CA2425003C - Shock absorbent roller thumb wheel - Google Patents

Shock absorbent roller thumb wheel Download PDF

Info

Publication number
CA2425003C
CA2425003C CA002425003A CA2425003A CA2425003C CA 2425003 C CA2425003 C CA 2425003C CA 002425003 A CA002425003 A CA 002425003A CA 2425003 A CA2425003 A CA 2425003A CA 2425003 C CA2425003 C CA 2425003C
Authority
CA
Canada
Prior art keywords
hub
spoke
thumb wheel
rim
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002425003A
Other languages
French (fr)
Other versions
CA2425003A1 (en
Inventor
Dave M. Ma
Herrebertus Tempelman
John A. Holmes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BlackBerry Ltd
Original Assignee
Research in Motion Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research in Motion Ltd filed Critical Research in Motion Ltd
Priority to CA002425003A priority Critical patent/CA2425003C/en
Priority to US10/410,094 priority patent/US6828518B2/en
Publication of CA2425003A1 publication Critical patent/CA2425003A1/en
Application granted granted Critical
Publication of CA2425003C publication Critical patent/CA2425003C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H19/00Switches operated by an operating part which is rotatable about a longitudinal axis thereof and which is acted upon directly by a solid body external to the switch, e.g. by a hand
    • H01H19/001Thumb wheel switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/60Mechanical arrangements for preventing or damping vibration or shock

Abstract

A shock absorbing roller thumb wheel is disclosed. The shock absorbing thumb wheel includes a central hub that can be secured to an electro-mechanical switch, a rim encircling the central hub, and force dispersion spokes extending from the central hub and connected to the rim. The configuration of the force dispersion spokes and the resilient material of the force dispersion spokes and the rim allow for radial and lateral deflection of the rim in response to an applied impact force. The impact force is thereby at least partially absorbed by the radial and lateral deflection of the rim and spokes, such that less impact force is transferred to connections between the electro-mechanical switch and any assembly to which the switch is attached. Hence, the probability of connection failures is reduced, and the lifetime of a device that uses the thumb wheel can be extended.

Description

SHO K ~.BSORBENT ROLLER ~-I~JMB ~':I~.EL
FIELD OF THE INVENTION
[0001] The present invention generally relates to roller thumb wheels for electronic devices.
BACKGROUND OF THE INVENTION
[0002] Many mobile electronic devices such as personal digital assistants, cell phones, and other wireless devices utilize various input means for allowing a user to select or execute functions upon the device. Such input means can include keyboards for entering alpha-numeric text, dedicated function buttons, directional keypad buttons and roller thumb wheels.
[0003] Roller thumb wheels are desirable since they permit single-handed operation of the device. In particular, the thumb wheel is placed at a position on the device such that the user can actuate the thumb wheel with a thumb while holding the device in the palm of their hand. The thumb wheel can be rolled to highlight an icon displayed on an LCD panel of the device, and depressed to select the highlighted icon.
Roller thumb wheels can be positioned on a device for left or right handed operation, and protrude from the device.
[0004] When the mobile device is accidentally dropped, the impact can occur at the protruding rolling thumb wheel. The impact force applied to the thumb wheel can damage an assembly the thumb wheel is attached to, rendering the mobile device unusable. More specifically, the impact force can cause the thumb wheel assembly to break off a printed circuit board or other device element to which it is attached.
[0005) There exists, therefore, a need for a thumb wheel that can absorb impact damaging loads and minimize damage to elements or assemblies to which it is coupled.

