CA2390949C - Systems, apparatus and methods for bonding and/or sealing electrochemical cell elements and assemblies - Google Patents

Systems, apparatus and methods for bonding and/or sealing electrochemical cell elements and assemblies Download PDF

Info

Publication number
CA2390949C
CA2390949C CA2390949A CA2390949A CA2390949C CA 2390949 C CA2390949 C CA 2390949C CA 2390949 A CA2390949 A CA 2390949A CA 2390949 A CA2390949 A CA 2390949A CA 2390949 C CA2390949 C CA 2390949C
Authority
CA
Canada
Prior art keywords
sealing
electrochemical cell
sealing groove
adhesive
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2390949A
Other languages
French (fr)
Other versions
CA2390949A1 (en
Inventor
Johann Einhart
Stefan Reiff
Rudolf F. Bindel
Hubert Ryssel
Christopher Todd Kirby
Francisco Enrique Rivera Diaz
Michael Medina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BDF IP Holdings Ltd
Original Assignee
BDF IP Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BDF IP Holdings Ltd filed Critical BDF IP Holdings Ltd
Publication of CA2390949A1 publication Critical patent/CA2390949A1/en
Application granted granted Critical
Publication of CA2390949C publication Critical patent/CA2390949C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49114Electric battery cell making including adhesively bonding

Abstract

Apparatus, systems, and methods for bonding one element of an electrochemical cell or cell stack to another wherein a sealing grove with a complex cross-sectional shape receives and retains a bead of adhesive prior to being assembled.
The complex cross-sectional shape has a raised portion sized to receive and retain the bead of adhesive, and at least one depressed portion to receive adhesive displaced from the raised portion during assembly. Embodiments of the invention incorporate raised portions with straight, beveled, curved, and rough surfaces to increase the strength of the bond between the respective elements.

Description

SYSTEMS, APPARATUS AND METHODS FOR BONDING AND/OR SEALING
ELECTROCHEMICAL CELL ELEMENTS AND ASSEMBLIES
TECHNICAL FIELD
The present invention relates to electrochemical energy converters with polymer electrolyte membranes, such as fuel cells or electrolyzer cells or stacks of such cells, wherein the cells or stacks comprise adhesively bonded and/or sealed layers.

BACKGROUND OF THE INVENTION
Electrochemical cells comprising solid polymer electrolyte membranes may be operated as fuel cells wherein a fuel and an oxidant are electrochemically converted at the cell electrodes to produce electrical power, or as electrolyzers wherein an external electrical current is passed between the cell electrodes, typically through water, resulting in generation of hydrogen and oxygen at the respective electrodes.
Figures 1-4 collectively illustrate typical designs of a conventional MEA 5, electrochemical cell 10 comprising a PEM layer 2, and a stack 100 of such cells.
Each cell 10 comprises a membrane electrode assembly ("MEA") 5 such as that illustrated in an exploded view in Figure 1. MEA 5 comprises an ion exchange membrane layer 2 interposed between first and second electrode layers 1 and 3, respectively, which are typically porous and electrically conductive, and each of which comprises an electrocatalyst at its interface with the ion exchange membrane layer 2 for promoting the desired electrochemical reaction. The electrocatalyst generally defines the electrochemically active area of the cell. The MEA 5 is typically consolidated as a bonded laminated assembly.
In an individual cell 10, illustrated in an. exploded view in Figure 2, an MEA 5 is interposed between first and second cell separator plates 11 and 12, respectively, which are typically fluid impermeable and electrically conductive. The cell separator plates 11, 12 are typically manufactured from non-metals, such as graphite; from metals, such as certain grades of steel or surface treated metals; or from electrically conductive plastic composite materials.

