Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCA2431668 A1
Publication typeApplication
Application numberCA 2431668
Publication date18 Dec 2003
Filing date10 Jun 2003
Priority date18 Jun 2002
Also published asCA2431668C, CN1293114C, CN1470543A, DE60329143D1, EP1375577A1, EP1375577B1, US6706776, US20030232899
Publication numberCA 2431668, CA 2431668 A1, CA 2431668A1, CA-A1-2431668, CA2431668 A1, CA2431668A1
InventorsPeter H. Markusch, Ralf Guether, Thomas L. Sekelik
ApplicantBayer Corporation, Peter H. Markusch, Ralf Guether, Thomas L. Sekelik, Bayer Polymers Llc, Bayer Materialscience Llc
Export CitationBiBTeX, EndNote, RefMan
External Links: CIPO, Espacenet
Syntactic foams with improved water resistance, long pot life and short demolding times
CA 2431668 A1
Abstract
This invention relates to syntactic foams comprising the reaction product of a liquid diphenylmethane diisocyanate component, with an isocyanate-reactive component, a filler having a density of less than 1 g/cm 3, and at least one organo-metallic catalyst. This invention also relates to the use of these syntactic foams for insulating pipes.
Description  available in
Claims(18)
1. A syntactic foam comprising the reaction product of:
(1) a liquid diphenylmethane diisocyanate having an NCO group content of from about 10 to about 33.6%
and a viscosity from about 10 to about 5,000 mPa.cndot.s @ 25C, with (2) an isocyanate-reactive component comprising:
(a) at least 10% by weight of one or more polyether polyols having a functionality of 2 to 4, a molecular weight of 200 to 8,000 , and a hydroxyl number of 14 to 1,120, wherein at least one amine group is present in the starter for said polyether polyol, and the starter being alkoxylated by 100% by weight of propylene oxide;
(b) at least 20% by weight of one or more low unsaturation polyether polyols having an OH
functionality of about 2, a molecular weight of 250 to 8,000, and a hydroxyl number of 14 to 448, wherein the starter for said low unsaturation polyether polyol comprises water or an organic component containing two hydroxyl groups, and the starter being alkoxylated with 100% by weight of propylene oxide;
(c) at least 20% by weight of one or more polyether polyols having an OH functionality of about 3 to 6, a molecular weight of about 400 to about 3,000, and an hydroxyl number of about 56 to about 840, wherein the starter for said polyether polyol comprises an organic compound containing at least three hydroxyl groups, and the starter being alkoxylated with 100% by weight of propylene oxide;
and, optionally, (d) up to 10% by weight of one or more low molecular weight diols and/or triols having an equivalent weight of from 31 to 99;
wherein the %'s by weight of (2)(a), (2)(b), (2)(c) and (2)(d) totals 100% by weight of component (2);
(3) from 10 to 70% by weight, based on the combined weight of components (1), (2) and (3), of a filler having a density of less than 1 g/cm3;
and (4) at least one organo-metallic catalyst in the amount of about 0.001 to about 1% by weight, based on 100%
by weight of (2);
wherein the relative amounts of components (1) and (2) are such that the isocyanate index is from about 90 to about 120.
2. The syntactic foam of Claim 1, wherein (1) said liquid diphenylmethane diisocyanate comprises up to 70% by weight of 2,4'-diphenylmethane diisocyanate, no more than 2% by weight of 2,2'-diphenylmethane diisocyanate, and the balance being 4,4'-diphenylmethane diisocyanate, such that the sum of the 2,4'-MDI, the 2,2'-MDI and the 4,4'-MDI totals 100% by weight of the liquid diphenylmethane diisocyanate.
3. The syntactic foam of Claim 2, wherein (1) said liquid diphenylmethane diisocyanate comprises less than 10% by weight of 2,4'-diphenylmethane diisocyanate
4. The syntactic foam of Claim 1, wherein (1) said liquid diphenylmethane diisocyanate comprises allophanate modified diphenylmethane diisocyanate.
5. The syntactic foam of Claim 1, wherein (1) the liquid diphenylmethane diisocyanate comprises carbodiimide groups and/or uretonimine groups.