SUMMARY OF THE INVENTION
[0006] In a first aspect, the present invention provides a shock absorbing roller thumb wheel for actuating an electromechanical switch, comprising a hub for attachment to the switch, a resilient outer rim encircling the hub, and force dispersion spokes connecting the resilient outer rim to the hub, each force dispersion spoke having a predetermined length and cross-sectional shape for radially and laterally deforming in response to an impact force applied to the resilient outer rim.
[0007] In a second aspect, the present invention provides a mobile device comprising an LCD panel for displaying information and a shock absorbing roller thumb wheel for actuating an electromechanical switch and changing the display information on the LCD panel. The shock absorbing roller thumb wheel comprises a hub for attachment to the switch, a resilient outer rim encircling the hub, and force dispersion spokes for connecting the resilient outer rim to the hub, each force dispersion spoke having a predetermined length and cross-sectional shape for radially and laterally deforming in response to an impact force applied to the resilient rim.
BRIEF DESCRIPTION OF THE DRAdVINGS
[0008] Preferred embodiments of the present invention will now be described, by way of example only, with reference to the attached Figures, wherein:
Figure 1 is a block diagram of a mobile device having a rolling thumb wheel;
Figure 2 is a cross sectional diagram of the electronic device shown in Figure along line A-A;
Figure 3 is frontal view of a known rolling thumb wheel;
Figure 4 is a cross sectional diagram of the thumb wheel of Figure 3 along line B-B;
Figure 5 is a frontal view of a shock absorbing rolling thumb wheel according to an embodiment of the present invention;
Figure 6 is a cross sectional diagram of the shock absorbing rolling thumb wheel of Figure 4 taken along line C-C;