I

Fluid flow spaces, such as passages or chambers, are provided between the cell separator plates 11, 12 and the adjacent electrode layers 1, 3 to facilitate access of reactants to the electrode layers and removal of products. Such spaces may, for example, be provided by and the porous structure of the corresponding electrode layers 1, 3. More commonly channels are formed in the adjoining faces of the cell separator plates 11, 12, the electrode layers 1, 3, or both. Cell separator plates 11, 12 comprising such channels are commonly referred to as fluid flow field plates. Resilient gaskets or seals are typically provided around the perimeter of the flow fields between the faces of the MEA 5 and each of the cell separator plates 11, 12 to prevent leakage of fluid reactant and product streams.
Electrochemical cells 10 with ion exchange membrane layers 2 are advantageously stacked to form a stack 100 (see Figure 4) comprising a plurality of cells disposed between first and second end plates 17, 18. A compression mechanism is typically employed to hold the cells 10 tightly together, to maintain good electrical contact between components, and to compress the seals. In the embodiment illustrated in Figure 3, each cell 10 comprises a pair of cell separator plates 11, 12, and an MEA 5 interposed therebetween. An alternative configuration has a single separator plate or "bipolar plate" interposed between pairs of MEAs 5, contacting the cathode of one cell and the anode of the adjacent cell (except for the end cells). The stack 100 may comprise cooling layers interposed between every few cells 10 of the stack, or between each adjacent pair of cells. The cooling layers may be formed within the cell separator plates, for example, or they may comprise channels in bipolar plates used in the stack.
Cooling layers of the latter type are disclosed in commonly assigned U.S. Pat.
No.
5,230,966.
The illustrated cell.elements have openings 30 formed therein which, in the stacked assembly, align to form fluid manifolds for supply and exhaust of reactants and products and, if cooling spaces are provided, for a cooling medium. Again, resilient gaskets or seals are typically provided between the faces of the MEA 5 and each of the cell separator plates 11, 12 around the perimeter of these fluid manifold openings 30 to prevent leakage and intermixing of fluid streams in the operating stack 100.
2 SUMMARY OF THE INVENTION

The present invention relates to apparatus, systems and methods for use in bonding one element of an electrochemical cell stack to another element in the stack and/or for sealing portions of the stack, such as the perimeter of a manifold opening in a cell separator plate. In one embodiment, the inventive method comprises providing a sealing surface on a first element of the stack with a complex groove having a raised portion and a depressed portion. Both the raised portion and the depressed portion lie below the plane of the sealing surface, but the depressed portion is further from the plane than the raised portion. The method then comprises depositing a bead of adhesive on the raised portion, such as by screen printing. When deposited, the bead projects above the plane of the sealing surface. The method then comprises abutting a second element of the stack against the first element. When the first and second elements of the stack are abutted, the adhesive is displaced in part from the raised portion of complex groove, and a portion of the bead of adhesive is received within the depressed portion of the groove.
In another embodiment, the method comprises providing a complex groove having a single raised portion positioned between two depressed portions. The raised portion is again configured to receive the bead of adhesive. When the first element of the stack is abutted with the second element, however, a portion of the bead of adhesive is displaced into each of the two depressed portions.
The present invention is also directed toward an electrochemical cell comprising a membrane electrode assembly positioned between first and second bodies, such as cell separator plates. The second body has a sealing groove with a complex cross-sectional shape. The sealing groove has a shallow portion that is wide enough to receive the volume of adhesive, and a deep portion configured to receive a portion of the adhesive that is displaced during assembly.
In another embodiment, the shallow portion of the sealing groove is curved to increase the strength of the bond between the first body and the second body.
The curved shallow portion of the sealing groove is still wide enough to receive the bead of adhesive. Upon assembly, however, the bead is displaced along the entire width
3 of the curved shallow portion. As a result, the bond between the first and second bodies is strengthened to better resist tension and shear.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an exploded isometric view of a membrane electrode assembly according to the prior art.
Figure 2 is an exploded isometric view of an electrochemical cell according to the prior art.
Figure 3 is an exploded isometric view of an electrochemical cell stack according to the prior art.
Figure 4 is an isometric view of an electrochemical cell stack according to the prior art.

Figures 5-7 are cross-sectional elevation views of a portion of a cell separator plate, a screen mask and a squeegee, illustrating different steps in a screen printing process according to one embodiment of the present invention.

Figure 8 is a cross-sectional elevation view of a cell separator plate, a membrane electrode assembly, and a bead of adhesive prior to assembly according to one embodiment of the present invention.
Figure 9 is a cross-sectional elevation view of the cell separator plate, membrane electrode assembly, and adhesive of Figure 8 following assembly according to one embodiment of the present invention.

Figures 10-15 are cross-sectional elevation views of portions of a pair of cell separator plates according to various embodiments of the present invention.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

