CA2388509C - Method for operating a wind farm - Google Patents

Method for operating a wind farm Download PDF

Info

Publication number
CA2388509C
CA2388509C CA002388509A CA2388509A CA2388509C CA 2388509 C CA2388509 C CA 2388509C CA 002388509 A CA002388509 A CA 002388509A CA 2388509 A CA2388509 A CA 2388509A CA 2388509 C CA2388509 C CA 2388509C
Authority
CA
Canada
Prior art keywords
wind
power
installations
power output
park
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002388509A
Other languages
French (fr)
Other versions
CA2388509A1 (en
Inventor
Aloys Wobben
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7924736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2388509(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of CA2388509A1 publication Critical patent/CA2388509A1/en
Application granted granted Critical
Publication of CA2388509C publication Critical patent/CA2388509C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • F03D9/257Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/96Mounting on supporting structures or systems as part of a wind turbine farm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • F05B2270/1011Purpose of the control system to control rotational speed (n) to prevent overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/20Purpose of the control system to optimise the performance of a machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

The invention concerns a method of operating a wind park and also a wind park as such.

Wind power installations were initially always set up as singular units and it is only in recent years that wind power installations have frequently been installed in wind parks, this being due also to administrative and building regulations. In that respect a wind park, in its smallest entity, is an arrangement of at least two wind power installations but frequently markedly more. By way of example mention may be made of the wind park at Holtriem (East Frisia in Germany), where more than 50 wind power installations are set up in an array. It is to be expected that the number and also the installed power output of the wind power installations will also rise greatly in future years. In most cases the wind potential is at its greatest in regions of the power supply networks with a low short-circuit capacity and a low level of population density. It is precisely there that the technical connection limits are rapidly attained by the wind power installations, with the consequence that no further wind power installations can then be set up at such locations.

A method of operating a wind park comprising at least two wind power installations, wherein the power output from the wind power installations is limited in respect of its magnitude to a maximum possible network feed value which is lower than the maximum possible value of the power to be outputted (rated power output) and the maximum possible feed value is determined by the receiving capacitance (line capacitance) of the network into which the energy is fed and/or by the power capacitance of the energy transmission unit or the transformer, by means of which the energy produced by the wind power installation is fed into the network.

