CA2465590A1 - Ethernet switch and system - Google Patents

Ethernet switch and system Download PDF

Info

Publication number
CA2465590A1
CA2465590A1 CA002465590A CA2465590A CA2465590A1 CA 2465590 A1 CA2465590 A1 CA 2465590A1 CA 002465590 A CA002465590 A CA 002465590A CA 2465590 A CA2465590 A CA 2465590A CA 2465590 A1 CA2465590 A1 CA 2465590A1
Authority
CA
Canada
Prior art keywords
switch
accordance
further configured
approximately
vlan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002465590A
Other languages
French (fr)
Inventor
Phillip A. Danner
Robert A. Rucinski
Robert A. Mckeel
William B. Estep
Paul D. Scanlon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Cisco Industrial Network Inc
Original Assignee
Ge Cisco Industrial Networks, Inc.
Phillip A. Danner
Robert A. Rucinski
Robert A. Mckeel
William B. Estep
Paul D. Scanlon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/682,883 external-priority patent/US7411948B2/en
Application filed by Ge Cisco Industrial Networks, Inc., Phillip A. Danner, Robert A. Rucinski, Robert A. Mckeel, William B. Estep, Paul D. Scanlon filed Critical Ge Cisco Industrial Networks, Inc.
Publication of CA2465590A1 publication Critical patent/CA2465590A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/351Switches specially adapted for specific applications for local area network [LAN], e.g. Ethernet switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/12Network monitoring probes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/20Support for services
    • H04L49/205Quality of Service based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/354Switches specially adapted for specific applications for supporting virtual local area networks [VLAN]

Abstract

An Ethernet switch (10) includes a plurality of ports (12), wherein the switch is configured to be operable within a temperature range of at least between approximately 0~ C and approximately 60~ C. The switch is further configured to be operable within a non-condensing humidity range of at least between approximately 10 % and approximately 95 %. The switch is further configured to support at least one of a virtual Local Area Network (VLAN), a Quality of Service (QoS), a Remote Monitoring (RMON), and a Spanning Tree, and the switch is configured to be upgradeable using a plug in device.

Description

ETHERNET SWITCH AND SYSTEM
CROSS REFERENCE TO RELATED APPLICATIONS
This application is a Continuation-in-Part of U.S. patent application serial number 09/682,883 filed October 29, 2001 and assigned to the assignee of the present invention.
BACKGROUND OF THE INVENTION
This invention relates generally to industrially hardened Ethernet switches, and more particularly, to systems including an industrially hardened Ethernet switch.
If an industrial user or other non-office user desires a feature laden Ethernet switch for use in a harsh environment, the industrial user has heretofore used an office grade switch and has built an environmentally protective enclosure in which to place the office grade switch. The environmentally protective enclosure is not an industrial enclosure e.g., an enclosure built according to the National Electrical Manufacturers Association's NEMA 12 standard. Rather, the environmentally protective enclosure typically includes a temperature control. Thus, the environmentally protective enclosures typically cost more than the office grade switch, and sometimes up to ten times more. Accordingly, the conventional placing of an office grade switch in a user built environmentally protective enclosure tends to be costly and oftentimes not cost-effective.
Additionally, at least some known production systems a including an office side, and a production side. The office side is networked using an Ethernet IP (Internet protocol) based Enterprise network and the production side is networked using a plurality of different legacy propriety network protocols. For example, a control network connects a plurality of process controllers to each other, and also connects at least one personal computer (PC) and at least one view screen together and to the process controllers. A device network, which is a separate network from the control network and the Ethernet network, connects a plurality of input/outputs (I/Os) and other end devices.

