CA2377293C - Real-time monitoring of photodynamic therapy over an extended time - Google Patents

Real-time monitoring of photodynamic therapy over an extended time Download PDF

Info

Publication number
CA2377293C
CA2377293C CA002377293A CA2377293A CA2377293C CA 2377293 C CA2377293 C CA 2377293C CA 002377293 A CA002377293 A CA 002377293A CA 2377293 A CA2377293 A CA 2377293A CA 2377293 C CA2377293 C CA 2377293C
Authority
CA
Canada
Prior art keywords
light
treatment site
output signal
light source
diseased tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002377293A
Other languages
French (fr)
Other versions
CA2377293A1 (en
Inventor
James C. Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euro Celtique SA
Original Assignee
Light Sciences Oncology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Light Sciences Oncology Inc filed Critical Light Sciences Oncology Inc
Publication of CA2377293A1 publication Critical patent/CA2377293A1/en
Application granted granted Critical
Publication of CA2377293C publication Critical patent/CA2377293C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures

Abstract

Progress of photodynamic therapy (PDT) administered over an extended period of time is monitored using an ultrasonic probe (30), which produces ultrasound images of an internal treatment site in real time. The ultrasound images indicate the extent and volume of an infraction zone within a tumor (20) or other diseased tissue at the internal treatment site within a patient's body. Light is administered to the internal treatment site from either an internal or external light source that produces light in a waveband corresponding to the characteristic absorption waveband a photoreactive agent that is administered to a patient. Prior to or shortly after initiating administration of the light therapy, a baseline ultrasound image is produced for comparison to subsequent ultrasound images made after the effects of the PDT on the diseased tissue have occurred.

Description

REAL-TIME MONITORING OF PHOTODYNAMIC THERAPY
OVER AN EXTENDED TIME
Field of the Invention This invention generally relates to the use of an ultrasonic transducer to monitor the status of an internal diseased tissue, and more specifically, to monitoring the condition of an internal treatment site during the course of medical treatment administered to the site.
Background of the Invention Photodynamic therapy (PDT) has been shown to be very effective in destroying diseased tissue and tumors using light that is absorbed by a photoreactive agent previously administered to a patient. The photoreactive agent is selectively preferentially absorbed by or linked to abnormal or diseased tissue and has a characteristic absorption waveband to which the waveband of the light administered to the patient corresponds. When activated by the light, the photoreactive agent produces compounds, such as singlet oxygen, that destroy the abnormal tissue.
While much of the earlier work in PDT has been directed to treating surface lesions, perhaps a much more important application is in destroying internal tumors within the body of a patient. PDT may be administered interstitially using light from an external laser that is coupled to a plurality of optical fibers. The optical fibers convey the light into a tumor mass within a patient's body; however, interstitial PDT has been used preclinically and clinically on only a very limited basis. The clinical application of interstitial PDT to oncology has been associated with several significant problems, including inadvertent damage to normal tissue, tumor regrowth, lack of efficacy, and surgical risk related to surgical emplacement of multiple optical fibers to assure adequate light delivery to relatively large tumor masses. The damage to normal tissue can occur during PDT and can be highly variable due to the non-homogeneous distribution of the photoreactive agent within a tumor and within normal tissue surrounding a tumor, and differences in the intensity and penetration depth of light into heterogeneous tumor tissue. Portions of a tumor may be destroyed, while other portions survive and remain viable, leading to tumor cell repopulation and regrowth of the tumor mass. Unintended destruction of normal tissue can have serious consequences, which is contrary to the intended goal of completely destroying the tumor, while sparing the normal tissue.
Monitoring tumor fluorescence has been suggested in the prior art as a possible way to determine the border of a tumor relative to normal tissue before beginning to administer PDT. However, there is no teaching in this prior art of monitoring the effect of PDT in real time to assess its progress in destroying diseased tissue nor any teaching of how to determine the effects of light distribution in a tumor. Other methods that have been proposed to monitor a tumor's condition include using radioactive-labeled agents to monitor blood flow in vessels supplying the tumor. These methods suffer from lack of repeatability, poor resolution at a boundary between a tumor and normal tissue, and inconvenient image capture. To implement such methods, it is typically necessary to transport a patient to specially fitted suites in which the imaging equipment is installed or to move relatively large imaging devices into the proximity of the patient. Also, toxicity due to repeated injection of radionuclides into a patient is a concern, since once an injected radionuclide is trapped within thrombosed and occluded vessels at the treatment site, there is no practical method to rapidly clear the trapped radionuclide material for another injection, in order to asses further vessel shut-down.
Thus, no practical method is disclosed in the prior art for real-time monitoring of interstitial PDT in order to assess the changing extent of tumor destruction and to avoid damage to surrounding normal tissue as the treatment progresses. Typically, since the photoreactive agent is administered to a patient as a bolus so that its concentration within the patient's body cannot thereafter be controllably varied other than by giving additional doses, the only available control in administering PDT is in regard to the light intensity, duration of light administered, the timing of light administered, and the total light dose administered to a treatment site. It would therefore be desirable to develop a technique for providing PDT that enables real-time monitoring of an internal treatment site, so that one or more of these parameters can be varied in response to changes in the treatment site as the PDT continues. Such a method would allow practical, cost-effective, and non-invasive determination of the effects of the PDT
on a tumor at a treatment site and its progress in destroying the tumor, and would provide guidance in varying one or more of the parameters noted above to achieve a substantial clinical benefit at minimal risk to the patient.
Summary of the Invention In accord with the present invention, a method is defined for administering light therapy to diseased tissue at an internal treatment site within a patient's body for an extended period of time, wherein the light therapy is modified in response to a condition of the internal treatment site. The method includes the step of providing a light source that emits light within a predetermined waveband. A
photoreactive agent having a characteristic light absorption waveband that corresponds to the predetermined waveband in which light is emitted by the light source is administered to the patient. Subsequently, light is administered to the diseased tissue with the light source, and the light therapy continues over the extended period of time. At a plurality of times, including at least one time after an onset of administering the light, the internal treatment site is ultrasonically scanned to produce a plurality of images, each image indicating a condition of the internal treatment site at that time. By comparing an image of the internal treatment site made at a time after the onset of administering the light therapy with an image made at an earlier time, changes in the condition of the internal treatment site are detected. The light therapy is then modified in response to a change in the internal treatment site that has been thus detected.
The step of ultrasonically scanning preferably includes the step of scanning the internal treatment site before the onset of administering the light therapy, to produce a baseline image of the diseased tissue at the internal treatment site before the diseased tissue has experienced any effect from the light therapy. To determine a change in the internal treatment site, the baseline image is compared with a subsequent image made a substantial time after the onset of administering the light therapy. Alternatively, the internal treatment site can be scanned before a substantial amount of light therapy has been administered, to produce a quasi-baseline image of the diseased tissue at the internal treatment site before the diseased tissue has been substantially affected by the light therapy. In this case, the change in the internal treatment site is determined by comparing the quasi-baseline image with a subsequent image made a substantial time after the onset of administering the light therapy.
In one embodiment of the present invention, the light source preferably comprises a probe in which at least one light source is disposed and which is adapted to be interstitially inserted within the diseased tissue at the intemal treatment site.
Alternatively, the light source comprises an optical fiber having a distal end adapted to be interstitially inserted into the diseased tissue and thus able to convey light into the treatment site from a light emitting source that is disposed outside of the patient's body. In yet another embodiment, the light source is disposed outside of the patient's body while administering the light therapy, and the predetermined waveband includes wavelengths sufficiently long to penetrate normal tissue overlying the internal treatment site to reach the diseased tissue without an optical fiber or a probe being invasively disposed within the patient's body.
It is also preferred that the step of ultrasonically scanning be carried out at a plurality of spaced-apart times, at least a portion of which occur while the light therapy is being administered.
The step of modifying the light therapy preferably comprises the step of modifying an intensity of the light administered to the internal treatment site, a frequency with which the light is administered, and/or a duration of time during which the light is administered. It is expected that the step of modifying the light therapy can include the step of terminating administration of light to the diseased tissue, for example, if a blood flow stasis is noted in regions of the internal treatment site adjacent to normal tissue. Or, the step of modifying the light therapy can include the step of administering an additional amount of the photoreactive agent to the patient, if the change in the internal treatment site is less than desired. A
desired change to the internal treatment site preferably includes either a reduction in a mass of the diseased tissue at the internal treatment site, a reduction in blood flow into the diseased tissue at the internal treatment site, and/or an indication of necrosis of the diseased tissue at the internal treatment site.
In many applications of the present invention, the diseased tissue will comprise a tumor, and the method will include the step of reviewing the change to the internal treatment site to determine an extent of an ischemic zone in the tumor, which is produced by the light therapy. It may then be appropriate to determine a rate at which an edge of the ischemic zone is propagating toward normal tissue surrounding the tumor. For some types of tumors, the light therapy will be terminated only after the ischemic zone includes a rim of normal tissue, to ensure that regrowth of the tumor does not occur.
The method may also include the step of ultrasonically scanning the internal treatment site to produce three-dimensional (3D) images of it. The 3D
images of the internal treatment zone are then reviewed to determine an extent of an infarction zone produced by the light therapy.
In some cases, the method may further include the step of administering an ultrasonic contrast agent to the patient before the step of ultrasonically scanning.
The ultrasonic contrast agent improves the resolution with which the internal treatment site is shown in the plurality of images.
A further aspect of the present invention is directed at a system for administering light therapy to diseased tissue at an internal treatment site within a patient's body. The system includes elements that carry out functions generally consistent with the steps of the method described above.

