CA2462254A1 - Devices for treating atrial fibrilation - Google Patents

Devices for treating atrial fibrilation Download PDF

Info

Publication number
CA2462254A1
CA2462254A1 CA002462254A CA2462254A CA2462254A1 CA 2462254 A1 CA2462254 A1 CA 2462254A1 CA 002462254 A CA002462254 A CA 002462254A CA 2462254 A CA2462254 A CA 2462254A CA 2462254 A1 CA2462254 A1 CA 2462254A1
Authority
CA
Canada
Prior art keywords
scaffold
heart
platform
platform scaffold
creating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002462254A
Other languages
French (fr)
Inventor
John A. Macoviak
David A. Rahdert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AM DISCOVERY Inc
Original Assignee
Am Discovery, Incorporated
John A. Macoviak
David A. Rahdert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Am Discovery, Incorporated, John A. Macoviak, David A. Rahdert filed Critical Am Discovery, Incorporated
Priority claimed from PCT/US2002/031374 external-priority patent/WO2003028802A2/en
Publication of CA2462254A1 publication Critical patent/CA2462254A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2454Means for preventing inversion of the valve leaflets, e.g. chordae tendineae prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22097Valve removal in veins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320052Guides for cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00392Transmyocardial revascularisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2466Delivery devices therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/902Method of implanting
    • Y10S623/904Heart

Abstract

The devices of the present invention form a platform, or scaffold for the precise delivery of various forms of energy for treatment of atrial fibrilation. Additionally, the devices of the present invention form a scaffold for the precise delivery of fluids to surrounding tissues. The use of additional energy sources can improve the delivery of various fluids into the surrounding tissue.

Description

2 PCT/US02/31374 METHODS AND DEVICES FOR TREATING ATRIAL FIBRILATION
REFERENCE TO PENDING PRIOR PATENT APPLICATION
This patent application claims benefit of pending prior U.S. Provisional Patent Application Serial Number 60/326,590 filed October 1, 2001 by John A.
Macoviak, which patent is hereby incorporated by reference.
FIELD OF THE INVENTION
This invention relates to methods and devices to improve the function of the heart. More particularly, the invention relates to methods and devices to treat atrial fibrillation.
BACKGROUND OF THE INVENTION
To function properly as a pump, the heart must contract in a rhythmic pattern.
Heart rhythm is normally established at a single point called the sinoatrial node, or SA node, located in the right atrium of the heart, near the opening of the superior vena cava. The SA node generates electrical impulses which spread throughout the heart and result in a rhythmic contraction of the heart, termed a sinus rhythm. Thus, the SA node functions as a pacemaker for the heart.
Other regions of the heart can potentially produce electrical impulses. A
pacemaker other than the SA node is referred to as an ectopic pacemaker. Electrical signals from an ectopic pacemaker can disrupt a rhythmically contracting heart, resulting in an arrhythmia, characterized by a chaotic, disorganized heart rhythm. Fibrillation of the atria results in loss of atrial contraction and rapid impulses being sent to the ventricles causing high and irregular heart rates.
Atrial fibrillation (AF) is clinically related to several conditions, including anxiety, increased risk of stroke, reduced exercise tolerance, cardiomyopathy, congestive heart failure and decreased survival. Patients who experience AF are, generally, acutely aware of the symptoms.
Current curative AF therapies are based upon a procedure that has become known as the Cox Maze procedure. The Cox Maze procedure is an open-heart, surgical procedure that requires the patient to be placed on cardiopulmonary bypass equipment. The procedure requires six hours and the patient to be under general anesthesia. In this procedure, access to the heart is gained by way of a median sternotomy, which is a surgical split of the breast bone. The left atrium is surgically incised along predetermined lines known to be effective in blocking the transmission of electrical signals from an ectopic pacemaker that triggers AF.
The incision lines create blocks that prevent conduction of unwanted electrical signals throughout the heart and permit a normal pattern of depolarization of the atria and ventricles beginning in the SA node and traveling to the AV or atrioventricular node.
Less invasive methods and devices for treating AF are needed that improve heart function and improve patient safety.
SUMMARY OF THE INVENTION
The devices of the present invention form a platform, or scaffold for the precise delivery of various forms of energy for treatment of atrial fibrilation. Additionally, the devices of the present invention form a scaffold for the precise delivery of fluids to surrounding tissues. The use of additional energy sources can improve the delivery of various fluids into the surrounding tissue.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows an embodiment of the invention in relation to its position within the heart, and within a patient's body.
Figure 2 shows an enlarged view of the device of Figure 1, with the loops surrounding the outlet of the pulmonary veins 210.
Figure 3 shows the reverse side of the device of Figures l and 2. The reverse side's loop section 320 is shown having a multitude of holes, or micro-ports 330, that lie adjacent to the atrial walls.
Figure 4 shows an embodiment of the invention 400, in fluid communication with a catheter 410.
Figure 5 show an embodiment of the device shown in Figure 4 Figure 6 is a frontal view of the device of Figures 4 and 5, with an additional positioning element.
Figure 7 is a longitudinal cross section of one embodiment of a tubule 720, having several micro-ports 730.

Figure 8 shows a radial cross section of the tubule shown in Figure 7.
Figures 9 and 10 show alternative tubule 910 designs, wherein the micro-ports are filled with porous plugs 920.
Figure 11 shows a catheter being introduced from the inferior vena cava 1110, into the right atrium 1140, through a septum 1120 between the right and left atrium, and into the left atrium 1150.
Figure 12 illustrates an embodiment of the invention 1200 that may be used to deliver energy to designated tissue.
Figure 13 shows an embodiment of the invention, and the use of an energy source 1310 to deliver energy to devices of the present invention.
Figure 14 shows an embodiment of the invention 1400 having a positioning structure 1410 to standardize scaffold orientation within a treated heart chamber.
Figure 15 shows a scaffold in the form of a wire coil that, when deployed, closely conforms to the interior of a patient's heart chamber, such as the patient's left atrium in the example shown.
Figure 16 shows another embodiment for the scaffold 1600 of present invention.
The scaffold is in the form of a wire cage that, when deployed, closely conforms to the interior of a patient's heart chamber, such as the patient's left atrium.
Figure 17 shows another embodiment for the scaffold 1700 of present invention.
Figure 18 illustrates an alternative embodiment 1800 of the invention, positioned within the right atrium.
Figures 19 through 22 show various embodiments of the invention having dual chamber structures.
Figures 23-25 show schematic views of a patient with a catheter 2340 being advanced from the inferior vena cava 2330, into the right atrium, and across the septum into the left atrium.
A second catheter 2320 is being advanced through the esophagus 2320.
DETAILED DESCRIPTION
Figure 1 shows an embodiment of the invention in relation to its position within the heart, and within a patient's body. The device 100 is comprised of a platform, or scaffold that is shown being introduced from the inferior vena cava 150, into the right atrium 190, across the septum 115 between the right and left atrium, and into the left atrium 180. The device 100 scaffold is shown having a right ablation loop 120, a left ablation loop 130, and an annular base 140. The right and left ablation loops are shown to come within close proximity of the atrial walls that surround the pulmonary veins. The pulmonary veins are common sources of ectopic pacemakers.
S The device 100 is advanced through a catheter 110 and into position.
Alternatively, the device 100 may be pre-loaded within a delivery catheter.
Figure 2 shows an enlarged view of the device of Figure 1, with the loops surrounding the outlet of the pulmonary veins 210. The device may be used as a temporary platform, or scaffold, from which therapeutic fluids or energy can be deployed.
Alternatively, the device may be left in place as a permanent implant.
Although the device 200 may have a gap of incomplete contact between the device and target tissue, the device is still effective, as described below, especially when used conjunction with tissue disrupting energies (electroporation or sonoporation), energies that promote fluid flow (electrophoresis or sonophoresis), and energies that promote scaffold vibrations. Many types of energies can be delivered to the scaffold either directly, or indirectly. Indirect application (using non-contact means) of energies can be applied trans-esophageally, trans-bronchially, trans-tracheally, trans-thoracically, across the sternum, etc.
Figure 3 shows the reverse side of the device of Figures 1 and 2. The reverse side's loop section 320 is shown having a multitude of holes, or micro-ports 330, that lie adjacent to the atrial walls. The micro-ports can be laser cut along the mural facing surface of the device. The micro-ports direct fluids within the device to be released into adjacent tissues. Fluids within the device may include alcohol, potassium iodide, therapeutic drugs, etc.
Alternatively, the devices of the present invention may not have any micro-ports, and instead be used as a heat exchanger. For example, a heat removing fluid could be circulated within the device, thus giving rise to a temporary conduction block in the adjacent tissue. As such, the device 300 can be used a diagnostic tool, for determining the origin of ectopic pacemakers, for example. Also, with longer exposures to adjacent tissues, the heat removal aspect of the device could result in permanent conduction block, tissue shrinkage (to tighten the skin, for promoting valve function, or close off an atrial appendage), etc.
When used in the left atrium, the device's annular base 310 is positioned to surround the mural annulus. The loop section 320 is supported by upright members 315. The loop section 320 is in fluid communication with the catheter via the inlet port 340.

