for trimming the food product and/or cutting the food product into one or more end pieces of desired sizes or other physical parameters. The cutting device may also be used to remove cartilage or bones from the food product, for example, the keel cartilage 19 from a poultry breast 14, shown in FIGURE 3. The system 10 may further include a slicing device 20 located as illustrated downstream from the cutter. The slicer instead may be located upstream from the cutting device. In addition, other processing equipment may be utilized in addition to or in lieu of cutting device 18 and/or slicing device 20. Such equipment may be used for a wide range 26660ForeignAP.doc of processes, including for example, cooking, steaming, frying, baking, roasting, grilling, boiling, battering, freezing, marinating, rolling, flattening, drying, dehydrating, tenderizing, cutting, portioning, trimming, slicing, deboning, diverting, or off-loading the food product. The conveyor 12, the scanning system 16, the cutter 18, the slicer 20, as well as other processing equipment are coupled to, and controlled by, a computer or data processor 22.

Referring to FIGURE 2, using system 10 to portion a food product, beginning at 100, the scanning system 16 scans the food product 14 at 102 to produce scanning information representative of the food product, and forwards the scanning information to the computer/processor 22. The computer 22 analyzes the scanning data to locate the food product relative to the conveyor and develop a thickness profile of the scanned food product. The processor at 104 also develops an area and/or volume distribution of the scanned food product. The computer can model the food product at 106 to determine how the food product might be trimmed and/or portioned into end product sets composed of one or more end product portions of specific physical criteria including, for example, weight, shape, thickness, length or width. Data as to desired end product sets may be retrieved at 108 from the computer memory. In this regard, the computer takes into consideration that the food product may be sliced to thickness, flattened, or processed in other ways after the food product has been portioned by the cutter 18. In addition, the computer factors in any defects found in the food product during the scanning process.
The computer at 110 determines the angular orientation of the food product using information about the physical characteristics of the food product, and with this information as well as the modeling of the food product, the computer at 112 determines how the food product may be trimmed, cut and/or portioned into one or more end product sets. The computer at 114 then controls the cutter to trim the food product and/or cut the food product according to the selected end product set. The computer at 116 may also control the further processing of the food product to arrive at the end 118 of the processing.

Knowing the angular orientation and location of the food product is important because portioning of food products, including food products, is carried out in relationship to the shape of the food product. If the angular orientation and location are not 26660ForeignAP.doe ascertainable by the scanning/processing system, then it is necessary that the food product be loaded on the conveyor in perfect alignment along the length of the conveyor and in the same angular direction so that the portioning program only needs to establish the food product location in one dimension, i.e., along the length of the conveyor.
However, loading the food product in exact longitudinal alignment (for example, along the center line of a conveyor) on the conveyor and/or in the same exact direction for every workpiece requires close attention by loading personnel, and thus is difficult to achieve. If the location and angular orientation of the workpiece can be ascertained by the scanning/processing system, then it is possible to load the workpieces at a faster rate thereby increasing the throughput of the system.
Knowledge of the angular orientation of the food product can also be useful to the computer in modeling the food product. If the food product has characteristic bones, cartilage or other features, the software used to model the food product may reference from such feature. For example, the modeling of poultry breasts can be begun from the keel channel where the breast keel cartilage is located.