Figure 7 is a frantal view of a shock absorbing rolling thumb wheel according to another embodiment of the present invention;
Figure 8 is a cross sectional diagram of the shock absorbing rolling thumb wheel of Figure 7 taken along line D-D;
Figure 9 is a frontal view of a shock absorbing rolling thumb wheel according to another embodiment of the present invention;
Figure 10 is a cross sectional diagram of the shock absorbing rolling thumb wheel of Figure 9 taken along line E-E;
Figure 11 is an orthogonal view of the shock absorbing rolling thumb wheel of Figure 9 subjected to an impact force;
Figure 12 is a frontal view of the shock absorbing rolling thumb wheel of Figure 11;
and, Figure 13 is a side view of the shock absorbing rolling thumb wheel shown in Figure 11.
DETAILED DESCRIPTI~N
[0009] A shock absorbing roller thumb wheel is disclosed. The shock absorbing thumb wheel includes a central hub that can be secured to an electro-mechanical switch, a rim encircling the central hub, and force dispersion spokes extending from the central hub and connected to the rim. The configuration of the force dispersion spokes and the resilient material of the force dispersion spokes and the rim allow for radial and lateral deflection of the rim in response to an applied impact force. Therefore, as an impact force is absorbed by the radial and lateral deflection of the rim and spokes, less impact force is transferred to solder joints connecting the electro-mechanical switch to a printed circuit board, such as in a typical switch installation. Hence the probability of solder joint failures is reduced and the lifetime of the device that uses the thumb wheel can be extended.
[0010] Figure 1 is a block diagram of a mobile device having a roller thumb wheel.
The device 20 includes an LCD display area 22 for displaying information, a keypad area 24 having at least one function button, and a thumb wheel 26 protruding from the right side of the device. Some electronic devices do not require a keypad area 24 for inputting information. Thumb wheel 26 can be connected to an electro-mechanical switch via ultrasonic welds or heat stakes (not shown), which is itself typically connected to a printed circuit board via solder joints. Those of skill in the art will understand that LCD display area 22 can display information such as application icons and menu items.
Through actuation of thumb wheel 26, the electro-mechanical switch changes the information displayed on LCD display area 22, by highlighting a particular menu item or application icon, for example. Those of skill in the art will understand that actuation of thumb wheel 26 can affect various types of LCD display changes as the signals from the electro-mechanical switch are converted or decoded into predetermined actions by a processor in device 20.
The mobile device 20 may, for example, be a wireless mobile data communication device, a personal digital assistant (PDA), a mobile telephone with or without data communication functionality, or a one-way or two-way pager.
[0011] Figure 2 shows a cross-sectional diagram of device 20 along line A-A to show the thumb wheel assembly. Figure 2 shows casing 28 of device 20, thumb wheel 26, electro-mechanical switch 30, and printed circuit board 32. Printed circuit board 32 is attached to casing 28, and electro-mechanical switch 30 is soldered to printed circuit board 32 at solder area 34. Thumb wheel 26 can be ultrasonically welded to electro-mechanical switch 28 at weld area 36.
[0012] Figure 3 is a frontal view of a conventional thumb wheel 26. Thumb wheel 26 is typically formed as a disc of plastic material. Weld areas 36 are shown as two circular holes in the hub area 38 of thumb wheel 26. Weld areas 36 are shaped to receive protrusions extending from the electro-mechanical switch (not shown) to anchor the thumb wheel 26 and ensure that rotational movement of the thumb wheel 26 is transferred to the electro-mechanical switch. An outer rim 40 encircles the hub area 38, which is connected to the hub area 38 with the plastic material. Knurls 42 formed on the surface of outer rim 40 facilitates rotation of thumb wheel 26 by the user.
[0013] Figure 4 is a cross section of thumb wheel 26 of Figure 3 along line B-B to show the relative dimensions of thumb wheel 26. Rirn 40 has a predetermined thickness and depth, and is joined to the hub area 38 by the material. A circular shroud 44 extends from the hub area to further anchor and stabilize thumb wheel 26 onto the electro-mechanical switch 30. Thus, when thumb wheel 26 is secured to the electro-mechanical switch 30, a user can actuate the electro-mechanical switch 30 by rotating thumb wheel 26 with a thumb or (anger.
