CA2404909A1 - Pharmacotherapy for vascular dysfunction associated with deficient nitric oxide bioactivity - Google Patents

Pharmacotherapy for vascular dysfunction associated with deficient nitric oxide bioactivity Download PDF

Info

Publication number
CA2404909A1
CA2404909A1 CA002404909A CA2404909A CA2404909A1 CA 2404909 A1 CA2404909 A1 CA 2404909A1 CA 002404909 A CA002404909 A CA 002404909A CA 2404909 A CA2404909 A CA 2404909A CA 2404909 A1 CA2404909 A1 CA 2404909A1
Authority
CA
Canada
Prior art keywords
nitric oxide
arginine
enos
oxide bioactivity
bioactivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002404909A
Other languages
French (fr)
Inventor
Caroline L. Jones
Steven S. Gross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cornell Research Foundation Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2404909A1 publication Critical patent/CA2404909A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/525Isoalloxazines, e.g. riboflavins, vitamin B2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof

Abstract

A patient with a disorder involving endothelial dysfunction associated with deficient nitric oxide bioactivity, e.g., coronary artery disease, atherosclerosis, hypertension, diabetes or neurodegenerative condition stemming from ischemia and/or inflammation, is treated by administering nitric oxide bioactivity increasing agent having formula (I) wherein R1, R2, R3 and R4 are the same or different and are independently selected from the group consisting hydrogen, amino, imino, alkyl, substituted alkyl, phenyl, substituted phenyl, cycloalkyl, benzyl, acyl, pyridyl, piperidyl, amino acid, lipid and carbohydrate and where R3 and R4 can optionally join to form a ring.
Treating agents include N.omega.-hydroxyarginine and hydroxyguanidine.

