CA2485394C - Lancing device with a floating probe for control of penetration depth - Google Patents

Lancing device with a floating probe for control of penetration depth Download PDF

Info

Publication number
CA2485394C
CA2485394C CA2485394A CA2485394A CA2485394C CA 2485394 C CA2485394 C CA 2485394C CA 2485394 A CA2485394 A CA 2485394A CA 2485394 A CA2485394 A CA 2485394A CA 2485394 C CA2485394 C CA 2485394C
Authority
CA
Canada
Prior art keywords
lancet
target site
lancing device
floating probe
lancing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2485394A
Other languages
French (fr)
Other versions
CA2485394A1 (en
Inventor
John Allen
Lorin P. Olson
Alan Doop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LifeScan Inc
Original Assignee
LifeScan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LifeScan Inc filed Critical LifeScan Inc
Publication of CA2485394A1 publication Critical patent/CA2485394A1/en
Application granted granted Critical
Publication of CA2485394C publication Critical patent/CA2485394C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/46Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for controlling depth of insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • A61B5/15188Constructional features of reusable driving devices
    • A61B5/15192Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing
    • A61B5/15194Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing fully automatically retracted, i.e. the retraction does not require a deliberate action by the user, e.g. by terminating the contact with the patient's skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150068Means for enhancing collection by tissue compression, e.g. with specially designed surface of device contacting the skin area to be pierced
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150358Strips for collecting blood, e.g. absorbent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150412Pointed piercing elements, e.g. needles, lancets for piercing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150503Single-ended needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15103Piercing procedure
    • A61B5/15107Piercing being assisted by a triggering mechanism
    • A61B5/15113Manually triggered, i.e. the triggering requires a deliberate action by the user such as pressing a drive button
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15115Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids
    • A61B5/15117Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids comprising biased elements, resilient elements or a spring, e.g. a helical spring, leaf spring, or elastic strap
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • A61B5/15188Constructional features of reusable driving devices
    • A61B5/1519Constructional features of reusable driving devices comprising driving means, e.g. a spring, for propelling the piercing unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/48Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for varying, regulating, indicating or limiting injection pressure

Abstract

A lancing device includes a lancing mechanism, a floating probe and a pressure tip. The lancing mechanism includes a lancet carriage, a lancet holder slidably connected to the lancet carriage, and a lancet attached to the lancet holder. The pressure tip of the lancing device is configured for engaging a target site and creating a target site bulge. The floating probe is adapted to floatably contact the target site bulge and to operatively interact with the lance carriage to control a penetration depth of the lancet into the target site bulge. A method for lancing a target site includes providing the lancing device describe above and contacting the pressure tip of the lancing device with the target site. The pressure tip is then urged towards the target site to create a target site bulge with the floating probe of the lancing device floating on a surface of the target site bulge. Next, the target site bulge is lanced while the floating probe operatively interacts with the lance carriage to control a penetration depth of the lancet.