[0014] Since thumb wheel 26 protrudes from the casing of device 20, it can be damaged when device 20 is accidentally dropped upon a hard surface and the impact point occurs at thumb wheel 26. More specifically, any impact upon thumb wheel 26 can cause the electro-mechanical switch 30 to break off the printed circuit board. This is due to the fact that the full impact force experienced by the thumb wheel 26 is transferred to solder area 34, with sufficient strength to break the solder joints. The ultrasonic welds between the thumb wheel 26 and the electro-mechanical switch 30 have a much higher resistance to failure than the solder joints, which is why most failures occur at the weaker solder joints.
In certain cases, the solder joints might not be fractured after impact, but sufficiently weakened to the point where they can fail under normal use. When the electro-mechanical switch 30 is electrically separated from the printed circuit board, device 20 is considered damaged and effectively unusable since many features accessible using the thumb wheel 26 are no longer available to the user.
[0015] Figure 5 is a diagram of a shock absorbing rolling thumb wheel according to an embodiment of the present invention. Thumb wheel 100 can be used in place of conventional thumb wheel 26 of Figure 3. Thumb wheel 100 includes a substantially circular hub 102, an outer rim 104 encircling hub 102, and four force dispersion spokes 106 extending from hub 102 and connecting rim 104 to hub 102.
[0016] Formed within hub 102 are weld areas 108 for receiving protrusions from an electro-mechanical switch. Weld areas 108 are substantially the same as weld areas 36 shown for the standard thumb wheel 26 shown in Figure 3. Thumb wheel 100 can be molded using techniques well-known to those of skill in the art, with any resilient plastic material such as LexanTM EXL9330 by GE, ZytelTM ST801HSBK010 by Dupont, ZytelTM
ST801AHSBK010 by Dupont, and PA-46 nylon, for example. Rim 104 can have any suitable, preferably knurled, surface.
[0017] Force dispersion spokes 106 are generally "S" shaped between the outer rim 104 and hub 102, with the ends of the spokes being connected to the rim and the hub via spoke-rim joints 112 and spoke-hub joints 114 respectively. The main spoke body 116 is formed as an arc about center of hub 102. The main spoke body has a constant width, but the ends are slightly widened to provide additional structural support to the spoke-hub joint 114 and the spoke-rirn joint 112.
[0018] Figure 6 is a cross section diagram of shock absorbing thumb wheel 100 of Figure 5 along line C-C to show the relative dimensions of its components. The same numbered elements have been previously described in the discussion of Figure 5. It is noted that the cross section of shock absorbing thumb wheel 100 is similar to that of standard thumb wheel 26 shown in Figure 4, except for the spaces between rim 104 and hub 102 that show the absence of material between them in a radial direction. A circular shroud 110 extends from hub 102 for performing the same function as shroud 44 of Figure 4.
[0019] Force dispersion spokes 106, referred to as spokes from this point forward, can radially deform along the same plane defined by hub 102 and laterally deform away from the hub plane, along a direction perpendicular to the hub plane, for example. Rim 104, being of the same resilient material as spokes 106, can itself deform radially in the areas between adjacent spoke contact areas since there is no material between it and the hub to resist deformation. The "S" shaped configuration of spokes 106 allows for compression deformation and expansion deformation since its material is resilient, making it behave similarly to a leaf spring along the radial direction. The thickness and length of each spoke 106 also determines its stiffness in the lateral direction, and consequently, the amount of force it can absorb. The overall length, width, depth, shape and cross sectional shape of each spoke 106 is preferably optimized to absorb a predetermined maximum impact force, which will depend upon the mass of the device it is to be installed within.
For example, a preferred design ensures that the spokes do not fully compress, or "bottom out", under a force that is less than the maximum rated impact force. However, even if the spokes do fully compress and the remaining impact force is transferred to the solder joints between the printed circuit board and the electro-mechanical switch, this remaining force should be insufficiently strong to break the solder joints.