The device and control networks are not only separate and distinct from the Ethernet network, but they are typically proprietary. It may be less than optimal to have so many networks, and also may be expensive because the formation of so many networks includes numerous components and may cost more than forming a single network. Additionally, when maintaining so many networks, more spare parts typically are stocked, maintenance workers must be trained on multiple networks, and the rate of technology improvement is much slower on the proprietary networks, as compared to Ethernet networks.
BRIEF SUMMARY OF THE INVENTION
In one aspect, an Ethernet switch is provided that includes a plurality of ports, wherein the switch is configured to be operable within a temperature range of at least between approximately 0° C and approximately 60° C. The switch is further configured to be operable within a non-condensing humidity range of at least between approximately 10% and approximately 95%. The switch is further configured to support at least one of a Virtual Local Area Network (VLAN), a Quality of Service (QoS), a Remote Monitoring (RMON), and a Spanning Tree, and the switch is configured to be upgradeable using a plug in device.
In another aspect, a production system is provided. The production system includes at least one office device, at least one industrial device, and at least one Ethernet switch positioned in an industrial environment and coupling the office device to the industrial device. The Ethernet switch includes a plurality of ports, and the Ethernet switch is configured to be operable within a temperature range of at least between approximately 0° C and approximately 60° C. The switch is further configured to be operable within a non-condensing humidity range of at least between approximately 10% and approximately 95%. The switch is further configured to support at least one of a Virtual Local Area Network (VLAN), a Quality of Service (QoS), a Remote Monitoring (RMON), and a Spanning Tree.
In a further aspect, a method for networking is provided. The method includes positioning at least one device in an office environment (office device), and positioning at least one device in an industrial environment (industrial device). The method also includes positioning at least one Ethernet switch in the industrial environment, wherein the Ethernet switch comprises a plurality of ports, said Ethernet switch configured to be operable within a temperature range of at least between approximately 0° C and approximately 60° C, said switch further configured to be operable within a non-condensing humidity range of at least between approximately 10% and approximately 95%, said switch further configured to support at least one of a Virtual Local Area Network (VLAN), a Quality of Service (QoS), a Remote Monitoring (RMON), and a Spanning Tree. The method also includes coupling the office device to the industrial device via the Ethernet switch.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a perspective view of a hardened Ethernet switch.
Figure 2 illustrates a known production system.
Figure 3 is an illustration of a production system.
DETAILED DESCRIPTION OF THE INVENTION
Figure 1 is a perspective view of a hardened Ethernet switch 10 including a plurality of ports 12. In one embodiment, ports 12 are lOBase-T/100Base-TX autosensing ports with each port 12 delivering up to 200 Mbps of bandwidth. In another embodiment, ports 12 are 101100 switched ports with integrated inline power.
Switch also includes zero or more Gigabit Ethernet ports 14. In an exemplary embodiment, switch 10 includes six ports 12 and two Gigabit Ethernet ports 14.
Gigabit Ethernet ports 14 are configured to be one or more of a 1000Base-X
port, a 1000Base-T port, a 1000Base-SX port, a 1000Base-LX/LH port, and a 1000Base-ZX
port. Ports 12 and 14 accept various cabling mediums including, for example, but not limited to, copper and fiber optic including both single and multi-mode fiber.
Switch 10 also includes a plurality of light emitting diodes 16 and an on/off switch 18.
Switch 10 provides a Port-based reclassification ability which allows users to reclassify IEEE 802.1p class-of service (CoS) values on a per-port basis via a command-line interface (CLIs) enabling a fine granularity of control to implement local area network (LAN) edge quality of service (QoS). The Port-based reclassification also enables switch 10 to change the CoS settings of tagged packets on a per-port basis.
For example, with untagged packets, switch 10 uses a default ingress port priority to classify the packets wherein a priority scheduling is applied between a plurality of queues including a low priority queue and a high priority queue. The priority scheduling ensures that the high priority queue is always serviced before scheduling the lower priority traffic. The priority scheduling enables a user to prioritize mission critical traffic, such as Input/output Process data, Voice over IP (VoIP) and/or Enterprise Resource Planning (ERP) applications over regular traffic, such as, for example, but not limited to, File Transfer Protocol (FTP) or low-priority Web surfing traffic.
Switch 10 is hardened in that switch 10 is configured to operate in harsh environments with respect to temperature, humidity, and vibration. Specifically, switch 10 remains operational in enviromnents of temperatures of at least between 0°
Celsius (C) and 60° C, a non-condensing humidity range of at least between 10% and 95%, and an extended vibration level of 2g (gravity). In an exemplary embodiment, switch 10 also is configured to be operable after sustaining a 4g shock vibration. In one embodiment, switch 10 remains operational in environments of temperatures between -10° C and 60° C, a non-condensing humidity range of between 5% and 97%, and an extended vibration level of 3g. In another embodiment, switch 10 remains operational in environments of temperatures between -15° C and 75° C, a non-condensing humidity range of between 2% and 98%, and an extended vibration level of 3.Sg. In a further embodiment, switch 10 remains operational above a temperature of approximately 55°
C. In a still further embodiment, switch 10 remains operational above a temperature of approximately 60° C. In an exemplary embodiment, switch 10 is hardened as above without utilizing a fan inside of switch 10. Alternatively, switch 10 includes a fan (not shown). In one embodiment, switch 10 has a Mean Time Between Failures (MTBF) of at least 100,000 hours. In an alternative embodiment, switch has a MTBF
of at least 150,000 hours.