As shown, this device may be used to prevent AF, but in a manner that differs from the Cox Maze procedure. In the Cox Maze procedure, a specific pattern is cut into the heart to create a proper pathway for the signal generated from the SA node to travel throughout the heart. The device shown differs in that it does not create a signal pathway, but rather isolates unwanted signals from propagating. The procedure is intended for use by an interventional electro-cardiologist, or other skilled professional.
Figure 4 shows an embodiment of the invention 400, in fluid communication with a catheter 410. The catheter 410 may be introduced into the femoral vein, and advanced through the vena cava into the right atrium. The catheter may be 12 to 14 French in diameter and approximately 1 SO centimeters long, depending on the dimensions of the patient's anatomy. An exemplary catheter 410 is shown to have a guide wire port 420, a thru lumen port 430, and an ablation agent vent 440. Not shown is an ablation agent inlet port. Preferred ablation agents are alcohol, or potassium iodide.
The catheter may be introduced into the patient under fluoroscopic guidance and advanced through the venous return to the right atrium of the heart. Using standard cardiology procedures, a trans-septal puncture will be performed and the catheter 410 may be advanced through the trans-septal puncture into the left atrium. Guide wires may be advanced into the atrial appendage, the mural valve annulus and one of the pulmonary veins. The device is preferably designed from a biocompatible, super-elastic material that will expand aggressively under the effects of body heat, or with the aid of an inflatable balloon.
Under continued fluoroscopic guidance with the adjunctive capability for verification by intravascular ultrasound, the cardiologist will ensure that the device has expanded completely, and is positioned correctly and in close contact with surrounding heart wall. The device is then used as a platform for the delivery of energy or a fluid that can create a conduction block, or be used diagnostically.
Conduction block lines preferably fully transect the myocardium of the atrium (about 3 to S
millimeters in thickness). Once the conduction block has been completed, the device may be removed from the patient.
The benefits of using alcohol, or other tissue fixative agents, is the drastic reduction of energy required to create conduction block, resulting in a safer and more effective ablation because the tissue is in fact toughened by the fixative properties of alcohol-like agents that cause a coagulation cellular necrosis instead of a weakened tissue wall liquefaction necrosis that is caused with other types of energy to create conduction block.

Figure 5 show an embodiment of the device shown in Figure 4. The device is shown with an opposition member 540, a superior tubule 530 (superior relative to the pulmonary veins), and an inferior tubule 560 (inferior relative to the pulmonary veins). In addition, the device can be designed with additional tubules to create additional lines of ablation, or additional opposition S members. Assuming a traps-septal introduction of this embodiment from the right atrium into the left atrium, the proximal end 520 of the device is positioned adj acent the traps-septal entry point. The opposition member 540 is positioned along the anterior wall, opposite the pulmonary veins. The opposition member functions to transmit mural pressure from the atrium through the device to the tubules. The superior tubule, 530, is positioned adjacent the apex of the left atrium.
The inferior tubule, 560, is positioned adjacent the base of the posterior wall. The tubules, 530 and 560, have a multitude of micro-ports 500. The micro-ports allow a fluid to be released from inside the tubules and into the atrial walls. Several fluids can be used, any of which function to disrupt the flow of unwanted electrical signals. Thus, the fluids released from the micro-ports located along the tubules create an electrical signal block. The shape of signal block created by this embodiment is that of an oval, or a football. The lines follow a path similar to two adjacent longitudinal lines on a world globe (turned sideways) beginning at the North Pole, and ending at the South Pole.
Figure 6 is a frontal view of the device of Figures 4 and 5. An additional aspect of the device includes an orienting structure, so that the device takes advantage of anatomical features to achieve proper orientation within a heart chamber. For example, Figure 6 shows a circular structure 600 projecting from the distal end of the device. This circular projection may be positioned within an atrial appendage to aid with orientation of the device.
This may be designed in the shaped of a pigtail, or corkscrew projecting from the distal end of the device.
Figure 7 is a longitudinal cross section of one embodiment of a tubule 720, having several micro-ports 730. The tubule 720 is encased within a sleeve 710. A
preferred sleeve 710 is a polymeric sleeve made from sintered gel. The sleeve 710, functions as a diffusion barrier so that when fluid is released from the tubule 720, it is slowed down and allowed to diffuse into the adjacent atrial wall, rather than be released like a jet into the surrounding atrial wall. The sleeve 710 also promotes an equal distribution of fluid throughout the tubule 720.
Figure 8 shows a radial cross section of the tubule shown in Figure 7. Nitinol is a material that may be used for the tubule 720.