Describing the foregoing system in more detail, the computer 22 includes a central processing unit 24 (hereinafter CPU) and a memory unit 26. Data consisting of physical and/or anatomical features of different types of food products can be stored in the computer memory 26. Also, data consisting of desired end product shapes can also be stored in the computer memory 26. The data stored in the computer memory can be readily selected by the user via user interface 28, for example, when changing product lines. For instance, system 10 may be used for processing chicken breasts for a particular customer. When the order for the customer is filled, the user may switch the mode of the computer to a different food product having different physical/anatomical features. The computer 22 also includes an output device 30 usable to display or print data, information, or images related to the processing of the food product.
As shown in FIGURE 1, the computer 22 can be in communication with a network system 32 which allows the computer to talk to and share information with other computers. As noted above, computer 22 can also drive other peripheral hardware besides the scanning system 16. For example, computer 22 can direct the operation of the conveyor 12, cutting device 18, slicer 20, as well as other processing apparatus that may 26660ForeignAP.doc be utilized. Further, the computer 22 can receive information from various sensors, including encoder 34 to guide or direct a multitude of systems.
The conveyor 12 carries the food product 14 beneath the scanning system 16.
The scanning system 16 may be of a variety of different types, including a video camera 36 to view the food product 14 illuminated by one or more light sources 38. Light from the light source is extended across the moving conveyor belt 40 to define a sharp shadow or light stripe line, with the area forwardly of the transverse beam being dark.
When no food product 14 is being carried by the infeed conveyor 12, the shadow line/light stripe forms a straight line across the conveyor belt. However, when a food product 14 passes across the shadow line/light stripe, the upper, irregular surface of the food product produces an irregular shadow line/light stripe as viewed by a video camera 36 directed diagonally downwardly on the food product and the shadow line/light stripe. The video camera detects the displacement of the shadow line/light stripe from the position it would occupy if no food product were present on the conveyor belt. This displacement represents the thickness of the food product along the shadow line/light stripe. The length of the food product is determined by the distance of the belt travel that shadow line/light stripes are created by the food product. In this regard, encoder 34 is integrated into the infeed conveyor 12, with the encoder generating pulses at fixed distance intervals corresponding to the forward movement of the conveyor.
In lieu of a video camera, the scanning station may instead utilize an x-ray apparatus for determining the physical characteristics of the food product, including its shape, mass, and weight. X-rays may be passed through the object in the direction of an x-ray detector (not shown). Such x-rays are attenuated by the food product in proportion to the mass thereof. Scanner system 16 includes a generator 36 to irradiate the food product 14 to be scanned with x-ray radiation and a receiver 38 to receive the attenuated radiation. The receiver portion 38 can be integral with the generator 36.
Attenuation of the x-rays can occur by passing through the food product or by reflection from the food product. When radiation passes through the food product, a certain amount of radiation is absorbed by the food product through which it passes, therefore there will be a relationship in the amount between the radiation sent to the food product and the radiation received after it has passed through the food product. The cause of absorption is believed to reside in the chemical bonds within the molecules of the food product. Radiation once attenuated can be collected, and converted into a useable form.
Photodiodes, for example, may be used to convert an amount of radiation in the visible range into a voltage or current signal. For x-rays, a scintillating material may be used to generate visible light capable of detection by a photodiode. This method is described in U.S. Patent No. 5,585,603 to Vogeley, Jr.
Although the foregoing description discusses scanning by use of a video camera and light source 32, as well as by use of x-rays, other three-dimensional scanning techniques may be utilized. Examples of additional techniques may include ultrasound or moire fringe methods. In addition, electromagnetic imaging techniques may be employed.
Thus, the present invention is not limited to use of video or x-ray methods, but encompasses other three-dimensional scanning technologies.
The data and information measured/gathered by the scanning device(s) is transmitted to the processor 22, which records the location of the food product 14 on the conveyor 12, both transversely and longitudinally relative to the conveyor, as well as the length, width and thickness of the food product about the entire area of the food product.
With this information, the processor can develop an area map, an area profile as well as a volume profile of the food product. Knowing the density of the food product, the processor can also determine the weight of the food product or segments thereof.
The scanning information can also be used to ascertain whether there are any defects in the food product. Such defects might include tears, holes, fat, bone, or cartilage.
For example, if an x-ray apparatus is utilized, if a hole or tear exists, the x-rays will be attenuated to a lesser extent than if the food product was structurally intact. Also, for food products composed of raw meat, the density of fat, bones, and cartilage is different from the density of the meat. This density variation results in a difference in the attenuation of the x-rays passing through the food product. For example, the density of bone is greater than the density of the meat. Thus, the x-rays passing through the bone will be attenuated to a greater extent than the x-rays passing through the meat. As a consequence, by the scanning process, the existence as well as the position and size of the defects in the food product may be ascertained. Examples of the foregoing scanning devices are disclosed in U.S. Patent No. 6,563,904.
26660ForeignAP.doc The scanning data can also be used to locate other physical features or attributes in the food product that are related to the angular orientation of the food product. For example, food products may include cutouts, notches, or other similar physical features in the interior or at the perimeter of the food product that is indicative of a physical attribute of the food product that can be used to determine the angular orientation of the food product. For fish, meat, or poultry food products, these physical features may consist of or be related to anatomical characteristics. For example, as shown in FIGURE 3, in poultry breasts, when the neck is removed, an indentation or notch 44 is typically formed in the adjacent portion of the breast at the centerline or the keel 19.
As a further physical feature, food products, may commonly include a projection extending from the perimeter of the food product that corresponds to a particular location on or physical characteristic of the food product. For example, in fish and poultry, the projection may correspond to the location of the tail, or on fruit, the projection can be a stem. Moreover, in poultry breasts, as shown in FIGURE 3, the tail projection 46 is positioned at the opposite end of the breast keel 19 from the location of the neck notch 44.
Thus, for poultry breasts, a line or axis extending between the neck notch and the tail projection will coincide with the direction of the breast keel. Thus, in poultry breasts, the location of the notch 44 and projection 46 can be used in combination to locate the direction of the breast keel, see Line L 1 in FIGURE 3. In other types of food products, a plurality of notches and/or projections may exist that provide reference locations useable to determine the angular orientation of the food product.
As another attribute, the scanning information can be used to determine whether a food product has a linear depression or indentation that is a physical feature or characteristic of the food product. Such depression may correspond, for instance, to an anatomical characteristic of poultry, fish, meat, or other types of food products. For example, in poultry breasts, a linear depression may extend along the length of the keel cartilage line see Line L2 in FIGURE 3. In poultry breasts, this depression is referred to as the keel channel, which may not necessarily run the full length of the keel and, in certain situations, may be difficult to detect, or even be undetectable.
Nonetheless, if present, it can be detected by the foregoing scanning process.
26660ForeignAP.doc It will be appreciated that x-rays that pass through the keel channel will be attenuated to a lesser degree than x-rays passing through thicker locations of the poultry breasts. Such a line of reduced attenuation x-rays can be detected through the scanning of the poultry breast. In other types of poultry, meat, or fish food products, the removal of cartilage or bones may also leave a linear depression in the food product that can be detected to determine the orientation of the food product.
As described above, in meat and fish products the density of bones and cartilage is different from the density of the meat or fish. Thus, by scanning the food product not only can the presence of a bone or cartilage by ascertained, but the direction of the bone or cartilage can also be determined. This information can be used to establish the orientation of the food product, including, for example, the orientation of a chicken breast having the breast cartilage in place, a poultry thigh, with the thigh bone in place, a fish fillet with the backbone in place, a beef side with the ribs in place, etc.
As noted above, the scanning data can be used to develop the area distribution or volume distribution of the food product. From this information it is possible to calculate the line of least inertia (principal axis) from the second moments of the volume or area distribution of the food product. The principal axis can then be used to determine the angular orientation of the food product. This determination can be made using the basic formula:
Ix = f y2dA (Equation A) wherein:
^ Ix = the moment of inertia about the axis x ^ dA = an elemental area ^ y = the perpendicular distance to the element dA from the axis x The foregoing equation is a general equation for determining the second moment of inertia. By manipulating this formula to ascertain the minimum value of the second moment of inertia, the location of principal axis of the food product can be ascertained.
This assumes that the food product is positioned "lengthwise" relative to the direction of travel of the food product. However, if the food product is positioned "widthwise"
relative to the direction of travel of the food product, then the axis of symmetry of the food product is at a 90 angle from the axis of least inertia. This is applicable, for 26660ForeignAP.doc instance, with respect to poultry breasts. In these situations, the line of least inertia (IL) can be calculated in a direction 90 to the principal axis (keel line), see Line L3 in FIGURE 3.
FIGURES 4 and 5 illustrate determining the keel line for the poultry breast example of FIGURE 3 from the principal axis. Referring to FIGURE 4, the poultry breast is placed on an arbitrary U-V coordinate system, such as may be defined by the scanner 16. The first step is to find the centroid location using the equations:
Ue = J U dA (Equation C) A