The present invention is generally directed toward methods, systems and apparatus for use in electrochemical cells, such as fuel cells. Embodiments of the present invention may allow portions of the fuel cell to be sealed while providing a stronger bond between the respective portions of the cell. Many specific details of certain embodiments of the invention are set forth in the following description and in Figures 5-15 to provide a thorough understanding of such embodiments. One skilled in
4 the art, however, will understand that the present invention may have additional embodiments, or may be practiced without several of the details described in the following description.
Figures 5-7 illustrate a cell separator plate 110 and a screen mask 112 being used to apply an adhesive 114 to the cell separator plate prior to assembly of an electrochemical cell or cell stack. In the illustrated embodiment, the cell separator plate 110 comprises a number of flow channels 116 for ultimately channelling coolant, fuel or oxidant to a membrane electrode assembly (not shown) or an adjacent cell separator plate. The cell separator plate 110 also has a sealing groove 118 used to bond the cell separator plate to an adjacent element in the cell or cell stack, and/or to seal a portion of the cell from other portions of the cell, from other portions of the stack, or from the external environment.
In the illustrated embodiment, the sealing groove 118 incorporates a raised central portion 120 and a pair of opposing depressed portions 122. The raised central portion is sufficiently wide to receive and retain a bead of adhesive, as discussed below.
The screen mask 112 of the illustrated embodiment can be fabricated from screen 124 and mask layers. Screen 124 may comprise a stainless steel or polymer mesh with a 71% open area, although it is appreciated that other materials or porosities would be interchangeable, as understood in the art.
Similarly, more or fewer mask layers can be used without departing from the spirit of the invention. Screen mask 112 has one or more masked portions 126 and an open portion 128. The open portions 128 are aligned with the raised central portion 120 of the sealing groove 118. Applicant understands that a single screen can also be used, as generally understood in the art.
In Figure 5, a mass of adhesive 114 is positioned against the screen mask 112, and a squeegee 130 is positioned against the adhesive and moving the adhesive along the screen mask. The illustrated adhesive is an epoxy.
Applicant appreciates that may other adhesives may also work, as generally understood in the art. In Figure 6, the squeegee 130 has moved the adhesive 114 past the open portion 128 of the screen mast 112, and a portion of the adhesive 114 has filled the open portion of the screen
5 11, 1 mask. Alternatively, a two-squeegee process may be employed, wherein the first squeegee places the adhesive onto the screen mask and the second squeegee pushes the adhesive into the open portions thereof.. The adhesive 114 within the open portion 128 of the screen mask 112 may contact the raised central portion 120 of the sealing groove 118. Thus, as illustrated in Figure 7, when the screen mask 112 is raised away from the cell separator plate 110, the adhesive 114 remains on the raised central portion 120. In the illustrated embodiment, the bead of adhesive 114 ranges from 1.3-1.5 mm (0.050-0.060 inches) wide, although this width, as well as the corresponding width of the raised central portion 120, can vary.

The above-described screen printing process can be used to apply a bead of adhesive to a cell separator plate or other elements of an electrochemical cell or cell stack. The cell separator plate 110 carrying the adhesive 114 can subsequently be bonded to another separate cell separator plate, a membrane electrode assembly, an end plate or any other element in the electrochemical cell or cell stack assembly.
For example, cell separator plates may be bonded together to form coolant channels at their interface. Applicant appreciates that the bead of adhesive could be applied to the mating surface of the element to be bonded, such that the raised central portion 120 of the sealing groove 118 receives the bead of adhesive as the elements are brought into contact. Likewise, the bead of adhesive can be applied through any other means known in the art, such as via an automated nozzle or other system.

The sealing groove 118 can circumscribe a manifold hole, such as a hole through which air, fuel or cooling fluid flows, or can circumscribe a flow field or a membrane electrode assembly. As a result, the shape and path of the sealing groove is not considered to be essential to the present invention.

Figure 8 illustrates a cell separator plate 210 and an electrode 211 from a membrane electrode assembly, according to another embodiment of the present invention. In this embodiment, the raised central portion 220 of the sealing groove 218 has a convex cross-sectional shape. The raised central portion 220 is sufficiently wide to support the entire bead of adhesive 214. As illustrated in Figure 9, after assembly the adhesive 214 is distributed along the entire raised central portion 220, and extends into the opposing depressed portions 222. The size of the bead of adhesive 214 is
6 preselected such that the depressed portions 222 are partially filled with adhesive upon assembly. Because portions of the raised central portion 220 face in various directions, the bond between the adhesive and the raised central portion resists separation of the plates 210, 211 in both the axial direction A and the lateral direction L. The bond between the cell separator plates 210, 211 is strengthened not only in an axial direction A but also in a lateral direction L, as well as along all positive and negative vector combinations thereof.

Embodiments of the present invention have numerous advantages over the prior art. For example, the raised central portion of the sealing groove places the adhesive closer to the mating object, increasing the likelihood of a successful bond.