Additionally, switch 10 can automatically configure Virtual LANs (VLANs) and trusted-extension settings for Internet Protocol (IP) telephones by overlaying a voice topology onto a data network and maintaining the quality of voice traffic.
Therefore, a network administrator can segment phones into separate logical networks even though the data and voice infrastructure is physically the same. A user plugs a phone into switch 10, and switch 10 provides the phone with the necessary VLAN
information because switch 10 places the phones into their own VLANs without any end-user intervention. Additionally, devices other than phones can be placed in their own VLANs to isolate control and I/O traffic and devices on their own respective VLANs.
In one embodiment, switch 10 is also stackable with other switches 10 to aggregate bandwidth in both a cascade configuration and a star configuration. In either configuration, the stacked switches 10 together operate as a single switch and each switch 10 includes a switch connection port (not shown) and is configurable to be a command switch or a member switch in the switch stack. In alternative embodiments, switches 10 may and or may not be configurable as one unit, but will act as one in all other aspects. For example, operation of multiple switches 10 will be as one, but, in one embodiment, each switch 10 is configured separately. The command switch serves as a single IP address management point and disburses all management instructions dictated by a network administrator. In other words, when a first switch is connected to a second switch 10, the switches (first and second) cooperatively operate as one switch. In one embodiment, switch 10 does not include a switch connection port, and switches 10 are interconnected via Gigabit Ethernet ports 14.
Additionally, switch 10 is configured to autosense, autonegotiate, and autoconfigure.
Autosensing on each port 12 detects a speed of an attached device and automatically configures that port 12 for 10 or 100 Mbps operation, facilitating a deployment of switch 10 in a mixed 1 OBase-T and 100Base-TX environment. Autonegotiating on all ports 12 automatically selects a half or full-duplex transmission mode to optimize bandwidth. And autoconfiguration facilitates deploying switch 10 in a network by automatically configuring multiple switches across the network via a boot server.
A default configuration is stored in a Flash memory or other type of non-volatile memory (not shown) within switch 10 that ensures that switch 10 can be quickly connected to a network and can pass traffic with little or no user intervention, and preserving configuration in case of a power outage to switch 10. In an exemplary embodiment, switch's 10 operating software is embedded in hardware (e.g., an application specific integrated circuit, ASIC) and total bandwidth of a backplane (not shown) inside switch 10 is at least twice the sum of the bandwidth of all ports 12 and 14 such that switch 10 operates substantially at wire speed. Switch 10 supports Simple Network Management Protocol (SNMP), and switch 10 includes a Telnet interface support that delivers comprehensive in-band management, and a CLI-based management console that provides detailed out-of band management. In an exemplary embodiment, switch 10 includes an Embedded Remote Monitoring (RMON) software agent that supports four RMON groups (History, Statistics, Alarms, and Events) for enhanced traffic management, monitoring, and analysis. In an alternative embodiment, switch 10 supports all nine RMON groups (Statistics, History, Alarm, Host, HostTopN, Matrix, Filters, Packet Capture, and Events).
In other embodiments, switch 10 supports less than all nine RMON groups.
Switch 10 is configured to support IEEE 802.1D Spanning-Tree Protocol such that switch 10 provides for redundant backbone connections and loop-free networks which simplifies network configuration and improves fault tolerance. Switch 10 also includes embedded software enabling QoS features which allow a user to build networks with switch 10 that conform to both the Internet Engineering Task Force (IETF) Integrated Services (IntServ) model and/or the Differentiated Services (Diff~erv) model.
The embedded QoS features also provide value-added functionality such as network-based application recognition (NEAR) for classifying traffic on an application basis, a service assurance agent (SAA) for end-to-end QoS measurements, and a Resource Reservation Protocol (RSVP) signaling for admission control and reservation of resources. The QoS features provide a solution for controlling available bandwidth and managing it efficiently to meet application demands. The QoS features include mechanisms such as, but not limited to, link fragmentation and interleaving (LFn, Compressed Real-Time Protocol (CRTP), Weighted Fair Queuing (WFQ), and Low-Latency Queuing (LLQ).
The QoS features also support Class-Based Weighted Fair Queuing (CBWFQ), committed access rate (CAR), generic traffic shaping (GTS), and Weighted Random Early Detection (WRED). Switch 10 also supports QoS-enabled virtual private networks (VPNs), non-VPN services, Multiprotocol Label Switching (MPLS), QoS-to-ATM Class of Service (CoS), Frame Relay traffic shaping (FRTS), and Frame Relay Fragmentation (FRF). Switch 10 is configured to map RSVP reservations to an ATM permanent virtual circuit (PVC) and/or a switched virtual circuit (SVC) if desired.
In use, switch 10 is connected to a plurality of user devices such as, but not limited to, a computer, a programmable logic controller (PLC), input-output (I/O) devices, other switches, and all other Ethernet enabled devices. As used herein "user device"
refers to any and all Ethernet enabled devices including an Internet backbone interface typically provided by a telephone company enabling access to the Internet, and all other Ethernet enabled devices not typically termed "user" devices. Switch 10 transfers data between the user devices and remains operational in harsh environments with temperatures between 0° C and 60° C, and non-condensing humidity ranges between 10% and 95%. Accordingly, a plurality of user devices are cost efficiently networked together, with many features such as QoS, RMON, and VLAN, in a non-office environment by at least one switch 10.
Although it is known to use ethernet switches in industrial settings, the switches utilized are basic switches that do not include high-end functionality.
Hardened ethernet switch 10, in accordance with one embodiment of the present invention, is feature laden since it includes one or more of the high-end features in an industrial capable switch. The high-end features include, but are not limited to, VLAN, RMON, QoS, and Spanning Tree.