Figures 9 and 10 show alternative tubule 910 designs, wherein the micro-ports are filled with porous plugs 920. A preferred porous plug 920 is comprised of sintered gel beads formed into a porous plug.
Figure 11 shows a catheter being introduced from the inferior vena cava 1110, into the S right atrium 1140, through a septum 1120 between the right and left atrium, and into the left atrium 1150. This figure illustrates a pump 1130 positioned within a catheter 1180. Also, there is a guide wire 1170 shown protruding from the distal end of the catheter 1180. The pump 1130 may be a piezoelectric pump used to drive fluid out through the micro-ports of the tubules. In another embodiment, there may be no in-line pump. Instead, an outside pump may be used.
Figure 12 illustrates an embodiment of the invention 1200 that may be used to deliver energy to designated tissue. The device is shown connected to an energy component 1210 that may be a generator, defibrillator, pacemaker, or radio frequency device, that has been positioned underneath the skin (subclavian pocket) and that makes its way into the superior vena cava via the subclavian vein. The device structure 1220 shown within the superior vena cava may function as a transformer, capacitor, or electrode.
Figure 13 shows an embodiment of the invention, and the use of an energy source 1310 to deliver energy to devices of the present invention. The in-line member 1320 could be a transformer, capacitor, or electrode, depending on the need.
Figure 14 shows an embodiment of the invention 1400 having a positioning structure 1410 to standardize scaffold orientation within a treated heart chamber. In this embodiment, the positioning structure 1410 is shown being introduced to a pulmonary vein.
Figures 15 through 18 illustrate various embodiments of the invention.
Figure 15 shows a scaffold in the form of a wire coil that, when deployed, closely conforms to the interior of a patient's heart chamber, such as the patient's left atrium in the example shown. The deployed scaffold has an approximately cylindrical configuration. The wire coil of the scaffold may be constructed of a malleable or elastic biocompatible metal, such as stainless steel or a super-elastic or shape memory nickelltitanium alloy, for example.
Preferably, the scaffold is sufficiently flexible such that it does not interfere with the normal contraction of the heart. In addition, the wire coil may have a coating for improved biocompatibility, thermal and/or electrical insulation, etc.
Figure 16 shows another embodiment for the scaffold 1600 of present invention.
The scaffold is in the form of a wire cage that, when deployed, closely conforms to the interior of a patient's heart chamber, such as the patient's left atrium. The deployed scaffold may have a dome-shaped or tapered cylindrical configuration, with an upper loop and a lower loop joined by longitudinal struts.
Figure 17 shows another embodiment for the scaffold 1700 of present invention.
The scaffold is in the form of a hoop-and-strut wire cage that, when deployed, closely conforms to the interior of a patient's heart chamber, such as the patient's left atrium.
The deployed scaffold may have a dome-shaped or tapered cylindrical configuration, with an upper hoop, a middle hoop and a lower hoop joined by longitudinal struts.
Figures 19 through 22 show various embodiments of the invention having dual chamber structures.
Figures 23-25 show schematic views of a patient with a catheter 2340 being advanced from the inferior vena cava 2330, into the right atrium, and across the septum into the left atrium.
A second catheter 2320 is being advanced through the esophagus 2320, and its close proximity to the left atrium makes it a suitable pathway for delivering a non-contact energy source, such as ultrasound (preferably low frequency ultrasound, below 1 MHz), radio frequency, or an inductive coupling mechanism. Alternative non-contact energy source include microwaves.
These energy sources can be applied to various devices to encourage the flow of ions in a preferred direction, encourage fluid absorption, or cause ablation to occur.
Also, ultrasound and other energy sources may be delivered to the devices of the present invention across the skin, transcutaneously.
While the present invention has been described herein with respect to the exemplary embodiments and the best mode for practicing the invention it will become apparent to one of ordinary skill in the art that many modifications, improvements and sub combinations of the various embodiments, adaptations and variations can be made to the invention without departing from the spirit and scope thereof.

Claims (28)

We claim:
1. A platform scaffold for treating atrial fibrilation, the platform scaffold comprising:
an annular base, a tubular loop section, upright members, and an inlet port, wherein the annular base supports the loop section via the upright members, and the inlet port enables communication with other devices.
2. The platform scaffold of claim 1, further comprising micro-ports positioned along the heart wall contacting surface of the tubular loop section.
3. The platform scaffold of claim 2, wherein the micro-ports are filled with porous plugs.
4. The platform scaffold of claim 1, wherein the platform scaffold is manufactured from a super-elastic material.
5. The platform scaffold of claim 1, wherein the tubular loop section is encased within a polymeric sleeve.
6. A platform scaffold for treating atrial fibrilation, the platform scaffold comprising:
a first structural rail, a second therapeutic rail, and a third therapeutic rail, wherein the rails originate at a first point, and terminate at a second point, and expand radially away from the first point, and contract radially toward the second point, and when placed within a heart chamber, the first structural member transmits force from the surrounding heart wall to the second and third therapeutic rails to ensure all rails contact the adjacent heart wall.
7. The second and third therapeutic rails of claim 6, further comprising micro-ports positioned along the heart wall contacting surface of the rails.
8. The second and third therapeutic rails of claim 7, wherein the micro-ports are filled with porous plugs.
9. The platform scaffold claim 6, wherein the platform scaffold is manufactured from a super-elastic material.
10. The platform scaffold of claim 6, wherein the rails are encased within a polymeric sleeve.
11. The platform scaffold of claim 6, further comprising a positioning member to standardize scaffold orientation within a treated heart chamber.
12. A platform scaffold for treating atrial fibrilation, comprising:
a wire, the wire having an approximately cylindrical configuration when deployed closely conforming to the interior of a patient's heart chamber.
13. The platform scaffold of claim 12, wherein the platform scaffold is manufactured from a super-elastic material.
14. A platform scaffold for treating atrial fibrilation, comprising:
a wire form birdcage, the wire form birdcage having a dome-shaped or tapered cylindrical configuration, with an upper loop and a lower loop joined by longitudinal struts, the wire form birdcage closely conforming to the interior of a patient's heart chamber.
15. The platform scaffold of claim 14, wherein the platform scaffold is manufactured from a super-elastic material.
16. A platform scaffold for treating atrial fibrilation, comprising:
a wire form hoop-and-strut wire cage, the wire form hoop-and-strut wire cage having a dome-shaped or tapered cylindrical configuration, with an upper hoop, a middle hoop and a lower hoop joined by longitudinal struts, the wire form hoop-and-strut wire cage closely conforming to the interior of a patient's heart chamber.
17. The platform scaffold of claim 16, wherein the platform scaffold is manufactured from a super-elastic material.
18. A method of diagnosing signal conduction within the heart comprising:
transvascularly introducing a platform scaffold into the heart;
positioning the platform scaffold;
releasing a heat absorbing fluid into the platform scaffold, the heat absorbing fluid them passing through the platform scaffold;
and observing the effect of localized cooling on the heart to temporarily interrupt signal conduction.
19. A method of creating a signal block within the heart comprising:
transvascularly introducing a platform scaffold into the heart having micro-ports;
positioning the platform scaffold;
and releasing a tissue fixative fluid into the scaffold, the tissue fixative fluid then passing through the platform scaffold.
20. The method of creating a signal block within the heart of claim 19, further comprising the step of applying tissue disrupting energies that promote fluid flow.
21. The method of creating a signal block within the heart of claim 20, wherein the tissue disrupting energy may be applied directly to the scaffold.
22. The method of creating a signal block within the heart of claim 20, wherein the tissue disrupting energy may be applied indirectly to the scaffold.
23. The method of creating a signal block within the heart of claim 19, further comprising the step of applying energies that promote scaffold vibrations.
24. The method of creating a signal block within the heart of claim 23, wherein the energies that promote scaffold vibrations may be applied directly to the scaffold.
25. The method of creating a signal block within the heart of claim 23, wherein the energies that promote scaffold vibrations may be applied indirectly to the scaffold.
26. A method of creating a signal block within the heart comprising:
transvascularly introducing a platform scaffold into the heart;
positioning the platform scaffold;
and transferring energy to the scaffold to create lines of ablation.
27. The method of creating a signal block within the heart of claim 26, wherein the energies that creates lines of ablation may be applied directly to the scaffold.
28. The method of creating a signal block within the heart of claim 26, wherein the energies that create lines of ablation may be applied indirectly to the scaffold.
CA002462254A 2001-10-01 2002-10-01 Devices for treating atrial fibrilation Abandoned CA2462254A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US32659001P 2001-10-01 2001-10-01
US60/326,590 2001-10-01
PCT/US2002/031374 WO2003028802A2 (en) 2001-10-01 2002-10-01 Devices for treating atrial fibrilation

Publications (1)