The raised central portion also allows for the use of a smaller bead of adhesive. Using less adhesive reduces the risk of unwanted overflow, wherein adhesive between the mating surfaces prevents perfect mating. In the illustrated embodiment, because two depressed portions are positioned adjacent the raised central portion, one on each side thereof, it is highly unlikely that adhesive will leak from the sealing groove and interfere with the mating surfaces. As discussed above, a known quantity of adhesive is used that fills only a portion of each depressed groove. As a result, even with a margin of error, there is an available volume remaining in which adhesive can be displaced before it contacts the mating surface. Also, as discussed above, the contours on the raised central portion can increase the strength of the bond between the mating surfaces.
Figures 10-15 illustrate some of the many variations that can be made to the sealing groove as understood by the inventors. Many of these embodiments illustrate small changes. The inventors realize, however, that these small changes can be combined in many different ways to form even more variations. The inventors also realize that other modifications can be made without deviating from the spirit of the invention.

Figure 10 illustrates a sealing groove 318 according to another embodiment of the present invention. In this embodiment, the raised central portion 320 has an upper surface 321 that has been treated to increase the surface's roughness.
As a result, the upper surface 321 has an anchor pattern that further increases the bond between the adhesive and the raised central portion 320 of the sealing groove 318.
7 In some embodiments, the sealing groove 318 may have an outer width W that ranges from 1.0-2.0 mm (0.040-0.080 inches), with the illustrated embodiment measuring 1.5 mm (0.060 inches). The raised central portion may have an inner width w that measures between 0.25-1.3 mm (0.010-0.050 inches), with the illustrated embodiment measuring 1.0 mm (0.040 inches). The raised central portion may have a depth d below a mating surface 323 of the cell separator plate 310 measuring approximately 25-130 m (0.001-0.005 inches), with the illustrated embodiment measuring 50 m (0.002 inches). The depressed portions 322 may have a depth D
below the mating surface 323 measuring approximately 130-630 m (0.005-0.025 inches), with the illustrated embodiment measuring 200 m (0.008 inches).
Figures 11-14 illustrate four variations of sealing grooves 418, 518, 618, and 718, respectively, according to alternate embodiments of the present invention.
They collectively illustrate that the sealing groove can have rounded edges, beveled edges, concave surfaces and triangular grooves, in addition to the other features previously illustrated.
Figure 15 illustrates a sealing groove 818 according to yet another embodiment of the present invention. In this particular embodiment, the sealing groove abuts an edge surface 819 of the electrochemical cell. Consequently, the depressed portion 822 closest to the edge surface 819 does not have an outer wall, but instead opens to the exterior environment. Adhesive positioned on the central raised finger 820 nonetheless is displaced into both of the depressed portions 822, as with the prior embodiments.
From the foregoing it will be appreciated that, all the specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
8

Claims (34)