Description

LANCING DEVICE WITH A FLOATING PROBE
FOR CONTROL OF PENETRATION DEPTH
BACKGROUND OF THE INVENTION
[0001] 1. Field of the Invention [0002] The present invention relates, in general, to lancing devices and, in particular, to lancing devices with penetration depth control and associated methods of use.
[0003] 2. Description of the Related Art [0004] Conventional lancing devices generally have a rigid housing arid a lancet that can be armed and launched so as to briefly protrude from one end of the lancing device.
For example, conventional lancing devices can include a lancet that is mounted within a rigid housing such that the lancet is movable relative to the rigid housing along a longitudinal axis thereof. Typically, the lancet is spring loaded and launched, upon release of the spring, to penetrate (i.e., "lance") a target site (e.g., a dermal tissue target site). A biological fluid sample (e.g., a whole blood sample) can then be expressed from the penetrated target site for collection and analysis. Conventional lancing devices are described in U.S. Patent No. 5,730,753 to Morita, U.S. Patent No.
6,045,567 to Taylor et al. and U.S. Patent No. 6,071,250 to Douglas et al.
[0005] Lancing devices often include a cap that engages the target site.
Such a cap has an aperture (i.e., opening), through which the lancet protrudes during use.
Typically, a distal end of the cap will be placed in contact with the target site during use. The profile of the distal end of the cap can be adapted for contact with predetermined target sites, such as fingers, earlobes, forearms and the abdomen.
[0006] When a cap is contacted with a target site, pressure is usually applied to the target site prior to launch of the lancet. This pressure urges the cap against the target PATENT
Attorney Docket No. LFS-5002 site and creates a target site bulge within the opening of the cap. The lancet is then launched to penetrate the target site bulge.
[0007] When pressure is applied on a cap of a lancing device against a target site, however, the height of the resultant target site bulge can vary greatly depending on the dimensions of the cap's opening, the magnitude of applied pressure and various physical properties (e.g., elasticity) of the target site. Such variability in target site bulge height causes the penetration depth of the lancet into the target site bulge to vary, as well. Thus, a lancet can potentially penetrate too deeply in some circumstances and not deeply enough, or at all, in other circumstances. Still needed in the field, therefore, is a lancing device and associated method that provide for the control of penetration depth across target site bulges of various heights.
SUMMARY OF THE INVENTION
[0008] Lancing devices and associated methods according to embodiments of the present invention provide for the control of penetration depth across target site bulges of various heights.
[0009] A lancing device according to an exemplary embodiment of the present invention includes a lancing mechanism, a pressure tip and a floating probe.
The lancing mechanism includes a lancet carriage, a lancet holder slidably connected to the lancet carriage, and a lancet attached to the lancet holder. The pressure tip is configured for engaging a target site and creating a target site bulge. The floating probe is adapted to floatably contact the target site bulge and to operatively interact with the lance carriage to control a penetration depth of the lancet into the target site bulge.
[0010] Since the floating probe of lancing devices according to the present invention is adapted to float upon the target site bulge, the floating probe can provide mechanical feedback to the lance carriage, lancet holder and lancet such that the penetration depth across target site bulges of various heights is essentially constant. In doing so, the floating probe fixes a position of the lancet carriage relative to the target site bulge, thus providing a constant penetration depth.
[0011] A method for lancing a target site according to an exemplary embodiment of the present invention includes providing a lancing device (according to the present invention as described herein) and contacting a pressure tip of the lancing device with the target site. The pressure tip is then urged towards the target site to create a target site bulge with a floating probe of the lancing device floating on a surface of the target site bulge. Next, the target site bulge is lanced while the floating probe operatively interacts with the lance carriage to control a penetration depth of the lancet.
[0011a1 There is also provided a lancing device comprising:
a lancing mechanism having:
a lanc'et carriage;
a lancet holder slidably connected to the lancet carriage;
a lancet attached to the lancet holder; and a lock-stop assembly;
a floating probe; and a pressure tip for engaging a target site and creating a target site bulge;
wherein the floating probe is adapted to floatably rest upon said target site bulge as said target site bulge is created by the pressure tip and is configured to operatively interact with the lancet carriage to control a penetration depth of the lancet into the target site bulge, and further configured to engage the lock-stop assembly to prevent movement of the floating probe during penetration of the lancet into the target site bulge.
[0011131 There is also provided use of the lancing device described herein for lancing a target site.

BRIEF DESCRIPTION OF THE DRAWINGS
=
[0012] A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings, of which:
[0013] FIG. 1 is a simplified, schematic, cross-sectional view of a lancing device according to an exemplary embodiment of the present invention, with a floating probe and a lancing mechanism of the lancing device in a rest position;
[0014] FIG. 2 is a simplified schematic, cross-sectional view of the lancing device of FIG. 1 with the floating probe and lancing mechanism in the act of being placed into an armed position;
[0015] FIGs. 3A and 3B are simplified schematic, cross-sectional views of the lancing device of FIG. 1 with the floating probe contacting a relatively-low target site bulge and a relatively-high target site bulge, respectively;
[0016] FIGs. 4A and 4B are simplified, schematic, cross-sectional views of the lancing device of FIG. 1 depicting lance penetration into a relatively-low target site bulge and a relatively-high target site bulge, respectively;
3a i PATENT
-Attorney Docket No. LFS-5002 [0017] FIGs. 5A and 5B are simplified, schematic, cross-sectional views of the lancing device of FIG. 1 depicting post-lancing sample collection from a relatively-low target site bulge and a relatively-high target site bulge, respectively;
[0018] FIG. 6 is a simplified, schematic, cross-sectional view of a lancing device according to another exemplary embodiment of the present invention;
[0019] FIG. 7 is an exploded perspective view of a lancing device according to yet another exemplary embodiment of the present invention;
[0020] FIG. 8 is a simplified, schematic, cross-sectional view of the lancing device of FIG. 7; and [0021] FIG. 9 is a flow diagram illustrating a sequence of steps for lancing a target site according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0022] FIG. 1 is a simplified, schematic cross-sectional view of a lancing device 100 according to an exemplary embodiment of the present invention. Lancing device includes a housing 102, a pressure tip 104, a lancing mechanism 106, floating probe 108, a floating probe spring 110 and a trigger button 112. In the embodiment of FIG. 1, pressure tip 104 is attached to housing 102.
[0023] Pressure tip 104 and floating probe 108 are generally, but are not limited to being, cylindrical in form with openings (104a and 108a, respectively) therethrough.
The openings within pressure tip 104 and floating probe 108 may be, but are not limited to, circular shape openings, square shape openings, triangular shape openings, C-shape openings, U-shape openings, hexagonal shape openings and an octagonal shape openings.
[0024] During use of lancing device 100, pressure tip 104 is pressed against a target site (e.g., a user's skin of a dermal tissue target site) such that pressure tip 104 engages (contacts) the target site and urges the target site into a target-site bulge (not shown in FIG. 1) within the opening of pressure tip 104.