Publication Number Publication Date
CA2462254A1 true CA2462254A1 (en) 2003-04-10

Family

ID=23272862

Family Applications (2)

Application Number Title Priority Date Filing Date
CA002455444A Abandoned CA2455444A1 (en) 2001-10-01 2002-10-01 Methods and devices for heart valve treatments
CA002462254A Abandoned CA2462254A1 (en) 2001-10-01 2002-10-01 Devices for treating atrial fibrilation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA002455444A Abandoned CA2455444A1 (en) 2001-10-01 2002-10-01 Methods and devices for heart valve treatments

Country Status (8)

Country Link
US (2) US7291168B2 (en)
EP (1) EP1434542A2 (en)
JP (1) JP4458845B2 (en)
CN (2) CN100333704C (en)
AU (1) AU2002362442B2 (en)
CA (2) CA2455444A1 (en)
HK (1) HK1073423A1 (en)
WO (1) WO2003028558A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223800A (en) * 2005-02-17 2006-08-31 Sango Sas Di Cattani Rita & C External support for restoring competence to venous valves by traction of their intercommissural walls

Families Citing this family (318)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US6269819B1 (en) * 1997-06-27 2001-08-07 The Trustees Of Columbia University In The City Of New York Method and apparatus for circulatory valve repair
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US6254564B1 (en) 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
WO2006116558A2 (en) * 1999-04-09 2006-11-02 Evalve, Inc. Device and methods for endoscopic annuloplasty
US7666204B2 (en) 1999-04-09 2010-02-23 Evalve, Inc. Multi-catheter steerable guiding system and methods of use
WO2000060995A2 (en) 1999-04-09 2000-10-19 Evalve, Inc. Methods and apparatus for cardiac valve repair
US10327743B2 (en) 1999-04-09 2019-06-25 Evalve, Inc. Device and methods for endoscopic annuloplasty
US7811296B2 (en) 1999-04-09 2010-10-12 Evalve, Inc. Fixation devices for variation in engagement of tissue
US8216256B2 (en) 1999-04-09 2012-07-10 Evalve, Inc. Detachment mechanism for implantable fixation devices
US20040044350A1 (en) 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
EP1113497A3 (en) * 1999-12-29 2006-01-25 Texas Instruments Incorporated Semiconductor package with conductor impedance selected during assembly
ITPC20000013A1 (en) * 2000-04-13 2000-07-13 Paolo Ferrazzi INTROVENTRICULAR DEVICE AND RELATED METHOD FOR THE TREATMENT AND CORRECTION OF MYOCARDIOPATHIES.
US8784482B2 (en) * 2000-09-20 2014-07-22 Mvrx, Inc. Method of reshaping a heart valve annulus using an intravascular device
US7691144B2 (en) 2003-10-01 2010-04-06 Mvrx, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US7527646B2 (en) * 2000-09-20 2009-05-05 Ample Medical, Inc. Devices, systems, and methods for retaining a native heart valve leaflet
US6602286B1 (en) 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
US6575971B2 (en) 2001-11-15 2003-06-10 Quantum Cor, Inc. Cardiac valve leaflet stapler device and methods thereof
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
AU2003277115A1 (en) * 2002-10-01 2004-04-23 Ample Medical, Inc. Device and method for repairing a native heart valve leaflet
JP2006501033A (en) * 2002-10-01 2006-01-12 アンプル メディカル, インコーポレイテッド Device, system and method for reshaping a heart valve annulus
US7112219B2 (en) 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US6997950B2 (en) * 2003-01-16 2006-02-14 Chawla Surendra K Valve repair device
US20050107871A1 (en) * 2003-03-30 2005-05-19 Fidel Realyvasquez Apparatus and methods for valve repair
US7658759B2 (en) * 2003-04-24 2010-02-09 Cook Incorporated Intralumenally implantable frames
US10646229B2 (en) 2003-05-19 2020-05-12 Evalve, Inc. Fixation devices, systems and methods for engaging tissue
WO2004103223A1 (en) * 2003-05-20 2004-12-02 The Cleveland Clinic Foundation Apparatus and methods for repair of a cardiac valve
US8052751B2 (en) * 2003-07-02 2011-11-08 Flexcor, Inc. Annuloplasty rings for repairing cardiac valves
US20050004665A1 (en) * 2003-07-02 2005-01-06 Lishan Aklog Annuloplasty rings and methods for repairing cardiac valves
WO2005007036A1 (en) * 2003-07-18 2005-01-27 Brivant Research & Development Limited A device for correcting inversion of the leaflets of a leaflet valve in the heart
JP4447011B2 (en) * 2003-07-21 2010-04-07 ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア Percutaneous heart valve
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
EP1734903B2 (en) 2004-03-11 2022-01-19 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
US7942927B2 (en) 2004-03-15 2011-05-17 Baker Medical Research Institute Treating valve failure
EP3143944B1 (en) 2004-05-14 2018-08-01 Evalve, Inc. Locking mechanisms for fixation devices
WO2006002492A1 (en) * 2004-07-06 2006-01-12 Baker Medical Research Institute Treating valvular insufficiency
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
JP2008513060A (en) 2004-09-14 2008-05-01 エドワーズ ライフサイエンシーズ アーゲー Device and method for treatment of heart valve regurgitation
CA2581852C (en) 2004-09-27 2012-11-13 Evalve, Inc. Methods and devices for tissue grasping and assessment
US8052592B2 (en) 2005-09-27 2011-11-08 Evalve, Inc. Methods and devices for tissue grasping and assessment
WO2006041877A2 (en) * 2004-10-05 2006-04-20 Ample Medical, Inc. Atrioventricular valve annulus repair systems and methods including retro-chordal anchors
SE0403046D0 (en) * 2004-12-15 2004-12-15 Medtentia Ab A device and method for improving the function of a heart valve
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US20060173490A1 (en) 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
WO2011034628A1 (en) 2005-02-07 2011-03-24 Evalve, Inc. Methods, systems and devices for cardiac valve repair
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
WO2006086434A1 (en) 2005-02-07 2006-08-17 Evalve, Inc. Methods, systems and devices for cardiac valve repair
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
WO2006089236A1 (en) * 2005-02-18 2006-08-24 The Cleveland Clinic Foundation Apparatus and methods for replacing a cardiac valve
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
EP1853199B1 (en) * 2005-02-28 2014-10-29 Medtentia International Ltd Oy Devices for improving the function of a heart valve
WO2006097931A2 (en) 2005-03-17 2006-09-21 Valtech Cardio, Ltd. Mitral valve treatment techniques
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20060259135A1 (en) * 2005-04-20 2006-11-16 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
SE531468C2 (en) * 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
CA2606101A1 (en) * 2005-04-25 2006-11-02 Evalve, Inc. Device and methods for endoscopic annuloplasty
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
WO2007025028A1 (en) * 2005-08-25 2007-03-01 The Cleveland Clinic Foundation Percutaneous atrioventricular valve and method of use
CN102113923B (en) 2005-09-07 2014-05-07 梅德坦提亚国际有限公司 A device for improving the function of a heart valve
US7569071B2 (en) 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US7797607B2 (en) * 2005-12-27 2010-09-14 Lg Electronics, Inc. DTV transmitter and method of coding main and enhanced data in DTV transmitter
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US7749249B2 (en) 2006-02-21 2010-07-06 Kardium Inc. Method and device for closing holes in tissue
US7635386B1 (en) * 2006-03-07 2009-12-22 University Of Maryland, Baltimore Methods and devices for performing cardiac valve repair
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
US20070282429A1 (en) * 2006-06-01 2007-12-06 Hauser David L Prosthetic insert for improving heart valve function
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
EP2068765B1 (en) 2006-07-31 2018-05-09 Syntheon TAVR, LLC Sealable endovascular implants
US9408607B2 (en) 2009-07-02 2016-08-09 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US9585743B2 (en) 2006-07-31 2017-03-07 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US20080033541A1 (en) * 2006-08-02 2008-02-07 Daniel Gelbart Artificial mitral valve
US7837610B2 (en) 2006-08-02 2010-11-23 Kardium Inc. System for improving diastolic dysfunction
FR2906454B1 (en) * 2006-09-28 2009-04-10 Perouse Soc Par Actions Simpli IMPLANT INTENDED TO BE PLACED IN A BLOOD CIRCULATION CONDUIT.
US8694077B2 (en) 2006-10-06 2014-04-08 The Cleveland Clinic Foundation Apparatus and method for targeting a body tissue
WO2008070262A2 (en) 2006-10-06 2008-06-12 The Cleveland Clinic Foundation Apparatus and method for targeting a body tissue
SE530568C2 (en) * 2006-11-13 2008-07-08 Medtentia Ab Medical device for improving function of heart valve, has flange unit connected to loop-shaped support and provided to be arranged against annulus when loop shaped support abut heart valve
WO2010004546A1 (en) 2008-06-16 2010-01-14 Valtech Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
JP2010511469A (en) * 2006-12-05 2010-04-15 バルテック カーディオ,リミティド Segmented ring placement
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US8070802B2 (en) * 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US20080208328A1 (en) * 2007-02-23 2008-08-28 Endovalve, Inc. Systems and Methods For Placement of Valve Prosthesis System
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US9814611B2 (en) 2007-07-31 2017-11-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8216303B2 (en) * 2007-11-19 2012-07-10 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
WO2010070649A1 (en) 2008-12-21 2010-06-24 Mor Research Applications Ltd. Elongated body for deployment in a coronary sinus