Description

PHARMACOTHERAPY FOR VASCULAR DYSFUNCTION

Cross-Reference to Related Application This application claims the benefit of U. S. Provisional Application No. 60/196,298, filed April 12, 2000.
Technical Field This invention is directed at enhancing vascular fimction in patients with vascular diseases and conditions that are associated with deficient nitric oxide bioactivity, endothelial dysfunction, tetrahydrobiopteriu insu~ciency and/or oxidative stress. In an embodiment the oxidative stress triggers the tetrahydrobiopterin insufficiency which in turn triggers deficient nitric oxide bioactivity and endothelial dysfi~.nction, and the invention is directed at treating the vascular diseases and conditions associated with the endothelial dysfimction.
Background of the Invention It is known that nitric oxide is constitutively produced by vascular endothelial cells where it plays a key physiological role in the moment-to-moment regulation of blood pressuxe and vascular tone.
It is known that deficient nitric oxide bioactivity contributes to the pathogenesis ofvascular dysfimctions, including coronary artery disease, atherosclerosis, hypertension, diabetic vasculapathy and neurodegenerative conditions stemming fiom ischemia and/or inflammation, and that such pathogenesis includes damaged endothelium, poor flow of oxygenated blood resulting in oxygen-deficient organs and tissues, elevated systemic vascular resistance (high blood pressure), vascular smooth muscle proliferation, progression ofvascular stenosis and inflammation.
There is no current medically established solution for reversing or diminishing the deficiency in nitric oxide bioactivity. However, health food stores sell arginine and arginine-containing preparations as dietary supplements, and e~cacy in reversing conditions associated with endothelial dysfunction has been suggested.
Administration of tetrahydrobiopterin has also been suggested to increase nitric oxide bioactivity by blood vessels of chronic smokers and in animal models of atherosclerosis.
Summary of the Invention It has been discovered in the course of making the invention that a predominant reason for nitric oxide (NO) deficiency in disorders involving endothelial dysfunction associated with deficient nitric oxide bioactivity is that dihydrobiopterin (BHZ) binds to eNOS (an enzyme associated with constitutive nitric oxide production in endothelial cells of blood vessels) with amity equal to the natural cofactor tetrahydrobiopterin (BH4), but that whereas BH4-bound eNOS mediates production of nitric oxide, bound eNOS does not. Rather BI-Iz-bound eNOS causes diminished nitric oxide to be present by producing superoxide anion that reacts with nitric oxide to inactivate it.
BIB-bound eNOS also causes a cascade effect by producing superoxide anion which oxidizes BH4 to BHZ and still greater rate of superoxide production and fiu-ther diminished production of nitric oxide aril increased inactivation of nitric oxide.
Oxidative conditions that can predominate in vascular disorders can oxidize BH4 to BH2, thereby initiating this cascade. It is also discovered in the course of making the invention herein that hydroxyarginine, and other hydroxyguanidine-containing molecules can be metabolized to nitric oxide by BH2-bound eNOS.
The invention herein is directed to a method of treating a patient with a disorder involving endothelial dysfunction associated with deficient nitric oxide bioactivity by restoring or increasing nitric oxide bioactivity in the patient and comprises administering to the patient a therapeutically effective amount of nitric oxide bioactivity increasing agent selected from the group consisting of nitric oxide bioactivity increasing hydroxyguanidines and pharmaceutically acceptable salts thereof; optionally in combination with arginine and/or tetrahydrobiopterin, thereby increasing or restoring nitric oxide bioactivity.
The endothelial dysfunction referred to is diagnosed by the failure of intracoronary infusion of 1 ~.mollliter of acetylcholine in physiological saline to elicit an increase in coronary artery luminal diameter in a patient undergoing coronary angiography. An alternative non-invasive approach to assess endothelial dysfunction may be performed by measurement of flow-mediated vasodilation of the brachial artery using an ultrasound-based imaging technique. For this test, forearm brachial artery diameter is determined by ultrasound in the patient prior to testing.
Subsequently, a pneumatic tourniquet is placed below the patient's elbow, inflated to 300 mm Hg and held at this pressure for 5 minutes. The tourniquet is then rapidly released and the flow-induced increase in luminal diameter is recorded at 1 min after release. Ifthe observed flow-induced increase in luminal diameter averages 5% or less with 4 repeat measurements, a diagnosis of endothelial dysfunction is made.
The deficiency in nitric oxide bioactivity referred to above is due to oxidative stress which oxidizes some of the normally present nitric oxide and/or oxidizes tetrahydrobiopterin cofactor for nitric oxide production making it inactive, so as to deplete nitric oxide bioactivity.
Brief Description of the Drawix~s Fig. 1 is a graph which compares the affnity that the ptei~ns 5,6,7,8-tetrahydrobiopterin (BH4), 7,8-dihydrobiopterin (BHZ), 6-methyltetrahydrobiopterin (6MePH4), and sepiapterin to compete for [3H] tetrahydrobiopterin binding to eNOS.
Fig. 2(a) shows electron paramagnetic resonance results that assess superoxide production by BH4 bound eNOS in buffer.
Fig. 2(b) shows electron paramagnetic resonance results that assess superoxide production by sepiapterin-bound eNOS in assay buffer.
Fig. 2(c) shows electron paramagnetic resonance results of superoxide production by BH2-bound eNOS in assay buffer.
Fig. 3(a) is a graph showing BH4-bound eNOS production of total nitrate/nitrite from arginine in assay buffer without NG methyl-L-arginine (NMA), denoted "Control";
with NMA denoted "NMA"; and after elimination of cahnodulin, denoted "No CaM."
Fig. 3(b) is a graph showing BH2-bound eNOS production of total nitrate/nitnte from arginine in assay buffer without NMA, denoted "Control"; with NMA, denoted "NMA"; and after elimination of calmodulin denoted "No CaM."
Fig. 3(c) is a graph showing BH4 bound eNOS production of total nitratelnitrite from N'~-hydroxyarginine in assay buffer without NMA, denoted "Control"; with NMA, denoted '2~1MA"; and after elimination of calmodulin, denoted "No CaM."
Fig. 3(d) is a graph showing BH2-bound eNOS production of total nitratelnitrite from N°''-hydroxyarginine in assay buffer without NMA, denoted "Control"; with NMA, denoted "NMA"; and after elimination of calmodulin, denoted "No CaM."
Fig. 4 is a graph containing curves showing concentration-dependence ofnitric oxide synthesis from Nw-hydroxyarginine by BHz-bound eNOS and by BH4-bound eNOS.
The term "Specific Nitrite/Nitrate" in legends on Figs. 3(a), 3(b), 3(c), 3(d) and 4 means the increase of nitrite/nitrate observed above background during the one hour incubation.
Detailed Description As indicated above, the method ofthe invention herein is for treating a patient with a disorder involving endothelial dysfimction associated with deficient nitric oxide bioactivity by restoring or increasing nitric oxide bioactivity in the patient and comprises administering to the patient a therapeutically effective amount ofnitnc oxide bioactivity increasing agent selected from the group consisting of nitric oxide bioactivity increasing hydroxyguanidines and pharmaceutically acceptable salts thereof optionally in combination with arginine and/or tetrahydrobiopterin, thereby increasing or restoring nitric oxide bioactivity.
Disorders involving endothelial dysfunction associated with deficient nitric oxide bioactivity are known and include coronary artery disease, atherosclerosis, hypertension, diabetes and neurodegenerative conditions stemming from ischemia and/or inflammation (e.g., inflammatory and neurodegenerative conditions owing to insuffcient nitric oxide production, e.g., stroke).
We turn now to the agents which are selected from the group consisting of nitric oxide bioactivity increasing hydroxyguanidines and pharmaceutically acceptable salts thereof.
The nitric oxide bioactivity increasing hydroxyguanidines are preferably nitric oxide bioactivity increasing agents having the formula:
N-OH