1. A method for bonding a first element of an electrochemical cell stack to a second element of the cell stack, the method comprising:
first providing at least one complex groove in a first sealing surface of the first element of the electrochemical cell stack, the complex groove having at least one raised portion and at least one depressed portion, the at least one raised portion being located above the depressed portion, the at least one raised portion being configured to receive and retain a bead of adhesive;
second, depositing the bead of adhesive only on the at least one raised portion of the at least one complex groove;
third, abutting a second sealing surface of the second element of the electrochemical cell stack against the first sealing surface of the first element of the electrochemical cell stack such that the second sealing surface displaces at least a portion of the bead of adhesive from the at least one raised portion of the complex groove; and fourth, receiving the portion of the bead of adhesive in the at least one depressed portion of the groove.
2. The method of claim 1 wherein the first and second elements are cell separator plates.
3. The method of claim 2 wherein the sealing surfaces of the separator plates cooperate to form coolant channels.
4. The method of claim 1 wherein the first element is a cell separator plate and the second element is an electrode.
5. The method of claim 1 wherein providing at least one complex groove comprises providing a complex groove having one raised portion and two depressed portions, the raised portion being positioned between the depressed portions.
6. The method of claim 1 wherein providing at least one complex groove comprises providing a complex groove having one raised portion and two depressed portions, the raised portion having a convex cross-section and being positioned between the depressed portions.
7. The method of claim 1 wherein depositing the bead of adhesive comprises screen printing the bead of adhesive onto the raised portion of the complex groove.
8. The method of claim 1 wherein depositing the bead of adhesive comprises screen printing the bead of adhesive onto the second sealing surface of the second element, and abutting the second sealing surface of the second element against the first sealing surface of the first element.
9. An electrochemical cell comprising:
a membrane electrode assembly having an ion exchange membrane interposed between first and second electrode layers;
a first body positioned on a first side of the membrane electrode assembly, the first body being configured to direct at least one of a fuel and an oxidant to at least a portion of the first electrode layer; and a second body positioned on a second side of the membrane electrode assembly, the second body being configured to direct the other of the fuel and the oxidant to at least a portion of the second electrode layer, a sealing surface of the second body having at least one sealing groove with a complex cross-sectional shape, a shallow portion of the cross-sectional shape being sufficiently wide to receive and retain a volume of adhesive prior to assembly of the electrochemical cell, and first and second deep portions of the cross-sectional shape being configured to receive a portion of the volume of adhesive that is displaced from the shallow portion during assembly of the electrochemical cell, the deep portions being immediately adjacent the shallow portion, wherein the size of the volume of adhesive is selected such that the first and second deep portions of the sealing groove are only partially filled with the portion of the volume of adhesive in the assembled state of the electrochemical cell.
10. The electrochemical cell of claim 9 wherein the at least one sealing groove is positioned on a surface of the second body facing away from the membrane electrode assembly.
11. The electrochemical cell of claim 9 wherein the at least one sealing groove comprises a plurality of sealing grooves.
12. The electrochemical cell of claim 9 wherein the shallow portion of the at least one sealing groove comprises a flat portion.
13. The electrochemical cell of claim 9 wherein the shallow portion of the at least one sealing groove comprises a surface that is rougher than surrounding surfaces.
14. The electrochemical cell of claim 9 wherein the shallow portion of the at least one sealing groove comprises a flat portion oriented to be substantially aligned with a plane of the membrane electrode assembly.
15. The electrochemical cell of claim 9 wherein the shallow portion of the at least one sealing groove comprises a curved portion.
16. The electrochemical cell of claim 9 wherein the shallow portion of the at least one sealing groove comprises a convex curved portion.
17. The electrochemical cell of claim 9 wherein the shallow portion of the at least one sealing groove comprises a concave curved portion.
18. The electrochemical cell of claim 9 wherein the second deep portion is positioned on a side of the shallow portion opposite the first deep portion.
19. The electrochemical cell of claim 9 wherein the at least one sealing groove has a width measuring approximately 1.0-2.0 mm.
20. The electrochemical cell of claim 9 wherein the at least one sealing groove has a width measuring approximately 1.5 mm.
21. The electrochemical cell of claim 9 wherein the shallow portion of the at least one sealing groove has a width measuring approximately 0.3-1.
3 mm.