Description

' CA 02388509 2002-04-03 Aloys Wobben, Argestrasse 19, 26607 Aurich Method of operating a wind park The invention concerns a method of operating a wind park and also a wind park as such.
Wind power installations were initially always set up as singular units and it is only in recent years that wind power installations have frequently been installed in wind parks, this being due also to administrative and building regulations. In that respect a wind park, in its smallest entity, is an arrangement of at least two wind power installations but frequently markedly more. By way of example mention may be made of the wind park at Holtriem (East Frisia in Germany), where more than 50 1o wind power installations are set up in an array. It is to be expected that the number and also the installed power output of the wind power installations will also rise greatly in future years. In most cases the wind potential is at its greatest in regions of the power supply networks with a low short-circuit capacity and a low level of population density. It is precisely there that the technical connection limits are rapidly attained by the wind power installations, with the consequence that no further wind power installations can then be set up at such locations.
A conventional wind park which is connected for example to a 50 MW substation can therefore have at a maximum only 50 MW total power output, that is to say for example 50 wind power installations each involving a rated power output of 1 MW.
Bearing in mind the fact that the wind power installations are not constantly operated at the rated level and thus the entire wind park also does not continuously reach its maximum power output (rated power output), it can be established that the wind park is not put to optimum use if the rated power output of the wind park corresponds to the maximum possible total power output which is to be fed in.
The invention accordingly proposes a solution in which the wind park is equipped with a total power output which is higher than the maximum possible network feed-in power output. When applied to the above-indicated example, the power output can be raised to a value of over 50 MW, for example 53 MW. As soon as the wind speeds are sufficiently high to produce a limit power output of 50 MW, the wind park regulation in accordance with the invention comes into operation and regulates down individual ones of or all installations when the total maximum power output is exceeded, in such a way that same is always observed. This means that, at wind speed above nominal or rated wind (wind speed at which a wind power installation reaches its rated power output), at least one or all installations is or are operated with a (slightly) throttled power output (for example with a power output of 940 kW
instead of 1 MW).
The advantages of the invention are apparent. Considered overall the network components of the feed network (network components are for example the transformer and the lines) are utilized or loaded in the optimum fashion (utilization up to the thermal limit is also a possibility).
This means that existing wind park areas can be better utilized, by virtue of setting up a maximum possible number of wind power installations.
That number is then n~:~ longer (so severely) limited by the existing network capacity.
For the purposes of control/regulation of a wind power installation, it is desirable if it has ra data input, by means of/by way of which the electric power output can bra adjusted in a range of between 0 and 100%
(with respect t:o the rated power output). If for example a reference value of 350 kW is applied to that data input, the maximum power output of that wind power installation will not exceed the reference value of 350 kW.
Any value between 0 and the rated power output (for example from 0 to 1 MW) is possible as the reference value.
That data input c:~n be used directly far power output limitation purposes.
It is however also possible by means of a regulator to regulate the generator output in dependence on the network voltage (in the wind park network or in t:he feed network).
A further important ifunction is discussed hereinafter with reference to wind park regulation. It will be assumed by way of example that a wind park comprises 10 wind power installations which each have a rated power output of 600 kW. By virtue of the capacities of the network components (line capacities) or the lin°iited capacities in the substation it will further be assumed that the maximurn power output to be delivered (limit power output) is limited to 5:200 kW.
There is now the possible option of limiting all wind power installations to a maximum power output of 520 kW by means of the reference value (data input). That satisfies the requirement for limiting the power output to be dE~livered.
Another possible optiion involves not exceeding the maximum power output, as the sum of all installation, but at the same time generating a 3o maximum amount of power (kW-hours (work)).
In that respect, it should be known that, at low to moderate wind speeds, within the wind park, it frequently comes about that the wind power installations at the favorable (good) locations (these are the locations at which the wind impinges first within the wind park) receive a great deal of wind. If now all wind power installations are simultaneously regulated down to their throttled value (for example all to 520 kW), that generated power output is admittedly attained by some wind power installations which are disposed at good locations, but some other wind power installations which stand in the "wind shadow" of the well-located wind power installations (being in the second and third rows) receive less wind and as a result operate for example only with a power output of 460 kW and do not reach the value of the maximum throttled power output at 520 kW. The total power output generated in the wind park is accordingly substantially below the permitted limit power output of 5200 kW.
In this case the wind park power output regulation procedure according to the invention regulates the individual installations in such a way that the maximum possible energy yield occurs. This means in specific terms that for example the installations in the first row (that is to say at good locations) are regulated to a higher power output, for example to the rated power output (that is to say no throttling action). This means that the overall electrical power output in the wind park rises. The park regulation arrangement however regulates each individual installation in such a way that the maximum permitted electrical connection power output is not exceeded while at the same time the work produced (kWh) Z5 reaches a maximum value.
The wind park management according to the invention can be easily adapted to the respective situations which arise. Thus it is very easily possible for example to implement different throttling of the power output of individual installations if an individual installation or a plurality of installations of a wind park are (have to be) taken off the network, if either for maintenance reasons or for other reasons and an individual installation or a plurality of installations have to be temporarily shut down.
For control/regulation of the wind park or the individual installations, it is possible to use a data/control processing apparatus which is connected to the data inputs of the installations and which, from the wind speeds which are ascertained (in respect of each installation), ascertains the respectively most advantageous power output throttling value for an individual installation or the entire wind park respectively.
Figure 1 is a block circuit diagram showing control of a wind power installation by means of microprocessor ~P which is connected to an inverter arrangement (PWR), by means of which polyphase alternating current can be fed into a power supply network. The microprocessor has a power entry input P, an input for inputting a power factor (cos cp) and an input for inputting the power gradient (dP/dt).
The inverter arrangement comprising a rectifier, a rectifier intermediate circuit and an inverter is connected to the generator of a wind power installation and receives therefrom the energy produced by the generator, in rotary speed-variable fashion, that is to say in dependence on the speed of rotation of the rotor of the wind power 2o installation.
The design configuration shown in the Figure serves to explain how the power output from a wind power installation can be limited in respect of its magnitude to a maximum possible network feed value.
Figure 2 is a view illustrating the principle of a wind park comprising for example three wind power installations 1, 2 and 3 of which - as viewed from the direction of the wind - two are disposed in side-by-side relationship and the third is positioned behind the first two. As each of the individual wind power installations has a power input for setting the power output of the respective installation (Figure 1), the power output levels of 3o an individual wind power installation can be set to a desired value by means of a data processing apparatus, by means of which the entire wind park is controlled. In Figure 2 the advantageous locations of the wind power installations are those on which the wind impinges first, that is to say the installations 1 and 2.