~N~ ~N~
(I) R3 ~ Ra wherein Rl, R2, R3 and R4 permit transport into cells and are the same or different and can be independently selected from the group consisting of hydrogen, amino, imino, alkyl, substituted alkyl, phenyl, substituted phenyl, cycloalkyl, benzyl, acyl, pyridyl, piperidyl, piperazyl, amino acid, lipid and carbohydrate and wherein R3 and R4 can optionally join to form a ring. The alkyl can be, for example, C~ Clo alkyl.
The substituents on substituted alkyl include, for example, one or more of the same or different of halo, thio, vitro, amino, carboxy, C~ C6 -alkoxy and aryl substituted on C~ Coo alkyl. The substituents on substituted phenyl include, for example, one or more of the same or different of halogen, C~ C6 alkyl, vitro, amino and C~ C6 alkoxy (e. g., methoxy). The cycloalkyl can contain, for example, from 3 to 8 carbon atoms.
The acyl can be, for example, C~ C6 acyl. The halo and halogen include chloro, bromo and fluoro.
The pharmaceutically acceptable salts include, for example, the hydrochloride, acetate and sulfate salts. Other pharmaceutically acceptable salt group will be obvious to those skilled in the art.
Preferably at least one of Rl, R2, R3 and R4 is hydrogen, and preferably two or three of Rl, R2, R3 and R4 are hydrogen.
When one or both of R3 and R4 are alpha-amino acids, the alpha-amino acid can be au L-compound or D-compound or D,L-compound. L-compounds are preferably used but D-compounds and D,L-compounds also can be used.
The hydroxyguanidine treating agents include, for example, N"-hydroxyarginin.e and hydroxyguanidine.
N'''-Hydroxyarginine has the formula (I) where R1, RZ and R3 are hydrogen, and R4 is (CI~)3CH(NHz)COOH.
Hydroxyguanidine has the foi7nula (I) where R', R2, R3 and R4 are all hydrogen.
Nw-Hydroxyarginine and hydroxyguanidine are available commercially.
Still other hydroxyguanidine treating agents include, for example, compounds of formula (I) where Rl, RZ and R3 are H, and R4 is (CHZ)3C(CH3)(NHZ)COOH, e.g., N'~-hydroxy-L-a-methylarginine; compounds ofthe formula (I) where Rl, RZ and R3 are H, and R4 is (CHZ)4CH(NHz)COOH, e.g., N'"'-hydroxy-L-homoarginine; compounds of the formula (I) where Rl, RZ and R3 are H, and R4 is (CHZ)4NH2; and compounds of the formula (I) where Rl, RZ and R3 are H, and R4 is (CH2)4COOH.
The other hydroxyguanidines are prepared by methods well known in the art from hydroxylamine or other simple precursors.
As indicated above, the agents are administered in therapeutically effective amounts, i.e., an endothelial dysfiinction reversing or diminishing effective amount that provides reversal or diminishing or stopping of endothelial damage, increased oxygenated blood flow to oxygen-deficient organs and tissues, diminished vascular resistance (increased blood vessel dilation), reversing or stopping ofprogression of vascular stenosis and/or diminished inflammation. Therapeutic amounts depend on the agent administered and can range, for example, from 0.01 ~.mollkg to 2 mmol/kg. For Nw-hydroxyarginine, administration can be, for example, of a loading dose, e.g., of 20 mg/kg, followed by 1 to 10 mg/kg/hr. Other suitable dosage information for N'~-hydroxyarginine is exemplified in the working examples hereinafter.
The routes of administration include oral, transdermal, intravenous, and intramuscular.
For transdermal administration, the agent can be administered, for example, as an ointment or cream containing from 0.1 to 3% ofthe agent.
Since the conditions treated are chronic, the administrations typically are on a daily basis.
The mode ofbenefit includes improved flow of oxygenated blood to oxygen-deficient organs and tissue, reduced systemic vascular resistance, diminished progression ofvascular stenosis, and diminished inflammation.
-7_ We turn now to the optional case referred to above where agent as described above is used in combination with administration of arginine. The arginine used is L-argivine. The L-arginine is used in a therapeutically effective amount which is an amount effective to increase nitric oxide synthesis in vascular cells. This amount typically ranges from 5 to 20 grams per day. The L-arginine is preferably administered orally.
We ttu~ now to optional case referred to above where agent as described above is used in combination with administration of tetrahydrobiopterin. The tetrahydrobiopterin used is, for example, (6R)-5,6,7,8-tetrahydro-Lrbiopterin.
The amount typically ranges from 0.05 mg/kg to 10 mg/kg. The tetrahydxobiopterin is preferably administered orally.
The invention is supported by Reference Examples 1, 2, 3 and 4, and is illustrated by working Examples I, II, III, and IV and V which are set forth below.
The eNOS used in Reference Examples 1, 2, 3 and 4 was made as described in Martasek, P., et al., Biochem. Biophys. Res. Comm. 219, 359-365 (1996).