Typically, switch 10 is hardened during a design phase. For example, either a known office switch is re-designed to be hardened as described herein, or a new switch is designed to be hardened as described herein. There are several methods for upgrading a known office grade switch for industrial use. There are also several methods for creating an industrial grade switch. Hardening the office grade switch enables the switch to operate in an extended operating temperature range (0-60 degrees C), in still or non-moving air, without the benefit of moving ambient air or forced airflow (i.e.
fans). To accomplish the extended operating temperature range, a thermal analysis of the office switch (device) is performed to determine hot spots within the switch (device). A re-layout and re-design of the printed circuit board enables the major heat producers (e.g., Integrated Circuits (ICs)) to be separated on the circuit board. Each component in the device is analyzed to determine if that component can operate within the extended temperature range desired. This analysis may be done with the assistance of the manufacturers of the various components to determine the supportable range of the devices. Alternatively, the component manufacturers are not used to determine the supportable range of the components. In the event that a component does not operate well at the desired ambient temperature, the printed circuit board layout is changed by repositioning parts with lower ratings (i.e., do not operate well at higher temperatures) in cooler areas on the board.
Several steps may be taken to facilitate cooling the components,. For example, a horizontally mounted board may be vertically mounted and vice-versa. Also, vents may be included in any or all sides (including the top and the bottom) of the housing.
Additionally, a single horizontal board can be re-designed as multiple vertical boards, such that the greatest heat producing components are re-positioned near the top so the heat rises away from the switch. Re-positioning lower rated components near the bottom of such boards will also facilitate the board operating in the extended temperature range.
In addition to designing a layout of the components, taking account of the thermal analysis that was done, known heat-sink technologies can be utilized. In one embodiment, heat-sinks are used that do not rely on forced air flow. One method of _g_ using heat sink technology is to connect good heat conductors to the main heat producers and maximize the surface area of the conductors. Heat-sinks with metal fins are also a good, effective method. Creative designs also allow for using portions of the packaging as a large heat sink. For example, tying a major heat producer (e.g. a large, power-hungry IC) back to the bottom of the metal case of the device can be effective and inexpensive.
Throughout each design phase, modeling and testing is done, and final temperature ratings can be verified by final complete system testing. In other words, design and component ratings are not relied upon exclusively to determine actual performance characteristics of the overall device, but are confirmed by utilizing an initial production of at least one working model and testing the working model at the desired temperature. Additionally, a final thermal analysis can be performed to further identify areas for improvement in heat dissipation.
Switch 10 is easily upgradeable using plug in devices. For example, in one embodiment switch 10 is upgradeable using Flash-card updates. In other embodiments, switch 10 is upgradeable using a plug in device other than a Flash-card.
In both Flash and non-Flash embodiments, a separate device is plugged into switch 10 and the separate device contains an updated configuration or firmware. This device is able to be plugged directly onto switch 10 to download the latest firmware/configuration or both. The device is similar to a known memory stick for known digital cameras but instead of just supplying more storage capacity, it also updates switch 10. In one embodiment, this is accomplished with a retentive type of memory in the card device. The memory can be Flash, EEPROM, EPROM, battery-backed RAM, or any other type of retentive memory. The card is programmable and configurable and have both upload & download capabilities. The flash card may or may not be hardened.
Switch 10 also includes multiple diagnostic contacts (not shown). The multiple diagnostic contacts include a contact for each individual port 12, so that a health/status of each port 12 may be determined. Additionally, all ports 12 are configurable for Hot-standby. As used herein, "Hot-standby" means that if a problem occurs with a particular port 12, switch 10 automatically switches to another other port 12 to send and receive data. In one embodiment, the multiple diagnostic contacts are implemented by having a plurality of normally open contacts that close when detecting a failure of any individual port. Further, the contacts are configurable to report on other health issues, specifically bandwidth utilization. A low threshold and a high threshold are able to be set enabling the contact to create a report.
Additionally, the contacts are configured to operate collectively as an analog output.
In this fashion, error codes and messages may be configured and sent when appropriate diagnostic events occur. The multiple diagnostic contacts are tied into the SNMP functionality and support the same command set. In one embodiment, the Hot-standby is implemented by monitoring the active port. The active port is the one that is currently in use. The back-up port is the one not currently in use. The monitoring looks for inactivity for a configurable (or fixed) period of time. Inactivity signals a switch to the back-up port. In deployment, both active & back-up ports are wired so that the switch may occur without human intervention and at rapid speeds. When the back-up is in use, this condition is signaled to the operators via SNMP, LEDs, or any other output mechanism (e.g. diagnostic contact).
Switch 10 further includes an audible failure mode such that when switch 10 is experiencing any type of failure, then switch 10 makes an audible noise such as but not limited a loud sound or energizes a siren. In one embodiment, switch 10 produces a speech call for help such as "Switch in sector 3 is experiencing high bandwidth", thus alerting a local worlcer in the production area to get a technician to diagnose the device. In one embodiment, the audible failure mode is implemented by having a speaker in the unit and tying it to error conditions. The audible failure mode is fully configurable including the ability to turn off all audible warnings.
Switch 10 also includes an auto-enunciation mode wherein switch 10 takes an automatic action to another device upon certain configurable events. In one embodiment, Auto-enunciation occurs when bandwidth for the network is reaching a high level, or a failure of part of the switch or network occurs. For example, switch is configured in the auto-enunciation mode to signal an alphanumeric pager with a warning message when a pre-determined event has occurred.
In an exemplary embodiment, switch 10 includes at least one of an infrared (IR) interface and a radio frequency (RF) interface. Accordingly, switch 10 is configured for wireless communication with hand-held devices and other wireless devices.
This is implemented by taking an IR interface or an RF interface and attaching the interface to the frontlvisible section of the switch. The IR and RF interface operate exactly the same as other interfaces. These interfaces are typically RS-232 (serial) or and RJ-45 Ethernet jack.
Figure 2 illustrates a known production system 50 including an office (or enterprise) side 52 and a production (or industrial) side 54. As used herein "office side"
refers to areas that are environmentally controlled (i.e., an office environment) with heating and air-conditioning such that the temperature therein is maintained within typical human comfort levels. "Production side" refers to all non-office areas including areas outside a building (i.e., an environment other than an office environment also referred herein as an industrial environment). Furthernlore, as used herein, an "office device"
refers to any and all Ethernet enabled devices located in an office environment, and an "industrial device" refers to any and all Ethernet enabled devices located in an environment other than an office environment. Office side 52 is networked using an Ethernet IP (Internet protocol) based Enterprise network 53, and production side 54 is networked using a plurality of different legacy propriety network protocols.
For example, a control network 56 connects a plurality of process controllers 58 to each other, and also connects at least one personal computer 60 (PC) and at least one view screen 62 together and to process controllers 58. Process controllers 58, typically are programmable logic controllers (PLCs) and computer numeric controllers (CNCs), but process controllers can be industrial computers or other smart controllers.
Therefore, as used herein, "process controller" refers to any and all devices capable of controlling a process. A device network 64, which is a separate network from control network 56 and Ethernet network 53, connects a plurality of input/outputs (I/Os) 66 and other end devices, such as, for example, but not limited to, motors, drives, and cameras to each other and to process controllers 58.
Device and control networks 64 and 56 are not only separate and distinct from Ethernet network 53, but they are typically proprietary. It may be less than optimal to have so many networks, and also may be expensive because the formation of so many networks includes numerous components which may cost more than forming a single network. Additionally, when maintaining so many networks, more spare parts typically are stocked, maintenance workers must be trained on multiple networks, and the rate of technology improvement is much slower on the proprietary networks, as compared to Ethernet networks. However, the legacy proprietary networks have persisted because they are able to provide components that work in a hardened environment, and are also able to provide determinism. Determinism is the concept of real-time delivery of data. However, control and device networks 64 and 56 are less than ideal at providing data back up to the Enterprise network 53 (which is already Ethernet capable). Accordingly, the Ethernet network is deployed by a plurality of access layer switches 66 and Ethernet lines 68, to collect data out of production environment 54 and into Enterprise side 52.
Figure 3 is an illustration of an exemplary production system 70 including an Enterprise side 72 and a production side 74 including at least one switch 10.
Switch enables an Ethernet network to be suitable, not only on Enterprise (office) side 70, but also to act as a control and device network. In other words separate networks (such as networks 53, 56, and 64, shown in Figure 2) are collapsed to form a single Ethernet network 76, and enabling cost savings. Switch 10 provides for real-time delivery of mission critical data, and is well suited to industrial environments as explained above.
More specifically, switch 10 includes a VLAN functionality which allows a virtual separation of single network 76 into multiple 'virtual' separate networks such as a control VLAN 80 and a device I/O ULAN 78. This prevents, for example, bandwidth monopolizing broadcast traffic from the office off the mission critical Industrial networks 78 and 80. Space and expandability are typically important in an industrial environment, thus the ability to stack on switches as desired is desirable and switch 10 being stackable facilitates a scalability of system 70. Production system 70 also includes a control center 82 including two switches 10 configured redundantly between a plurality of switches 10 controlling a plurality of devices 84 and a plurality of access layer switches 86. All data transfer from office side 72 to production side 74 passes through control center 82. If one of the two switches 10 in control center 82 should fail then the other switch 10 takes over the failed switches duties.
Additionally, in one embodiment, switch 10 is configured for bandwidth up to 1 Gigabit speeds for network 76. Mission critical applications often have the need for redundancy, as well as standards, and thus the benefit of spanning tree redundancy is provided in switch 10. Remote monitoring of the various devices is critical and thus switch 10 includes RMON capabilities as described above.
Additionally, a plurality of external diagnostic contacts tie several of these features together, allowing I/O modules to be connected to switch 10 to detect a failure, enabling various actions to be taken during the redundant switch over. These actions can vary from a graceful shutdown of the system to additional notifications sent by PLCs, to a controlled switch-over of the control processes.
Accordingly a hardened Ethernet switch is provided that enables both an office space and a non-office space of a facility to be networked in a single network, and allows separate VLANs preserving a virtual separation of networks for management and security reasons.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.