The invention may be summarized according to one aspect as a system for administering light therapy to diseased tissue at an internal treatment site within a patient's body, comprising: (a) a light source that produces light within a predetermined waveband; (b) a photoreactive agent having a characteristic light absorption waveband corresponding to the predetermined waveband of the light source, the photoreactive agent destroying the diseased tissue when activated by light from the light source; (c) an ultrasonic transducer that produces ultrasonic waves and receives reflected waves when the ultrasonic waves are reflected from the diseased tissue within a patient's body, the ultrasonic transducer producing an output signal in response to the reflected waves, the ultrasonic transducer being configured to produce an initial output signal after light therapy has been initiated but before any change to the internal treatment site induced by administering the light therapy occurs, and at least one subsequent output signal after administration of the light therapy to the internal treatment site has begun; and (d) a display coupled to the ultrasonic transducer to receive the output signal, the display being adapted to produce a plurality of images of the diseased tissue within a patient's body during administration of the light therapy to enable changes in the diseased tissue caused by the light therapy to be detected by comparison of images made at different times.
In another aspect the invention provides apparatus for administering light therapy to diseased tissue at an internal treatment site within a patient's body, where the diseased tissue has been treated with a photoreactive agent having a characteristic light absorption waveband corresponding to a predetermined waveband, the photoreactive agent destroying the diseased tissue when activated by light from a light source, comprising: (a) a light source that produces light within the predetermined waveband; (b) an ultrasonic transducer that produces ultrasonic waves and receives reflected waves when the ultrasonic waves are reflected from the diseased tissue within a patient's body, the ultrasonic transducer producing an output signal in response to the reflected waves, wherein the ultrasonic transducer is configured to produce an initial output signal before any change to the internal treatment site induced by administering the light therapy occurs and at least one subsequent output signal after administration of the light therapy to the internal treatment site has begun; and (c) a display coupled to the ultrasonic transducer to receive each output signal, the display being adapted to produce an image of the diseased tissue within a patient's body based on each output signal, changes in the diseased tissue caused by the light therapy being detectable by comparing an image generated using the initial output signal with an image generated using a subsequently obtained output signal.

In another aspect the invention provides a system for administering light therapy to diseased tissue at an internal treatment site within a patient's body, comprising:

(a) a light source that produces light within a predetermined waveband, wherein the light source is adapted to be used externally of a patient's body, wherein the light -6a-produced by the light source within the predetermined waveband includes light having a sufficiently long wavelength to penetrate tissue overlying the internal treatment site; (b) a photoreactive agent having a characteristic light absorption waveband corresponding to the predetermined waveband of the light source, the photoreactive agent destroying the diseased tissue when activated by light from the light source; (c) an ultrasonic transducer that produces ultrasonic waves and receives reflected waves when the ultrasonic waves are reflected from the diseased tissue within a patient's body, the ultrasonic transducer producing an output signal in response to the reflected waves; and (d) a display coupled to the ultrasonic transducer to receive the output signal, the display being adapted to produce a plurality of images of the diseased tissue within a patient's body during administration of the light therapy to enable changes in the diseased tissue caused by the light therapy to be detected by comparison of images made at different times.