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
EP2695587A1 (en) 2008-01-25 2014-02-12 JenaValve Technology Inc. Medical apparatus for the therapeutic treatment of an insufficient cardiac valve
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
BR112012021347A2 (en) 2008-02-26 2019-09-24 Jenavalve Tecnology Inc stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US20100121435A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Percutaneous transvalvular intrannular band for mitral valve repair
US20100131057A1 (en) 2008-04-16 2010-05-27 Cardiovascular Technologies, Llc Transvalvular intraannular band for aortic valve repair
US20100121437A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Transvalvular intraannular band and chordae cutting for ischemic and dilated cardiomyopathy
US10456259B2 (en) 2008-04-16 2019-10-29 Heart Repair Technologies, Inc. Transvalvular intraannular band for mitral valve repair
US11083579B2 (en) 2008-04-16 2021-08-10 Heart Repair Technologies, Inc. Transvalvular intraanular band and chordae cutting for ischemic and dilated cardiomyopathy
US11013599B2 (en) 2008-04-16 2021-05-25 Heart Repair Technologies, Inc. Percutaneous transvalvular intraannular band for mitral valve repair
US8262725B2 (en) * 2008-04-16 2012-09-11 Cardiovascular Technologies, Llc Transvalvular intraannular band for valve repair
DK3967274T3 (en) 2008-04-23 2022-10-03 Medtronic Inc HEART VALVE DEVICES WITH STENT
WO2009132187A1 (en) * 2008-04-23 2009-10-29 Medtronic, Inc. Stented heart valve devices
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US20090287304A1 (en) 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
US8337390B2 (en) * 2008-07-30 2012-12-25 Cube S.R.L. Intracardiac device for restoring the functional elasticity of the cardiac structures, holding tool for the intracardiac device, and method for implantation of the intracardiac device in the heart
CA2776475A1 (en) * 2008-10-10 2010-04-15 Peter Forsell An improved artificial valve
EP2358297B1 (en) 2008-11-21 2019-09-11 Percutaneous Cardiovascular Solutions Pty Limited Heart valve prosthesis
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US8545553B2 (en) 2009-05-04 2013-10-01 Valtech Cardio, Ltd. Over-wire rotation tool
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
US8926696B2 (en) 2008-12-22 2015-01-06 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
EP2633821B1 (en) 2009-09-15 2016-04-06 Evalve, Inc. Device for cardiac valve repair
US20120179184A1 (en) 2009-09-15 2012-07-12 Boris Orlov Heart valve remodeling
US20110077733A1 (en) * 2009-09-25 2011-03-31 Edwards Lifesciences Corporation Leaflet contacting apparatus and method
US20110082538A1 (en) 2009-10-01 2011-04-07 Jonathan Dahlgren Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
WO2011067770A1 (en) 2009-12-02 2011-06-09 Valtech Cardio, Ltd. Delivery tool for implantation of spool assembly coupled to a helical anchor
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US9522062B2 (en) * 2010-02-24 2016-12-20 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
ES2761298T3 (en) 2010-03-05 2020-05-19 Edwards Lifesciences Corp Retention mechanisms for prosthetic valves
WO2011111047A2 (en) 2010-03-10 2011-09-15 Mitraltech Ltd. Prosthetic mitral valve with tissue anchors
EP2558007A4 (en) 2010-04-13 2017-11-29 Sentreheart, Inc. Methods and devices for accessing and delivering devices to a heart
BR112012029896A2 (en) 2010-05-25 2017-06-20 Jenavalve Tech Inc prosthetic heart valve for stent graft and stent graft
US9050066B2 (en) 2010-06-07 2015-06-09 Kardium Inc. Closing openings in anatomical tissue
EP2590595B1 (en) 2010-07-09 2015-08-26 Highlife SAS Transcatheter atrio-ventricular valve prosthesis
US8657872B2 (en) 2010-07-19 2014-02-25 Jacques Seguin Cardiac valve repair system and methods of use
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
WO2012012761A2 (en) 2010-07-23 2012-01-26 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
US10105224B2 (en) 2010-09-01 2018-10-23 Mvalve Technologies Ltd. Cardiac valve support structure
CN103237523A (en) * 2010-09-01 2013-08-07 M阀门技术有限公司 Cardiac valve support structure
US8940002B2 (en) 2010-09-30 2015-01-27 Kardium Inc. Tissue anchor system
US9289295B2 (en) 2010-11-18 2016-03-22 Pavilion Medical Innovations, Llc Tissue restraining devices and methods of use
US9198756B2 (en) 2010-11-18 2015-12-01 Pavilion Medical Innovations, Llc Tissue restraining devices and methods of use
EP2661239B1 (en) 2011-01-04 2019-04-10 The Cleveland Clinic Foundation Apparatus for treating a regurgitant heart valve
EP2478868A1 (en) 2011-01-25 2012-07-25 The Provost, Fellows, Foundation Scholars, and the other Members of Board, of the College of the Holy and Undivided Trinity of Queen Elizabeth Implant device
WO2012103173A2 (en) * 2011-01-25 2012-08-02 Emory University Devices and methods for surgical and percutaneous repair of heart valve lesions
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US10500038B1 (en) 2011-05-20 2019-12-10 Tel Hashomer Medical Research Infrastructure And Services Ltd. Prosthetic mitral valve, and methods and devices for deploying the prosthetic mitral valve
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
EP3395298A1 (en) 2011-06-27 2018-10-31 University of Maryland, Baltimore Transapical mitral valve repair device
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
EP2739214B1 (en) 2011-08-05 2018-10-10 Cardiovalve Ltd Percutaneous mitral valve replacement and sealing
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8945177B2 (en) 2011-09-13 2015-02-03 Abbott Cardiovascular Systems Inc. Gripper pusher mechanism for tissue apposition systems
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP3656434B1 (en) 2011-11-08 2021-10-20 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
EP2591754B1 (en) * 2011-11-10 2015-02-25 Medtentia International Ltd Oy A device and a method for improving the function of a heart valve
US9445893B2 (en) 2011-11-21 2016-09-20 Mor Research Applications Ltd. Device for placement in the tricuspid annulus
US10143452B2 (en) * 2011-12-05 2018-12-04 Pi-Cardia Ltd. Fracturing calcifications in heart valves
CN104220027B (en) 2012-01-31 2017-11-07 米特拉尔维尔福科技有限责任公司 Bicuspid valve parking device, system and method
CA2869365A1 (en) * 2012-04-05 2013-10-10 Mvalve Technologies Ltd. Cardiac valve support structure
JP6219377B2 (en) 2012-05-20 2017-10-25 テル ハショマー メディカル リサーチ インフラストラクチャー アンド サーヴィシーズ リミテッド Artificial mitral valve
DE102012010798A1 (en) * 2012-06-01 2013-12-05 Universität Duisburg-Essen Implantable device for improving or eliminating heart valve insufficiency
US9216018B2 (en) 2012-09-29 2015-12-22 Mitralign, Inc. Plication lock delivery system and method of use thereof
EP2908743B1 (en) 2012-10-22 2018-08-22 The Cleveland Clinic Foundation Apparatus for targeting a body tissue
EP2911594B1 (en) 2012-10-23 2018-12-05 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
WO2014087402A1 (en) 2012-12-06 2014-06-12 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
CN105007832B (en) 2013-01-09 2018-01-23 4科技有限公司 Organize ancora equipment
ES2934670T3 (en) 2013-01-24 2023-02-23 Cardiovalve Ltd Ventricularly Anchored Prosthetic Valves
US9724084B2 (en) 2013-02-26 2017-08-08 Mitralign, Inc. Devices and methods for percutaneous tricuspid valve repair
WO2014136056A1 (en) * 2013-03-04 2014-09-12 Medical Research, Infrastructure And Health Services Fund Of The Tel-Aviv Medical Center Cardiac valve commissure brace
WO2014141239A1 (en) 2013-03-14 2014-09-18 4Tech Inc. Stent with tether interface
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
WO2014144247A1 (en) 2013-03-15 2014-09-18 Arash Kheradvar Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
EP2968847B1 (en) 2013-03-15 2023-03-08 Edwards Lifesciences Corporation Translation catheter systems
CR20160094A (en) 2013-08-14 2018-03-05 Mitral Valve Tech Sarl EQUIPMENT AND METHODS TO IMPLEMENT A REPLACEMENT CARDIAC VALVE
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US10646333B2 (en) 2013-10-24 2020-05-12 Medtronic, Inc. Two-piece valve prosthesis with anchor stent and valve component
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
US10258408B2 (en) 2013-10-31 2019-04-16 Sentreheart, Inc. Devices and methods for left atrial appendage closure
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US9681864B1 (en) 2014-01-03 2017-06-20 Harpoon Medical, Inc. Method and apparatus for transapical procedures on a mitral valve
EP3107499A4 (en) 2014-02-20 2018-03-14 Mitral Valve Technologies Sàrl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
EP4248914A2 (en) 2014-02-21 2023-09-27 Mitral Valve Technologies Sàrl Prosthetic mitral valve and anchoring device
US9572666B2 (en) * 2014-03-17 2017-02-21 Evalve, Inc. Mitral valve fixation device removal devices and methods
US10390943B2 (en) 2014-03-17 2019-08-27 Evalve, Inc. Double orifice device for transcatheter mitral valve replacement
EP3157469B1 (en) 2014-06-18 2021-12-15 Polares Medical Inc. Mitral valve implants for the treatment of valvular regurgitation
EP3157607B1 (en) 2014-06-19 2019-08-07 4Tech Inc. Cardiac tissue cinching
CA2958065C (en) 2014-06-24 2023-10-31 Middle Peak Medical, Inc. Systems and methods for anchoring an implant
EP3928743A1 (en) * 2014-06-26 2021-12-29 Boston Scientific Scimed Inc. Medical devices and methods to prevent bile reflux after bariatric procedures