Claims (31)

WHAT IS CLAIMED IS:
1. An Ethernet switch (10) comprising:
a plurality of ports (12, 14), said switch configured to be operable within a temperature range of at least between approximately 0° C and approximately 60° C, said switch further configured to be operable within a non-condensing humidity range of at least between approximately 10% and approximately 95%, said switch further configured to support at least one of a Virtual Local Area Network (VLAN), a Quality of Service (QoS), a Remote Monitoring (RMON), and a Spanning Tree.
2. A switch (10) in accordance with Claim 1 further configured to be stackable with a second switch.
3. A switch (10) in accordance with Claim 1 further configured to transmit data at a speed of at least one Gigabyte per second.
4. A switch (10) in accordance with Claim 1 further configured to operate substantially at wire speed.
5. A switch (10) in accordance with Claim 1 further configured to be operable under an extended vibration of at least 2g (gravity).
6. A switch (10) in accordance with Claim 5 further configured to be operable under a shock vibration of at least 4g.
7. A switch (10) in accordance with Claim 1 further configured to support a Virtual Local Area Network (VLAN), a Quality of Service (QoS), a Remote Monitoring (RMON), a Simple Network Management Protocol (SNMP), and a Spanning Tree.
8. A switch (10) in accordance with Claim 7 further configured to:
be stackable with a second switch;

be operable under an extended vibration of at least 2g (gravity); and be operable under a shock vibration of at least 4g.
9. A switch (10) in accordance with Claim 8 further configured to operate substantially at wire speed.
10. A switch (10) in accordance with Claim 9 further configured to transmit data at a speed of at least one Gigabyte per second.
11. An Ethernet switch (10) comprising:
a plurality of ports (12, 14), said switch configured to:
support a Virtual Local Area Network (VLAN), a Quality of Service (QoS), a Remote Monitoring (RMON), and a Spanning Tree;
transmit data at a speed of at least one Gigabyte per second;
be operable within a temperature range of at least between approximately 0° C and approximately 60°C;
be operable within a non-condensing humidity range of at least between approximately 10% and approximately 95%;
be stackable with a second switch; and be operable under an extended vibration of at least 2g (gravity).
12. An Ethernet network comprising:
a first switch (10); and a plurality of user devices operationally coupled to said first switch such that said first switch transfers data from at least one of said devices to a different one of said devices, said first switch configured to:

be operable within a temperature range of at least between approximately 0° C and approximately 60°C;
be operable within a non-condensing humidity range of at least between approximately 10% and approximately 95%; and support at least one of a Virtual Local Area Network (VLAN), a Quality of Service (QoS), a Remote Monitoring (RMON), and a Spanning Tree.
13. A network in accordance with Claim 12 further comprising a second switch (10) operationally coupled to said first switch, said second switch and said first switch configured to cooperatively operate as one switch.
14. A network in accordance with Claim 12 wherein said first switch (10) further configured to transmit data at a speed of at least one Gigabyte per second.
15. A network in accordance with Claim 12 wherein said first switch (10) further configured to be operable under an extended vibration of at least 2g (gravity).
16. A network in accordance with Claim 15 wherein said first switch (10) further configured to be operable under a shock vibration of at least 4g.
17. A network in accordance with Claim 12 wherein said first switch (10) further configured to support a Virtual Local Area Network (VLAN), a Quality of Service (QoS), a Remote Monitoring (RMON), and a Spanning Tree.
18. A network in accordance with Claim 17 wherein said first switch (10) further configured to:
be stackable with a second switch;
be operable under an extended vibration of at least 2g (gravity); and be operable under a shock vibration of at least 4g.
19. A network in accordance with Claim 18 wherein said first switch (10) further configured to operate substantially at wire speed.
20. A network in accordance with Claim 19 wherein said first switch (10) further configured to transmit data at a speed of at least one Gigabyte per second.
21. A feature laden Ethernet switch (10) comprising a plurality of ports (12), said Ethernet switch configured to be operable above a temperature of approximately 55° C, said switch further configured to support at least one high-end feature.
22. An Ethernet switch (10) in accordance with Claim 21 wherein said switch is further configured to be upgradeable using a plug in device.
23. An Ethernet switch (10) in accordance with Claim 21 wherein said at least one high-end feature includes at least one of a Virtual Local Area Network (VLAN), a Quality of Service (QoS), a Remote Monitoring (RMON), and a Spanning Tree.
24. An Ethernet switch (10) in accordance with Claim 21 further comprising a plurality of diagnostic contacts comprising a contact for each said port.
25. An Ethernet switch (10) in accordance with Claim 21 wherein said switch is further configured to be operable within a non-condensing humidity range of at least between approximately 10%
and approximately 95%.
26. An Ethernet switch (10) in accordance with Claim 21, wherein said switch further comprises at least one of an infrared (IR) interface and a radio frequency (RF) interface operationally coupled to at least one of said ports (12).
27. A production system (50) comprising:
at least one office device (52);
at least one industrial device (54); and at least one feature laden Ethernet switch (10) positioned in an industrial environment and coupling said office device to said industrial device, said Ethernet switch comprising a plurality of ports (12) and configured to be operable above a temperature of approximately 55° C, said switch further configured to support at least one high-end feature.
28. A production system (50) in accordance with Claim 27 wherein said at least one office device (52) comprises a plurality of office devices, said at least one industrial device (54) comprises a plurality of industrial devices, said Ethernet switch (10) configured to:
maintain said office devices in a VLAN (office device VLAN); and maintain said industrial devices in a VLAN separate from said office device VLAN;
be upgradeable using a plug in device.
29. An Ethernet switch (10) in accordance with Claim 27 wherein said at least one high-end feature includes at least one of a Virtual Local Area Network (ULAN), a Quality of Service (QoS), a Remote Monitoring (RMON), and a Spanning Tree.
30. An Ethernet switch (10) in accordance with Claim 27 wherein said switch is further configured to be operable within a non-condensing humidity range of at least between approximately 10% and approximately 95%
said switch further comprises at least one of an infrared (IR) interface and a radio frequency (RF) interface operationally coupled to at least one of said ports (12).
31. A production system (50) in accordance with Claim 27 wherein said at least one office device (52) comprises a plurality of office devices, said at least one industrial device (54) comprises a plurality of industrial devices, said Ethernet switch (10) configured to:
maintain said office devices in a VLAN (office device VLAN); and maintain said industrial devices in a plurality of VLANs all separate from said office device VLAN, said plurality of VLANs comprising:
at least one control VLAN (80); and at least one input/output (I/O) VLAN (78).
CA002465590A 2001-10-29 2002-10-29 Ethernet switch and system Abandoned CA2465590A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/682,883 2001-10-29
US09/682,883 US7411948B2 (en) 2001-10-29 2001-10-29 Ethernet switch
US10/066,532 2002-01-31
US10/066,532 US7194003B2 (en) 2001-10-29 2002-01-31 Ethernet switch and system
PCT/US2002/034794 WO2003039072A2 (en) 2001-10-29 2002-10-29 Ethernet switch and system