Claims (7)

1. A method for operating a wind park comprising at least two wind power installations having a combined rated power output exceeding a maximum possible network feed value, the method comprising limiting a power output from the wind park to not exceed the maximum possible network feed value by setting at least one of a line capacity of the network into which the energy is fed and a power capacity of an energy transmission unit by means of which the energy produced by the wind park is fed into the network.
2. A wind park comprising at least two wind power installations having a collective rated power output which is greater than a maximum feed power output which can be fed at a maximum into an energy supply network to which the wind park is connected, wherein the maximum feed power output is determined by a capacity of the energy supply network to which the wind park is connected, or by a capacity of an energy transmission unit by means of which energy produced by the wind power installations is fed into the energy supply network or by both the capacity of the energy supply network and the capacity of the energy transmission unit.
3. A wind park according to claim 2 comprising throttling means for throttling a power output of one or more of the wind power installations of the wind park when a power output of the wind park reaches the maximum possible network feed value.
4. A wind park according to claim 3 wherein the throttling means is configured to throttle power outputs of all of the wind power installations of the wind park equally.
5. A wind park according to any one of claims 2 and 3 wherein the throttling means is configured to throttle two or more of the wind power installations of the wind park to different degrees.
6. A wind park as set forth in any one of claims 3 to 5 wherein the wind park comprises one or more first wind power installations, and one or more second wind power installations located behind the first wind power installation in the respective direction of the wind, and wherein the throttling means is configured to throttle outputs of the second wind power installations more than the first wind power installations.
7. A wind park according to any one of claims 2 to 6 wherein at least one wind power installation of the wind park has a data input by means of which the electrical power output of the wind power installation can be set in a range of between 0 and 100% of a respective rated power output of the wind power installation, and the throttling means comprises a data processing apparatus which is connected to the data input to set the electrical power output in tree range of between 0 and 100% in response to a power output of the wind park which is available for feeding into the energy network.
CA002388509A 1999-10-06 2000-07-08 Method for operating a wind farm Expired - Lifetime CA2388509C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19948196.2 1999-10-06
DE19948196A DE19948196A1 (en) 1999-10-06 1999-10-06 Process for operating a wind farm
PCT/EP2000/006493 WO2001025630A1 (en) 1999-10-06 2000-07-08 Method for operating a wind farm

Publications (2)

Publication Number Publication Date
CA2388509A1 CA2388509A1 (en) 2001-04-12
CA2388509C true CA2388509C (en) 2003-11-04

Family

ID=7924736

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002388509A Expired - Lifetime CA2388509C (en) 1999-10-06 2000-07-08 Method for operating a wind farm

Country Status (12)