In another aspect the invention provides apparatus for administering light therapy to diseased tissue at an internal treatment site within a patient's body, where the diseased tissue has been treated with a photoreactive agent having a characteristic light absorption waveband corresponding to a predetermined waveband, the photoreactive agent destroying the diseased tissue when activated by light from a light source, comprising: (a) a light source that produces light within the predetermined waveband, wherein the light source is adapted to be used externally of a patient's body, wherein the light produced by the light source within the predetermined waveband includes light having a sufficiently long wavelength to penetrate tissue -6b-overlying the internal treatment site; (b) an ultrasonic transducer that produces ultrasonic waves and receives reflected waves when the ultrasonic waves are reflected from the diseased tissue within a patient's body, the ultrasonic transducer producing an output signal in response to the reflected waves; and (c) a display coupled to the ultrasonic transducer to receive each output signal, the display being adapted to produce an image of the diseased tissue within a patient's body based on each output signal, changes in the diseased tissue caused by the light therapy being detectable by comparing an image generated using the initial output signal with an image generated using an output signal subsequently obtained.

In another aspect the invention provides a system for administering light therapy to diseased tissue at an internal treatment site within a patient's body, comprising:
(a) a light source that produces light within a predetermined waveband; (b) a photoreactive agent having a characteristic light absorption waveband corresponding to the predetermined waveband of the light source, the photoreactive agent destroying the diseased tissue when activated by light from the light source; (c) an ultrasonic transducer that produces ultrasonic waves and receives reflected waves when the ultrasonic waves are reflected from the diseased tissue within a patient's body, the ultrasonic transducer producing an output signal in response to the reflected waves, the ultrasonic transducer being disposed immediately behind the light source, such that light emitted by the light source and ultrasonic waves produced by the ultrasonic transducer are substantially coaxial; and (d) a display coupled to the ultrasonic transducer to receive the output signal, the display being adapted to produce a -6c-plurality of images of the diseased tissue within a patient's body during administration of the light therapy to enable changes in the diseased tissue caused by the light therapy to be detected by comparison of images made at different times.

In another aspect the invention provides apparatus for administering light therapy to diseased tissue at an internal treatment site within a patient's body, where the diseased tissue has been treated with a photoreactive agent having a characteristic light absorption waveband corresponding to a predetermined waveband, the photoreactive agent destroying the diseased tissue when activated by light from a light source, comprising: a) a light source that produces light within the predetermined waveband; (b) an ultrasonic transducer that produces ultrasonic waves and receives reflected waves when the ultrasonic waves are reflected from the diseased tissue within a patient's body, the ultrasonic transducer producing an output signal in response to the reflected waves, the ultrasonic transducer being disposed immediately behind the light source, such that light emitted by the light source and ultrasonic waves produced by the ultrasonic transducer are substantially coaxial; and (c) a display coupled to the ultrasonic transducer to receive each output signal, the display being adapted to produce an image of the diseased tissue within a patient's body based on each output signal, changes in the diseased tissue caused by the light therapy being detectable by comparing an image generated using the initial output signal with an image generated using an output signal subsequently obtained.

-6d-Brief Description of the Drawing Figures The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
FIGURE 1 is a schematic illustration showing an interstitial probe delivering light therapy to a tumor from an external laser source, and an ultrasonic probe being used to scan the tumor in real time during the light therapy, in accord with one preferred embodiment of the present invention;

FIGURE 2 is a schematic illustration showing how a 3D ultrasonic scan is made of an internal tumor from different positions on a patient's body;

FIGURE 3 is a schematic illustration showing an interstitial probe that includes a plurality of LEDs being used to administer light therapy to a tumor that is being ultrasonically scanned;

FIGURE 4 is a schematic illustration showing an external array of LEDs used to transdermally illuminate a tumor that is being ultrasonically scanned;

FIGURE 5 is a greatly enlarged portion of an internal tumor showing a portion of a blood vessel that has been occluded by PDT within an infarction zone of the tumor;
and -6e-FIGURE 6 is a schematic illustration showing an external array of LEDs used to transdermally illuminate a tumor that is being ultrasonically scanned with a Doppler wire ultrasonic probe.

Description of the Preferred Embodiment As shown in FIGURE 1, a system 10 is illustrated for administering PDT, while monitoring the status of the light therapy in real time, as the therapy continues. In this embodiment, a variable intensity/variable duration laser light source 12 is provided, which produces light having a predetermined waveband. To administer PDT to a patient, a photoreactive agent is administered to the patient before the light therapy begins. Suitable photoreactive agents include, but are not limited to, indocyanine green, toluidine blue, porphyrins, phthlocyanines, prodrugs such as aminolevulinic acid, chlorins, texaphyrins, purpurins, benzoporphyrins, phenothiazines, and other photoactive dyes and compounds.
In addition to the photoreactive agents listed above, it is also contemplated that a targeted photoreactive agent can be used to more selectively bind to abnormal tissue at the internal treatment site. Use of such a targeted photoreactive agent is desirable, because a much lower dose of the substance can be used than would be typically be required for a non-targeted type photoreactive agent. The photoreactive agent employed can be administered via an interstitial injection, which is generally suitable for discrete lesions or tumors, or via an intravenous or intra-arterial injection. A targeted photoreactive agent typically includes antibodies that are targeted to -6f-specifically link with antigens on abnormal tissue or malignant cell organelles within a patient' body. Details relating to such targeted photoreactive agents are disclosed in commonly assigned U.S. Patent No. 6,602,274.

The photoreactive agent administered to the patient that has been absorbed and/or specifically targeted at the abnormal tissue at a treatment site and consequently bound thereto will have a characteristic light absorption waveband corresponding to the predetermined waveband of light produced by variable intensity/variable duration laser light source 12. This light is conveyed from the external source through an optical fiber 14 from which the cladding has been removed at a distal end 16, so that the light from the laser source is emitted from the distal end of the optical fiber, as graphically indicated by arrows 18 in FIGURE 1. Distal end 16 of optical fiber 14 is inserted into a tumor 20, having been passed through a dermal layer 22 via a surgical incision (not shown). Tumor 20 is disposed in a subdermal volume 24, internally within a patient's body.