22. The electrochemical cell of claim 9 wherein the shallow portion of the at least one sealing groove has a width measuring approximately 1.0 mm.
23. The electrochemical cell of claim 9 wherein the shallow portion of the at least one sealing groove has a depth below the sealing surface measuring approximately 25-130 µm.
24. The electrochemical cell of claim 9 wherein the shallow portion of the at least one sealing groove has a depth below the sealing surface measuring approximately 50 µm.
25. The electrochemical cell of claim 9 wherein the first and second deep portions of the at least one sealing groove have a depth below the sealing surface measuring approximately 130-630 µm.
26. The electrochemical cell of claim 9 wherein the first and second deep portions of the at least one sealing groove have a depth below the sealing surface measuring approximately 200 µm.
27. An electrochemical fuel cell stack comprising a plurality of electrochemical cells, wherein the electrochemical cells comprise:
a membrane electrode assembly having a membrane interposed between first and second electrode layers;
a first body positioned on a first side of the membrane electrode assembly, an inner surface of the first body abutting the membrane electrode assembly and being configured to direct at least one of a fuel and an oxidant to at least a portion of the first electrode; and a second body positioned on a second side of the membrane electrode assembly, an inner surface of the second body abutting the membrane electrode assembly and being configured to direct the other of the fuel and the oxidant to at least a portion of the second electrode, an outer surface of the second body having at least one sealing groove with a complex cross-sectional shape, a first portion of the at least one sealing groove being sufficiently wide to receive and retain a volume of adhesive prior to assembly of the cell stack, and second and third portions of the at least one sealing groove, the second and third portions being located adjacent the first portion and being configured to receive a portion of the volume of adhesive that is displaced from the first portion of the at least one sealing groove during assembly of the cell stack, wherein the second and third portions of the sealing groove are deeper than the first portion of the sealing groove, and wherein the size of the volume of adhesive is selected such that the second and third portions of the sealing groove are only partially filled with the portion of the volume of adhesive in the assembled state of the electrochemical cell stack.
28. The electrochemical fuel cell stack of claim 27 wherein an outer surface of the first body comprises a sealing portion positioned to align with the at least one sealing groove on a body of an adjacent electrochemical cell in the cell stack, the sealing portion being adapted to facilitate engagement with the adhesive.
29. The electrochemical fuel cell stack of claim 27 wherein an outer surface of the first body comprises a sealing portion positioned to align with the at least one sealing groove on a body of an adjacent electrochemical cell in the cell stack, the sealing portion being substantially flat.
30. The electrochemical fuel cell stack of claim 27 wherein an outer surface of the first body comprises a sealing portion positioned to align with the at least one sealing groove on a body of an adjacent electrochemical cell in the cell stack, the sealing portion being rougher than surrounding surfaces.
31. The electrochemical fuel cell stack of claim 27 wherein the first body further comprises a plurality of coolant channels.
32. The electrochemical fuel cell stack of claim 27 wherein an outer surface of the first body further comprises a plurality of coolant grooves configured to abut the outer surface of a body of an adjacent electrochemical cell in the cell stack to form coolant channels therebetween, the at least one sealing groove being positioned to encircle the coolant grooves to retain a coolant fluid within the coolant channels during operation.
33. A plate for use in an electrochemical cell, comprising:
a sealing groove with a complex cross-sectional shape, a substantially rigid first portion of the sealing groove being sized and shaped to receive and retain a volume of adhesive prior to assembly of the electrochemical cell, and second and third portions of the sealing groove adjacent the first portion being configured to receive a portion of the volume of adhesive that is displaced from the first portion of the sealing groove during assembly of the electrochemical cell, wherein the size of the volume of adhesive is selected such that the second and third portions of the sealing groove are only partially filled with the portion of the volume of adhesive in the assembled state of the electrochemical cell, wherein the second and third portions of the sealing groove are deeper than the first portion of the sealing groove.
34. The plate of claim 33 wherein the second and third portions of the sealing groove are located on opposite sides of the first portion of the sealing groove.
CA2390949A 2001-06-22 2002-06-19 Systems, apparatus and methods for bonding and/or sealing electrochemical cell elements and assemblies Expired - Lifetime CA2390949C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/888,074 2001-06-22
US09/888,074 US6777127B2 (en) 2001-06-22 2001-06-22 Systems, apparatus and methods for bonding and/or sealing electrochemical cell elements and assemblies