, , PATENT
Attorney Docket No. LFS-5002 [0025] Lancing mechanism 106 includes a lancet carriage 114, a lancet holder 116 and a lancet 118. Lancing mechanism 106 also includes over-travel spring 120 and launcher spring 122. Lancet carriage 114 includes carriage latch 124 and a lancet holder over-travel stop feature 126. In addition, pressure tip 104 has a probe stop surface 128.
[0026] Floating probe 108 of lancing device 100 is adapted to floatably contact a target site bulge (not shown in FIG. 1) and is configured to operatively interact with lance carriage 114 to control a penetration depth of lancet 118 into the target-site bulge.
However, the extent to which floating probe 108 can move is limited by floating probe spring 110 and probe stop surface 128.
[0027] In the embodiment of FIG. 1, the floating nature of floating probe 108 is due to floating probe 108 being slidable along a longitudinal axis of housing 102. In addition, lancet carriage 114 and lancet holder 116 are also slidable with respect to housing 102 along the same longitudinal axis. Furthermore, lancet holder 116 is slidably connected to lancet carriage 114.
[0028] Over-travel spring 120, launcher spring 122 and probe spring 110 are configured to control movement and positioning of the floating probe, lancet carriage and lancet holder in a manner described below.
[0029] Over-travel spring 120 and lancet holder over-travel stop feature 126 provide for lancet 118 to extend to a controlled penetration depth in a target site bulge before over-travel spring 120 returns lancet 118 to a fixed rest position. In this regard, it should be noted that the position of lancet holder over-travel stop feature 126 with respect to a target site bulge is operatively set by the interaction of floating probe 108 and lancet carriage 114 (as described further below). Therefore, floating probe 108 is able to provide mechanical feedback to the lancet carriage 114, lancet holder 116 and i PATENT
_ Attorney Docket No. LFS-5002 lancet 118 such that the penetration depth across target site bulges of various heights is controlled and essentially constant.
[0030] Launcher spring 122 controls movement of the lancet carriage 114. Floating probe spring 110 and the probe stop surface 128 serve to control the extent to which the floating probe 108 can move (i.e., float) relative to housing 102. Exemplary, but non-limiting, strengths of the launcher spring 122, over-travel spring 120 and floating probe spring 110 are in the range of 0.5-1.0 lbs of force, 0.2-0.3 lbs of force and approximately 0.2 lbs of force respectively.
[0031] Pressure tip 104 can be formed of, for example, a rigid or a relatively resiliently deformable material, including, but not limited, to elastomeric materials, polymeric materials, polyurethane materials, latex materials, silicone materials and any combinations thereof. Floating probe 108 can be formed of any suitable material including, but not limited to, relatively rigid material such as acrylonitrile butadiene styrene plastic, injection moldable plastic, polystyrene and metallic materials.
[0032] The operation and various features of lancing device 100 are illustrated in FIGs.
2, 3A, 3B, 4A, 4B, 5A and 5B. FIG. 2 is a simplified schematic, cross-sectional view of lancing device 100 with the floating probe 108 and lancing mechanism 106 in the act of being placed into an armed position (e.g., immediately prior to use). In an armed position, the lancet carriage 114 is held in position against the biasing force of launcher spring 122 by interaction between carriage latch 124, housing 102 and trigger button 112. The arrows of FIG. 2 depict a direction in which floating probe 108 can be pushed in order to place lancet carriage 114 into a position where it is held against the biasing force of launcher spring 122 by interaction between carriage latch 124, housing 102 and trigger button 112 (i.e., into an armed position). Lancing device 100 can, however, be placed into an armed position by any methods known to one skilled in the art including, for example, use of an external slider (not shown) or a plunger (also not shown).

PATENT
Attorney Docket No. LFS-5002 [0033] FIGs. 3A and 3B are simplified schematic, cross-sectional views of the lancing device of FIG. 1 with the floating probe contacting a relatively-low target site bulge (denoted as B1) and a relatively-high target site bulge (denoted as B2), respectively.
When lancing device 100 is in use and pressure tip 104 is applied against a target site, a target site bulge is created in the opening of pressure tip 104. The height of the target site bulge can vary depending on, for example, target site physical properties.
However, in both FIG. 3A and FIG. 3B, floating probe 108 rests upon the target site bulge (B1 and B2, respectively in the FIGs. 3A and 3B) and is configured to move (i.e., float) with the surface of the target site bulge, essentially independent of lancet carriage 114 and housing 102. Since the floating probe floats with the surface of the target site bulge, floating probe 108 serves to control the penetration depth of lancet 118 into the target site bulge (as explained in more detail below). One skilled in the art will recognize that floating probe 108 can be configured to essentially float (rest) on the surface of the target site bulge in the presence of floating probe spring 110.
This can be accomplished by, for example, selecting a floating probe spring with a spring constant that does not significantly interfere with the floating nature of the floating probe.
[0034] FIGs. 4A and 4B are simplified, schematic, cross-sectional views of lancing device 100 depicting lance penetration into the relatively-low target site bulge B1 and the relatively-high target site bulges B2 of FIGs. 3A and 3B, respectively.
Once pressure tip 104 has been applied to a target site and a target site bulge created, operation of trigger button 112 (depicted by the arrow in FIG. 4A) releases carriage latch 124.
[0035] Release of carriage latch 124 allows lancet carriage 114, lancet holder 116 and lancet 118 to move (i.e., to be launched) toward the target site bulge under the force of launcher spring 122. Subsequently, lancet carriage 114 is stopped by contact with floating probe 108. The inertia of the lancet carriage may push the floating probe against the target site bulge, however this effect is a momentary deflection that is not expected to adversely affect operation of the lancing device.