A key aspect of the present invention is that it is particularly applicable to PDT delivered over a period of hours and possibly days, in contrast to more conventional PDT, which typically employs a relatively high intensity of light source that administers high intensity light to a treatment site for much shorter time. In connection with the present invention, it is preferable that the laser light source be adjustable in intensity and/or in the duration of pulses of light administered to the internal treatment site. While a continuously energized light source, either internal or external may be used in -6g-connection with the present invention, it is contemplated that light therapy will be administered for a prolonged period, comprising either a series of light pulses or short periods of light (from a few seconds to minutes/period) at spaced-apart intervals of time, or a continuous delivery of light at a relatively low intensity. For example, depending upon the nature of the photoreactive agents employed, the size of the tumor or diseased tissue being treated, and other variables, the duration of the PDT
may be from about 1 hour to more than 24 hours. By administering PDT using a lower intensity light, or by using pulses of somewhat higher intensity of light that are delivered at spaced-apart intervals of time over a prolonged duration of treatment, ischema of blood vessel vasculature that provides oxygen and nutrients to the tumor will occur, causing the tumor or diseased tissue to eventually die through anoxia. As the PDT progresses, its effect on the tumor or diseased tissue will progress as an expanding zone of infarction. This expanding infarction zone should eventually encompass the total volume of the tumor or diseased tissue.
In some instances, it may be desirable to permit the PDT to continue until the infarction zone and/or the blood vessel ischemia encompasses a rim of normal tissue surrounding the tumor, thereby insuring that the tumor does not regrow from residual diseased tissue cells that may remain viable after the PDT is terminated. Certain types of tumors are more likely to regrow in this manner, including liver tumors developed from metastases of a colon cancer. For treating such tumors, it is therefore desirable to continue the treatment until the infarction zone encompasses a rim of normal tissue surrounding the tumor.
It is also important to avoid indiscriminately damaging normal tissue by continuing PDT too long, which may well occur, without practicing the present invention. As further illustrated in FIGURE 1, system 10 includes an ultrasonic transducer 30, which is coupled through a cable 32 to an ultrasound processor and power supply 34. The signal produced by ultrasound transducer 30 is processed by ultrasound processor and power supply 34, yielding an ultrasound image 38 that is displayed on a monitor 36. To produce ultrasound image 38, ultrasound transducer 30 generates ultrasonic waves 40 that propagate through dermal layer 22 and into subdermal internal volume 24. These ultrasonic waves are reflected from varying density tissue within a patient's body, producing reflected ultrasonic waves 42 that are received by the ultrasonic transducer. In response to these reflective waves, the ultrasonic transducer produces the signal produced used to create ultrasound image 38.
Newer types of ultrasonic transducers enable a 3D ultrasound image to be displayed on the monitor, thereby showing the location, extent, and depth of tumor 20 at the time the ultrasonic ultrasound image was produced.
By studying ultrasound images in real time, it is possible to monitor the progress of PDT within tumor 20 and thus to determine the effect of the PDT in making decisions about modifying the therapy. For example, variable intensity/variable duration laser light source 12 can be adjusted to change the intensity of the light that it produces, and/or to increase or shorten the duration of each interval of time during which it produces light, and the frequency of such intervals during which the light is administered through optical fiber 14 to tumor 20. In addition, the ultrasound image can be evaluated to determine when or if it is necessary to administer another bolus or dose of the photoreactive agent to the patient, since the effect of the PDT will diminish over time as the concentration of the photoreactive agent within tumor 20 decreases.
To better monitor changes within tumor 20 as a result of PDT, it is contemplated that an initial ultrasound image will be produced using ultrasound transducer 30 prior to initiating administration of light therapy through optical fiber 14. This initial ultrasound image will serve as a baseline image against which changes in the tumor as a result of the ongoing PDT are evaluated.
Alternatively, a quasi-baseline image can be produced by ultrasonically scanning the tumor shortly after beginning to administer light to tumor 20, since the changes will be minimal at that point during the therapy.
It should also be noted that ultrasonic transducer 30 can initially be employed to locate an internal treatment site where tumor 20 or other diseased tissue is disposed by evaluating ultrasound image 38. By locating the position, extent, and the volume of the tumor, various parameters related to administration of PDT to the tumor or other diseased tissue can be determined prior to beginning the treatment. Knowing the location of the tumor will help in positioning the light source to accurately administer light to the tumor.
Ultrasonic transducer 30 can be repositioned to produce additional ultrasound images of an internal tumor 52 within a patient's body 50, since by repositioning the ultrasound transducer, a different viewpoint is achieved that more clearly identifies the scope and condition of the internal treatment site and the results of the PDT. Alternatively, two ultrasonic transducers 30, as shown in FIGURE 2, should also help to more accurately define the position of tumor 52, its extent, and volume, for purposes of emplacement of optical fiber 14 to administer light to the tumor. In addition, imaging the tumor from different positions to better reveal the effects of the PDT, as shown in FIGURE 2, should enable a medical practitioner to more conclusively evaluate the changes in the tumor or diseased tissue as a result of PDT, thereby enabling a more accurate evaluation of the PDT to be obtained.
It should be noted that the concept of "modifying the PDT" is intended to encompass termination of the PDT, if changes to an internal treatment site determined by evaluating the ultrasound images indicate that the tumor or diseased tissue has been substantially destroyed. Termination of the PDT at an appropriate point and time should avoid harmful effects of the therapy on normal tissue within the patient's body that might otherwise occur.