6. The syntactic foam of Claim 2, wherein (1) the liquid diphenylmethane diisocyanate comprises the reaction product of diphenylmethane diisocyanate with a polyether polyol containing at least 80% by weight of ether units derived from propylene oxide.
7. The syntactic foam of Claim 6, wherein the polyether polyol comprises dipropylene glycol, tripropylene glycol or mixtures thereof.
8. The syntactic foam of Claim 1, wherein (2) said isocyanate-reactive component comprises (a) from 10 to 30% by weight of one or more polyether polyols having a functionality of about 3, a molecular weight of between about 240 and 4,000, and a hydroxyl number of about 42 to about 700;
(b) from about 30 to about 80% by weight of one or more low unsaturation polyether polyols having an OH functionality of about 2, a molecular weight of from about 500 to about 3,000 and a hydroxyl number of about 37 to about 224;
and (c) from about 30 to about 80% by weight of one or more polyether polyols having an OH functionality of about 3 to about 4, a molecular weight of about 500 to about 1,000 and ara OH number of about 168 to about 448.
9. A process for preparing a syntactic foam, comprising reacting:
(1) a liquid diphenylmethane diisocyanate having an NCO group content of from about 10 to about 33.6% and a viscosity from about
10 to about 5,000 mPa.cndot.s @ 25C, with (2) an isocyanate-reactive component comprising:
(a) at least 10% by weight of one or more polyether polyols having a functionality of 2 to 4, a molecular weight of 200 to 8,000 , and a hydroxyl number of 14 to 1,120, wherein at least one amine group is present in the starter for said polyether polyol, and the starter being alkoxylated by 100%
by weight of propylene oxide;
(b) at least 20% by weight of one or more low unsaturation polyether polyols having an OH functionality of about 2, a molecular weight of 250 to 8,000, and a hydroxyl number of about 14 to 448, wherein the starter for said low unsaturation polyether polyol comprises water or an organic component containing two hydroxyl groups, and the starter being alkoxylated with 100% by weight of propylene oxide;
(c) at least 20% by weight of one or more polyether polyols having an OH functionality of about 3 to 6, a molecular weight of about 400 to about 3,000, and an hydroxyl number of about 56 to about 840, wherein the starter for said polyether polyol comprises an organic compound containing at least three hydroxyl groups, and the starter being alkoxylated with 100% by weight of propylene oxide;
and, optionally, (d) up to 10% by weight of one or more low molecular weight diols and/or triols having an equivalent weight of from 31 to 99;
wherein the %'s by weight of (2)(a), (2)(b), (2)(c) and (2)(d) totals 100% by weight of component (2);
(3) from 10 to 70% by weight, based on the combined weight of components (1), (2) and (3), of a filler having a density of less than 1 g/cm3;
and (4) at least one organo-metallic catalyst in the amount of about 0.001 to about 1% by weight, based on 100% by weight of component (2);
wherein the relative amounts of components (1) and (2) are such that the isocyanate index is from about 90 to about 120.
10. The process of Claim 9, wherein (1) said liquid diphenylmethane diisocyanate comprises up to 70% by weight of 2,4'-diphenylmethane diisocyanate, no more than 2% by weight of 2,2'-diphenylmethane diisocyanate, and the balance being 4,4'-diphenylmethane diisocyanate, such that the sum of the 2,4'-MDI, the 2,2'-MDI and the 4,4'-MDI totals 100% by weight of the liquid diphenylmethane diisocyanate.
11. The process of Claim 10, wherein (1) said liquid diphenylmethane diisocyanate comprises less than 10% by weight of 2,4'-diphenylmethane diisocyanate
12. The process of Claim 9, wherein (1) said liquid diphenylmethane diisocyanate comprises allophanate modified diphenylmethane diisocyanate.
13. The process of Claim 9, wherein (1) the liquid diphenylmethane diisocyanate comprises carbodiimide groups and/or uretonimine groups.
14. The process of Claim 10, wherein (1) the liquid diphenylmethane diisocyanate comprises the reaction product of diphenylmethane diisocyanate with a polyether polyol containing at least 80% by weight of ether units derived from propylene oxide.