PATENT
Attorney Docket No. LFS-5002 [0036] Due to the inertia of lancet holder 116, lancet holder 116 and lancet 118 continue moving toward the target site bulge resulting in lancet 118 penetrating the target site bulge. This penetration is depicted in FIGs. 4A and 4B. Lancet holder over-travel stop feature 126 limits the distance that lancet holder 116 and lancet 118 can travel (to, for example, a distance in the range of 0.25 to 1.5 mm) once lancet carriage 114 has been stopped by contact with floating probe 108. The distance that lancet holder 116 and lancet 118 travel once lancet carriage 114 has been stopped is referred to as the over-travel distance. In the embodiment of FIGs. 1-5B, the over-travel distance is a fixed distance.
[0037] Since the floating probe rests upon the surface of the target site bulge, regardless of whether the target site bulge is relatively high or relatively low, and serves to stop the movement of lancet carriage 114, penetration depth is consistently controlled across various target site bulge heights.
[0038] FIGs. 5A and 5B are simplified, schematic, cross-sectional views of lancing device 100 depicting post-lancing sample collection from the relatively-low target site bulge B1 and a relatively-high target site bulge B2 of FIGs. 4A and 4B, respectively.
Following penetration of the target site bulge by lancet 118 (as depicted in FIGs. 4A
and 4B), the biasing force of over-travel spring 120 moves lancet holder 116 and lancet 118 to a position wherein lancet 118 is near or just below the surface of the target site bulge, e.g. to a depth of approximately 0.05 to 0.25 mm below the surface of the target site bulge. FIGs. 5A and 5B depict the presence of a biological fluid sample S
(e.g., whole blood) that has been expressed from the target site bulge. This biological fluid sample is available for transfer to a test strip (not shown) for analyte detection.
[0039] FIG. 6 is a simplified, schematic, cross sectional view of a lancing device 600 according to another exemplary embodiment of the present invention. In FIG. 6, lancing device 600 is depicted in an armed position and as pressed against a target site bulge (TB). Lancing device 600 includes a housing 602, a pressure tip 604, a lancing mechanism 606, floating probe 608, floating probe spring 610 and a stop lock assembly 612 (with the dashed lines indicating a flexed position of stop lock assembly 612).
[0040] Lancing mechanism 606 includes a lancet carriage 614, a lancet holder 616 and a lancet 618. Lancing mechanism 606 also includes launcher spring 620 and lancet carriage 614 includes a carriage latch 624.
[0041] Pressure tip 604 of lancing device 600 is depicted as an elastomeric cap, such as the cap described in WO 04/045375. However, any suitable pressure tip known to those of skill in the art can be employed in embodiments of lancing devices according to the present invention.
[0042] Stop lock assembly 612 can be employed to prevent the floating probe 608 from moving after launching of the lancet carriage 614, thereby reducing the impact force between the lancet carriage and the floating probe. This is accomplished by pushing stop lock assembly 612 (in the direction of the arrow in FIG. 6) such that stop lock assembly teeth 612A engage floating probe 608. Once stop lock assembly teeth 612A have engaged floating probe 608, floating probe 608 is prevented from moving.
Further pushing of stop lock assembly 612 places stop lock assembly into a flexed position (indicated by the dashed lines in FIG. 6) such that it can operatively interact with carriage latch 624.
[0043] FIGs. 7 and 8 are perspective exploded and cross-sectional views, respectively, of a lancing device 700 according to another exemplary embodiment of the present invention. Lancing device 700 includes a pressure tip 702, front housing 704, floating probe 706, dowel pins 708, lancet 710, floating probe spring 712, lancet holder 714, rest adjust nut 716, lancet carriage 718, launcher spring 720, decoupling spring spacer 722, decoupling spring 724, rear housing 726, trigger button 728, over-travel spring 730 and plunger 732.