[0020) Under an impact force applied to the outer rim 104 along the same plane defined by the hub 102 and outer rim 104, the resilient outer rim 104 deforms, and the spokes 106 near the area of impact radially deform under compression. At the same time, some of the spokes 106 radially deform under tension. If the impact force is applied from a direction lateral to the hub and rim plane, i.e. perpendicular to the hub, the spokes deform laterally. Therefore, spokes 106 deform radially to absorb a radial component of an impact force, while they can simultaneously deform laterally to absorb a lateral component of the impact force. Hence the damaging impact force is substantially prevented from reaching and damaging the solder joints securing the electro-mechanical switch to the printed circuit board.
[0021] Figure 7 is a diagram of a shock absorbing rolling thumb wheel according to another embodiment of the present invention. Thumb wheel 200 is stiffer radially and laterally than thumb wheel 100 to absorb a greater maximum amount of impact force.
Thumb wheel 200 is similarly configured to thumb wheel 100 shown in Figure 5, and includes a substantially circular hub 202, an outer rim 204 having a knurled surface encircling hub 202, and spokes 206/212 extending from hub 202 and connected to rim 204.
Formed within hub 202 are weld areas 208 for receiving protrusions from an electro-mechanical switch. Thumb wheel 200 can be molded in the same way thumb wheel 100 is molded, and with the same previously listed materials. The outer rim 204 is substantially the same as outer rim 104 of Figure 5. Shock absorbing thumb wheel 200 includes enhancements over shock absorbing thumb wheel 100 that increase the overall stiffness of thumb wheel 200 over thumb wheel 100, and therefore the maximum impact force that it can absorb.
[0022) Shock absorbing thumb wheel 200 of Figure 7 now includes a total of eight spokes connected between hub 202 and outer rim 204. Spokes 206 are configured essentially the same as spokes 106, except that their main bodies 220 are shorter in length.
Additional spokes 212 that mirror the shape of spokes 206 also connect hub 202 to outer rim 204. More specifically, spokes 206 extend from the hub 202 towards the outer rim 204 in a clockwise direction, and the additional spokes 212 extend from the hub 202 towards the outer rim 204 in a counter-clockwise direction. Each pair of spokes 206 and 212 that extend towards each other from hub 202 share the same spoke-rim joint 216.
Accordingly, each pair of spokes 206 and 212 that extend away from each other from hub 202 share the same spoke-hub joint 218.
[0023] Figure 8 is a cross section diagram of shock absorbing thumb wheel 200 of Figure 7 along line D-D to show the relative dimensions of its components. The same numbered elements have been previously described in the discussion of Figure 8. It is noted that the cross section of shock absorbing thumb wheel 200 is similar to that of shock absorbing thumb wheel 104 shown in Figure 5. A circular shroud 210 extends from hub 202 for performing the same function as shroud 110 of Figure 6.
[0024] In the present example, it is assumed that the material and cross sectional dimensions of thumb wheel 100 are the same as thumb wheel 200. However, the spokes 206 and 212 of thumb wheel 200 will be stiffer radially and laterally than spokes 106 of thumb wheel 100 due mainly to the shorter main body length of spokes 206 and 212, and the fact that each common spoke-rim joint 216 is connected to two spokes instead of one.
Although the total number of spoke-rim joints 216 formed in thumb wheel 200 is the same as for thumb wheel 100, each spoke-rim joint of thumb wheel 200 is supported by two spokes. Furthermore, the shared spoke-hub joints 218 are highly resistant to lateral deformation due to their relatively large size. Therefore, shock absorbing thumb wheel 200 can disperse or absorb a greater maximum lateral impact force than shock absorbing thumb wheel 100 shown in Figure 5.
[0025] The thumb wheel 200 absorbs different amounts of impact force in the radial direction, depending upon where the impact force is applied. For example, if the impact force is applied to the outer rim 204 near the spoke-rim joint 216, then a relatively large amount of the impact force is absorbed, as spoke pair 206/212 connected to common spoke-rim joint 216 deform to absorb the impact force. On the other hand, if the impact force is applied to the outer rim 204 between adjacent spoke-rim joints 216, then a relatively small amount of the impact force is absorbed since only the outer rim 204 deforms.
[0026] Figure 9 is a diagram of a shock absorbing rolling thumb wheel according to another embodiment of the present invention. Shock absorbing thumb wheel 300 of Figure 9 is stiffer than thumb wheel 200 of Figure 7 to absorb a greater maximum impact force.