Country Link
US (1) US6724097B1 (en)
EP (1) EP1222389B2 (en)
JP (1) JP4195220B2 (en)
KR (1) KR100735581B1 (en)
AT (1) ATE243301T1 (en)
AU (1) AU6690400A (en)
CA (1) CA2388509C (en)
DE (3) DE19948196A1 (en)
DK (1) DK1222389T4 (en)
ES (1) ES2197112T5 (en)
PT (1) PT1222389E (en)
WO (1) WO2001025630A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103237984A (en) * 2010-09-30 2013-08-07 维斯塔斯风力系统集团公司 Over-rating control of wind turbines and power plants

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756777B4 (en) * 1997-12-19 2005-07-21 Wobben, Aloys, Dipl.-Ing. Method for operating a wind energy plant and wind energy plant
DE10109553B4 (en) * 2001-02-28 2006-03-30 Wobben, Aloys, Dipl.-Ing. Air density dependent power control
PT1489300E (en) * 2001-04-20 2015-01-14 Wobben Properties Gmbh Wind turbine and control method for a wind turbine
DE10119624A1 (en) 2001-04-20 2002-11-21 Aloys Wobben Operating wind energy plant involves regulating power delivered from generator to electrical load, especially of electrical network, depending on current delivered to the load
DE10138399A1 (en) * 2001-08-04 2003-02-27 Aloys Wobben Operating wind energy plant involves regulating power delivered from generator to electrical load, especially of electrical network, depending on current delivered to the load
DE10136974A1 (en) * 2001-04-24 2002-11-21 Aloys Wobben Method for operating a wind turbine
DE10145347A1 (en) * 2001-09-14 2003-04-03 Abb Research Ltd Wind park
DE10145346A1 (en) * 2001-09-14 2003-04-03 Abb Research Ltd Wind park
WO2003029648A1 (en) * 2001-09-28 2003-04-10 Ulrik Husted Henriksen A method and a computer system for handling operational data of wind power plants
EP3032685A1 (en) * 2001-09-28 2016-06-15 Wobben Properties GmbH Method for operating a wind farm
NL1021078C1 (en) * 2002-07-15 2004-01-16 Energieonderzoek Ct Petten Ecn Method and device concerning flow energy such as a wind farm.
DK175645B1 (en) * 2002-10-31 2005-01-03 Bonus Energy As Electric circuit for powered generator with segmented stator
DK1467463T3 (en) 2003-04-09 2017-03-27 Gen Electric Wind farm and method for operating it
DE10320087B4 (en) 2003-05-05 2005-04-28 Aloys Wobben Process for operating a wind park consisting of a number of wind energy plants comprises controlling the operations of each plant until the net electrical power is supplied up to a predetermined maximum value
US7042110B2 (en) * 2003-05-07 2006-05-09 Clipper Windpower Technology, Inc. Variable speed distributed drive train wind turbine system
DK1571746T3 (en) * 2004-03-05 2019-01-07 Gamesa Innovation & Tech Sl Active power control system of a wind farm
TWM279734U (en) * 2004-10-22 2005-11-01 Jr-Feng Chen Multi-direction wind-bearing generator
JP4495001B2 (en) * 2005-02-17 2010-06-30 三菱重工業株式会社 Power generation system
DE102005032693A1 (en) * 2005-07-13 2007-02-01 Repower Systems Ag Power control of a wind farm
JP4631054B2 (en) * 2005-07-28 2011-02-16 国立大学法人 琉球大学 Apparatus and method for leveling generated power in wind farm
EP1770277A1 (en) * 2005-09-30 2007-04-04 General Electric Company Method for controlling a wind energy turbine of a wind park comprising multiple wind energy turbines
DE102006021982C5 (en) * 2006-05-10 2010-10-07 Repower Systems Ag Staggered wind farm can be switched off
US8648481B2 (en) 2006-06-10 2014-02-11 Star Sailor Energy, Inc. Wind generator with energy enhancer element for providing energy at no wind and low wind conditions
US11644010B1 (en) 2006-06-10 2023-05-09 Star Sailor Energy, Inc. Energy storage system
US7880323B2 (en) * 2006-06-10 2011-02-01 Menges Pamela A Wind generator system
DE102006032389A1 (en) 2006-07-13 2008-01-24 Nordex Energy Gmbh Wind farm and method for operating a wind farm
DE102007017870B4 (en) * 2007-04-13 2022-03-31 Senvion Gmbh Method for operating a wind turbine in the event of overvoltages in the network
DE102007018888A1 (en) * 2007-04-19 2008-10-30 Repower Systems Ag Wind energy plant with reactive power specification
DK200700626A (en) * 2007-04-27 2008-05-10 Lm Glasfiber As Power curve of wind energy systems for energy networks