PATENT
Attorney Docket No. LFS-5002 [0044] Pressure tip 702 is illustrated as having the form of an elastomeric cap, such as the elastomeric cap described in U.S. Provisional Patent Application No.
60/426,683, which is fully incorporated herein by reference. In the embodiment of FIGs. 7 and 8, decoupling spring 724 is operatively "in line" with the launcher spring 720.
Therefore, decoupling spring 724 is functionally in series with the launcher spring 720.
[0045] Decoupling spring 724 is selected to have a much lower spring load than the launcher spring 720. For example, decoupling spring 724 can have a spring load at equilibrium in the range of 0.1 to 0.2 lbs. Decoupling spring 724 serves to reduce the cumulative force on floating probe 706. In the absence of decoupling spring 724, the spring force on floating probe 706 would be a result of the combined forces of floating probe spring 712 and the launcher spring 720. This combined force would cause an increase in the effective spring rate at the floating probe 706 that could adversely affect the operational characteristics of pressure tip 702. However, decoupling spring reduces the combined force and, therefore, eliminates such adverse affects. For example, when launcher spring 720 is extended during use, decoupling spring 724 acts to reduce the force applied by launcher spring 720 against lancet carriage 718.
[0046] Lancing device 700 is configured such that it can be placed into an armed position by retraction of plunger pull 732. Trigger button 728 can, thereafter, be employed to initiate launching of lancet carriage 718 and lancet holder 714.
[0047] Rest adjust nut 716 is adapted to adjust the lancet rest position, while dowel pins 708 are configured for locking floating probe 706 into a fixed position.
Rest adjust nut 716 allows the user to adjust the post-launching rest position of the lancet 710 relative to the floating probe 706. This adjustment enables placement of the lancet tip in a position that facilitates the transfer of a sample onto a test strip (not shown) integrated with the lancet. Optimal placement of a lancet after lancing is described in more detail in WO 04/041088 and WO 04/041087.
[0048] Depth penetration control with lancing device 700 is accomplished by having a threaded connection (not shown) between the plunger pull 732 and the lancet holder 714. The depth control or over-travel is limited when the plunger pull 732 contacts the lancet carriage 718. By adjusting the gap between the plunger pull 732 and the lancet carriage 718, lancet depth control is achieved. Over-travel spring 730 returns the lancet to the rest position after lancing is complete.
[0049] The floating probe 706 can be locked into a fixed position by use of dowel pins 708. Placing the floating probe into a locked position disables the floating nature of the floating probe. However, such a locked position can be desirable when lancing device 700 is used to lance a target site that results in a relatively flat (i.e., essentially flat) target site bulge. One skilled in the art will also appreciate that the slots cut into front housing 704 can be designed to allow the floating probe 706 to move in an axial direction to a prescribed limit. Except as otherwise described or illustrated, lancing device 700 operates in essentially the same manner as that described with respect to the embodiment of FIGs. 1-5.
[0050] As will be appreciated by those skilled in the art, lancet devices according to the present invention greatly facilitate reproducible production of a fluid sample (e.g., a blood sample) at a puncture (lancing) site because of the consistent lancet penetration depth. For example, lancing device 700 was employed to lance various dermal tissue target sites (i.e., an index finger target site and a palm target site) that resulted in the creation of target site bulges of various heights. Although the height of the target site bulges differed by 3 mm to 4 mm, penetration depth was consistent, and a blood sample was successfully expressed, at each target site. This facilitates in-situ testing of a fluid sample by means of a fluid collection device (such as a test strip) that is introduced at the lancet penetration site just after a lancet has been retracted. Consistent proper lancet depth control can also result in less pain.
, i PATENT
Attorney Docket No. LFS-5002 [0051] Referring to FIG. 9, a method 900 for lancing a target site includes providing a lancing device according to the present invention as described above. Such a lancing device includes a lancet carriage, a lancet holder slidably connected to the lancet carriage, a lancet attached to the lancet holder, a floating probe, and a pressure tip for engaging the target site and creating a target site bulge. The floating probe of such a lancing device is adapted to floatably contact the target site bulge and is configured to operatively interact with the lance carriage to control a penetration depth of the lancet into the target site bulge, as set forth in step 910.
[0052] Next, at step 920, the pressure tip of the lancing device is contacted with the target site. Subsequently, the pressure tip is urged towards the target site, thereby creating target site bulge with the floating probe floating (resting) on a surface of the target site bulge, as set forth in step 930.
[0053] Next, the target site bulge is lanced with the lancet while the floating probe operatively interacts with the lance carriage to control a penetration depth of the lancet into the bulge, as set forth in step 940. If desired, movement of the floating probe during lancing can be prevented through the use of a stop lock assembly as described above. One skilled in the art will recognize that steps 910, 920, 930 and 940 have been effectively illustrated by FIGs. 2 through 4B above.
[0054] It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

, ,

Claims (9)