Reference Example 1 Increasing concentrations of unlabeled pterins were incubated for 15 minutes at 22°C with [3H]tetrahydrobiopterin ([3H]BH4), 10 pmoles, and eNOS, 3 pmoles, in binding buffer which is Tris.HCl, pH 7.5, (50 mM), and dithiothreitol (DTT) (1 mM), in a 100 microliter volume in each well in a 96-well filtration plate assay. The pterins used include 5,6,7,8-tetrahydrobiopterin (BH4), 7,8-dihydrobiopterin (BH2), 6-methyltetrahydxobiopterin (6 MePH4) and sepiapterin. Data which are shown in Fig. 1 are mean ~SEM values of triplicate determinations. Similar results wer a obtained in four separate experiments. In. Fig. 1, the squares denote RBH4 for the naturally occurring (R)-stereoisomer of BH4 and represent BH4, the triangles represent BIB, the diamonds represent 6 MePH4, and the circles represent sepiapterin. In Fig. 1, the term "Inhibitor" in the horizontal legend means pterin analog and is generic for BH4, BIB, 6MePH4 and sepiapterin. Incubations were carried out at the concentrations indicated by the data points in Fig. 1. This experiment is to compare the ability of the named ptei7ns to compete for [3H]BH4 binding to eNOS. The results show that BHZ and _g_ bind with equal affinity to eNOS, so BH2 formed in endothelial cells would effectively compete for binding to eNOS with BH4 and stop nitric oxide production iu the cases where it binds to eNOS (as indicated in Reference Example 3 and Fig. 3(b)).
Reference Example 2 Assay buffer utilized contained HEPES (50 mM, pH 7.4), calcium (0.2 mM), calmodulin. (10 ~,g/ml), NADPH (0.1 mM), L-arginine (0.1 mM), tetrahydrobiopterin (10 ~.M), DEPMPO (structure shown in upper right of Fig. 2(a)) (50 mM), and diethylenetriamine pentaacetic acid (DTPA) (0.1 mM). Included was 7 pmol eNOS.
Incubation was for 15 min at 22°C. Subsequent addition was either of sepiapterin (50 ,uM) or BHZ (1 mM). The DEPMPO functions as a probe (spin-trap) that selectively captures superoxide anion. Electron paramagnetic resonance (EPR) was cari~ed out to determine superoxide production. EPRwas carried out at microwave power of 2 mW, modulation amplitude 1G, time constant 0.128 seconds, scan rate 1.6 G/s, gain 1.25 x 10E5, number of scans 10. EPR shows an eight peak signal when the DEPMPO captures superoxide. Results are shown in Figs. 2(a), 2(b) and 2(c).
The line under 20G in Fig. 2(c) indicates that horizontal distance represents 20 gauss in Figs.
2(a), 2(b) and 2(c). As shown in Fig. 2(a) eNOS does not produce superoxide when bound to BH4. However, as shown in Fig. 2(c), subsequent addition of BHZ can displace BH4 and activate superoxide production. The results with sepiapterin (Fig.
2(b)) support the conclusion that binding of incompletely-reduced pterin, i.e., a dihydropterin such as sepiapterin, will activate superoxide production.
Reference Example 3 All samples were 100 microliter total volume and contained assay buffer (Tris.HGlpH 7.6 (50 mM), DTT (1 mM), calcium (100 ~M), and calmodulin (100 nM)). In the assay buffer, eNOS (10 pmol), either BH4 (10 ,uM) or BHZ (10 ,uM), and either L-arginine ( 100 ,uM) or N'"'-hydroxy-L-arginine ( 100 ,uM) were introduced. In some experiments, the nitric oxide synthase inliibitor NW-methyl-L-arginine (NMA, 1mM) was additionally added or the required NO synthase cofactor calmodulin was omitted (No CaM). Incubations were for 1 hour at 37°C. Total nitrate/nitrite (as a measure of nitric oxide) was measured by the Gneiss assay as described in "Methods of Nitric Oxide Research," edited by Feelisch, M. and Stamler, J. S., John Wiley & Sons Ltd. (1996) at pages 491-497. Results are shown in Figs. 3(a), 3(b), 3(c) and 3(d). Fig.
3(a) shows BH4-bound eNOS production oftotal nitrate/nitrite from arginine.
Fig. 3(b) shows BHZ-bound eNOS production oftotalnitrate/nitrite from arginine. Fig.
3(c) shows BH4 bound eNOS production of total nitrate/nitrite from N'"'-hydroxyarginine.
Fig. 3(d) shows BH2-bound eNOS production of total nitrate/nitrite from N'''-hydroxyarginine. Data represent means ~SEM values of quadruplicate determinations.
The results show that conversion to nitric oxide is by a different mechanism for arginine than for N'"'-hydroxyarginine in that BHz-bound eNOS does not cause production of nitric oxide from arginine but does cause production ofnitric oxide from N'''-hydroxyarginine, whereas BH4-bound eNOS causes production of nitric oxide from both arginine and NW-hydroxyarginine. Although arginine conversion by BH4-bound eNOS
to nitric oxide is substantially blocked (>90%) by addition of NMA or removal of CAM, N'"'-hydroxyarginine conversion to nitric oxide by BHZ-bound eNOS is little effected (<30%) by addition ofNMA or removal of CAM.
Reference Example 4 eNOS (10 pmol) was preincubated for 30 minutes at 37°C in the presence of either BH2 ( 10 ,uM) or BH4 ( 10 ,~M) in assay buffer (Tris.HCl pH 7.6 (50 mM), DTT ( 1 mM), calcium (100 ,uM) and calmodulin (100 nM)). Then N'''-hydroxy-Irarginine (denoted "Hydroxyarginine" in Fig. 4) was added (concentrations as disclosed in Fig. 4) and incubations were 100 microliter total volume and were allowed to proceed for 1 hour at 37 ° C. Nitric oxide production was assessed from accumulation of its stable oxidation products (nitrite and nitrate), quantified by a modified Gneiss assay (reference recited in Reference Example 3). The results are shown in Fig. 4. Data are mean ~SEM
values of quacli~uplicate determinations. The results show concentration dependence of nitric oxide synthesis from NW-hydroxyarginine by eNOS with either BH2 or BH4 as bound cofactor. Notably, Nw-hydroxy-L-arginine supports the production of nitrogen oxides by eNOS in the presence of either BHZ or BH4.