Publications (1)

Publication Number Publication Date
CA2465590A1 true CA2465590A1 (en) 2003-05-08

Family

ID=26746844

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002465590A Abandoned CA2465590A1 (en) 2001-10-29 2002-10-29 Ethernet switch and system

Country Status (6)

Country Link
US (1) US7194003B2 (en)
EP (1) EP1442562A2 (en)
CN (1) CN1605177A (en)
AU (1) AU2002350065A1 (en)
CA (1) CA2465590A1 (en)
WO (1) WO2003039072A2 (en)

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095759B1 (en) * 1999-03-19 2006-08-22 At Comm Corporation Combined telephone PBX and computer data router with pooled resources
US6658091B1 (en) 2002-02-01 2003-12-02 @Security Broadband Corp. LIfestyle multimedia security system
US20040017779A1 (en) * 2002-07-25 2004-01-29 Moxa Technologies Co., Ltd. Remote equipment monitoring system with active warning function
US20040162996A1 (en) * 2003-02-18 2004-08-19 Nortel Networks Limited Distributed security for industrial networks
US7277295B2 (en) * 2003-02-28 2007-10-02 Cisco Technology, Inc. Industrial ethernet switch
US7447147B2 (en) 2003-02-28 2008-11-04 Cisco Technology, Inc. Ethernet switch with configurable alarms
US7268690B2 (en) 2003-02-28 2007-09-11 Cisco Technology, Inc. Industrial ethernet switch
US10200504B2 (en) 2007-06-12 2019-02-05 Icontrol Networks, Inc. Communication protocols over internet protocol (IP) networks
US9141276B2 (en) 2005-03-16 2015-09-22 Icontrol Networks, Inc. Integrated interface for mobile device
US11582065B2 (en) 2007-06-12 2023-02-14 Icontrol Networks, Inc. Systems and methods for device communication
US10522026B2 (en) 2008-08-11 2019-12-31 Icontrol Networks, Inc. Automation system user interface with three-dimensional display
US10339791B2 (en) 2007-06-12 2019-07-02 Icontrol Networks, Inc. Security network integrated with premise security system
US11201755B2 (en) 2004-03-16 2021-12-14 Icontrol Networks, Inc. Premises system management using status signal
US11343380B2 (en) 2004-03-16 2022-05-24 Icontrol Networks, Inc. Premises system automation
US11916870B2 (en) 2004-03-16 2024-02-27 Icontrol Networks, Inc. Gateway registry methods and systems
US10127802B2 (en) 2010-09-28 2018-11-13 Icontrol Networks, Inc. Integrated security system with parallel processing architecture
US8635350B2 (en) 2006-06-12 2014-01-21 Icontrol Networks, Inc. IP device discovery systems and methods
US11316958B2 (en) 2008-08-11 2022-04-26 Icontrol Networks, Inc. Virtual device systems and methods
US10142392B2 (en) 2007-01-24 2018-11-27 Icontrol Networks, Inc. Methods and systems for improved system performance
US9729342B2 (en) 2010-12-20 2017-08-08 Icontrol Networks, Inc. Defining and implementing sensor triggered response rules
US11368429B2 (en) 2004-03-16 2022-06-21 Icontrol Networks, Inc. Premises management configuration and control
JP2007529826A (en) 2004-03-16 2007-10-25 アイコントロール ネットワークス, インコーポレイテッド Object management network
US20170118037A1 (en) 2008-08-11 2017-04-27 Icontrol Networks, Inc. Integrated cloud system for premises automation
US11159484B2 (en) 2004-03-16 2021-10-26 Icontrol Networks, Inc. Forming a security network including integrated security system components and network devices
US10721087B2 (en) 2005-03-16 2020-07-21 Icontrol Networks, Inc. Method for networked touchscreen with integrated interfaces
US20090077623A1 (en) 2005-03-16 2009-03-19 Marc Baum Security Network Integrating Security System and Network Devices
US11113950B2 (en) 2005-03-16 2021-09-07 Icontrol Networks, Inc. Gateway integrated with premises security system
US7711796B2 (en) 2006-06-12 2010-05-04 Icontrol Networks, Inc. Gateway registry methods and systems
US11489812B2 (en) 2004-03-16 2022-11-01 Icontrol Networks, Inc. Forming a security network including integrated security system components and network devices
US11811845B2 (en) 2004-03-16 2023-11-07 Icontrol Networks, Inc. Communication protocols over internet protocol (IP) networks
US11677577B2 (en) 2004-03-16 2023-06-13 Icontrol Networks, Inc. Premises system management using status signal
US11277465B2 (en) 2004-03-16 2022-03-15 Icontrol Networks, Inc. Generating risk profile using data of home monitoring and security system
US10156959B2 (en) 2005-03-16 2018-12-18 Icontrol Networks, Inc. Cross-client sensor user interface in an integrated security network
US10348575B2 (en) 2013-06-27 2019-07-09 Icontrol Networks, Inc. Control system user interface
US10237237B2 (en) 2007-06-12 2019-03-19 Icontrol Networks, Inc. Communication protocols in integrated systems
US9531593B2 (en) 2007-06-12 2016-12-27 Icontrol Networks, Inc. Takeover processes in security network integrated with premise security system
US11244545B2 (en) 2004-03-16 2022-02-08 Icontrol Networks, Inc. Cross-client sensor user interface in an integrated security network
US8963713B2 (en) 2005-03-16 2015-02-24 Icontrol Networks, Inc. Integrated security network with security alarm signaling system
US9306809B2 (en) 2007-06-12 2016-04-05 Icontrol Networks, Inc. Security system with networked touchscreen
US11700142B2 (en) 2005-03-16 2023-07-11 Icontrol Networks, Inc. Security network integrating security system and network devices
US20170180198A1 (en) 2008-08-11 2017-06-22 Marc Baum Forming a security network including integrated security system components
US20120324566A1 (en) 2005-03-16 2012-12-20 Marc Baum Takeover Processes In Security Network Integrated With Premise Security System
US11496568B2 (en) 2005-03-16 2022-11-08 Icontrol Networks, Inc. Security system with networked touchscreen
US10999254B2 (en) 2005-03-16 2021-05-04 Icontrol Networks, Inc. System for data routing in networks
US11615697B2 (en) 2005-03-16 2023-03-28 Icontrol Networks, Inc. Premise management systems and methods
US20110128378A1 (en) 2005-03-16 2011-06-02 Reza Raji Modular Electronic Display Platform
EP1705839A1 (en) * 2005-03-23 2006-09-27 Siemens Aktiengesellschaft Guaranteed bandwidth end-to-end services in bridged networks
CN100474845C (en) * 2005-10-28 2009-04-01 上海交通大学 Method for admitting controlling integral service model
US10079839B1 (en) 2007-06-12 2018-09-18 Icontrol Networks, Inc. Activation of gateway device
US7934092B2 (en) * 2006-07-10 2011-04-26 Silverbrook Research Pty Ltd Electronic device having improved security