DK200700630A (en) * 2007-04-27 2008-05-10 Lm Glasfiber As Design of group of wind power plants
DE102007036444A1 (en) * 2007-08-02 2009-02-05 Nordex Energy Gmbh Wind farm with a large number of wind turbines and procedures for operating the wind farm
US20090055030A1 (en) * 2007-08-21 2009-02-26 Ingeteam, S.A. Control of active power reserve in a wind-farm
AU2007362449B2 (en) * 2007-12-14 2013-06-27 Mitsubishi Heavy Industries, Ltd. Wind turbine generator system and operation control method therefor
KR101176394B1 (en) 2007-12-14 2012-08-27 미츠비시 쥬고교 가부시키가이샤 Wind power generation system and its operation control method
AU2007362448B2 (en) * 2007-12-14 2012-12-20 Mitsubishi Heavy Industries, Ltd. Wind power generation system and operation control method therof
US8134250B1 (en) 2008-01-14 2012-03-13 Menges Pamela A Wind generator system suitable for both small and big wind applications
DE102008007448A1 (en) * 2008-02-01 2009-08-13 Woodward Seg Gmbh & Co. Kg Method for operating a wind energy plant
US20090212563A1 (en) * 2008-02-21 2009-08-27 General Electric Company System and method for improving performance of power constrained wind power plant
US7999406B2 (en) * 2008-02-29 2011-08-16 General Electric Company Wind turbine plant high wind derating control
US20090295231A1 (en) * 2008-05-30 2009-12-03 Gaffney Shawn J Intelligent Power Collection Network
WO2010000648A2 (en) 2008-06-30 2010-01-07 Vestas Wind Systems A/S Power curtailment of wind turbines
ES2480590T3 (en) 2008-08-12 2014-07-28 Ingeteam Power Technology, S.A. System and method for power management in a photovoltaic installation
WO2010038666A1 (en) * 2008-09-30 2010-04-08 日本碍子株式会社 Method for controlling interconnection system
CN101749183B (en) * 2008-12-12 2011-12-14 财团法人工业技术研究院 Wind power station control system and wind power station
EP2284392B2 (en) * 2009-06-03 2019-09-25 Vestas Wind Systems A/S Wind power plant, wind power plant controller and method of controlling a wind power plant
KR100946347B1 (en) 2009-10-12 2010-03-08 김세빈 Hoop actiniform turbine blade system of wind power generation
EP2494671B1 (en) 2009-10-27 2020-08-12 Vestas Wind Systems A/S Wind power plant with optimal power output
BRPI1004895A2 (en) * 2010-05-28 2017-01-17 Mitsubishi Heavy Ind Ltd apparatus and method of monitoring and control and wind power plant equipped with them.
GB2491548A (en) 2010-09-30 2012-12-12 Vestas Wind Sys As Over-rating control of a wind turbine power plant
DK2482418T3 (en) * 2011-02-01 2018-11-12 Siemens Ag Active desynchronization of switching inverters
DK2715123T3 (en) * 2011-05-27 2018-04-16 Condor Wind Energy Ltd WIND MILL CONTROL SYSTEM WITH A PRESSURE SENSOR
DE102011083178A1 (en) * 2011-09-22 2013-03-28 Repower Systems Se Method for operating a wind energy plant
US8964435B2 (en) 2011-09-26 2015-02-24 General Electric Company Methods and systems for operating a power converter
DK201170539A (en) 2011-09-30 2013-03-31 Vestas Wind Sys As Control of wind turbines
US9201410B2 (en) 2011-12-23 2015-12-01 General Electric Company Methods and systems for optimizing farm-level metrics in a wind farm
JP5245017B1 (en) 2012-02-24 2013-07-24 三菱重工業株式会社 Wind power generation system and control method thereof
DE102012013896A1 (en) 2012-07-13 2014-01-16 E.N.O. Energy Systems Gmbh Wind turbine
CN104641529B (en) 2012-09-17 2018-09-18 维斯塔斯风力系统集团公司 Method for determining the individual set point in generating equipment controller and generating equipment controller
US8912674B2 (en) 2012-10-15 2014-12-16 General Electric Company System and method of selecting wind turbine generators in a wind park for change of output power
US8860237B2 (en) 2012-10-15 2014-10-14 General Electric Company System and method of selecting wind turbine generators in a wind park for curtailment of output power to provide a wind reserve
PT2915997T (en) * 2012-10-31 2018-02-21 Hispavista Labs A I E Method for calculating and correcting the angle of attack in a wind turbine farm
US8941961B2 (en) 2013-03-14 2015-01-27 Boulder Wind Power, Inc. Methods and apparatus for protection in a multi-phase machine