Example I
A 40-year-old male with Type I diabetes presents with symptoms of pain in toes and loss of pink color (gray tissue tone) in toes. An ointment containing 1%
by weight NW-hydroxy-L-arginine is applied to the toes four times a day. Within 48 hours, pain diminishes and tissue becomes pinker. Blood perfusion is increased.
Example II
A 60-year-old male with coronary artery disease develops chest pain and electrocardiograpliic evidence of augina after 10 minutes on a treadmill at 3 mph and 5%
incline. Within 90 minutes after an oral dose of 10 mg/kg of N~'-hydroxy-L-arginine, the subject is able to walk on the treadmill at 3 mph and 5% incline for 25 minutes without pain or evidence of angina.
Example III
A 60-year-old female has moderate hypertension (150/100 mm Hg) and elevated vascular resistance. One hour after receiving a single 10 mg/kg intravenous dose of N'~-hydroxy-L-arginine, mean arterial blood pressure is diminished by 14 mm Hg and systemic vascular resistance is reduced by 10%.
In the above-Examples I, II and III, a therapeutically effective amount of other hydroxyguanidine-containing agents can be substituted for the NW-hydroxy-L-arginine to obtain the benefits of improved oxygenated blood flow to oxygen-deficient organs, lessened symptoms of coronary artery disease, reduced systemic vascular resistance, diminished progression ofvascular stenosis and diminished inflammation.
Example IV
A 55-year-old man suffers from type 2 diabetes (adult onset diabetes or insulin resistant diabetes), coronary artery disease and hypertension (a not uncommon composite of conditions), experiences a stroke resulting in acute left-sided paralysis owing to right middle cerebral artery occlusion. Surviving the stroke, the patient is placed on chronic oral therapy with N~'-hydroxy-L-arginine, 5 mg/kg every 4 hours, or a combination of this with L-arginine, 20 mg/kg every 4 hours. There is no recurrence of stroke within the next two years.
Example V
A 60-year-old man exhibits mild hypertension (140/90 mm Hg) and angiographic evidence of coronary artery atherosclerosis and familial history of cardiovascular disease. He is treated with 5 mg/kg N~'-hydroxy-L-arginine every 4 hours orally as either flee drug or in admixture with antioxidant agents and vitamins (e.g., ascorbate, alpha-tocopherol, vitamin B6, vitamin B12, folate (folic acid), carotenoids, coenzyme Q10, phytoestrogens (including isoflavonoids), selenium, butylated hydxoxytoluene (BHT), butylated hydroxyanisole (BHA) and n-3 polyunsaturated fatty acids (PUFA)) with or without L-arginine supplementation (20 mg/kg every 4 hours). The mixture is delivered as a nutriceutical. Blood pressure normalizes to less than 130/80 mm Hg and angiographic evidence indicates atherosclerosis progression is less than 10%
additional over the next five years.
When (6R)-5,6,7,8-tetrahydrobiopterin, 300 mg, is substituted for the Irarginine in Examples IV and V, results of no recurrence of stroke within the next two years and normalized blood pressure, are obtained.
Variations Variations in the above will be evident to those skilled in the art. Thus, the scope of the invention is defined by the claims.