EP3174502B1 (en) 2014-07-30 2022-04-06 Cardiovalve Ltd Apparatus for implantation of an articulatable prosthetic valve
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
EP3922213A1 (en) 2014-10-14 2021-12-15 Valtech Cardio, Ltd. Leaflet-restraining techniques
JP6717820B2 (en) 2014-12-02 2020-07-08 4テック インコーポレイテッド Eccentric tissue anchor
US9517131B2 (en) 2014-12-12 2016-12-13 Than Nguyen Cardiac valve repair device
US10188392B2 (en) 2014-12-19 2019-01-29 Abbott Cardiovascular Systems, Inc. Grasping for tissue repair
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
CN110141399B (en) 2015-02-05 2021-07-27 卡迪尔维尔福股份有限公司 Prosthetic valve with axially sliding frame
US10231834B2 (en) 2015-02-09 2019-03-19 Edwards Lifesciences Corporation Low profile transseptal catheter and implant system for minimally invasive valve procedure
US10039637B2 (en) 2015-02-11 2018-08-07 Edwards Lifesciences Corporation Heart valve docking devices and implanting methods
US20160235525A1 (en) 2015-02-12 2016-08-18 Medtronic, Inc. Integrated valve assembly and method of delivering and deploying an integrated valve assembly
US20160256269A1 (en) 2015-03-05 2016-09-08 Mitralign, Inc. Devices for treating paravalvular leakage and methods use thereof
WO2016154168A1 (en) * 2015-03-23 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Heart valve repair
US10524912B2 (en) 2015-04-02 2020-01-07 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
CN114515173A (en) 2015-04-30 2022-05-20 瓦尔泰克卡迪欧有限公司 Valvuloplasty techniques
CN107530168B (en) 2015-05-01 2020-06-09 耶拿阀门科技股份有限公司 Device and method with reduced pacemaker ratio in heart valve replacement
US10376673B2 (en) 2015-06-19 2019-08-13 Evalve, Inc. Catheter guiding system and methods
US10238494B2 (en) 2015-06-29 2019-03-26 Evalve, Inc. Self-aligning radiopaque ring
US10667815B2 (en) 2015-07-21 2020-06-02 Evalve, Inc. Tissue grasping devices and related methods
US10413408B2 (en) 2015-08-06 2019-09-17 Evalve, Inc. Delivery catheter systems, methods, and devices
WO2017035002A1 (en) * 2015-08-21 2017-03-02 Twelve Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US10034747B2 (en) 2015-08-27 2018-07-31 Medtronic Vascular, Inc. Prosthetic valve system having a docking component and a prosthetic valve component
US20170056215A1 (en) 2015-09-01 2017-03-02 Medtronic, Inc. Stent assemblies including passages to provide blood flow to coronary arteries and methods of delivering and deploying such stent assemblies
WO2017059426A1 (en) 2015-10-02 2017-04-06 Harpoon Medical, Inc. Distal anchor apparatus and methods for mitral valve repair
US10022223B2 (en) 2015-10-06 2018-07-17 W. L. Gore & Associates, Inc. Leaflet support devices and methods of making and using the same
US10238495B2 (en) 2015-10-09 2019-03-26 Evalve, Inc. Delivery catheter handle and methods of use
US9872765B2 (en) 2015-10-12 2018-01-23 Venus Medtech (Hangzhou) Inc Mitral valve assembly
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
CN108472135B (en) 2015-12-10 2021-02-02 姆维亚克斯股份有限公司 Devices, systems, and methods for reshaping a heart valve annulus
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
EP3397207A4 (en) 2015-12-30 2019-09-11 Mitralign, Inc. System and method for reducing tricuspid regurgitation
US10363130B2 (en) 2016-02-05 2019-07-30 Edwards Lifesciences Corporation Devices and systems for docking a heart valve
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
EP3231393B1 (en) 2016-04-13 2023-06-21 Christian Vallbracht Minimally invasive implantable mitral and tricuspid valve
US10624743B2 (en) 2016-04-22 2020-04-21 Edwards Lifesciences Corporation Beating-heart mitral valve chordae replacement
WO2017191549A1 (en) * 2016-05-05 2017-11-09 LAINCHBURY, John George Device for the treatment of mitral valve prolapse
EP3243485A1 (en) 2016-05-11 2017-11-15 Berlin Heart GmbH Holding device for a sewing ring
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
WO2017217932A1 (en) * 2016-06-13 2017-12-21 Singapore Health Services Pte. Ltd. Device for cardiac valve repair and method of implanting the same
US10588745B2 (en) 2016-06-20 2020-03-17 Medtronic Vascular, Inc. Modular valve prosthesis, delivery system, and method of delivering and deploying a modular valve prosthesis
US10736632B2 (en) 2016-07-06 2020-08-11 Evalve, Inc. Methods and devices for valve clip excision
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
US10828150B2 (en) * 2016-07-08 2020-11-10 Edwards Lifesciences Corporation Docking station for heart valve prosthesis
CA3031187A1 (en) 2016-08-10 2018-02-15 Cardiovalve Ltd. Prosthetic valve with concentric frames
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
US10383725B2 (en) * 2016-08-11 2019-08-20 4C Medical Technologies, Inc. Heart chamber prosthetic valve implant with base, mesh and dome sections with single chamber anchoring for preservation, supplementation and/or replacement of native valve function
US10722359B2 (en) 2016-08-26 2020-07-28 Edwards Lifesciences Corporation Heart valve docking devices and systems
CR20190069A (en) 2016-08-26 2019-05-14 Edwards Lifesciences Corp Heart valve docking coils and systems
US11071564B2 (en) 2016-10-05 2021-07-27 Evalve, Inc. Cardiac valve cutting device
US10363138B2 (en) 2016-11-09 2019-07-30 Evalve, Inc. Devices for adjusting the curvature of cardiac valve structures
US10398553B2 (en) 2016-11-11 2019-09-03 Evalve, Inc. Opposing disk device for grasping cardiac valve tissue
US10426616B2 (en) 2016-11-17 2019-10-01 Evalve, Inc. Cardiac implant delivery system
US10779837B2 (en) 2016-12-08 2020-09-22 Evalve, Inc. Adjustable arm device for grasping tissues
US10314586B2 (en) 2016-12-13 2019-06-11 Evalve, Inc. Rotatable device and method for fixing tricuspid valve tissue
CR20190308A (en) 2016-12-20 2020-01-24 Edwards Lifesciences Corp Systems and mechanisms for deploying a docking device for a replacement heart valve
WO2018119304A1 (en) 2016-12-22 2018-06-28 Heart Repair Technologies, Inc. Percutaneous delivery systems for anchoring an implant in a cardiac valve annulus
US10653523B2 (en) 2017-01-19 2020-05-19 4C Medical Technologies, Inc. Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves
US11013600B2 (en) 2017-01-23 2021-05-25 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11654023B2 (en) 2017-01-23 2023-05-23 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11185406B2 (en) 2017-01-23 2021-11-30 Edwards Lifesciences Corporation Covered prosthetic heart valve
US10561495B2 (en) 2017-01-24 2020-02-18 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
CN110392557A (en) 2017-01-27 2019-10-29 耶拿阀门科技股份有限公司 Heart valve simulation
USD867595S1 (en) 2017-02-01 2019-11-19 Edwards Lifesciences Corporation Stent
US20180256329A1 (en) * 2017-03-07 2018-09-13 4C Medical Technologies, Inc. Systems, methods and devices for prosthetic heart valve with single valve leaflet
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
EP3595587A4 (en) 2017-03-13 2020-11-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
EP3592288B1 (en) 2017-03-27 2021-09-01 TruLeaf Medical Ltd. Docking elements
US10765515B2 (en) 2017-04-06 2020-09-08 University Of Maryland, Baltimore Distal anchor apparatus and methods for mitral valve repair
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US10842619B2 (en) 2017-05-12 2020-11-24 Edwards Lifesciences Corporation Prosthetic heart valve docking assembly
US11065119B2 (en) 2017-05-12 2021-07-20 Evalve, Inc. Long arm valve repair clip
CA3065223A1 (en) 2017-06-19 2018-12-27 Harpoon Medical, Inc. Method and apparatus for cardiac procedures
CR20190571A (en) 2017-06-30 2020-04-19 Edwards Lifesciences Corp Docking stations transcatheter valves
BR112019027404A2 (en) 2017-06-30 2020-07-07 Edwards Lifesciences Corporation locking and releasing mechanisms for implantable transcatheter devices
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
USD890333S1 (en) 2017-08-21 2020-07-14 Edwards Lifesciences Corporation Heart valve docking coil
CA3076928A1 (en) 2017-10-24 2019-05-02 University Of Maryland, Baltimore Method and apparatus for cardiac procedures
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant
CN111655199B (en) 2018-01-22 2023-09-26 爱德华兹生命科学公司 Heart-shaped maintenance anchor
WO2019145947A1 (en) 2018-01-24 2019-08-01 Valtech Cardio, Ltd. Contraction of an annuloplasty structure
EP3743014B1 (en) 2018-01-26 2023-07-19 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11517435B2 (en) 2018-05-04 2022-12-06 Edwards Lifesciences Corporation Ring-based prosthetic cardiac valve
AU2019301967A1 (en) 2018-07-12 2021-01-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty systems and locking tools therefor
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
EP3620133A1 (en) * 2018-09-07 2020-03-11 AVVie GmbH Implant for improving coaptation of an artrioventricular valve
US11395738B2 (en) 2018-09-25 2022-07-26 Truleaf Medical Ltd. Docking elements
US11944536B2 (en) * 2019-08-13 2024-04-02 The Chinese University Of Hong Kong Transcatheter self-expandable tricuspid valve replacement system
WO2021084407A1 (en) 2019-10-29 2021-05-06 Valtech Cardio, Ltd. Annuloplasty and tissue anchor technologies
US11931253B2 (en) 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
CN114474029B (en) * 2022-02-16 2023-09-01 之江实验室 High-frequency driven thermal response artificial muscle
CN117426808B (en) * 2023-12-21 2024-03-08 北京华脉泰科医疗器械股份有限公司 Skirt edge structure, self-adaptive skirt edge bracket, plugging device and skirt edge manufacturing method