FIGURE 3 illustrates a second embodiment of the present invention in which a tumor 56 is being administered light therapy using an implanted light probe 58. In light probe 58, a flexible substrate 62 includes a plurality of conductive traces (not shown) that convey electrical current to a plurality of light emitting diodes (LEDs) or other light sources. The electrical current is conveyed from an external power supply (not shown) through a lead 64, which extends through dermal layer 22 and outside the patient's body (or extends to an internal power supply - not shown). A plurality of light sources are enclosed within a flexible biocompatible and optically transparent envelope 66 so that the light emitted by the light sources is incident on the diseased and abnormal tissue within tumor 56. An appropriate photoreactive agent, for example one of the various targeted or non-targeted photoreactive agents listed above, is administered to the patient. Ultrasonic transducer 30 is again employed to produce ultrasound images that enable the medical practitioner to determine changes in tumor 56. For example, an infarction zone 68 illustrated by a dash line around light probe 58, is developed within tumor 56 and shows the result of administering PDT for three hours. Infarction zone 68 is evident in the ultrasound image produced by ultrasonic probe 30 and can be compared to a later ultrasound image produced after PDT has been administered for six hours, showing an infarction zone 60, which is substantially larger in volume than infarction zone 68. Again, by monitoring still further changes in tumor 56 in real time, following additional PDT, the medical practitioner can terminate delivery of PDT to the internal treatment site after the infarction zone has reached the limits of tumor 56, thereby minimizing any adverse impact on the surrounding normal tissue. In addition, appropriate changes in the PDT, such as changes in the intensity of light delivered by light probe 58, or the duration of the intervals of time it is energized during the PDT can be controlled as a function of the changes in the internal treatment site observed in the ultrasound images. As appropriate, additional photoreactive agent can be administered, as described above in connection with the first embodiment.
Referring now to FIGURE 4, a third embodiment of the present invention is shown in which an external array 70 of LEDs 72 that emit relatively long wavelength light, for example, in a waveband that includes wavelengths greater than 700 nm, is used to administer light therapy to an internal tumor 80. LEDs are energized with electrical current provided through a cable 74 from a variable intensity/variable duration power supply 76, which can be selectively controlled to change the current supplied to the LEDs and to control the spaced-apart times or intervals during which the LEDs are energized when administering PDT. As shown in FIGURE 4, ultrasonic transducer 30 is disclosed immediately behind external array 70 and produces ultrasound waves 40 that propogate into subdermal internal volume 24 through dermal layer 22. Tumor 80 reflects ultrasonic waves 40, producing reflected ultrasonic waves 42 that are received by ultrasonic transducer 30, which produces an output signal in response thereto, for use in imaging tumor 80. The light produced by array 70 has a sufficiently long wavelength to readily penetrate into the body and into tumor 80, where it activates a photoreactive agent having a characteristic absorption waveband corresponding to the waveband of the relatively long wavelength light produced by LEDs 72.
Yet another embodiment of the present invention, which is generally similar to that shown in FIGURE 4 is illustrated in FIGURE 6, except that instead of using an ultrasonic transducer 30, a Doppler ultrasound-tipped transducer is inserted into tumor 80 and energized with a signal that carried by a lead from an external ultrasonic processor.and image display (not shown). Doppler ultrasonic-tipped transducer 100 comprises, for example, a 5.5-10.0 MHz frequency agile transducer that is capable of full spectral and color Doppler imaging in addition to two-dimensional (2D) imaging. Doppler ultrasonic-tipped transducer 100 produces ultrasonic waves 40 and receives reflected ultrasonic waves 42, generally as described above, for producing a signal used in creating the ultrasound images that are 2D and include color to illustrate Doppler flow, velocity, and hemodynamics in surrounding blood vessels. As described above, the system shown in FIGURE 6 also uses array 70 to administer relatively long wavelength light 78 that readily penetrate through dermal layer 22 and into tumor 80, at the internal treatment site within the patient's body.
Alternatively, ultrasonic transducer 100 can also be used with either light probe 58, or optical fiber 14, both of which administer light interstitially to a tumor.
As noted above, an important aspect of the present invention is the ability it provides the medical practitioner to monitor in real time the effect of PDT
in destroying diseased tissue and in creating an infarction zone within a tumor.
FIGURE 5 illustrates how PDT delivered over an extended period of time in accordance with the present invention causes ischemia of a blood vessel 90, which normally provides oxygenated blood to a tumor 94. In this figure, no attempt has been made to illustrate the entire extent of blood vesse190, but instead, it is graphically illustrated without showing the terminal capillaries that spread throughout the interior of tumor 94. It should be noted that a contrast agent can be administered to a patient to improve the contrast in the ultrasonic images made in accord with the present invention, particularly to improve the contrast with which blood flow in vessels is depicted in such images. Appropriate contrast agents suitable for this purpose are well known to those of ordinary skill in producing ultrasound images.
As a result of administering of PDT to tumor 94, an infarction zone 96 develops within the interior of the tumor and this infarction zone has a border indicated by a dash line 92. Inside infarction zone 96, which has been produced by administering PDT over an extended period of time, ischemia of blood vessel 90 has occluded blood flow through the blood vessel. The ischemic portion of blood vessel 90 is indicated by the cross-hatched area 90'. As additional PDT
is delivered, the volume of infarction zone 96 and the area of the ischemic portion of the blood vessels supplying the tumor continue to increase. In response to the infarction zone approaching the limits of tumor 94 as shown in the ultrasound images, a medial practitioner would likely reduce the intensity of the light administered, and at appropriate time, would terminate administration of the PDT
to tumor 94.
It will be evident that the ability to monitor the progress of PDT and its effect on a tumor or other diseased tissue greatly facilitates control of the therapy, enabling the medical practitioner to fine tune the administration of PDT and to terminate it at an appropriate time. Without benefit of the ultrasound images produced in accord with the present invention, control of PDT is generally inexact, and potentially dangerous to a patient if the PDT is not terminated once the diseased tissue has been destroyed. The present invention enables control of the light therapy, thereby avoiding possible harm to normal tissue.
Although the present invention has been described in connection with the preferred form of practicing it, those of ordinary skill in the art will understand that many modifications can be made thereto within the scope of the claims that follow. Accordingly, it is not intended that the scope of the invention in any way be limited by the above description, but instead be determined entirely by reference to the claims that follow.