VC = J V dA (Equation D) A

Where:
U is one centroidal axis;
Ve is the second centroidal axis;
dA equals an elemental area; and A equals total area.
Next, a switch is made to the X-Y coordinate system to determine the second moment of inertia, utilizing the basic Equation B particularized for the X-Y
coordinate system as follows:
IXX = f y2 dA (Equation E) Iyy = f x2 dA (Equation F) IXy = f xy2 dA (Equation G) Equations E, F and G provide the principal axis via the least moment of inertia.
However, as noted above, the location of the poultry breast keel 19 will be 90 degrees from the axis of the least moment of inertia. The location of the keel can be determined using the equation:
TAN (20) = IXy / (Iyy - IXX) (Equation H) Equation H is solved for 0. Thus, using the foregoing equations, the location of the centroid relative to the X-Y axis can be determined, as well as the angular orientation of the poultry breast relative to such coordinate system.
26660ForeignAP.doc The directional lines or axes, corresponding to the angular orientation of the food product as determined by the foregoing techniques, can be mathematically combined together to arrive at a "best fit" or "best determination" singular direction of the line or axes. For instance, each of the lines or axes can be described relative to an X-Y plane according to the equation:
Y = M * X + B (Equation B) Where: M is the slope of the line, and B is the Y intercept (where X = 0).
A sample plot showing such lines is set forth in FIGURE 4. Using the above poultry breast example, in FIGURE 4, Line L l may be a line spanning between the neck notch and the tail projection of the poultry breast; Line L2 may be a line extending along the keel valley of the poultry breast; and Line L3 may be the axis of symmetry as determined from the axis of least inertia. In FIGURE 4, the Y-axis can correspond to the longitudinal center line of the conveyor belt 40 and the X-axis can correspond to the direction transverse to the longitudinal center of the conveyor belt. Thus, assuming that the lines plotted in FIGURE 4 correspond to the keel line of a poultry breast, shows that the poultry breast is positioned to the right of the longitudinal center of the belt when looking "downstream" of the belt. Also, the keel line of the poultry breast is rotated in the "clockwise" direction with reference to the conveyor belt.
FIGURE 4 plots the precise length of the line or axis determined from the scanning data using the techniques described above. As such, this information can also be used to locate the food product both laterally and longitudinally on the conveyor belt. Such information can be used in lieu of, or in addition to, determining the location of the food product directly from the scanning data, as described above.
The equations for the three directional lines/axes can be combined using various mathematical techniques, such as Neural networks, fuzzy logic, or best curve fitting.
Moreover, relative weights can be prescribed to the different reference lines/axes in FIGURE 4, for example, by applying a correlation coefficient to Equation B, set forth above. From experience through the use of the present system and method, over time, the relative accuracy of the various directional lines can be evaluated and a correlation coefficient applied to the equations representing historical accuracy of each of the directional lines. For example, experience may show that the directional line extending between the neck notch and tail projection is generally more accurate than a directional line corresponding to the keel depression, at least with respect to angular orientation. On the other hand, experience may show that the directional line corresponding to the keel depression is more accurate than the directional line corresponding to the axis of symmetry determined from the axis of least inertia. Accordingly, correlation coefficients can be assigned to the equations for the directional lines on this basis.
The correction coefficient can also be based on the particular situation for the directional line in question. For example, as discussed above, a linear depression as determined from the scanning information may not run the full length of the depression.
Thus, if the scanning determination finds this to be the case, then a coefficient value can be assigned to the corresponding directional line in terms of the expected accuracy that the data being analyzed in fact corresponds to an actual physical feature characteristic of a food product. Similar situational evaluations may be made with respect to the other directional lines.
With the foregoing analysis, a "best determination" of the angular orientation of the food product can be calculated. Of course, other techniques can be applied to the determined directional lines/axes to arrive at the angular orientation of the food product.
With the location and angular orientation of the food product located relative to a reference line, for example, the center line CL of conveyor belt 40, processing of the food product can occur. As noted above, such processing might include trimming, cutting or portioning the food product using various cutting devices such as high-speed water jets, lasers, rotary saws, hacksaws, guillotines and band saws. Cutting devices of the foregoing nature are described in U.S. Patent No. 5,931,175 to Pfarr, . Band saws and blades are described in U.S. Patent No. 5,937,080 to Vogeley, et al.
With respect to poultry breasts, cutting devices may be used for various processes, including trimming fat from the poultry breast, cutting out the keel cartilage from the poultry breast, and portioning the poultry breast into desired end slices, for example, for sandwich portions, strips or nuggets.
26660ForeignAP.doc In addition to cutting devices, the food product may be processed using various types of slicers to slice the food product into one or more desired thicknesses. Such slicers may be in the form of a high-speed water jet, a laser, a rotary saw, a hacksaw or a band saw. Also, the slicer may be adjustable so that a desired thickness for each individual food product is obtained.

While illustrative embodiments have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

Claims (26)

1. A system for processing poultry breasts, comprising:
(a) a scanner for scanning the poultry breasts as the poultry breasts are being transported past the scanner;
(b) a data processor for processing the data from the scanner and using such data to determine the thickness profile of the poultry breasts;
(c) wherein the data processor is programmed to determine the angular orientation of the poultry breasts relative to a reference line by making one or more determinations selected from the group consisting of:
determining the axis of least inertia from the second moment of the volume or area distribution of the poultry breasts and converting the axis of least inertia into the axis of symmetry of the poultry breasts;
utilizing the data from the scanner to determine the location of a directional line extending between a pronounced concavity in the margin of the poultry breasts corresponding to the location of the neck notch and a projection from the poultry breasts corresponding to the location of the tail; and utilizing the data from the scanner to determine the location of a linear depression corresponding to the location of the keel channel of the poultry breasts;
and (d) wherein the data processor is programmed to use one or more of the foregoing determinations to establish the angular orientation of the poultry breast relative to a reference line.
2. The system according to Claim 1, wherein the data processor is programmed to combine two or more of the determinations to derive the orientation of the poultry breasts relative to the reference line.
3. The system according to Claim 2, wherein the data processor is programmed to assign relative values to the determinations which are combined to derive the orientation of the poultry breasts based on the projected accuracy of the determinations.
4. The system according to Claim 1, wherein the data processor is programmed to determine the location of the poultry breast relative to the reference line.
5. The system according to Claim 4, wherein the data processor is programmed to determine the location of the poultry breast from the data processor by a technique selected from the group consisting of:
using the data from the scanner to determine the perimeter of the poultry breast relative to the reference line; and using one or more of: the determination of the axis of least inertia, the location of the directional line extending between the neck notch and tail projection, and the determination of the linear depression corresponding to the location of the keel channel to determine the location of the poultry breast relative to the reference line.
6. The system according to Claim 1, further comprising one or more cutters to cut the poultry breast along the keel line for removal of the keel cartilage.
7. The system according to Claim 1, further comprising a portioner for dividing the poultry breasts into selected portions.
8. The system according to Claim 7, wherein the portioner comprising a data processor to determine how to portion the poultry breast using the determined angular orientation of the poultry breast.
9. The system according to Claim 7, further comprising a slicer to slice selected cut portions of the poultry breasts into selected thicknesses to achieve desired physical configurations of the end products portions derived from the poultry breast.
10. The system according to Claim 1, further comprising a dicer for slicing the poultry breasts into one or more selected thicknesses.
11. A method for processing a food product, comprising:
(a) scanning the food product;

(b) developing a distribution map of the food product from the scanning data selected from the group consisting of an area distribution of the food product and a volume distribution of the food product;
(c) determining the direction of one or more directional lines related to the orientation of the food product relative to a reference line selected from the group consisting of:
a directional line corresponding to the line of least inertia of the food product based on the second moment of one of the area or volume distribution of the food product;
a directional line corresponding to the location of at least one notch located in the food product and at least one projection located on the food product; and a directional line corresponding to a linear depression defined by portions of the food product;
(d) utilizing one or more of the determined directional lines to determine the angular orientation of the food product relative to the reference line; and (e) using the determined orientation of the food product to determine how the food product is to be further processed.
12. The method according to Claim 11, wherein the directional line extends through the food product notch and the food product projection.
13. The method according to Claim 11, wherein the directional line is disposed along the linear depression.
14. The method according to Claim 11, wherein the notch of the food product corresponds to the location of an appendage removed from the food product.
15. The method according to Claim 11, wherein the orientation of the food product is determined by mathematically combining the determined directional lines.
16. The method according to Claim 15, wherein the directional lines used in the mathematical combination are assigned values corresponding to the relative perceived accuracy of the directional lines.
17. The method according to Claim 11, wherein the determined angular orientation of the food product is used to control the operation of equipment used in the processing of the food product.
18. The method according to Claim 11, further comprising determining the location of the food product relative to the reference line; and using the determined location of the food product, together with the determined angular orientation of the food product, to determine how the food product is to be further processed.
19. The method according to Claim 18, wherein the location of the food product relative to the reference line is determined from the scanning data.
20. The method according to Claim 19, wherein the location of the food product relative to the reference line is derived from one or more of the determined direction lines used to determine the angular orientation of the food product relative to the reference line.
21. The method according to Claim 18, further comprising using the determined orientation and location of food product to determine how the food product is to be processed by one or more methods selected from the group consisting of trimming, cutting, portioning, slicing.
22. Determining the location and orientation of raw poultry breasts relative to a reference line, comprising:
(a) scanning the poultry breasts;
(b) generating distributions of the poultry breasts from the scanning data selected from the group consisting of an area distribution and a volume distribution of the poultry breasts;
(c) determining the position of the poultry breasts relative to the reference line from the scanning data;
(d) determining the direction of one or more directional lines related to the axis of symmetry of the poultry breasts, selected from the group consisting of:

the line of least inertia for the poultry breast calculated from the second moment of the area or volume distribution of the poultry breast;
a directional line extending between the neck notch as determined from the scanning data and the tail projection as determined from the scanning data of the poultry breast; and a directional line extending along a linear depression of the poultry breast corresponding to the location of the keel of the poultry breast as determined from the scanning data; and (e) determining the angular orientation of the poultry breast by considering one or more of the determined directional lines.
23. The method of Claim 22, wherein in the direction of one or more of the determined directional lines are mathematically combined to determine the angular orientation of the poultry breast relative to the reference line.
24. The method of Claim 23, wherein in the mathematical combining of the directions of the directional lines utilized in determining the angular orientation of the poultry breast, the directional lines are assigned a relative value based on the predicted accuracy of the determined directional line orientation.
25. The method of Claim 22, wherein the directional line determined from the line of least inertia is converted into the axis of symmetry of the poultry breast, which axis of symmetry is at a 90 degree angle to the line of least inertia.
26. The method of Claim 22, further comprising in lieu of or in addition to determining the position of the poultry breast relative to the reference line from the scanning data, determining the position of the poultry breast relative to the reference line by considering one or more of the determined directional lines.
CA 2531863 2004-12-30 2005-12-30 Determining the position and angular orientation of food products Active CA2531863C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64028204P 2004-12-30 2004-12-30
US60/640,282 2004-12-30

Publications (2)

Publication Number Publication Date
CA2531863A1 CA2531863A1 (en) 2006-06-30
CA2531863C true CA2531863C (en) 2013-02-12

Family

ID=35841133

Family Applications (6)

Application Number Title Priority Date Filing Date
CA2531857A Expired - Fee Related CA2531857C (en) 2004-12-30 2005-12-29 Portioning apparatus and method
CA 2531852 Active CA2531852C (en) 2004-12-30 2005-12-29 Sorting workpieces to be portioned into various end products to optimally meet overall production goals
CA 2531621 Abandoned CA2531621A1 (en) 2004-12-30 2005-12-29 Predetermining portioning yield
CA 2531626 Abandoned CA2531626A1 (en) 2004-12-30 2005-12-29 Conveying conformable products
CA 2531895 Expired - Fee Related CA2531895C (en) 2004-12-30 2005-12-30 Defining and checking conformance of an object shape to shape requirements
CA 2531863 Active CA2531863C (en) 2004-12-30 2005-12-30 Determining the position and angular orientation of food products

Family Applications Before (5)

Application Number Title Priority Date Filing Date
CA2531857A Expired - Fee Related CA2531857C (en) 2004-12-30 2005-12-29 Portioning apparatus and method
CA 2531852 Active CA2531852C (en) 2004-12-30 2005-12-29 Sorting workpieces to be portioned into various end products to optimally meet overall production goals
CA 2531621 Abandoned CA2531621A1 (en) 2004-12-30 2005-12-29 Predetermining portioning yield
CA 2531626 Abandoned CA2531626A1 (en) 2004-12-30 2005-12-29 Conveying conformable products
CA 2531895 Expired - Fee Related CA2531895C (en) 2004-12-30 2005-12-30 Defining and checking conformance of an object shape to shape requirements

Country Status (6)

Country Link
US (6) US7715935B2 (en)
AU (6) AU2005248939B2 (en)
BR (6) BRPI0506291A (en)
CA (6) CA2531857C (en)
GB (6) GB2421719B (en)
IS (6) IS8203A (en)