US7681000B2 (en) 2006-07-10 2010-03-16 Silverbrook Research Pty Ltd System for protecting sensitive data from user code in register window architecture
US20080010636A1 (en) * 2006-07-10 2008-01-10 Silverbrook Research Pty Ltd Pictbridge printer firmware upgrades via memory stick
US20080010637A1 (en) * 2006-07-10 2008-01-10 Silverbrook Research Pty Ltd Pictbridge printer firmware upgrades via camera
US11706279B2 (en) 2007-01-24 2023-07-18 Icontrol Networks, Inc. Methods and systems for data communication
US7633385B2 (en) 2007-02-28 2009-12-15 Ucontrol, Inc. Method and system for communicating with and controlling an alarm system from a remote server
US8451986B2 (en) 2007-04-23 2013-05-28 Icontrol Networks, Inc. Method and system for automatically providing alternate network access for telecommunications
US20080285437A1 (en) * 2007-05-18 2008-11-20 Adc Dsl Systems, Inc. Ethernet protection switching system
US10498830B2 (en) 2007-06-12 2019-12-03 Icontrol Networks, Inc. Wi-Fi-to-serial encapsulation in systems
US11423756B2 (en) 2007-06-12 2022-08-23 Icontrol Networks, Inc. Communication protocols in integrated systems
US10523689B2 (en) 2007-06-12 2019-12-31 Icontrol Networks, Inc. Communication protocols over internet protocol (IP) networks
US11646907B2 (en) 2007-06-12 2023-05-09 Icontrol Networks, Inc. Communication protocols in integrated systems
US11237714B2 (en) 2007-06-12 2022-02-01 Control Networks, Inc. Control system user interface
US10616075B2 (en) 2007-06-12 2020-04-07 Icontrol Networks, Inc. Communication protocols in integrated systems
US11218878B2 (en) 2007-06-12 2022-01-04 Icontrol Networks, Inc. Communication protocols in integrated systems
US11212192B2 (en) 2007-06-12 2021-12-28 Icontrol Networks, Inc. Communication protocols in integrated systems
US11089122B2 (en) 2007-06-12 2021-08-10 Icontrol Networks, Inc. Controlling data routing among networks
US11601810B2 (en) 2007-06-12 2023-03-07 Icontrol Networks, Inc. Communication protocols in integrated systems
US11316753B2 (en) 2007-06-12 2022-04-26 Icontrol Networks, Inc. Communication protocols in integrated systems
US10666523B2 (en) 2007-06-12 2020-05-26 Icontrol Networks, Inc. Communication protocols in integrated systems
US11831462B2 (en) 2007-08-24 2023-11-28 Icontrol Networks, Inc. Controlling data routing in premises management systems
US8107381B2 (en) * 2007-11-27 2012-01-31 At&T Intellectual Property I, Lp Method of performing ethernet gateway switch trouble diagnostics
US11916928B2 (en) 2008-01-24 2024-02-27 Icontrol Networks, Inc. Communication protocols over internet protocol (IP) networks
US20170185278A1 (en) 2008-08-11 2017-06-29 Icontrol Networks, Inc. Automation system user interface
US11758026B2 (en) 2008-08-11 2023-09-12 Icontrol Networks, Inc. Virtual device systems and methods
US10530839B2 (en) 2008-08-11 2020-01-07 Icontrol Networks, Inc. Integrated cloud system with lightweight gateway for premises automation
US11258625B2 (en) 2008-08-11 2022-02-22 Icontrol Networks, Inc. Mobile premises automation platform
US11792036B2 (en) 2008-08-11 2023-10-17 Icontrol Networks, Inc. Mobile premises automation platform
US11729255B2 (en) 2008-08-11 2023-08-15 Icontrol Networks, Inc. Integrated cloud system with lightweight gateway for premises automation
TW201031244A (en) * 2009-02-13 2010-08-16 Ralink Technology Corp Wireless access apparatus with firmware upgrading function and the method thereof
US8638211B2 (en) 2009-04-30 2014-01-28 Icontrol Networks, Inc. Configurable controller and interface for home SMA, phone and multimedia
US8228946B2 (en) * 2009-07-29 2012-07-24 General Electric Company Method for fail-safe communication
US9152492B2 (en) * 2009-10-07 2015-10-06 Hewlett-Packard Development Company, L.P. Performing recovery of a headless computer
AU2011250886A1 (en) 2010-05-10 2013-01-10 Icontrol Networks, Inc Control system user interface
US8836467B1 (en) 2010-09-28 2014-09-16 Icontrol Networks, Inc. Method, system and apparatus for automated reporting of account and sensor zone information to a central station
US11750414B2 (en) 2010-12-16 2023-09-05 Icontrol Networks, Inc. Bidirectional security sensor communication for a premises security system
US9147337B2 (en) 2010-12-17 2015-09-29 Icontrol Networks, Inc. Method and system for logging security event data
US8804748B2 (en) * 2011-03-31 2014-08-12 Nokia Siemens Networks Ethernet Solutions Ltd. Hitless node insertion for Ethernet networks
CN102360205A (en) * 2011-08-10 2012-02-22 大连三垒机器股份有限公司 Electric control system of production line of bellows
US9225600B2 (en) 2013-01-20 2015-12-29 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Automatic configuration of host networking device networking interface without user interaction
US9344403B2 (en) * 2013-03-15 2016-05-17 Tempered Networks, Inc. Industrial network security
US9287925B2 (en) 2014-01-10 2016-03-15 General Electric Company Systems and methods for frequency hopping in wireless communication systems
US11405463B2 (en) 2014-03-03 2022-08-02 Icontrol Networks, Inc. Media content management
US11146637B2 (en) 2014-03-03 2021-10-12 Icontrol Networks, Inc. Media content management
US9729580B2 (en) 2014-07-30 2017-08-08 Tempered Networks, Inc. Performing actions via devices that establish a secure, private network
US9729581B1 (en) 2016-07-01 2017-08-08 Tempered Networks, Inc. Horizontal switch scalability via load balancing
US20180054761A1 (en) * 2016-08-22 2018-02-22 Qualcomm Incorporated Methods and systems for quality of service classification
US10805242B2 (en) * 2016-12-23 2020-10-13 Intel Corporation Techniques for a configuration mechanism of a virtual switch
CN107395528A (en) * 2017-08-30 2017-11-24 湖南恒茂高科股份有限公司 Intelligent exchange
US10069726B1 (en) 2018-03-16 2018-09-04 Tempered Networks, Inc. Overlay network identity-based relay
US10116539B1 (en) 2018-05-23 2018-10-30 Tempered Networks, Inc. Multi-link network gateway with monitoring and dynamic failover
US10158545B1 (en) 2018-05-31 2018-12-18 Tempered Networks, Inc. Monitoring overlay networks
US10911418B1 (en) 2020-06-26 2021-02-02 Tempered Networks, Inc. Port level policy isolation in overlay networks
US11070594B1 (en) 2020-10-16 2021-07-20 Tempered Networks, Inc. Applying overlay network policy based on users
US10999154B1 (en) 2020-10-23 2021-05-04 Tempered Networks, Inc. Relay node management for overlay networks