Publications (2)

Publication Number Publication Date
CA2390949A1 CA2390949A1 (en) 2002-12-22
CA2390949C true CA2390949C (en) 2011-06-07

Family

ID=25392470

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2390949A Expired - Lifetime CA2390949C (en) 2001-06-22 2002-06-19 Systems, apparatus and methods for bonding and/or sealing electrochemical cell elements and assemblies

Country Status (3)

Country Link
US (1) US6777127B2 (en)
EP (1) EP1271678B1 (en)
CA (1) CA2390949C (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60236804D1 (en) * 2001-07-06 2010-08-05 Honda Motor Co Ltd METHOD FOR COATING A SEALING MATERIAL ON A FUEL CELL SAVOR
DE60227581D1 (en) * 2001-07-11 2008-08-21 Honda Motor Co Ltd Process for coating sealant on a fuel cell separator
US6761991B2 (en) * 2001-10-16 2004-07-13 Dow Corning Corporation Seals for fuel cells and fuel cell stacks
US20030082430A1 (en) * 2001-10-25 2003-05-01 Daisuke Suzuki Fuel cell gasket assembly and method of making
DE10216306B4 (en) * 2002-04-14 2008-06-12 Sgl Carbon Ag Method for producing a contact plate for an electrochemical cell and its uses
JP3951841B2 (en) * 2002-07-19 2007-08-01 トヨタ自動車株式会社 Fuel cell seal structure and manufacturing method thereof
US8007949B2 (en) * 2002-10-08 2011-08-30 Bhaskar Sompalli Edge-protected catalyst-coated diffusion media and membrane electrode assemblies
US7556660B2 (en) 2003-06-11 2009-07-07 James Kevin Shurtleff Apparatus and system for promoting a substantially complete reaction of an anhydrous hydride reactant
JP4475277B2 (en) 2004-04-26 2010-06-09 トヨタ自動車株式会社 Fuel cell module
JP5038586B2 (en) * 2004-04-30 2012-10-03 トヨタ自動車株式会社 Fuel cell separator, separator joining method, fuel cell
DE112006002142B4 (en) * 2005-08-12 2021-02-11 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Method of making a fuel cell component using an easily removable mask
US7651542B2 (en) 2006-07-27 2010-01-26 Thulite, Inc System for generating hydrogen from a chemical hydride
US7648786B2 (en) 2006-07-27 2010-01-19 Trulite, Inc System for generating electricity from a chemical hydride
US8221930B2 (en) * 2006-08-23 2012-07-17 Daimler Ag Bipolar separators with improved fluid distribution
US20080050639A1 (en) * 2006-08-23 2008-02-28 Michael Medina Bipolar flow field plate assembly and method of making the same
KR100820508B1 (en) 2007-03-23 2008-04-11 지에스칼텍스 주식회사 Sealing structure of fuel cell stack
US8357214B2 (en) 2007-04-26 2013-01-22 Trulite, Inc. Apparatus, system, and method for generating a gas from solid reactant pouches
KR101056721B1 (en) * 2007-06-26 2011-08-16 기아자동차주식회사 Adhesive Structure of Fuel Cell Separator
AU2008279082A1 (en) 2007-07-25 2009-01-29 Trulite, Inc. Apparatus, system, and method to manage the generation and use of hybrid electric power
WO2009048991A1 (en) * 2007-10-08 2009-04-16 Ames Rubber Corporation Composite multilayer seal for pem fuel cell applications and method for constructing the same
FR2932612A1 (en) * 2008-06-11 2009-12-18 Helion Separator plate for proton exchange membrane fuel cell, in e.g. hospital, has grooves provided on edges of crest so that flexible material partially spreads on both sides of tightening support surfaces during tightening of semi-plates
JP5615875B2 (en) * 2012-01-16 2014-10-29 本田技研工業株式会社 Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6118225B2 (en) * 2013-10-09 2017-04-19 本田技研工業株式会社 Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6403541B2 (en) * 2014-10-31 2018-10-10 パナソニック株式会社 Separator-seal member assembly and manufacturing method thereof
JP6263214B2 (en) * 2016-03-09 2018-01-17 本田技研工業株式会社 Step MEA with resin frame for fuel cells
DE102021204821A1 (en) 2021-05-12 2022-11-17 Cellcentric Gmbh & Co. Kg separator plate
DE102021119029A1 (en) 2021-07-22 2023-01-26 Vitesco Technologies GmbH Metallic bipolar plate for a fuel cell and method for producing such a bipolar plate