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7373217B2 (en) * 2003-04-08 2008-05-13 Hormel Foods, Llc Apparatus for slicing a food product and method therefore
MXPA06010528A (en) * 2004-04-05 2007-03-23 Scanvaegt Int As Method and arrangement for portion cutting of food items, and use of a cutting device in the arrangement.
CA2578544A1 (en) * 2004-09-16 2006-03-23 Marel Hf A portioning device
AU2005248939B2 (en) * 2004-12-30 2011-10-27 John Bean Technologies Corporation Portioning apparatus and method
EP1762346B1 (en) * 2005-09-08 2007-11-14 Weber Maschinenbau GmbH & Co. KG Food slicer
US8356704B2 (en) * 2006-01-31 2013-01-22 Andrew Flessas Robotically controlled entertainment elements
US9794533B2 (en) 2006-01-31 2017-10-17 Andrew Flessas Robotically controlled entertainment elements
US11284048B2 (en) 2006-01-31 2022-03-22 Andrew Flessas Robotically controlled display
US8308418B2 (en) * 2006-05-09 2012-11-13 Taiwan Semiconductor Manufacturing Co., Ltd. High efficiency buffer stocker
RU2412598C2 (en) * 2006-10-06 2011-02-27 Нордишер Машиненбау Руд. Баадер ГмбХ+Ко. КГ Method and device for treatment of fish and poultry and other meat products transported in large quantities along treatment line
DE102006055431B4 (en) * 2006-11-22 2008-10-30 Dr. August Oetker Nahrungsmittel Kg Method and device for determining the mass of piece goods on a conveyor
JP5343314B2 (en) * 2006-12-05 2013-11-13 日本電気硝子株式会社 Surface shape measuring device
PL3081315T3 (en) * 2007-02-07 2019-09-30 Marel A/S Method and system for sorting of foodstuff items
WO2008141293A2 (en) * 2007-05-11 2008-11-20 The Board Of Regents Of The University Of Oklahoma One Partner's Place Image segmentation system and method
DE202007007160U1 (en) * 2007-05-19 2007-08-02 Leica Microsystems Nussloch Gmbh Device for producing thin sections
US8616103B2 (en) 2007-10-22 2013-12-31 Formax, Inc Knife blade retraction mechanism for a food article slicing machine
DE202007015297U1 (en) * 2007-11-03 2008-01-03 Csb-System Ag System for the visualization of splitting process data
US8994747B2 (en) * 2007-11-09 2015-03-31 Imacor Inc. Superimposed display of image contours
DE102007054956A1 (en) * 2007-11-17 2009-05-20 Elau Ag Mehrzuggruppierer
PL2285224T3 (en) * 2008-05-01 2016-01-29 Lawrence Equip Inc Vacuum pressing platen assembly and method for adjustment
US20100004774A1 (en) * 2008-07-07 2010-01-07 Yao-Ming Yang System For Real-Time Surveillance Of Production Facility And Environmental Conditions
JP5276173B2 (en) * 2008-08-15 2013-08-28 エルエスアイ コーポレーション ROM list decoding of near codeword
NL2001993C (en) * 2008-09-18 2010-03-19 Meyn Food Proc Technology Bv Method and apparatus for processing poultry or a part thereof.
DE102008056881A1 (en) * 2008-11-12 2010-05-27 Werner & Pfleiderer Industrielle Backtechnik Gmbh Process for the preparation of baked goods and equipment for the automatic production of baked goods
MX2011010360A (en) * 2009-04-03 2012-04-30 Robotic Technologies Ltd Carcass cutting methods and apparatus.
ES2767175T3 (en) 2009-04-03 2020-06-16 Gea Food Solutions Germany Gmbh Cutting machine to cut a block of food products into exact weight portions
ATE548166T1 (en) * 2009-05-15 2012-03-15 Aew Delford Systems Ltd APPARATUS AND METHOD FOR CUTTING FOOD PRODUCTS INTO PORTIONS
WO2011053601A2 (en) * 2009-10-27 2011-05-05 Formax, Inc. Automated product profiling apparatus and product slicing system using the same
ES2440330T3 (en) * 2009-12-23 2014-01-28 CFS Bühl GmbH Procedure for classifying the quality of food slices of a food bar
EP2353395A1 (en) 2010-02-07 2011-08-10 Valka Ehf Food processing apparatus for detecting and cutting tissues from food items
ITMO20100232A1 (en) * 2010-08-05 2012-02-06 Abl S R L MACHINE FOR THE PREPARATION OF PIECES FROM A FRUIT OF ORGANIC OR SPHERICAL SHAPE, AS AN EXAMPLE A MELON OR A COCOMER.
US8233668B2 (en) * 2010-08-09 2012-07-31 John Bean Technologies Corporation Distinguishing abutting food product
US8392135B2 (en) * 2010-08-12 2013-03-05 Smurfit-Stone Container Enterprises, Inc. Methods and systems for analyzing performance of a sorting system
US8689685B2 (en) 2010-11-04 2014-04-08 Lawrence Equipment Inc. Dough forming pressing plate with spacers
DE102011010110A1 (en) * 2011-02-02 2012-08-02 Weber Maschinenbau Gmbh Breidenbach Apparatus and method for removing a surface layer of food products
DE102011015849A1 (en) * 2011-03-28 2012-10-04 Nordischer Maschinenbau Rud. Baader Gmbh + Co. Kg Device and method for automatically monitoring a device for processing meat products
JP5724697B2 (en) * 2011-07-08 2015-05-27 住友電装株式会社 Corrugated tube cutting device and method for manufacturing cut corrugated tube
US9095146B2 (en) * 2011-08-12 2015-08-04 Marcel Iceland Ehf Meat inspection system
US8888569B2 (en) * 2011-09-26 2014-11-18 Tyson Foods, Inc. Big poultry cut-up method
CN102507872B (en) * 2011-11-04 2014-06-11 哈尔滨工程大学 Spherical defects scanning method based on equivalent perimeter
DE102011055780A1 (en) * 2011-11-28 2013-05-29 Krones Ag METHOD AND SYSTEM FOR ORDERING MULTIPLE ART MOVING IN A MASS FLOW
US8834238B2 (en) * 2012-01-24 2014-09-16 Ryco Equipment, Inc. Fish processing system and method
JP5872504B2 (en) * 2012-06-27 2016-03-01 日本碍子株式会社 Method for manufacturing ceramic honeycomb structure
DE102012107278A1 (en) 2012-08-08 2014-02-13 Nordischer Maschinenbau Rud. Baader Gmbh + Co. Kg Method and device for monitoring a meat processing machine
DE102012018754A1 (en) 2012-09-21 2014-03-27 Weber Maschinenbau Gmbh Breidenbach Food processing apparatus and method for sequentially scanning food products
ITMO20120266A1 (en) * 2012-10-31 2014-05-01 Charlotte Anna Maria Liedl DEVICE FOR OBJECT ORIENTATION.
US9366580B2 (en) 2012-12-21 2016-06-14 John Bean Technologies Corporation Thermal measurement and process control
US20140195030A1 (en) * 2013-01-08 2014-07-10 Warsaw Orthopedic, Inc. Cutting decision-making system and method for donated tissues
EP2755018B2 (en) * 2013-01-15 2024-04-03 Nordischer Maschinenbau Rud. Baader GmbH + Co. KG Device and method for the non-contact detection of red tissue structures and assembly for detaching a strip of red tissue structures
JP2016523774A (en) * 2013-05-10 2016-08-12 ジュースロー,インコーポレイテッド Juice system and method
JP5975574B2 (en) * 2013-06-10 2016-08-23 株式会社日本キャリア工業 How to slice slices of meat
WO2015000890A1 (en) * 2013-07-02 2015-01-08 Roche Diagnostics Gmbh Estimation of food volume and carbs
IS3000B (en) * 2013-08-21 2018-07-15 John Bean Tech Corporation A Delaware State Corporation Rotatable manifold cutter for use in portioning
US20150053058A1 (en) 2013-08-21 2015-02-26 John Bean Technologies Corporation Rotatable manifold cutter for use in portioning
CN105745598B (en) * 2013-11-27 2019-10-01 惠普发展公司,有限责任合伙企业 Determine the shape of the expression of object