1. A lancing device comprising:
a lancing mechanism having:
a lancet carriage;
a lancet holder slidably connected to the lancet carriage;
a lancet attached to the lancet holder; and a lock-stop assembly;
a floating probe; and a pressure tip for engaging a target site and creating a target site bulge;
wherein the floating probe is adapted to floatably rest upon said target site bulge as said target site bulge is created by the pressure tip and is configured to operatively interact with the lancet carriage to control a penetration depth of the lancet into the target site bulge, and further configured to engage the lock-stop assembly to prevent movement of the floating probe during penetration of the lancet into the target site bulge.
2. The lancing device of claim 1 further comprising:
a housing;
wherein the lancet carriage is slidably connected to the housing, the lancet holder is slidably connected to the lancet carriage and the floating probe is slidably connected to the housing.
3. The lancing device of claim 1, wherein the floating probe is formed from a rigid material.
4. The lancing device of claim 1, further comprising a launcher spring and a decoupling spring arranged in series.
5. The lancing device of claim 1, wherein the penetration depth is in the range of 0.25 to 1.5 mm.
6. The lancing device of claim 2, wherein the lancing mechanism further includes an over-travel spring and a launcher spring, wherein the housing includes a floating probe spring, and wherein the floating probe spring, and launcher spring are configured to control movement and positioning of the floating probe, lancet carriage and lancet holder.
7. The lancing device of claim 1, wherein the pressure tip includes a probe stop surface.
8. The lancing device of claim 1, wherein the lancet carriage includes a lancet holder over-travel stop feature.
9. Use of the lancing device of any one of claims 1-8 for lancing a target site.
CA2485394A 2003-10-20 2004-10-20 Lancing device with a floating probe for control of penetration depth Expired - Fee Related CA2485394C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/690,083 US7481818B2 (en) 2003-10-20 2003-10-20 Lancing device with a floating probe for control of penetration depth
US10/690,083 2003-10-20

Publications (2)

Publication Number Publication Date
CA2485394A1 CA2485394A1 (en) 2005-04-20
CA2485394C true CA2485394C (en) 2013-07-23

Family

ID=34423316

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2485394A Expired - Fee Related CA2485394C (en) 2003-10-20 2004-10-20 Lancing device with a floating probe for control of penetration depth

Country Status (17)

Country Link
US (1) US7481818B2 (en)
EP (1) EP1527736B1 (en)
JP (1) JP4727204B2 (en)
KR (1) KR101157812B1 (en)
CN (1) CN1608587B (en)
AT (1) ATE439083T1 (en)
AU (1) AU2004222739B2 (en)
CA (1) CA2485394C (en)
DE (1) DE602004022497D1 (en)
ES (1) ES2329900T3 (en)
HK (1) HK1073057A1 (en)
IL (1) IL164696A (en)
MX (1) MXPA04010359A (en)
NO (1) NO20044435L (en)
RU (1) RU2343831C2 (en)
SG (2) SG131939A1 (en)
TW (1) TWI374728B (en)