US9453497B2 (en) * 2014-03-18 2016-09-27 General Electric Company Method for operating a wind farm
US9551322B2 (en) 2014-04-29 2017-01-24 General Electric Company Systems and methods for optimizing operation of a wind farm
CN104242355B (en) * 2014-09-19 2017-06-13 清华大学 Consider that minimum abandons position and the control method of capacity of the wind power plant access power network of wind
KR101598051B1 (en) * 2014-09-25 2016-02-26 한국전력공사 System and method for controlling the ramp rate of wind farm output
US10385829B2 (en) 2016-05-11 2019-08-20 General Electric Company System and method for validating optimization of a wind farm
EP3497323A1 (en) * 2016-08-09 2019-06-19 MHI Vestas Offshore Wind A/S Wind turbine control method and system
DE102016123384A1 (en) * 2016-12-02 2018-06-07 Wobben Properties Gmbh Method for rebuilding an electrical supply network
US11085415B1 (en) 2017-12-22 2021-08-10 Star Sailor Energy, Inc. Wind generator system having a biomimetic aerodynamic element for use in improving the efficiency of the system
DE102018129429A1 (en) 2018-11-22 2020-05-28 Wobben Properties Gmbh Feed-in process for a wind energy system and wind energy system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1514995A (en) * 1976-07-19 1978-06-21 Lawson Tancred H Windmill generation of electricity
GB2007926B (en) * 1977-10-27 1982-03-03 Westinghouse Electric Corp System for providing load-frequency control for multiple gas turbine-generator units
DE2751228A1 (en) * 1977-11-16 1979-05-17 Lawson Tancred H Sons & Co Sir Wind driven electricity generator - has hydraulic pumps driven by wind wheel, in turn driving hydraulic motor driven generators selectively connected according to wind speed
US4400659A (en) * 1980-05-30 1983-08-23 Benjamin Barron Methods and apparatus for maximizing and stabilizing electric power derived from wind driven source
WO1981003702A1 (en) 1980-06-19 1981-12-24 Boekels & Co H Method and device for the acoustic supervision of machines and/or plants
FR2486654A1 (en) 1980-07-08 1982-01-15 Cgr DEVICE FOR ACTIVATION OF ACOUSTIC TRANSMITTING MEASURING DEVICE BY DETECTING THE SUBSTANTIAL NOISE
IT1167547B (en) * 1981-07-07 1987-05-13 Snam Progetti METHOD OF USE OF WIND ENERGY FOR THE AUTONOMOUS PRODUCTION OF ELECTRICITY
NL8103812A (en) * 1981-08-14 1983-03-01 Berg Hendrik Van Den METHOD FOR MATCHING DEMAND FOR ELECTRIC ENERGY WITH THE SUPPLY OF ELECTRIC ENERGY SUPPLIERS AND CIRCUIT APPLIED THEREFOR.
AT391385B (en) * 1988-12-23 1990-09-25 Elin Union Ag CONTROL AND CONTROL SYSTEM FOR A WIND TURBINE
US4996880A (en) 1989-03-23 1991-03-05 Electric Power Research Institute, Inc. Operating turbine resonant blade monitor
US5210704A (en) 1990-10-02 1993-05-11 Technology International Incorporated System for prognosis and diagnostics of failure and wearout monitoring and for prediction of life expectancy of helicopter gearboxes and other rotating equipment
US5845230A (en) 1996-01-30 1998-12-01 Skf Condition Monitoring Apparatus and method for the remote monitoring of machine condition
DE19620906C2 (en) * 1996-05-24 2000-02-10 Siemens Ag Wind farm
US6320272B1 (en) * 1997-03-26 2001-11-20 Forskningscenter Riso Wind turbine with a wind velocity measurement system
JP3724912B2 (en) * 1997-04-25 2005-12-07 株式会社東芝 Turbine optimum load distribution device
EP1045988B1 (en) 1998-01-14 2002-06-19 Dancontrol Engineering A/S Detecting and controlling oscillations in a wind turbine
US20020029097A1 (en) * 2000-04-07 2002-03-07 Pionzio Dino J. Wind farm control system
US20020084655A1 (en) * 2000-12-29 2002-07-04 Abb Research Ltd. System, method and computer program product for enhancing commercial value of electrical power produced from a renewable energy power production facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103237984A (en) * 2010-09-30 2013-08-07 维斯塔斯风力系统集团公司 Over-rating control of wind turbines and power plants
CN103237984B (en) * 2010-09-30 2020-08-04 维斯塔斯风力系统集团公司 Over-rating control in wind turbines and power plants