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056854A (en) * 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
JPH05184611A (en) 1991-03-19 1993-07-27 Kenji Kusuhara Valvular annulation retaining member and its attaching method
US5370685A (en) * 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
FR2688692A1 (en) * 1992-03-20 1993-09-24 Seguin Jacques Prosthetic ring for reconstruction surgery of the aortic valve
CN2135346Y (en) * 1992-09-12 1993-06-09 中国人民解放军第四军医大学第一附属医院 Plasticity bicuspid valve shaping ring
US5263977A (en) * 1992-10-26 1993-11-23 Angeion Corporation Electrode spacing device
FR2708847B1 (en) * 1993-08-13 1995-11-03 Couetil Jean Paul Implantable heart valve.
FR2726657B1 (en) * 1994-11-07 1996-12-06 Metrix DEVICE FOR MEASURING AND / OR ANALYZING DISTURBANCES IN THE SECTOR
US5545241B1 (en) * 1995-01-17 1999-09-28 Donaldson Co Inc Air cleaner
US5716417A (en) * 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
WO1997016135A1 (en) * 1995-11-01 1997-05-09 St. Jude Medical, Inc. Bioresorbable annuloplasty prosthesis
US5830224A (en) 1996-03-15 1998-11-03 Beth Israel Deaconess Medical Center Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
US5855601A (en) * 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
DE19625202A1 (en) * 1996-06-24 1998-01-02 Adiam Medizintechnik Gmbh & Co Prosthetic mitral heart valve
DE19624951A1 (en) * 1996-06-24 1998-01-02 Adiam Medizintechnik Gmbh & Co Prosthetic heart valve
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6183411B1 (en) * 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US6045497A (en) 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US5961440A (en) 1997-01-02 1999-10-05 Myocor, Inc. Heart wall tension reduction apparatus and method
US6050936A (en) 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US5776189A (en) * 1997-03-05 1998-07-07 Khalid; Naqeeb Cardiac valvular support prosthesis
US6332893B1 (en) * 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6250308B1 (en) * 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
US6260552B1 (en) * 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6102932A (en) * 1998-12-15 2000-08-15 Micrus Corporation Intravascular device push wire delivery system
ATE379998T1 (en) * 1999-01-26 2007-12-15 Edwards Lifesciences Corp FLEXIBLE HEART VALVE
WO2000060995A2 (en) * 1999-04-09 2000-10-19 Evalve, Inc. Methods and apparatus for cardiac valve repair
US6312464B1 (en) * 1999-04-28 2001-11-06 NAVIA JOSé L. Method of implanting a stentless cardiac valve prosthesis
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
SE514718C2 (en) 1999-06-29 2001-04-09 Jan Otto Solem Apparatus for treating defective closure of the mitral valve apparatus
US6440164B1 (en) * 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US6210222B1 (en) * 1999-12-13 2001-04-03 Eagle Comtronics, Inc. Coaxial cable connector
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6537198B1 (en) * 2000-03-21 2003-03-25 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US6419695B1 (en) * 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
ATE381291T1 (en) * 2000-06-23 2008-01-15 Viacor Inc AUTOMATIC ANNUAL FOLDING FOR MITRAL VALVE REPAIR
JP3854045B2 (en) * 2000-07-25 2006-12-06 オリンパス株式会社 Endoscope
US7510572B2 (en) * 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US6616684B1 (en) 2000-10-06 2003-09-09 Myocor, Inc. Endovascular splinting devices and methods
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6913608B2 (en) * 2000-10-23 2005-07-05 Viacor, Inc. Automated annular plication for mitral valve repair
US7070618B2 (en) * 2000-10-25 2006-07-04 Viacor, Inc. Mitral shield
WO2002062408A2 (en) 2001-02-05 2002-08-15 Viacor, Inc. Method and apparatus for improving mitral valve function
US6955689B2 (en) * 2001-03-15 2005-10-18 Medtronic, Inc. Annuloplasty band and method
US7037334B1 (en) * 2001-04-24 2006-05-02 Mitralign, Inc. Method and apparatus for catheter-based annuloplasty using local plications
DE60225303T2 (en) * 2001-08-31 2009-02-26 Mitral Interventions, Redwood City DEVICE FOR A HEART LAPSE REPAIR
US20030120340A1 (en) 2001-12-26 2003-06-26 Jan Liska Mitral and tricuspid valve repair
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US20030233022A1 (en) * 2002-06-12 2003-12-18 Vidlund Robert M. Devices and methods for heart valve treatment
US7112219B2 (en) * 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US6945978B1 (en) * 2002-11-15 2005-09-20 Advanced Cardiovascular Systems, Inc. Heart valve catheter
US7004176B2 (en) * 2003-10-17 2006-02-28 Edwards Lifesciences Ag Heart valve leaflet locator
SE531468C2 (en) * 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223800A (en) * 2005-02-17 2006-08-31 Sango Sas Di Cattani Rita & C External support for restoring competence to venous valves by traction of their intercommissural walls