Claims (6)

WHAT IS CLAIMED IS:
1. A method for treating a patient with a disorder involving endothelial dysfunction associated with deficient nitric oxide bioactivity, comprising administering to the patient a therapeutically effective amount of agent which is selected from the group consisting of nitric oxide bioactivity increasing hydroxyguanidines and pharmaceutically acceptable salts thereof.
2. The method of Claim 1 where said agent is a nitric oxide bioactivity increasing compound having the formula:
wherein R1, R2, R3 and R4 permit transport in cells and are the same or different and can be independently selected from the group consisting of hydrogen, amino, imino, alkyl, substituted alkyl, phenyl, substituted phenyl, cycloalkyl, benzyl, acyl, pyridyl, piperidyl, piperazyl, amino acid, lipid or carbohydrate and where R3 and R4 can optionally join to four a ring.
3. The method of Claim 2 where the disorder is selected from the group consisting of coronary artery disease, atherosclerosis, hypertension and diabetes.
4. The method of Claim 3 where the agent is N.omega.-hydroxy-L-arginine.
5. The method of Claim 1 where a therapeutically effective amount of L-arginine is also administered.
6. The method of Claim 1 where a therapeutically effective amount of tetrahydrobiopterin is also administered.
CA002404909A 2000-04-12 2001-04-03 Pharmacotherapy for vascular dysfunction associated with deficient nitric oxide bioactivity Abandoned CA2404909A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US19629800P 2000-04-12 2000-04-12
US60/196,298 2000-04-12
PCT/US2001/008635 WO2001078717A1 (en) 2000-04-12 2001-04-03 Pharmacotherapy for vascular dysfunction associated with deficient nitric oxide bioactivity