Thumb wheel 300 is similarly configured to thumb wheel 100 shown in Figure 5.
Thumb wheel 300 includes a substantially circular hub 302, an outer rim 304 having a knurled surface encircling hub 302, and four spokes 306 extending from hub 302 and connecting rim 304 to hub 302. Formed within hub 302 are weld areas 308 for receiving protrusions from an electro-mechanical switch. Thumb wheel 300 can be molded in the same way the previously described thumb wheels 26, 100 and 200 are molded, and with the same materials previously listed. The outer rim 304 is substantially the same as outer rim 104 of Figure 5. The configuration of spokes 306 will now be described in further detail.
[0027] Spokes 306 extend substantially tangentially from hub 302 towards rim 304, or more specifically, spokes 306 extend away from hub 302 to increase its stiffness in the radial direction. This design allows the spokes 306 to absorb a greater maximum radial impact force than spokes 106 of Figure 5. As shown in the embodiment of Figure 9, spokes 306 are curved in a general "S" shape with the ends of the spokes being connected to the rim and the hub respectively in the same manner as spokes I06 of Figure 5.
While the width of each spoke 206 is constant over the length of its main body 316, its spoke-hub joint 318 and spoke-rim joint 320 are significantly wider due to the addition of joint reinforcements. In particular, spoke 306 includes a hub shoulder reinforcement 312 at its spoke-hub joint and a rim shoulder reinforcement 314 at its spoke-rim joint.
Both reinforcements 312 and 314 add structural strength to the spokes, and increase its resistance to radial and lateral deformation in those areas. In particular, hub shoulder reinforcement 312 and rim shoulder reinforcement 314 augment stiffness of the spokes 306 as it undergoes compression. Therefore, shock absorbing thumb wheel 300 can disperse or absorb a greater maximum impact force than shock absorbing thumb wheel 100 shown in Figure 5.
(0028] An additional force dispersion feature of shock absorbing thumb wheel not found in thumb wheels 100 and 200 is the rotational reaction of hub 302 in response to an impact force. Due to the substantial tangential shape of spokes 306 relative to hub 302, hub 302 will rotate under the impact force to disperse an additional amount of the impact force. Furthermore, shock absorbing thumb wheel 300 shown in Figure 9 has been designed to absorb approximately the same amount of radial impact force regardless of the point of impact along outer rim 304. Therefore, the overall radial force dispersion performance of shock absorbing thumb wheel 300 is better than shock absorbing thumb wheel 200 shown in Figure 7. While shock absorbing thumb wheel 300 has been shown with force dispersion spokes extending away from the hub in a clockwise direction, they can also extend away from the hub in a counter-clockwise direction in an alternative embodiment.
[0029] Figure 10 is a cross section of shock absorbing thumb wheel 300 of Figure 9 along line E-E to show the relative dimensions of its structures. It is noted that the cross section of shock absorbing thumb wheel 300 is similar to that of shock absorbing thumb wheels 100 and 200. In alternative embodiments of the present example, the thickness of the spokes 306 can be increased to absorb higher amounts of lateral impact force. A
circular shroud 310 extends from hub 302 for performing the same function as shrouds 110 and 210 in Figures 6 and 8.
[0030] As shown in the embodiments of the present invention, the spokes of the shock absorbing thumb wheel do not extend radially between the hub and the outer rim. In other words, the spoke-hub joint and the spoke-rim joint of the spokes do not Iie on the same radius of the thumb wheel. In the shock absorbing thumb wheel embodiment shown in Figures 5 and 7, the spoke-hub and spoke-rim joints are formed at non-opposing circumferential positions and in a predetermined size such that the spoke main body can be formed as an arc about the centre of the hub. The main body of the spokes is not limited to an arc shape, as shown in the shock absorbing thumb wheel embodiment of Figure 9. The spoke-hub and spoke-rim joints of the spokes of Figure 9 are formed such that the spoke main body extends away from the hub. As previously described, the dimensions of the spoke, its shape and the material used determine the amount of force the thumb wheel of the present invention can absorb radially and laterally. Preferably, the shock absorbing thumb wheel is designed to be sufficiently stiff to impart the "click"
feedback sensation to users once they have pressed the shock absorbing thumb wheel to make a selection. These design specifications will be determined in large part by the size and dimensions of the mobile device, and the desired size of the thumb wheel.
[0031] Figures 11 to 13 illustrate the behavior of the shock absorbing thumb wheel 200 of Figure 7 in response to an applied impact force vector F. Figure 11 shows an orthogonal diagram of shock absorbing thumb wheel 300 under deformation in response to impact force vector F which is applied at an oblique angle to the bottom of thumb wheel 300. It is assumed that impact force vector F simulates a hard flat surface that the thumb wheel 300 has struck after accidental droppage. The outer rim of thumb wheel 300 deforms both radially and laterally, as shown in Figures 12 and 13 and described below, since impact force vector F has radial and lateral components.
[0032] Figure 12 shows a frontal view of thumb wheel 300 of Figure 11 under radial deformation caused by the radial component of impact force vector F, labeled Fr.
Although the outer rim 304 has deformed, spoke 306 has also deformed such that its main body bends towards hub 302. As spoke 306 bends towards hub 302, hub is 302 is forced to rotate in a counter-clockwise direction as indicated by rotation vector 400.
The degree of this rotation is limited to a few degrees in the present configuration of thumb wheel 300, but sufficient to absorb more of impact force Fr. The remaining spokes 306 also undergo some compression and tension to absorb impact force Fr. Therefore, outer rim 304 and spokes 306 cooperate to absorb a majority of the impact force Fr.
[0033] Figure 13 shows a side view of thumb wheel 300 of Figure 11 under lateral deformation caused by the lateral component of impact force vector F, labeled Fl. As shown in Figure 13, outer rim 304 has been displaced relative to hub 302, and has itself deformed laterally under Fl. It should be noted that spoke 306 has deformed laterally to allow outer rim 204 to laterally displace, and the portion showing is actually the spoke-hub joint 318 of spoke 306 which is more resistant to lateral deformation than its main body.
[0034] Any impact force experienced by thumb wheel 300 is therefore at least partially absorbed to minimize the impact force experienced by the solder joints between the electro-mechanical switch and printed circuit board. Hence, the electro-mechanical switch is more likely to remain functional after direct accidental impacts upon the thumb wheel attached to it.
[0035] The embodiments of the shock absorbing thumb wheel shown in Figures 5 to 10 absorb or disperse a significant portion of an impact force applied to their outer rims to limit the amount of force transferred to the solder joints securing the electro-mechanical switch to the printed circuit board. The spokes extending from the hub and connecting to the outer rim of the thumb wheel dampen the impact force applied to the solder joints through its radial and lateral deformation. The spokes are optimized with preset yield points to resist permanent deformation or breakage under the maximum rated impact force.
Furthermore, the spokes can themselves deform laterally and radially since there is a minimal amount of material connecting the outer rim to the hub to resist deformation.
Hence, additional shock absorption can be realized. Therefore a mobile device employing a shock absorbent thumb wheel according to the embodiments of the present invention is less likely to suffer a solder joint failure between its electro-mechanical switch and printed circuit board under normal accidental impact conditions.
[0036] The embodiments of the shock absorbing thumb wheel shown in the figures have gates, or injection molding artifacts, that indicate the point of injection for the mold.
Those of skill in the art will understand that these gates can be located at any location, but are preferably located in the hub area.
[0037] Those of skill in the art will also understand that the shock absorbing thumb wheel of the present invention can be manufactured with different resilient materials, as mentioned earlier, where the selection of the particular material, physical geometry and dimensions of the shock absorbing thumb wheel will determine the maximum desired impact force it can absorb.
[0038] The above-described embodiments of the invention are intended to be examples of the present invention. Alterations, modifications and variations may be effected the particular embodiments by those of skill in the art, without departing from the scope of the invention which is defined solely by the claims appended hereto.