EP2878203A1 (en) * 2013-11-29 2015-06-03 Marel A/S A cutting apparatus and a method for cutting food products into smaller food products
US9778651B2 (en) * 2014-01-22 2017-10-03 John Bean Technologies Corporation System for cutting and unloading portions
TWI518312B (en) * 2014-01-27 2016-01-21 林紫綺 Optical inspection method for cups
MX2016016819A (en) * 2014-06-30 2017-04-25 Maekawa Seisakusho Kk Scapula incision device.
US9823693B2 (en) 2014-08-26 2017-11-21 Andrew Flessas Robotically controlled convertible display
US9538768B2 (en) * 2014-09-17 2017-01-10 Midwest Machine, LLC Automated scanning and butchering system and method of use
MX2017003541A (en) * 2014-09-23 2017-10-11 Marel As A method and a device for automatically cutting meat products such as beef tenderloin into portions.
FR3028792B1 (en) * 2014-11-26 2016-12-23 Gastronome INSTALLATION FOR CUTTING INTO PIECES OF EXTENSIVE FOODSTUFFS, ESPECIALLY MEAT OR FISH PIECES
WO2016102542A1 (en) * 2014-12-23 2016-06-30 Marel Iceland Ehf A cutting device and a cutting system for cutting food products
US20220061340A1 (en) 2015-03-02 2022-03-03 Valka Ehf Apparatus for processing and grading food articles and related methods
EP3264903A2 (en) 2015-03-02 2018-01-10 Valka Ehf Apparatus for processing and grading food articles and related methods
US11259531B2 (en) 2015-03-02 2022-03-01 Valka Ehf Apparatus for processing and grading food articles and related methods
EP3266005A4 (en) * 2015-03-03 2018-10-31 Diebold Nixdorf, Incorporated Reading predefined textual data from a sheet
CN105197529B (en) * 2015-09-17 2017-09-29 舟山陆港物流有限公司 A kind of cold chain storage supply line integrated system
US10471619B2 (en) * 2016-01-23 2019-11-12 John Bean Technologies Corporation Blade portioner calibration
DE102016101753A1 (en) * 2016-02-01 2017-08-03 Textor Maschinenbau GmbH CUTTING FOOD PRODUCTS
EP3420497B1 (en) * 2016-02-23 2021-10-06 Société des Produits Nestlé S.A. Code and container of system for preparing a beverage or foodstuff
US10543652B2 (en) 2016-03-03 2020-01-28 Fresh Press LLC Press
US10194670B2 (en) * 2016-03-07 2019-02-05 Eric Carlson Method and apparatus for deshelling shellfish
US9999906B2 (en) * 2016-06-29 2018-06-19 John Bean Technologies Corporation Sorter
US10269109B2 (en) * 2016-07-22 2019-04-23 Orora Packaging Solutions Label inspection and rejection system and method for use thereof
US10721947B2 (en) * 2016-07-29 2020-07-28 John Bean Technologies Corporation Apparatus for acquiring and analysing product-specific data for products of the food processing industry as well as a system comprising such an apparatus and a method for processing products of the food processing industry
US10654185B2 (en) 2016-07-29 2020-05-19 John Bean Technologies Corporation Cutting/portioning using combined X-ray and optical scanning
JP6506233B2 (en) * 2016-10-07 2019-04-24 ファナック株式会社 Method of cutting a gate formed on a molded article
JP6998378B2 (en) * 2016-12-07 2022-01-18 ジョン・ビーン・テクノロジーズ・コーポレイション Calibration method of quantitative distribution device
JP6476228B2 (en) * 2017-04-14 2019-02-27 オムロン株式会社 Industrial control device, control method, program, packaging machine, and control device for packaging machine
IT201700076239A1 (en) * 2017-07-06 2019-01-06 Grasselli S P A Food scanning equipment.
US10682018B2 (en) * 2017-09-02 2020-06-16 Anas Alfarra Automated food preparation and dispensing
ES2666947B2 (en) * 2017-12-18 2019-02-06 Astech Food Machinery S L AUTOMATIC CUTTING DEVICE FOR FROZEN FOODS IN EXACTLY WEIGHTED PORTIONS
US11191281B1 (en) * 2018-01-05 2021-12-07 Tyson Foods, Inc. Method and apparatus for conveying a meat product and using an ultrasonic knife for automated cutting of meat
CN108077374A (en) * 2018-01-19 2018-05-29 天津市宽达水产食品有限公司 Fish killer intelligence feeding system based on laser striation three-dimensional measurement
WO2019151394A1 (en) * 2018-01-31 2019-08-08 株式会社ニチレイフーズ Food inspection assistance system, food inspection assistance device, and computer program
US11457932B2 (en) 2018-03-15 2022-10-04 Mako Surgical Corp. Robotically controlled water jet cutting
CA3108061A1 (en) 2018-08-28 2020-03-05 John Bean Technologies Corporation Pork belly trimming
US10869489B2 (en) 2018-08-31 2020-12-22 John Bean Technologies Corporation Portioning accuracy analysis
US10653154B2 (en) * 2018-10-08 2020-05-19 Kronos Foods Corp. Horizontal char slicer, system and method
US11375739B2 (en) 2018-10-10 2022-07-05 MP Equipment, LLC Method of removing tissue from food product
US11498138B2 (en) * 2019-01-23 2022-11-15 Steve Dunivan Bandsaw automated portioning saw system and method of use
WO2020210203A1 (en) * 2019-04-08 2020-10-15 Provisur Technologies, Inc. Apparatus and method for cutting meat products into blocks of meat
US11102990B2 (en) * 2019-04-10 2021-08-31 Prime Equipment Group, Llc Keel strip removal apparatus and method
GB201906418D0 (en) 2019-05-07 2019-06-19 Valka Ehf Conveyor system and method
JP7237230B2 (en) * 2019-05-31 2023-03-10 株式会社 ゼンショーホールディングス Cutting aid
JP7236938B2 (en) * 2019-05-31 2023-03-10 株式会社 ゼンショーホールディングス Cutting aid
WO2021040714A1 (en) 2019-08-29 2021-03-04 Flessas Andrew Method and system for moving cameras using robotic mounts
EP4068994A1 (en) * 2019-12-04 2022-10-12 West Liberty Foods, L.L.C. Automated food preparation and packaging systems, methods, and apparatus
CA3168821A1 (en) * 2020-01-27 2021-08-05 John Bean Technologies Corporation Trimming work products to optimize pressing
US11425308B2 (en) 2020-12-02 2022-08-23 Andrew Flessas Robotically movable display synchronously movable with robotically movable camera for displaying captured images in identical orientation
EP4268157A1 (en) * 2020-12-24 2023-11-01 John Bean Technologies Corporation System of cutting a homogeneous work product into natural shapes with randomness
IT202100004661A1 (en) * 2021-03-01 2022-09-01 Bacco S R L AUTOMATED CONTROL SYSTEM FOR THE WEIGHT AND SHAPE OF A SWEET AND SWEETS OBTAINED THUS
US11599984B2 (en) * 2021-04-29 2023-03-07 Syscom, Inc. Methods and apparatus for detecting defects for poultry piece grading
CN113351517A (en) * 2021-06-02 2021-09-07 福建省亚明食品有限公司 Quantitative weighing mold for conditioning beef and mutton products
EP4122322A1 (en) 2021-07-21 2023-01-25 Sersounox - Equipamentos Para Indústria Alimentar, Lda A cutting assembly and machine for cutting a cooked food piece
JP2023084716A (en) * 2021-12-08 2023-06-20 株式会社リコー Laser irradiation device and laser irradiation method
WO2024012979A1 (en) * 2022-07-15 2024-01-18 Marel A/S Method and apparatus for portion cutting of meat items
WO2024040188A1 (en) * 2022-08-19 2024-02-22 John Bean Technologies Corporation Techniques for non-contact throughput measurement in food processing systems
US20240081355A1 (en) 2022-09-09 2024-03-14 John Bean Technologies Corporation Sub-primal cut identification and packaging optimization system and method