Claims (24)

CLAIMS:
1. A system for administering light therapy to diseased tissue at an internal treatment site within a patient's body, comprising:

(a) a light source that produces light within a predetermined waveband;

(b) a photoreactive agent having a characteristic light absorption waveband corresponding to the predetermined waveband of the light source, the photoreactive agent destroying the diseased tissue when activated by light from the light source;

(c) an ultrasonic transducer that produces ultrasonic waves and receives reflected waves when the ultrasonic waves are reflected from the diseased tissue within a patient's body, the ultrasonic transducer producing an output signal in response to the reflected waves, the ultrasonic transducer being configured to produce an initial output signal after light therapy has been initiated but before any change to the internal treatment site induced by administering the light therapy occurs, and at least one subsequent output signal after administration of the light therapy to the internal treatment site has begun; and (d) a display coupled to the ultrasonic transducer to receive the output signal, the display being adapted to produce a plurality of images of the diseased tissue within a patient's body during administration of the light therapy to enable changes in the diseased tissue caused by the light therapy to be detected by comparison of images made at different times.
2. The system of claim 1, wherein the light source is adapted to be used externally of a patient's body, wherein the light produced by the light source within the predetermined waveband includes light having a sufficiently long wavelength to penetrate tissue overlying the internal treatment site.
3. The system of claim 2, wherein the ultrasonic transducer is disposed immediately behind the light source, such that light emitted by the light source and ultrasonic waves produced by the ultrasonic transducer are substantially coaxial.
4. The system of any one of claims 1 to 3, wherein the display stores a quasi-baseline image of the diseased tissue at the internal treatment site, the quasi-baseline image corresponding to the initial output signal, such that the quasi-baseline image is available to be compared to a real time image obtained by subsequently ultrasonically scanning the internal treatment site during the administration of the light therapy.
5. The system of any one of claims 1 to 4, further comprising modifying means for modifying the light therapy in response to a change in the internal treatment site that is imaged by the display, wherein the modifying means is adapted to modify at least one of:

(a) an intensity of the light administered to the internal treatment site;

(b) a frequency with which the light therapy is administered;

(c) a duration during which the light therapy is administered by the light source within each of a series of intervals of time; and (d) administration of the light therapy, by terminating the administration thereof.
6. The system of any one of claims 1 to 5, further comprising means for administering an ultrasonic contrast agent to the patient before conducting scanning by the ultrasonic transducer, the ultrasonic contrast agent improving resolution with which the internal treatment site is shown in images generated by the ultrasonic transducer.
7. The system of any one of claims 1 to 6, wherein the light source administers light to the diseased tissue at the internal treatment site so long as the plurality of images indicate a substantial portion of the diseased tissue remains viable in a current image of the treatment site.
8. Apparatus for administering light therapy to diseased tissue at an internal treatment site within a patient's body, where the diseased tissue has been treated with a photoreactive agent having a characteristic light absorption waveband corresponding to a predetermined waveband, the photoreactive agent destroying the diseased tissue when activated by light from a light source, comprising:

(a) a light source that produces light within the predetermined waveband;

(b) an ultrasonic transducer that produces ultrasonic waves and receives reflected waves when the ultrasonic waves are reflected from the diseased tissue within a patient's body, the ultrasonic transducer producing an output signal in response to the reflected waves, wherein the ultrasonic transducer is configured to produce an initial output signal before any change to the internal treatment site induced by administering the light therapy occurs and at least one subsequent output signal after administration of the light therapy to the internal treatment site has begun; and (c) a display coupled to the ultrasonic transducer to receive each output signal, the display being adapted to produce an image of the diseased tissue within a patient's body based on each output signal, changes in the diseased tissue caused by the light therapy being detectable by comparing an image generated using the initial output signal with an image generated using a subsequently obtained output signal.
9. The apparatus of claim 8, wherein the light source is adapted to be used externally of a patient's body, wherein the light produced by the light source within the predetermined waveband includes light having a sufficiently long wavelength to penetrate tissue overlying the internal treatment site.
10. The apparatus of claim 9, wherein the ultrasonic transducer is disposed immediately behind the light source, such that light emitted by the light source and ultrasonic waves produced by the ultrasonic transducer are substantially coaxial.
11. A system for administering light therapy to diseased tissue at an internal treatment site within a patient's body, comprising:

(a) a light source that produces light within a predetermined waveband, wherein the light source is adapted to be used externally of a patient's body, wherein the light produced by the light source within the predetermined waveband includes light having a sufficiently long wavelength to penetrate tissue overlying the internal treatment site;

(b) a photoreactive agent having a characteristic light absorption waveband corresponding to the predetermined waveband of the light source, the photoreactive agent destroying the diseased tissue when activated by light from the light source;

(c) an ultrasonic transducer that produces ultrasonic waves and receives reflected waves when the ultrasonic waves are reflected from the diseased tissue within a patient's body, the ultrasonic transducer producing an output signal in response to the reflected waves; and (d) a display coupled to the ultrasonic transducer to receive the output signal, the display being adapted to produce a plurality of images of the diseased tissue within a patient's body during administration of the light therapy to enable changes in the diseased tissue caused by the light therapy to be detected by comparison of images made at different times.
12. The system of claim 11, wherein the ultrasonic transducer is configured to produce an initial output signal before any change to the internal treatment site induced by administering the light therapy occurs, and at least one subsequent output signal after administration of the light therapy to the internal treatment site has begun, so that changes in the internal treatment site induced by the light therapy can be detected by comparing images based on the initial output signal and a subsequent output signal.
13. The system of claim 11 or 12, wherein the ultrasonic transducer is disposed immediately behind the light source, such that light emitted by the light source and ultrasonic waves produced by the ultrasonic transducer are substantially coaxial.
14. The system of any one of claims 11 to 13, further comprising modifying means for modifying the light therapy in response to a change in the internal treatment site that is imaged by the display, wherein the modifying means is adapted to modify at least one of:

(a) an intensity of the light administered to the internal treatment site;

(b) a frequency with which the light therapy is administered;

(c) a duration during which the light therapy is administered by the light source within each of a series of intervals of time; and (d) administration of the light therapy, by terminating the administration thereof.
15. Apparatus for administering light therapy to diseased tissue at an internal treatment site within a patient's body, where the diseased tissue has been treated with a photoreactive agent having a characteristic light absorption waveband corresponding to a predetermined waveband, the photoreactive agent destroying the diseased tissue when activated by light from a light source, comprising:

(a) a light source that produces light within the predetermined waveband, wherein the light source is adapted to be used externally of a patient's body, wherein the light produced by the light source within the predetermined waveband includes light having a sufficiently long wavelength to penetrate tissue overlying the internal treatment site;