15. The process of Claim 14, wherein the polyether polyol comprises dipropylene glycol, tripropylene glycol or mixtures thereof.
16. The process of Claim 9, wherein (2) said isocyanate-reactive component comprises (a) from 10 to 30% by weight of one or more polyether polyols having a functionality of about 3, a molecular weight of between about 240 and 4,000, and a hydroxyl number of about 42 to about 700;
(b) from about 30 to about 80% by weight of one or more low unsaturation polyether polyols having an OH functionality of about 2, a molecular weight of from about 500 to about 3,000 and a hydroxyl number of about 37 to about 224;
and (c) from about 30 to about 80% by weight of one or more polyether polyols having an OH functionality of about 3 to about 4, a molecular weight of about 500 to about 1,000 and an OH number of about 168 to about 448.
17. A process for preparing a pipe insulated with a syntactic foam, comprising:
(I) placing a steel pipe in the center of a cylindrical mold with the diameter of the mold being larger than the diameter of the pipe, wherein the difference in diameter between the pipe and the mold determines the thickness of the syntactic foam to be applied;
(II) pouring a liquid polyurethane reaction mixture containing a filler around the steel pipe in the mold, wherein said liquid polyurethane reaction mixture is formed by:
(A) blending (3) a filler having a density of less than 1 g/cm3 with (1) a liquid diisocyanate component and/or (2) an isocyanate-reactive component, (B) adding (4) an organo-metallic catalyst to the isocyanate-reactive component which may or may not contain a filler;
and (C) mixing the liquid diisocyanate component with the isocyanate-reactive component, wherein:
(1) said liquid diisocyanate component comprises liquid diphenylmethane diisocyanate having an NCO group content of from about 10 to about 33.6% and a viscosity from about 10 to about 5,000 mPa-s @ 25C, with (2) an isocyanate-reactive component comprising:
(a) at least 10% by weight of one or more polyether polyols having a functionality of 2 to 4, a molecular weight of 200 to 8,000, and a hydroxyl number of 14 to 1,120, wherein the starter for said polyether polyol comprises at feast one amine group, and said starter being alkoxylated by 100% by weight of propylene oxide;
(b) at least 50% by weight of one or more low unsaturation polyether polyols having an OH functionality of about 2, a molecular weight of 250 to 8,000, and a hydroxyl number of 14 to 448, wherein the starter comprises water or an organic component containing at least two hydroxyl groups, and said starter being alkoxylated with 100% by weight of propylene oxide;
(c) at least 20% by weight of one or more polyether polyols having an OH
functionality of about 3 to about 6, a molecular weight of about 400 to about 3,000, and an hydroxyl number of about 56 to about 840, wherein the starter for said polyether polyol comprises an organic compound containing at least three hydroxyl groups, and said starter being alkoxylated with 100% by weight of propylene oxide;
and, optionally, (d) up to 10% by weight of one or more low molecular weight diols and/or triols having an equivalent weight of from 31 to 99, wherein the %'s by weight of (2)(a), (2)(b), (2)(c) and (2)(d) totals 100% by weight of component {2);
(III) allowing the liguid polyurethane reaction mi~cture containing the filler cure to form a solid polyurethane containing a filler, which encapsulates the steel pipe;
and (IV) demoiding the polyurethane encapsulated steel pipe, thereby yielding a syntactic foam insulated pipe.
18. A syntactic foam insulated pipe produced by the process of Claim 17.
Classifications
International ClassificationB29K105/04, C08L75/08, F16L11/12, C08G18/78, B29K75/00, C08G18/65, C08G18/48, C08G18/76, B29C39/02, B29L23/00, C08J9/32, C08K7/22
Cooperative ClassificationY10T428/31605, C08G18/7837, C08G18/7664, C08J9/32, C08G18/482, C08G2101/0025, C08G2330/00, C08J2375/04
European ClassificationC08J9/32, C08G18/76D2, C08G18/78B4K, C08G18/48A8
Legal Events
DateCodeEventDescription
23 May 2008EEERExamination request
22 Jul 2014MKLALapsed
Effective date: 20140610