Publications (1)

Publication Number Publication Date
CA2404909A1 true CA2404909A1 (en) 2001-10-25

Family

ID=22724804

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002404909A Abandoned CA2404909A1 (en) 2000-04-12 2001-04-03 Pharmacotherapy for vascular dysfunction associated with deficient nitric oxide bioactivity

Country Status (4)

Country Link
US (1) US6784178B2 (en)
EP (1) EP1351674A4 (en)
CA (1) CA2404909A1 (en)
WO (1) WO2001078717A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967219B2 (en) * 2001-10-12 2005-11-22 Cornell Research Foundation, Inc. Reversing or preventing premature vascular senescence
FR2832634A1 (en) * 2001-11-29 2003-05-30 Univ Pasteur Use of L isomers of hydroxyguanidine aminoacid derivatives for treatment of vascular diseases with an inflammatory component
CA2833559A1 (en) 2003-02-14 2004-09-02 Children's Hospital & Research Center At Oakland Treatment of conditions associated with decreased nitric oxide bioavailability, including elevated arginase conditions
DK1708690T3 (en) 2003-11-17 2016-11-07 Biomarin Pharm Inc TREATMENT OF PHENYLKETONURI WITH BH4
KR20070084270A (en) 2004-11-17 2007-08-24 바이오마린 파머수티컬 인크. Stable tablet formulation
US7648840B2 (en) 2004-12-01 2010-01-19 Children's Hospital & Research Center At Oakland Diagnosis of conditions associated with decreased arginine bioavailability
US20090075992A1 (en) * 2005-01-07 2009-03-19 University Of Strathclyde Pteridine Derivatives as Nitric Oxide Synthase Activators
WO2007022964A2 (en) 2005-08-24 2007-03-01 Abbott Gmbh & Co. Kg Hetaryl-substituted guanidine compounds and use thereof as binding partners for 5-ht5-receptors
AU2011221341B2 (en) * 2005-08-26 2013-11-28 Nestec S.A. Compositions and methods for improving functional vascular integrity, cellular survival and reducing apoptosis in ischemia or after ischemic episode in the brain
US20070219208A1 (en) * 2006-02-27 2007-09-20 Balaraman Kalyanaraman Methods for Treating Cancer
EP2389352B1 (en) * 2009-01-26 2019-05-08 The Trustees Of The University Of Pennsylvania Arginase inhibitors and methods of use
US9216178B2 (en) 2011-11-02 2015-12-22 Biomarin Pharmaceutical Inc. Dry blend formulation of tetrahydrobiopterin