Also Published As

Publication number Publication date
ES2197112T5 (en) 2016-05-23
ES2197112T3 (en) 2004-01-01
US6724097B1 (en) 2004-04-20
PT1222389E (en) 2003-11-28
DK1222389T3 (en) 2003-10-06
EP1222389B1 (en) 2003-06-18
KR20020043616A (en) 2002-06-10
CA2388509A1 (en) 2001-04-12
WO2001025630A1 (en) 2001-04-12
DK1222389T4 (en) 2016-05-17
ATE243301T1 (en) 2003-07-15
JP2003511615A (en) 2003-03-25
DE20023134U1 (en) 2003-03-06
EP1222389B2 (en) 2016-03-02
JP4195220B2 (en) 2008-12-10
DE19948196A1 (en) 2001-05-17
EP1222389A1 (en) 2002-07-17
DE50002611D1 (en) 2003-07-24
AU6690400A (en) 2001-05-10
KR100735581B1 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
CA2388509C (en) Method for operating a wind farm
US7830029B2 (en) Method for operating a wind park
CA2409514C (en) Method for operating a wind power station and wind power station
US8106526B2 (en) Power converter for use with wind generator
CA2598069C (en) Power generating system
Morren et al. Contribution of DG units to primary frequency control
EP1092090B1 (en) Dc local grid for windfarm
KR101925193B1 (en) Method for controlling wind power plants
WO2016167816A1 (en) Dynamic wind turbine energy storage device
EP4191055A1 (en) A method for operating a wind farm and a wind farm
Hasanova et al. Analysis of Operating Benefits of Modern Wind Turbines
Hofmann et al. Optimal power utilisation with doubly-fed full-controlled induction generator
Tkáč et al. Modelling of wind power plants operation
Burges et al. Advanced power control in a wind farm network
Ro et al. Simulation for Pitch Angle Control Strategies of a Grid-Connected Wind Turbine System on MATLAB/Simulink
Agade et al. Nature of Wind Turbine Generator for Wind Power Plant
Karthik et al. Application of Power Electronic Technologies For Wind Turbine System

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20200708