Claims (22)

1. A shock absorbing roller thumb wheel for actuating an electro-mechanical switch, comprising:
a hub for attachment to the switch;
a resilient outer rim encircling the hub; and force dispersion spokes connecting the resilient outer rim to the hub, each force dispersion spoke having a predetermined length and cross-sectional shape for radially and laterally deforming in response to an impact force applied to the resilient outer rim.
2. The roller thumb wheel of claim 1, wherein each force dispersion spoke is substantially S-shaped.
3. The roller thumb wheel of claim 1, wherein four force dispersion spokes are connected between the resilient outer rim and the hub.
4. The roller thumb wheel of claim 1, wherein each force dispersion spoke includes a main body, a spoke-rim joint for connecting the main body to the resilient outer rim, and a spoke-hub joint for connecting the main body to the hub.
5. The roller thumb wheel of claim 4, wherein the spoke-rim joint and the spoke-hub joint are positioned along different radii of the hub.
6. The roller thumb wheel of claim 4, wherein the spoke-rim joint includes a rim shoulder reinforcement for stiffening the spoke-rim joint.
7. The roller thumb wheel of claim 4, wherein the spoke-hub joint includes a hub shoulder reinforcement for stiffening the spoke-hub joint.
8. The roller thumb wheel of claim 4, wherein the main body is arc shaped.
9. The roller thumb wheel of claim 4, wherein the main body extends substantially tangentially from the hub.
10. The roller thumb wheel of claim 9, wherein the main body is curved in shape.
11. The roller thumb wheel of claim 3, further including four additional force dispersion spokes connected between the resilient outer rim and the hub.
12. The roller thumb wheel of claim 11, wherein each pair of force dispersion and additional force dispersion spokes share a common spoke-rim joint.
13. The roller thumb wheel of claim 11, wherein each pair of force dispersion and additional force dispersion spokes share a common spoke-hub joint.
14. The roller thumb wheel of claim 11, wherein each force dispersion spoke and each additional force dispersion spoke have an arc shaped main body connected between a spoke-rim joint and a spoke-hub joint.
15. A mobile device comprising:
an LCD panel for displaying information; and a shock absorbing roller thumb wheel attached to an electro-mechanical switch for controlling the display information on the LCD panel, the shock absorbing roller thumb wheel comprising a hub for attachment to the electro-mechanical switch;
a resilient outer rim encircling the hub; and force dispersion spokes for connecting the resilient outer rim to the hub, each force dispersion spoke having a predetermined length and cross-sectional shape for radially and laterally deforming in response to an impact force applied to the resilient rim.
16. The mobile device of claim 15, wherein four force dispersion spokes are connected between the resilient outer rim and the hub.
17. The mobile device of claim 15, wherein each force dispersion spoke includes a main body, a spoke-rim joint for connecting the main body to the resilient outer rim, and a spoke-hub joint for connecting the main body to the hub.
18. The mobile device of claim 17, wherein the spoke-rim joint and spoke-hub joint are positioned along different radii of the hub.
19. The mobile device of claim 17, wherein the spoke-rim joint includes a rim shoulder reinforcement for stiffening the spoke-rim joint and the spoke-hub joint includes a hub shoulder reinforcement for stiffening the spoke-hub joint.
20. The mobile device of claim 17, wherein the main body is arc shaped.
21. The mobile device of claim 17, wherein the main body extends substantially tangentially from the hub.
22. shock absorbing roller thumb wheel for actuating an electro-mechanical switch, comprising:
a hub for association with the electro-mechanical switch;
an outer rim encircling the hub; and at least one force dispersion spoke coupled between the hub and the outer rim, said force dispersion spoke having a shape configured to radially and laterally deform in response to an impact force applied to the outer rim.
CA002425003A 2003-04-09 2003-04-09 Shock absorbent roller thumb wheel Expired - Lifetime CA2425003C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002425003A CA2425003C (en) 2003-04-09 2003-04-09 Shock absorbent roller thumb wheel
US10/410,094 US6828518B2 (en) 2003-04-09 2003-04-09 Shock absorbent roller thumb wheel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002425003A CA2425003C (en) 2003-04-09 2003-04-09 Shock absorbent roller thumb wheel
US10/410,094 US6828518B2 (en) 2003-04-09 2003-04-09 Shock absorbent roller thumb wheel