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US7033371B2 (en) 2001-06-12 2006-04-25 Pelikan Technologies, Inc. Electric lancet actuator
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9795747B2 (en) * 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
DE60234597D1 (en) 2001-06-12 2010-01-14 Pelikan Technologies Inc DEVICE AND METHOD FOR REMOVING BLOOD SAMPLES
US10022078B2 (en) 2004-07-13 2018-07-17 Dexcom, Inc. Analyte sensor
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US9795334B2 (en) * 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
JP4423473B2 (en) * 2002-11-15 2010-03-03 アークレイ株式会社 Lancet and lancing device
US20040127818A1 (en) 2002-12-27 2004-07-01 Roe Steven N. Precision depth control lancing tip
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
ES2347248T3 (en) 2003-05-30 2010-10-27 Pelikan Technologies Inc. PROCEDURE AND APPLIANCE FOR FLUID INJECTION.
WO2004107964A2 (en) 2003-06-06 2004-12-16 Pelikan Technologies, Inc. Blood harvesting device with electronic control
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US20050096686A1 (en) * 2003-10-31 2005-05-05 Allen John J. Lancing device with trigger mechanism for penetration depth control
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
EP1726259B1 (en) * 2004-03-15 2011-10-05 Terumo Kabushiki Kaisha Body fluid collecting device
US7201723B2 (en) * 2004-03-25 2007-04-10 Roche Diagnostics Operations, Inc. Pulsating expression cap
CA2562215A1 (en) 2004-04-10 2005-10-20 F. Hoffmann-La Roche Ag Method and system for taking body fluid
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US20050277849A1 (en) * 2004-06-10 2005-12-15 Daniel Wong Vacuum sample expression device
US20060036187A1 (en) 2004-06-30 2006-02-16 Hester Vos Devices, systems and methods for extracting bodily fluid and monitoring an analyte therein
US20060020192A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US7727166B2 (en) * 2004-07-26 2010-06-01 Nova Biomedical Corporation Lancet, lancet assembly and lancet-sensor combination
DE102004059491B4 (en) * 2004-12-10 2008-11-06 Roche Diagnostics Gmbh Lancet device for creating a puncture wound and lancet drive assembly
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8956291B2 (en) * 2005-02-22 2015-02-17 Admetsys Corporation Balanced physiological monitoring and treatment system
JP4573878B2 (en) * 2005-03-03 2010-11-04 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Puncture system for collecting body fluid
EP1709906A1 (en) * 2005-04-07 2006-10-11 F. Hoffmann-La Roche Ag Method and device for blood sampling
US20070038147A1 (en) * 2005-08-11 2007-02-15 Joel Mechelke Method for extracting interstitial fluid
JP4575257B2 (en) * 2005-09-06 2010-11-04 オリンパスメディカルシステムズ株式会社 Tissue biopsy needle device
US20070202186A1 (en) 2006-02-22 2007-08-30 Iscience Interventional Corporation Apparatus and formulations for suprachoroidal drug delivery
WO2007130830A2 (en) 2006-04-25 2007-11-15 Facet Technologies, Llc Lancing device with independent drive core
US7914547B2 (en) * 2006-06-15 2011-03-29 Abbott Diabetes Care Inc. Adjustable lancing devices and methods
DE502006008234D1 (en) 2006-09-04 2010-12-16 Roche Diagnostics Gmbh Lancing system for removing a body fluid
US7824102B2 (en) * 2006-12-09 2010-11-02 Shenzhen Mindray Bio-Medical Electronics, Inc. Thermometer quick linkage apparatus and method
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
WO2009129349A2 (en) * 2008-04-16 2009-10-22 Kim Stanley I Single-use disposable lancing apparatus and methods
WO2010011805A1 (en) * 2008-07-24 2010-01-28 Admetsys Corporation Device and method for automatically sampling and measuring blood analytes
US8123772B2 (en) * 2008-08-14 2012-02-28 Abbott Diabetes Care Inc. Cap for lancing device with adjustable mode of operation
US8092476B2 (en) * 2008-08-14 2012-01-10 Abbott Diabetes Care Inc. Adjustable cap and lancing device and method of use
EP2181651A1 (en) * 2008-10-29 2010-05-05 Roche Diagnostics GmbH Instrument and system for producing a sample of a body liquid and for analysis thereof
WO2010050350A1 (en) * 2008-10-30 2010-05-06 シスメックス株式会社 Bodily fluid collecting device and puncture needle attaching/detaching device used for same
JP5366195B2 (en) * 2009-01-30 2013-12-11 テルモ株式会社 Injection needle assembly and drug injection device
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
KR101120364B1 (en) * 2009-06-30 2012-02-24 변남철 Lancing device for blood-gathering
WO2011002229A2 (en) * 2009-06-30 2011-01-06 Byun Nam Chul Blood collecting device
US9233213B2 (en) 2009-10-16 2016-01-12 Janssen Biotech, Inc. Palm activated drug delivery device
SG10201406636WA (en) 2009-10-16 2014-12-30 Janssen Biotech Inc Palm activated drug delivery device
JP5931847B2 (en) * 2010-03-31 2016-06-08 オキュジェクト, エルエルシー Devices and methods for intraocular drug delivery
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
WO2011152580A1 (en) * 2010-06-04 2011-12-08 Shin Youn-Cheol Device for preventing reuse of lancet
JP5938403B2 (en) 2010-07-02 2016-06-22 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Safety devices for drug-filled syringes and injection devices
ES2557466T3 (en) 2011-03-09 2016-01-26 Becton Dickinson And Company Removable lancet cuff for cuff device
JP5930688B2 (en) * 2011-12-09 2016-06-08 アークレイ株式会社 Lancet cartridge
DE102011056626B4 (en) * 2011-12-19 2014-02-13 Gerresheimer Regensburg Gmbh Lancing device for blood sampling
EP2836124B1 (en) 2012-04-11 2016-06-08 Facet Technologies, LLC Lancing device with moving pivot depth adjust
US9486166B2 (en) * 2012-05-18 2016-11-08 Panasonic Healthcare Holdings Co., Ltd. Puncturing needle cartridge and puncturing instrument
WO2013186774A1 (en) * 2012-06-12 2013-12-19 T - Medical Innovations Ltd. Device and method for producing a first skin incision in surgical procedures and marking along the margins of the incision
WO2014014235A1 (en) * 2012-07-18 2014-01-23 Park Jin Han Blood-collection device
US10646150B2 (en) * 2013-03-12 2020-05-12 Ascensia Diabetes Care Holdings Ag Lancing device
WO2014179698A2 (en) 2013-05-03 2014-11-06 Clearside Biomedical, Inc. Apparatus and methods for ocular injection
CN104127190A (en) * 2013-05-03 2014-11-05 品强科技精密有限公司 Blood sampling device allowing controllable puncturing depth
CN105771038B (en) * 2016-03-17 2022-09-13 南京医科大学第一附属医院 Accurate trace acupuncture point injection pen
JP2019514581A (en) 2016-05-02 2019-06-06 クリアサイド バイオメディカル,インコーポレイテッド Systems and methods for ocular drug delivery
IL264764B2 (en) * 2016-08-12 2024-02-01 Clearside Biomedical Inc Devices and methods for adjusting the insertion depth of a needle for medicament delivery
CN106409073A (en) * 2016-12-16 2017-02-15 青岛海之源智能技术有限公司 Teaching apparatus for physical characteristic of ellipse
CN108414298B (en) * 2018-03-16 2021-11-23 广东美味鲜调味食品有限公司 Gas sampling device
GB2592783B (en) * 2018-09-21 2023-01-25 Actuated Medical Inc Lancing device having anesthetic feature