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478946A (en) 1989-06-21 1995-12-26 Abbott Laboratories Guanidino compounds as regulators of nitric oxide synthase
US5380945A (en) 1989-06-21 1995-01-10 Abbott Laboratories Guanidino compounds as regulators of nitric oxide synthase
US5059712A (en) 1989-09-13 1991-10-22 Cornell Research Foundation, Inc. Isolating aminoarginine and use to block nitric oxide formation in body
US5158883A (en) 1989-09-13 1992-10-27 Cornell Research Foundation, Inc. Method of using aminoarginine to block nitric oxide formation in vitro
US5028627A (en) 1989-09-13 1991-07-02 Cornell Research Foundation, Inc. Method of using arginine derivatives to inhibit systemic hypotension associated with nitric oxide production or endothelial derived relaxing factor
US5216025A (en) 1989-09-13 1993-06-01 Board Of Regents, The University Of Texas System Nitric oxide synthesis inhibitors for potentiating the action of pressor agents in certain hypotensive patients
EP0441119A3 (en) 1990-01-09 1992-10-14 Richard D. Levere The use of l-arginine in the treatment of hypertension and other vascular disorders
US5281627A (en) 1992-05-28 1994-01-25 Cornell Research Foundation, Inc. Substituted arginines and substituted homoarginines and use thereof
US5945452A (en) 1993-06-11 1999-08-31 The Board Of Trustees Of The Leland Stanford Junior University Treatment of vascular degenerative diseases by modulation of endogenous nitric oxide production or activity
US5567592A (en) 1994-02-02 1996-10-22 Regents Of The University Of California Screening method for the identification of bioenhancers through the inhibition of P-glycoprotein transport in the gut of a mammal
US5968983A (en) 1994-10-05 1999-10-19 Nitrosystems, Inc Method and formulation for treating vascular disease
US5543430A (en) 1994-10-05 1996-08-06 Kaesemeyer; W. H. Method and formulation of stimulating nitric oxide synthesis
US5759835A (en) 1995-09-12 1998-06-02 University Of Iowa Research Foundation Bacterial nitric oxide synthase
US6277884B1 (en) * 1998-06-01 2001-08-21 Nitromed, Inc. Treatment of sexual dysfunction with N-hydroxyguanidine compounds
US6436997B1 (en) * 1998-06-01 2002-08-20 Nitromed, Inc. Endogenous nitric oxide synthesis under conditions of low oxygen tension

Also Published As

Publication number Publication date
US20030212135A1 (en) 2003-11-13
EP1351674A1 (en) 2003-10-15
WO2001078717A1 (en) 2001-10-25
US6784178B2 (en) 2004-08-31
EP1351674A4 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
US6117872A (en) Enhancement of exercise performance by augmenting endogenous nitric oxide production or activity
Niittynen et al. Role of arginine, taurine 4 and homocysteine in cardiovascular diseases
Johnson et al. Sustained hypertension in the rat induced by chronic blockade of nitric oxide production
US11173138B2 (en) Administration of butyrate, beta-hydroxybutyrate, and related compounds in humans
Jebb et al. 5-fluorouracil and folinic acid-induced mucositis: no effect of oral glutamine supplementation
Scaglia et al. Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients
Bode‐Böger et al. L‐arginine‐induced vasodilation in healthy humans: pharmacokinetic–pharmacodynamic relationship
Wu et al. Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats
AU2003266400C1 (en) Leucine-enriched nutritional compositions
van de Poll et al. Renal metabolism of amino acids: its role in interorgan amino acid exchange
US8318805B2 (en) Modulation of nitric oxide synthases by betaines
USRE35233E (en) Method of treating catabolic dysfunction
US6784178B2 (en) Pharmacotherapy for vascular dysfunction associated with deficient nitric oxide bioactivity
Schilling et al. A new approach in the treatment of hypotension in human septic shock by NG-monomethyl-L-arginine, an inhibitor of the nitric oxide synthetase
JP2016026181A (en) Improved method of administering beta-hydroxy-beta-methyl butyrate (hmb)
JP2004518712A (en) Compositions of biochemical compounds involved in the bioenergetic metabolism of cells and uses thereof
Kiani et al. Dietary supplements for improving nitric-oxide synthesis
McInnes et al. Biopterin synthesis defect. Treatment with L-dopa and 5-hydroxytryptophan compared with therapy with a tetrahydropterin.
Lambert et al. Net portal absorption of enterally fed α-ketoglutarate is limited in young pigs
Scaglia New insights in nutritional management and amino acid supplementation in urea cycle disorders
Swendseid et al. Metabolism of urea cycle intermediates in chronic renal failure
Ahern et al. Liver function in protein-energy malnutrition measured by cinnamic acid tolerance and benzoic acid tolerance: effect of carnitine supplementation
Basu et al. Arginine: a clinical perspective
Albert et al. Exercise-mediated peripheral tissue and whole-body amino acid metabolism during intravenous feeding in normal man
Vallance [43] Use of l-arginine and its analogs to study nitric oxide pathway in humans

Legal Events

Date Code Title Description
FZDE Discontinued