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634458A (en) * 1946-10-11 1953-04-14 Frank S Elsaesser Hamburg steak patty forming machine
US3403772A (en) * 1967-01-05 1968-10-01 Fmc Corp Container feed mechanism
US3467239A (en) * 1967-09-05 1969-09-16 Ashworth Bros Inc Central link collapsible conveyor belt
US3639903A (en) * 1968-04-30 1972-02-01 Rimantas Alfonso Nashljunas Method of and automatic system for recognition of objects by their contour representations
GB1443318A (en) * 1973-01-10 1976-07-21 Hamy N Transport systems
US3941019A (en) * 1973-05-09 1976-03-02 Oliver Machinery Company Method and apparatus for cutting lumber and the like
GB1491156A (en) * 1975-04-29 1977-11-09 Tamkin M Apparatus for trimming carrots
US4136504A (en) * 1976-09-10 1979-01-30 Ihor Wyslotsky Slicing method
DE2925218B1 (en) * 1979-06-22 1981-01-08 Lingl Anlagenbau Device for grouping rows of moldings
DE8135650U1 (en) * 1981-12-08 1982-04-15 Dürr Automation + Fördertechnik GmbH, 7889 Grenzach-Wyhlen "BUFFER CHAIN CONVEYOR"
US4783829A (en) * 1983-02-23 1988-11-08 Hitachi, Ltd. Pattern recognition apparatus
US4576071A (en) * 1983-08-04 1986-03-18 Lamb-Weston, Inc. Food product defect sensor and trimmer apparatus
JPS60140106A (en) 1983-12-28 1985-07-25 Matsushita Electric Ind Co Ltd Shape inspection apparatus
US4557019A (en) * 1984-08-10 1985-12-10 Seafreeze Limited Partnership Automatic portion-cutting method and machine
GB2171894B (en) * 1985-03-08 1988-02-17 Lockwood Graders Cutting articles
US4868951A (en) * 1986-03-01 1989-09-26 Nestec S.A. Cutting of material for obtaining a portion of predetermined weight
GB8723647D0 (en) * 1987-10-08 1987-11-11 Whitehouse J A Sizing & cutting apparatus
US4875254A (en) * 1988-03-22 1989-10-24 Design Systems, Inc. Method and apparatus for automatically cutting food products to predetermined weight or shape
AU614599B2 (en) * 1988-05-25 1991-09-05 Ferag Ag Insertion system for printed products
US5064667A (en) * 1988-12-15 1991-11-12 Oscar Mayer Foods Corporation Method for shaping bacon bellies
IT1224050B (en) * 1988-12-30 1990-09-26 Cavanna Spa PROCEDURE FOR REGULATING THE ADVANCE OF ONE-PROJECT PRODUCTS FOR THE LAUNCH AND DISPERSION OF ELECTRIC DECEPTIONS AUTOMATIC PACKAGING EQUIPMENT AND MAGNETIC ANTIMISSILE EQUIPMENT HIATURA OPERATING ACCORDING TO THIS PROCEDURE
GB9006803D0 (en) * 1990-03-27 1990-05-23 Thurne Eng Co Ltd Boundary recognition
GB9006804D0 (en) * 1990-03-27 1990-05-23 Thurne Eng Co Ltd Slicing machine
IS1666B (en) * 1991-02-19 1997-11-14 Marel Hf Method and apparatus for determining the volume, shape and weight of fish or other parts
US5163865A (en) * 1991-05-08 1992-11-17 Innerspace Technologies Of Alaska, Inc. Method and apparatus for processing fish fillets and other food items into predetermined portions
EP0514688A2 (en) * 1991-05-21 1992-11-25 International Business Machines Corporation Generalized shape autocorrelation for shape acquisition and recognition
JP3265595B2 (en) * 1991-09-27 2002-03-11 オムロン株式会社 Image processing method and apparatus
DE69223383T2 (en) 1991-11-20 1998-04-16 Canon Kk Method of attaching a squeegee blade, work unit and imaging device
CA2133825C (en) * 1992-04-13 2002-12-31 Alan Benn Image analysis for meat
JPH08504679A (en) * 1992-04-23 1996-05-21 タウンゼンド エンジニアリング カンパニー Meat slicer and method of using the same
WO1994000997A1 (en) * 1992-07-03 1994-01-20 Paul Bernard David Newman A quality control and grading system for meat
US5324228A (en) * 1992-07-27 1994-06-28 Frigoscandia Food Processing Systems A.B. Method and apparatus for detecting and trimming fat from meat products
US5585603A (en) * 1993-12-23 1996-12-17 Design Systems, Inc. Method and system for weighing objects using X-rays
JP2919284B2 (en) * 1994-02-23 1999-07-12 松下電工株式会社 Object recognition method
US6377864B1 (en) * 1994-06-16 2002-04-23 Finn-Power International, Inc. System and method of flexibly sorting and unloading finished parts during part manufacturing process
US5501319A (en) * 1994-06-21 1996-03-26 Ashworth Bros., Inc. Conveyor belt with asymmetric edge links
JP3446311B2 (en) 1994-06-22 2003-09-16 富士通株式会社 Optimal manufacturing, control and presentation condition generator
CH687872A5 (en) * 1994-08-17 1997-03-14 Ferag Ag A process for the continuous production of various types of printed products from different printed printing product parts.
DE19527147A1 (en) * 1994-10-10 1996-04-11 Laeis & Bucher Gmbh Quality testing of shaped parts produced according to desired shape e.g. in moulding machine esp. shaping press for granular masses
US5505293A (en) * 1995-01-23 1996-04-09 York Food Systems Spiral freezer infeed assist drive system
EP0727760A3 (en) * 1995-02-17 1997-01-29 Ibm Produce size recognition system
ATE260846T1 (en) * 1996-04-12 2004-03-15 Renholmens Mek Verkst Ab SYSTEM FOR FEEDING TREE TRUNKS TO A SEPARATION DEVICE
WO1997038925A1 (en) * 1996-04-16 1997-10-23 Uni-Chains International A/S Transport band for conveying along a spiral path
EP0813814B1 (en) * 1996-06-21 2004-03-17 Mayekawa Manufacturing Co., Ltd. Method and apparatus for separating bone and meat of upper half of poultry carcass
US5960104A (en) * 1996-08-16 1999-09-28 Virginia Polytechnic & State University Defect detection system for lumber
CA2263763C (en) * 1996-08-23 2006-01-10 Her Majesty The Queen, In Right Of Canada, As Represented By The Ministe R Of Agriculture And Agri-Food Canada Method and apparatus for using image analysis to determine meat and carcass characteristics
AU730709B2 (en) * 1996-10-03 2001-03-15 Marel Hf. Apparatus and process for meat packing
US5847382A (en) * 1996-10-22 1998-12-08 Jay Koch Bone detector
US5868056A (en) * 1997-01-17 1999-02-09 Design Systems, Inc. Bi-directional actuator for working tool
US5937080A (en) * 1997-01-24 1999-08-10 Design Systems, Inc. Computer controlled method and apparatus for meat slabbing
AU6634998A (en) * 1997-02-13 1998-09-08 Marel, Hf. Computer controlled portioning machine
US5926568A (en) * 1997-06-30 1999-07-20 The University Of North Carolina At Chapel Hill Image object matching using core analysis and deformable shape loci
US6975764B1 (en) * 1997-11-26 2005-12-13 Cognex Technology And Investment Corporation Fast high-accuracy multi-dimensional pattern inspection
US6111983A (en) * 1997-12-30 2000-08-29 The Trustees Of Columbia University In The City Of New York Determination of image shapes using training and sectoring
US6335985B1 (en) * 1998-01-07 2002-01-01 Kabushiki Kaisha Toshiba Object extraction apparatus
NL1008076C2 (en) * 1998-01-21 1999-07-22 Kaak Johan H B Assembly of a supplying means of transport, a discharging means of transport and a buffer device placed between the supplying means of transport and the discharging means of transport, and a buffer device for use in such an assembly.
US6031935A (en) * 1998-02-12 2000-02-29 Kimmel; Zebadiah M. Method and apparatus for segmenting images using constant-time deformable contours
DE19834524A1 (en) * 1998-07-31 2000-02-10 Nordischer Maschinenbau Device or method for processing meat
US6193054B1 (en) * 1998-07-31 2001-02-27 Fki Industries, Inc., Mathews Conveyor Division Modular accumulator conveyor system
US6230073B1 (en) * 1998-10-29 2001-05-08 Chocolate Printing Company Computerized foodstuffs imaging process and apparatus
WO2000073996A1 (en) * 1999-05-28 2000-12-07 Glebe Systems Pty Ltd Method and apparatus for tracking a moving object
US6129625A (en) * 1999-08-26 2000-10-10 Townsend Engineering Company Method of trimming a meat portion by ultrasonic and electronic analysis
US6186059B1 (en) * 1999-09-09 2001-02-13 Sara Lee Corporation Method of grading pork bellies
US6499842B1 (en) * 1999-10-15 2002-12-31 Chocolate Printing Company Foodstuffs imaging process and apparatus
US6571196B2 (en) * 1999-11-29 2003-05-27 Hitachi Kokusai Electric Inc. Size inspection/measurement method and size inspection/measurement apparatus
US7415156B2 (en) * 2000-01-28 2008-08-19 Carnegie Mellon University Parametric shape grammar interpreter
WO2001089818A1 (en) * 2000-05-26 2001-11-29 Pirelli Pneumatici S.P.A. Plant for producing tyres of different types simultaneously
GB2364894B8 (en) * 2000-07-19 2010-07-07 Fmc Corp Three axis portioning method
US6449334B1 (en) * 2000-09-29 2002-09-10 Lunar Corporation Industrial inspection method and apparatus using dual energy x-ray attenuation
US6563904B2 (en) * 2000-12-01 2003-05-13 Fmc Technologies, Inc. Apparatus and method for detecting and removing undesirable material from workpieces
MXPA03011877A (en) * 2001-06-07 2004-06-03 Siemens Ag Tiered control architecture for material handling.
US6766898B2 (en) * 2001-09-07 2004-07-27 Claude Lessard Surface conveyor with variable delivery rate for bagging bakery products
US7044846B2 (en) * 2001-11-01 2006-05-16 Stein Grov Eilertsen Apparatus and method for trimming of fish fillets
US7162073B1 (en) * 2001-11-30 2007-01-09 Cognex Technology And Investment Corporation Methods and apparatuses for detecting classifying and measuring spot defects in an image of an object
US7106897B1 (en) * 2002-04-29 2006-09-12 Advanced Micro Devices, Inc. Universal spatial pattern recognition system
US7158677B2 (en) * 2002-08-20 2007-01-02 National Instruments Corporation Matching of discrete curves under affine transforms
AU2003275098B2 (en) * 2002-09-20 2008-07-03 Dematic Corp. Accumulating conveyor system
US7221786B2 (en) * 2002-12-10 2007-05-22 Eastman Kodak Company Method for automatic construction of 2D statistical shape model for the lung regions
US7373217B2 (en) * 2003-04-08 2008-05-13 Hormel Foods, Llc Apparatus for slicing a food product and method therefore
WO2004106020A1 (en) * 2003-06-03 2004-12-09 Scanvaegt International A/S Apparatus and method for portion cutting of food articles
CA2475499C (en) * 2003-07-21 2012-06-05 Fmc Technologies, Inc. Apparatus and method for portioning using automatic workpiece conveyance speed control
US7292737B2 (en) * 2003-08-15 2007-11-06 Microsoft Corporation Unified bayesian framework for shape registration
US7426302B2 (en) * 2003-11-28 2008-09-16 John Amico System and method for digitizing a pattern
AU2005200016B2 (en) 2004-01-09 2010-12-09 John Bean Technologies Corporation Method and system for portioning workpieces to user-scanned shape and other specifications
US7391882B2 (en) * 2004-01-29 2008-06-24 Siemens Medical Solutions Usa, Inc. Prior knowledge, level set representations and visual grouping
WO2006058154A1 (en) * 2004-11-23 2006-06-01 Eastman Kodak Company Method for automatic shape classification
US7251537B1 (en) * 2004-12-30 2007-07-31 Fmc Technologies, Inc. Processing of work piece based on desired end physical criteria
AU2005248939B2 (en) * 2004-12-30 2011-10-27 John Bean Technologies Corporation Portioning apparatus and method
US7702157B2 (en) * 2005-03-30 2010-04-20 Kabushiki Kaisha Toshiba Pattern evaluation method, pattern matching method and computer readable medium
US7885467B2 (en) * 2005-09-28 2011-02-08 Wisconsin Alumni Research Foundation Systems and methods for automatically determining object information and systems and methods for control based on automatically determined object information