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2642896C3 (en) * 1976-09-24 1980-08-21 7800 Freiburg Precision snapper for setting standard stab wounds in the skin for diagnostic purposes
US4449529A (en) * 1981-11-18 1984-05-22 Becton Dickinson And Company Automatic retractable lancet assembly
US4517978A (en) * 1983-01-13 1985-05-21 Levin Paul D Blood sampling instrument
US4653513A (en) * 1985-08-09 1987-03-31 Dombrowski Mitchell P Blood sampler
DE4212315A1 (en) * 1992-04-13 1993-10-14 Boehringer Mannheim Gmbh Blood lancet device for drawing blood for diagnostic purposes
CA2201317C (en) * 1995-07-28 2007-08-28 Apls Co., Ltd. Assembly for adjusting pricking depth of lancet
DE19604156A1 (en) * 1996-02-06 1997-08-07 Boehringer Mannheim Gmbh Skin cutting device for taking pain-free small amounts of blood
US5951493A (en) * 1997-05-16 1999-09-14 Mercury Diagnostics, Inc. Methods and apparatus for expressing body fluid from an incision
US7235056B2 (en) * 1996-05-17 2007-06-26 Amira Medical Body fluid sampling device and methods of use
US6332871B1 (en) * 1996-05-17 2001-12-25 Amira Medical Blood and interstitial fluid sampling device
US5857983A (en) * 1996-05-17 1999-01-12 Mercury Diagnostics, Inc. Methods and apparatus for sampling body fluid
US6706000B2 (en) * 1997-11-21 2004-03-16 Amira Medical Methods and apparatus for expressing body fluid from an incision
US6022366A (en) * 1998-06-11 2000-02-08 Stat Medical Devices Inc. Lancet having adjustable penetration depth
US6045567A (en) * 1999-02-23 2000-04-04 Lifescan Inc. Lancing device causing reduced pain
US6306152B1 (en) 1999-03-08 2001-10-23 Agilent Technologies, Inc. Lancet device with skin movement control and ballistic preload
US6396158B1 (en) * 1999-06-29 2002-05-28 Motorola Inc. Semiconductor device and a process for designing a mask
EP1405595B2 (en) 2001-07-11 2010-09-01 ARKRAY, Inc. Piercing device
WO2003007819A1 (en) * 2001-07-19 2003-01-30 Arkray, Inc. Piercing device
AU2002324999A1 (en) * 2001-09-13 2003-03-24 Facet Technologies, Llc Adjustable depth lancing device
US20040127818A1 (en) * 2002-12-27 2004-07-01 Roe Steven N. Precision depth control lancing tip

Also Published As

Publication number Publication date
KR20050037969A (en) 2005-04-25
NO20044435L (en) 2005-04-21
HK1073057A1 (en) 2005-09-23
SG111247A1 (en) 2005-05-30
TWI374728B (en) 2012-10-21
CA2485394A1 (en) 2005-04-20
RU2004130732A (en) 2006-03-20
SG131939A1 (en) 2007-05-28
EP1527736A1 (en) 2005-05-04
TW200526177A (en) 2005-08-16
US7481818B2 (en) 2009-01-27
AU2004222739A1 (en) 2005-05-05
KR101157812B1 (en) 2012-06-22
DE602004022497D1 (en) 2009-09-24
AU2004222739B2 (en) 2009-08-27
ES2329900T3 (en) 2009-12-02
IL164696A (en) 2009-12-24
ATE439083T1 (en) 2009-08-15
RU2343831C2 (en) 2009-01-20
US20050085839A1 (en) 2005-04-21
CN1608587B (en) 2010-06-23
JP4727204B2 (en) 2011-07-20
EP1527736B1 (en) 2009-08-12
IL164696A0 (en) 2005-12-18
JP2005185825A (en) 2005-07-14
MXPA04010359A (en) 2005-07-05
CN1608587A (en) 2005-04-27

Similar Documents

Publication Publication Date Title
CA2485394C (en) Lancing device with a floating probe for control of penetration depth
EP1527737B1 (en) Lancing device with trigger mechanism for penetration depth control
EP1031318B1 (en) Lancing device causing reduced pain
US4527561A (en) Automatic retractable lancet assembly
US20070060842A1 (en) Lancing cap kit applied pressure sensing cap
US8888804B2 (en) Adjustable lancet device and method
US20050234490A1 (en) Tiltable cap for a dermal tissue lancing device
US20050234491A1 (en) Method for lancing a dermal tissue target site employing a dermal tissue lancing device with a tiltable cap
JP6395123B2 (en) Method and apparatus for sensor insertion
EP0061102A2 (en) Automatic retractable lancet assembly

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20201020