(b) an ultrasonic transducer that produces ultrasonic waves and receives reflected waves when the ultrasonic waves are reflected from the diseased tissue within a patient's body, the ultrasonic transducer producing an output signal in response to the reflected waves; and (c) a display coupled to the ultrasonic transducer to receive each output signal, the display being adapted to produce an image of the diseased tissue within a patient's body based on each output signal, changes in the diseased tissue caused by the light therapy being detectable by comparing an image generated using the initial output signal with an image generated using an output signal subsequently obtained.
16. The apparatus of claim 15, wherein the ultrasonic transducer is configured to produce an initial output signal before any change to the internal treatment site induced by administering the light therapy occurs, and at least one subsequent output signal after administration of the light therapy to the internal treatment site has begun, so that changes in the internal treatment site induced by the light therapy can be detected by comparing images based on the initial output signal and a subsequent output signal.
17. The apparatus of claim 15 or 16, wherein the ultrasonic transducer is disposed immediately behind the light source, such that light emitted by the light source and ultrasonic waves produced by the ultrasonic transducer are substantially coaxial.
18. A system for administering light therapy to diseased tissue at an internal treatment site within a patient's body, comprising:

(a) a light source that produces light within a predetermined waveband;

(b) a photoreactive agent having a characteristic light absorption waveband corresponding to the predetermined waveband of the light source, the photoreactive agent destroying the diseased tissue when activated by light from the light source;

(c) an ultrasonic transducer that produces ultrasonic waves and receives reflected waves when the ultrasonic waves are reflected from the diseased tissue within a patient's body, the ultrasonic transducer producing an output signal in response to the reflected waves, the ultrasonic transducer being disposed immediately behind the light source, such that light emitted by the light source and ultrasonic waves produced by the ultrasonic transducer are substantially coaxial; and (d) a display coupled to the ultrasonic transducer to receive the output signal, the display being adapted to produce a plurality of images of the diseased tissue within a patient's body during administration of the light therapy to enable changes in the diseased tissue caused by the light therapy to be detected by comparison of images made at different times.
19. The system of claim 18, wherein the light source is adapted to be used externally of a patient's body, wherein the light produced by the light source within the predetermined waveband includes light having a sufficiently long wavelength to penetrate tissue overlying the internal treatment site.
20. The system of claim 18 or 19, wherein the ultrasonic transducer is configured to produce an initial output signal before any change to the internal treatment site induced by administering the light therapy occurs, and at least one subsequent output signal after administration of the light therapy to the internal treatment site has begun, so that changes in the internal treatment site induced by the light therapy can be detected by comparing images based on the initial output signal and a subsequently obtained output signal.
21. The system of any one of claims 18 to 20, further comprising modifying means for modifying the light therapy in response to a change in the internal treatment site that is imaged by the display, wherein the modifying means is adapted to modify at least one of:

(a) an intensity of the light administered to the internal treatment site;

(b) a frequency with which the light therapy is administered;

(c) a duration during which the light therapy is administered by the light source within each of a series of intervals of time; and (d) administration of the light therapy, by terminating the administration thereof.
22. Apparatus for administering light therapy to diseased tissue at an internal treatment site within a patient's body, where the diseased tissue has been treated with a photoreactive agent having a characteristic light absorption waveband corresponding to a predetermined waveband, the photoreactive agent destroying the diseased tissue when activated by light from a light source, comprising:

(a) a light source that produces light within the predetermined waveband;

(b) an ultrasonic transducer that produces ultrasonic waves and receives reflected waves when the ultrasonic waves are reflected from the diseased tissue within a patient's body, the ultrasonic transducer producing an output signal in response to the reflected waves, the ultrasonic transducer being disposed immediately behind the light source, such that light emitted by the light source and ultrasonic waves produced by the ultrasonic transducer are substantially coaxial; and (c) a display coupled to the ultrasonic transducer to receive each output signal, the display being adapted to produce an image of the diseased tissue within a patient's body based on each output signal, changes in the diseased tissue caused by the light therapy being detectable by comparing an image generated using the initial output signal with an image generated using an output signal subsequently obtained.
23. The apparatus of claim 22, wherein the light source is adapted to be used externally of a patient's body, wherein the light produced by the light source within the predetermined waveband includes light having a sufficiently long wavelength to penetrate tissue overlying the internal treatment site.
24. The apparatus of claim 22 or 23, wherein the ultrasonic transducer is configured to produce an initial output signal before any change to the internal treatment site induced by administering the light therapy occurs, and at least one subsequent output signal after administration of the light therapy to the internal treatment site has begun, so that changes in the internal treatment site induced by the light therapy can be detected by comparing images based on the initial output signal and a subsequently obtained output signal.
CA002377293A 1999-07-19 2000-05-26 Real-time monitoring of photodynamic therapy over an extended time Expired - Lifetime CA2377293C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/356,938 US6238426B1 (en) 1999-07-19 1999-07-19 Real-time monitoring of photodynamic therapy over an extended time
US09/356,938 1999-07-19
PCT/US2000/014584 WO2001005316A1 (en) 1999-07-19 2000-05-26 Real-time monitoring of photodynamic therapy over an extended time

Publications (2)

Publication Number Publication Date
CA2377293A1 CA2377293A1 (en) 2001-01-25
CA2377293C true CA2377293C (en) 2007-10-30

Family

ID=23403593

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002377293A Expired - Lifetime CA2377293C (en) 1999-07-19 2000-05-26 Real-time monitoring of photodynamic therapy over an extended time

Country Status (6)