Also Published As

Publication number Publication date
BRPI0505803A (en) 2006-12-05
GB2421823B (en) 2010-06-16
GB0526568D0 (en) 2006-02-08
GB0526314D0 (en) 2006-02-01
IS8204A (en) 2006-07-01
GB2421677B (en) 2009-11-11
GB2421719A (en) 2006-07-05
AU2005248977A1 (en) 2006-07-20
BRPI0506291A (en) 2006-09-19
CA2531857A1 (en) 2006-06-30
US7715935B2 (en) 2010-05-11
BRPI0505797A (en) 2006-08-29
US20060171581A1 (en) 2006-08-03
IS8205A (en) 2006-07-01
IS8206A (en) 2006-07-01
AU2005248977B2 (en) 2011-08-18
CA2531863A1 (en) 2006-06-30
US7747042B2 (en) 2010-06-29
GB2421719B (en) 2008-07-02
US7672752B2 (en) 2010-03-02
AU2005248939A1 (en) 2006-07-20
AU2005248976B2 (en) 2011-11-24
IS8210A (en) 2006-07-01
GB2421676A (en) 2006-07-05
US7651388B2 (en) 2010-01-26
GB2421823A (en) 2006-07-05
CA2531621A1 (en) 2006-06-30
IS8203A (en) 2006-07-01
GB2422208B (en) 2009-06-03
US7500550B2 (en) 2009-03-10
BRPI0505801A (en) 2006-10-03
AU2005248976A1 (en) 2006-07-20
IS8209A (en) 2006-07-01
AU2005248962A1 (en) 2006-07-20
US20060161380A1 (en) 2006-07-20
GB0526567D0 (en) 2006-02-08
BRPI0505800A (en) 2006-08-29
CA2531857C (en) 2017-10-10
CA2531852A1 (en) 2006-06-30
US20060163032A1 (en) 2006-07-27
GB2421676B (en) 2010-03-24
CA2531626A1 (en) 2006-06-30
GB2422208A (en) 2006-07-19
GB0526508D0 (en) 2006-02-08
AU2005248961A1 (en) 2006-07-20
GB0526479D0 (en) 2006-02-08
US7452266B2 (en) 2008-11-18
AU2005248942A1 (en) 2006-07-20
GB0526324D0 (en) 2006-02-01
US20060156878A1 (en) 2006-07-20
AU2005248939B2 (en) 2011-10-27
BRPI0506292A (en) 2006-09-19
CA2531895C (en) 2013-08-13
GB2422443A (en) 2006-07-26
GB2421677A (en) 2006-07-05
US20060162515A1 (en) 2006-07-27
AU2005248962B2 (en) 2011-11-03
GB2422443B (en) 2009-07-22
CA2531895A1 (en) 2006-06-30
CA2531852C (en) 2013-02-12
US20060157388A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
CA2531863C (en) Determining the position and angular orientation of food products
US7621806B2 (en) Determining the position and angular orientation of food products
US7949414B2 (en) Processing of work piece based on desired end physical criteria
US7251537B1 (en) Processing of work piece based on desired end physical criteria
US8166856B2 (en) Method for portioning foodstuff to user-specified shape
EP3977048B1 (en) Determining the thickness profile of work products
CA2744755C (en) Distinguishing abutting food product
US10863751B2 (en) Pork belly trimming
US7156730B1 (en) Method and system for achieving acceptable process time

Legal Events

Date Code Title Description
EEER Examination request