Also Published As

Publication number Publication date
US20080140190A1 (en) 2008-06-12
CN100333704C (en) 2007-08-29
CN101108144A (en) 2008-01-23
EP1434542A2 (en) 2004-07-07
CA2455444A1 (en) 2003-04-10
US7291168B2 (en) 2007-11-06
AU2002362442B2 (en) 2008-08-07
HK1073423A1 (en) 2005-10-07
CN1610529A (en) 2005-04-27
JP2005504577A (en) 2005-02-17
US20040138745A1 (en) 2004-07-15
JP4458845B2 (en) 2010-04-28
WO2003028558A8 (en) 2003-10-30
WO2003028558A2 (en) 2003-04-10

Similar Documents

Publication Publication Date Title
US20040243107A1 (en) Methods and devices for treating atrial fibrilation
CA2462254A1 (en) Devices for treating atrial fibrilation
EP1434621A2 (en) Devices for treating atrial fibrilation
US10420606B2 (en) Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
KR102053451B1 (en) Cerclage atrial implantable cardioverter defibrillators
US6925327B2 (en) Pulmonary vein arrhythmia diagnostic device and method for use
US11253698B2 (en) Method for positioning terminal end of pacemaker lead, which has passed through coronary sinus, in interventricular septum
US5104393A (en) Catheter
EP2362798B1 (en) Shockwave valvuloplasty catheter system
EP1602339A1 (en) Devices, systems, and methods for treating atrial fibrillation
US20120290024A1 (en) Transvenous renal nerve modulation for treatment of hypertension, cardiovascular disorders, and chronic renal diseases
US20120290053A1 (en) Renal nerve stimulation lead, delivery system, and method
WO2019234133A1 (en) Electrophysiology apparatus
JP2008540006A (en) Bistable device, kit and method for the treatment of disorders in the heart rhythm regulation system
JP2007511262A (en) Apparatus, kit and method for treating diseases of heart rate regulation system
JP2008540052A (en) Body cavity shaping device with cardiac leads
WO2007022519A2 (en) Steerable heart implants for congestive heart failure
US20120271340A1 (en) Method and Apparatus for Embolic Protection During Heart Procedure
US20120271341A1 (en) Method and Apparatus for Treating a Mitral Valve Prolapse and Providing Embolic Protection
EP3884993A1 (en) Device for valve regurgitation surgery and cardiac pacemaker lead fixation
Burger et al. Device Therapy of Rhythm Disorders
Hansky et al. First experiences with catheter-guided atrial and ventricular lumenless pacing lead implantation in 28 pediatric patients
Bar-Cohen et al. Age, size and lead factors alone do not predict venous obstruction in children and young adults with transvenous lead systems
WO2017147253A1 (en) Methods for selective treatment of renal sympathetic nerves
Moak et al. Effectiveness of excimer laser-assisted cardiac pacing and ICD lead extraction in children and young adults

Legal Events

Date Code Title Description
FZDE Discontinued