Publications (2)

Publication Number Publication Date
CA2425003A1 CA2425003A1 (en) 2004-10-09
CA2425003C true CA2425003C (en) 2005-09-27

Family

ID=33512089

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002425003A Expired - Lifetime CA2425003C (en) 2003-04-09 2003-04-09 Shock absorbent roller thumb wheel

Country Status (2)

Country Link
US (1) US6828518B2 (en)
CA (1) CA2425003C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614667B2 (en) * 2003-06-27 2013-12-24 Blue Orb, Inc. Apparatus and method for generating data signals
US7800581B2 (en) * 2006-09-15 2010-09-21 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. User input device with self-centering flat spring

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121529B1 (en) * 1971-07-23 1976-07-03
US3811100A (en) * 1972-04-20 1974-05-14 Motorola Inc Channel selector and indicator for multi-channel receiver
US4467495A (en) * 1982-10-07 1984-08-28 Whirlpool Corporation Vacuum cleaner nozzle lift device
US5231892A (en) * 1992-07-20 1993-08-03 Deere & Company Hitch control interface assembly
JP3454482B2 (en) * 1993-10-26 2003-10-06 キヤノン株式会社 Portable information devices
US5477508A (en) * 1994-05-31 1995-12-19 Will; Craig A. Control of digital watch using menu and thumbwheel
US5574268A (en) * 1994-11-30 1996-11-12 Herman; Trent S. Game display counter
US6392640B1 (en) * 1995-04-18 2002-05-21 Cognitive Research & Design Corp. Entry of words with thumbwheel by disambiguation
US5825353A (en) * 1995-04-18 1998-10-20 Will; Craig Alexander Control of miniature personal digital assistant using menu and thumbwheel
US6008608A (en) * 1997-04-18 1999-12-28 Emerson Electric Co. User operated switch and speed control device for a wet/dry vacuum
US6489950B1 (en) * 1998-06-26 2002-12-03 Research In Motion Limited Hand-held electronic device with auxiliary input device

Also Published As

Publication number Publication date
CA2425003A1 (en) 2004-10-09
US20040200700A1 (en) 2004-10-14
US6828518B2 (en) 2004-12-07

Similar Documents

Publication Publication Date Title
US7057120B2 (en) Shock absorbent roller thumb wheel
US8581451B2 (en) Magnetic vibration motor for portable terminal with improved yoke attachment
JP4147839B2 (en) Sliding multi-directional input key
US7450106B2 (en) Handheld electronic device including a variable speed input apparatus and associated method
US7442886B2 (en) Multi-directional input unit
US8217288B2 (en) Key designs for compact keypad of handheld communication device
US20100178957A1 (en) Mobile device having an impact resistant input
US20110096481A1 (en) Damping member, shock damping structure in electronic device, and electronic device using the shock damping structure
US20110120849A1 (en) Operation input device and electronic device using the same
CA2425003C (en) Shock absorbent roller thumb wheel
CN201975313U (en) Navigation key pressing mechanism
EP1049122B1 (en) Oscillating-operation type switch apparatus
KR100846762B1 (en) Key switch of keyboard unit
JP4398718B2 (en) Key sheet-integrated housing panel
US6613996B2 (en) Low-noise key switch and keyboard thereof
WO2001026126A1 (en) 5-directional key operation device
WO2007018053A1 (en) Key frame and cover member for push button switch
US6616181B1 (en) Horn mechanism featuring immunity to cushion fold
CA2637362C (en) Key designs for compact keypad of handheld communication device
EP2819140B1 (en) Dome-shaped assembly and handheld electronic device including dome-shaped assembly
CN214428521U (en) Switch button structure and electronic equipment
JP2001159942A (en) Calking structure of metal plate and keyboard based on the calking structure
JP4449541B2 (en) Key unit, key device and electronic device
CN116610227A (en) Touch control panel device
CN114063809A (en) Press module

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20230411