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1964811A1 (en) 1969-12-24 1971-07-01 Siemens Ag Fuel cell battery
US4397917A (en) 1982-01-11 1983-08-09 Energy Research Corporation Fuel cell pack with internal connection of fuel cells
US4732637A (en) 1983-04-11 1988-03-22 Engelhard Corporation Method of fabricating an integral gas seal for fuel cell gas distribution assemblies
US4505992A (en) 1983-04-11 1985-03-19 Engelhard Corporation Integral gas seal for fuel cell gas distribution assemblies and method of fabrication
JPS60200468A (en) 1984-03-23 1985-10-09 Hitachi Ltd Fuel cell
US4755429A (en) 1986-11-03 1988-07-05 International Fuel Cells Corporation Composite graphite separator plate for fuel cell stack
US4756981A (en) 1986-12-29 1988-07-12 International Fuel Cells Seal structure for an electrochemical cell
EP0330124A3 (en) 1988-02-24 1991-06-12 Toray Industries, Inc. Electroconductive integrated substrate and process for producing the same
US4786568A (en) 1988-03-01 1988-11-22 International Fuel Cells Corporation Electrode substrate with integral edge seal and method of forming the same
US5176966A (en) 1990-11-19 1993-01-05 Ballard Power Systems Inc. Fuel cell membrane electrode and seal assembly
JPH04319261A (en) * 1991-04-18 1992-11-10 Tokai Carbon Co Ltd Joining method of carbon composite substrate for fuel cell
US5230966A (en) 1991-09-26 1993-07-27 Ballard Power Systems Inc. Coolant flow field plate for electrochemical fuel cells
US5284718A (en) 1991-09-27 1994-02-08 Ballard Power Systems Inc. Fuel cell membrane electrode and seal assembly
US5264299A (en) 1991-12-26 1993-11-23 International Fuel Cells Corporation Proton exchange membrane fuel cell support plate and an assembly including the same
WO1993013566A1 (en) 1991-12-26 1993-07-08 International Fuel Cells, Inc. Plate-shaped fuel cell component and a method of making the same
US5187025A (en) 1992-02-03 1993-02-16 Analytic Power Corp. Unitized fuel cell structure
US5350643A (en) 1992-06-02 1994-09-27 Hitachi, Ltd. Solid polymer electrolyte type fuel cell
ATE180105T1 (en) 1992-12-31 1999-05-15 Ballard Power Systems MEMBRANE ELECTRODE ASSEMBLY AND SEALING FOR FUEL CELLS
DE4309976A1 (en) 1993-03-26 1994-09-29 Daimler Benz Ag Multi-cell electrochemical battery
DE4314745C1 (en) 1993-05-04 1994-12-08 Fraunhofer Ges Forschung Fuel cell
US5336274A (en) 1993-07-08 1994-08-09 Regents Of The University Of California Method for forming a cell separator for use in bipolar-stack energy storage devices
JPH0724917A (en) 1993-07-08 1995-01-27 Fujipura Seiko:Kk Thermoplastic synthetic resin tube for joining by high frequency induction heating fusion welding
JPH07235314A (en) 1994-02-21 1995-09-05 Toyota Motor Corp Cell for solid high polymer fuel cell and its manufacture
DE4442285C1 (en) 1994-11-28 1996-02-08 Siemens Ag Stack of fuel cells with frame around electrodes and membranes for electric vehicle drive fuel-cell battery
JPH08323980A (en) 1995-05-30 1996-12-10 Oki Data:Kk Manufacture of print head in ink-jet printer
US5807606A (en) 1995-08-24 1998-09-15 Mpm Corporation Applying adhesive to substrates
DE19542475C2 (en) 1995-11-15 1999-10-28 Ballard Power Systems Polymer electrolyte membrane fuel cell and method for producing a distributor plate for such a cell
US5858569A (en) 1997-03-21 1999-01-12 Plug Power L.L.C. Low cost fuel cell stack design
DE19713250C2 (en) 1997-03-29 2002-04-18 Ballard Power Systems Electrochemical energy converter with polymer electrolyte membrane
US6057054A (en) 1997-07-16 2000-05-02 Ballard Power Systems Inc. Membrane electrode assembly for an electrochemical fuel cell and a method of making an improved membrane electrode assembly
JP2000168040A (en) 1998-12-04 2000-06-20 Minami Kk Screen printer
JP3951484B2 (en) * 1998-12-16 2007-08-01 トヨタ自動車株式会社 Fuel cell
AU3234200A (en) * 1999-03-10 2000-09-28 Flexfab Horizons International, Inc. Fuel cell gasket assembly and method of assembling fuel cells

Also Published As

Publication number Publication date
EP1271678A2 (en) 2003-01-02
US6777127B2 (en) 2004-08-17
CA2390949A1 (en) 2002-12-22
EP1271678A3 (en) 2007-03-07
EP1271678B1 (en) 2012-12-05
US20020197519A1 (en) 2002-12-26

Similar Documents

Publication Publication Date Title
CA2390949C (en) Systems, apparatus and methods for bonding and/or sealing electrochemical cell elements and assemblies
CA2243355C (en) Electrochemical fuel cell stack with improved reactant manifolding and sealing
US6261711B1 (en) Sealing system for fuel cells
EP1135812B1 (en) Fuel cell with improved sealing between individual membrane assemblies and plate assemblies
KR100443106B1 (en) Polymer electrolyte type fuel cell and production method therefor
US6495278B1 (en) Polymer electrolyte membrane electrochemical fuel cells and stacks with adhesively bonded layers
US6946212B2 (en) Electrochemical fuel cell stack with improved reactant manifolding and sealing
EP1356532B1 (en) Electrochemical polymer electrolyte membrane cell stacks
CA2866234C (en) Fuel cell with resin frame having buffer and connection channel
EP1633011A1 (en) Separator for use in solid polymer electrolyte fuel cell and fuel cell using the same
EP1622217B1 (en) Cell for solid polymer electrolyte fuel cell
CA2594530C (en) Fuel cell separator
EP1502313B1 (en) Membrane based electrochemical cell stacks
US7186476B2 (en) One piece bipolar plate with spring seals
JP2004265824A (en) Fuel cell
US11171341B2 (en) Fuel cell and method of manufacturing fuel cell
EP1416556B1 (en) Separator plate for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
US7824817B2 (en) Fuel cell
EP2054965B1 (en) Bipolar separators with improved fluid distribution
JP4214027B2 (en) Fuel cell
US20040159543A1 (en) Electrochemical cell plate with integral seals
JP2004335179A (en) Fuel cell
JP2004039385A (en) Fuel cell
US7597984B2 (en) Fuel cell bipolar plates with multiple active areas separated by non-conductive frame header
CN112002921B (en) Fuel cell and method for manufacturing fuel cell

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20220620