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751967A (en) * 1994-07-25 1998-05-12 Bay Networks Group, Inc. Method and apparatus for automatically configuring a network device to support a virtual network
US6128665A (en) * 1996-12-30 2000-10-03 Cabletron Systems, Inc. System for broadcasting messages to each of default VLAN ports in subset of ports defined as VLAN ports
US6144638A (en) * 1997-05-09 2000-11-07 Bbn Corporation Multi-tenant unit
US5974467A (en) * 1997-08-29 1999-10-26 Extreme Networks Protocol for communicating data between packet forwarding devices via an intermediate network interconnect device
US6104700A (en) * 1997-08-29 2000-08-15 Extreme Networks Policy based quality of service
US6665285B1 (en) * 1997-10-14 2003-12-16 Alvarion Israel (2003) Ltd. Ethernet switch in a terminal for a wireless metropolitan area network
US6154770A (en) * 1997-10-30 2000-11-28 Merrill Lynch & Co. Inc. Internetwork communication system using tiers of configurable multiple bandwidth capacity modes of operation
US6239798B1 (en) * 1998-05-28 2001-05-29 Sun Microsystems, Inc. Methods and apparatus for a window access panel
US6505228B1 (en) * 1998-07-22 2003-01-07 Cisco Technology, Inc. Dynamic determination of execution sequence
US6233626B1 (en) * 1998-10-06 2001-05-15 Schneider Automation Inc. System for a modular terminal input/output interface for communicating messaging application layer over encoded ethernet to transport layer
US6393473B1 (en) * 1998-12-18 2002-05-21 Cisco Technology, Inc. Representing and verifying network management policies using collective constraints
US6760748B1 (en) * 1999-01-20 2004-07-06 Accenture Llp Instructional system grouping student terminals
US6785272B1 (en) * 1999-06-24 2004-08-31 Allied Telesyn, Inc. Intelligent stacked switching system
CN1250294A (en) * 1999-07-27 2000-04-12 邮电部武汉邮电科学研究院 Adaption method for fusion of Ethernet with synchronizing digital system or synchronizing optical network
CA2333495A1 (en) * 2000-01-31 2001-07-31 Telecommunications Research Laboratory Internet protocol-based computer network service
US7072360B2 (en) 2000-09-22 2006-07-04 Narad Networks, Inc. Network architecture for intelligent network elements
US7027394B2 (en) 2000-09-22 2006-04-11 Narad Networks, Inc. Broadband system with traffic policing and transmission scheduling
CA2366941C (en) * 2002-01-02 2010-06-29 Marzio Paride Pozzuoli Power supply circuit for an intelligent eclectronic device

Also Published As

Publication number Publication date
WO2003039072A3 (en) 2003-11-06
US7194003B2 (en) 2007-03-20
EP1442562A2 (en) 2004-08-04
AU2002350065A1 (en) 2003-05-12
CN1605177A (en) 2005-04-06
WO2003039072A2 (en) 2003-05-08
US20030081620A1 (en) 2003-05-01

Similar Documents

Publication Publication Date Title
US7194003B2 (en) Ethernet switch and system
US8531985B2 (en) System and method for configuration and management of queue sets
US7880622B2 (en) Industrial ethernet switch
US7447147B2 (en) Ethernet switch with configurable alarms
EP1675313B1 (en) Power prioritization in power source equipment
US9077656B2 (en) Packet switch methods and systems
US7672227B2 (en) Loop prevention system and method in a stackable ethernet switch system
US20060140128A1 (en) Traffic generator and monitor
WO2005044887A9 (en) Telecommunications device and method
WO2006050317A1 (en) Device and method for port enabling based on link status monitoring
JP2004350275A (en) Security system
CN1754410B (en) Industrial Ethernet switch
EP1730893B1 (en) Method of sending a packet through a node
US20080304477A1 (en) Carrier Class Resilience Solution For Switched Ethernet Local Area Networks (Lans)
CN109921972A (en) The method that data packet transfers and/or receives
US20100061229A1 (en) Fast ring redundancy of a network
US7411948B2 (en) Ethernet switch
EP1597950B1 (en) Industrial ethernet switch
Cisco Overview
Cisco What is the Catalyst 5000 Series Switch
Cisco What is the Catalyst 5000 Series Switch
Cisco Overview
Cisco Introduction
Musikka et al. Ericsson's IP-based BSS and radio network server
Nagpal et al. Gigabit Security Switches Deployment-A Review

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued

Effective date: 20150528