Country Link
US (1) US6238426B1 (en)
EP (1) EP1199996A4 (en)
JP (1) JP2003525074A (en)
AU (1) AU757479B2 (en)
CA (1) CA2377293C (en)
WO (1) WO2001005316A1 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534218A (en) * 1999-01-15 2002-10-15 ライト サイエンシーズ コーポレイション Non-invasive vascular therapy
US6454789B1 (en) 1999-01-15 2002-09-24 Light Science Corporation Patient portable device for photodynamic therapy
US6602274B1 (en) * 1999-01-15 2003-08-05 Light Sciences Corporation Targeted transcutaneous cancer therapy
US20030114434A1 (en) * 1999-08-31 2003-06-19 James Chen Extended duration light activated cancer therapy
US7897140B2 (en) * 1999-12-23 2011-03-01 Health Research, Inc. Multi DTPA conjugated tetrapyrollic compounds for phototherapeutic contrast agents
EP1267935A2 (en) * 2000-01-12 2003-01-02 Light Sciences Corporation Novel treatment for eye disease
GB2370992B (en) 2000-03-23 2002-11-20 Photo Therapeutics Ltd Therapeutic light source and method
JP2002306477A (en) * 2001-04-11 2002-10-22 Ge Medical Systems Global Technology Co Llc Method and apparatus for transmitting and receiving ultrasonic waves, and method and apparatus for ultrasonic photographing using the same
US6838074B2 (en) 2001-08-08 2005-01-04 Bristol-Myers Squibb Company Simultaneous imaging of cardiac perfusion and a vitronectin receptor targeted imaging agent
WO2003061696A2 (en) * 2002-01-23 2003-07-31 Light Sciences Corporation Systems and methods for photodynamic therapy
WO2004002476A2 (en) 2002-06-27 2004-01-08 Health Research, Inc. Fluorinated chlorin and bacteriochlorin photosensitizers for photodynamic therapy
AU2003249742A1 (en) * 2002-07-02 2004-01-23 Health Research, Inc. Efficient synthesis of pyropheophorbide a and its derivatives
ATE535219T1 (en) * 2002-07-17 2011-12-15 Novadaq Technologies Inc COMBINED PHOTOCOAGULATION AND PHOTODYNAMIC THERAPY
US7068867B2 (en) * 2003-01-02 2006-06-27 Glucon Medical Ltd Ultrasonic position indicator
US20080269846A1 (en) * 2003-03-14 2008-10-30 Light Sciences Oncology, Inc. Device for treatment of blood vessels using light
US10376711B2 (en) * 2003-03-14 2019-08-13 Light Sciences Oncology Inc. Light generating guide wire for intravascular use
CN2885311Y (en) 2006-01-18 2007-04-04 郑成福 Via urethra prostate therapeutic equipment using photodynamic therapy
EP1470837A3 (en) * 2003-04-23 2005-08-10 John Tulip Switched photodynamic therapy apparatus and method
US7057100B2 (en) * 2003-06-26 2006-06-06 The J.C. Robinson Seed Co. Inbred corn line W23129
US20050209193A1 (en) * 2003-12-05 2005-09-22 Keller Gregory S Method for enhanced photodynamic therapy
US7662097B2 (en) 2004-09-20 2010-02-16 Resonant Medical, Inc. Radiotherapy treatment monitoring using ultrasound
US20070299485A1 (en) * 2004-11-02 2007-12-27 Keio University Photodynamic Therapy Apparatus
JP2008520280A (en) * 2004-11-15 2008-06-19 デチャームス,クリストファー Application of nerve tissue stimulation using light
WO2006108093A2 (en) * 2005-04-06 2006-10-12 Board Of Trustees Of Michigan State University A system for low-level laser radiation
SE0501077L (en) * 2005-05-12 2006-11-13 Spectracure Ab Device for photodynamic diagnosis or treatment
US8709056B2 (en) * 2006-04-10 2014-04-29 Bwt Property Inc Phototherapy apparatus with built-in ultrasonic image module
US7465312B2 (en) 2006-05-02 2008-12-16 Green Medical, Inc. Systems and methods for treating superficial venous malformations like spider veins
WO2007130465A2 (en) * 2006-05-02 2007-11-15 Green Medical, Inc. Systems and methods for treating superficial venous malformations like spider veins
US9451928B2 (en) 2006-09-13 2016-09-27 Elekta Ltd. Incorporating internal anatomy in clinical radiotherapy setups
JP4966640B2 (en) * 2006-12-18 2012-07-04 学校法人慶應義塾 Photodynamic therapy device and method of using the same
WO2009012576A1 (en) 2007-07-20 2009-01-29 Resonant Medical Inc. Methods and systems for guiding the acquisition of ultrasound images
US20090137925A1 (en) * 2007-11-23 2009-05-28 Divya Cantor Impedance Spectroscopy Cervix Scanning Apparatus and Method
JP2010284304A (en) * 2009-06-11 2010-12-24 Tohoku Univ Ischemia monitor for internal organ
US20110009464A1 (en) * 2009-07-09 2011-01-13 Light Sciences Oncology, Inc. Immune system stimulation by light therapy induced apoptotic cell death in abnormal tissue
US10542962B2 (en) 2009-07-10 2020-01-28 Elekta, LTD Adaptive radiotherapy treatment using ultrasound
US8721696B2 (en) * 2009-07-21 2014-05-13 Valam Corporation Selective treatments for chronic rhinosinusitis
US20120209359A1 (en) 2009-08-14 2012-08-16 Light Sciences Oncology Inc. Low-profile intraluminal light delivery system and methods of using the same
US20110172526A1 (en) 2010-01-12 2011-07-14 Martin Lachaine Feature Tracking Using Ultrasound
US9248316B2 (en) 2010-01-12 2016-02-02 Elekta Ltd. Feature tracking using ultrasound
JP5736116B2 (en) * 2010-03-15 2015-06-17 ソニー株式会社 Calculation device
US9687669B2 (en) 2011-11-09 2017-06-27 John Stephan Wearable light therapy apparatus
US10589120B1 (en) 2012-12-31 2020-03-17 Gary John Bellinger High-intensity laser therapy method and apparatus
US20170246472A1 (en) * 2014-09-08 2017-08-31 James C. Chen Systems, devices, and methods for tissue therapy
US10888708B2 (en) 2015-11-11 2021-01-12 Qc, Llc Phototherapy device with real-time morphologic feedback and guidance
CN106693199B (en) * 2015-12-29 2023-07-28 深圳市智连众康科技有限公司 Intelligent hair growing system
US20190083809A1 (en) 2016-07-27 2019-03-21 Z2020, Llc Componentry and devices for light therapy delivery and methods related thereto
CN106422087A (en) * 2016-09-26 2017-02-22 中国人民解放军第四军医大学 In-vivo implanted photodynamic therapy instrument
WO2022040258A1 (en) 2020-08-21 2022-02-24 University Of Washington Disinfection method and apparatus
US11529153B2 (en) 2020-08-21 2022-12-20 University Of Washington Vaccine generation
US11425905B2 (en) 2020-09-02 2022-08-30 University Of Washington Antimicrobial preventive netting
US11458220B2 (en) 2020-11-12 2022-10-04 Singletto Inc. Microbial disinfection for personal protection equipment
CN117222450A (en) * 2021-04-30 2023-12-12 奥林巴斯株式会社 Light therapy assistance method and light therapy assistance device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672963A (en) * 1985-06-07 1987-06-16 Israel Barken Apparatus and method for computer controlled laser surgery
US5022399A (en) * 1989-05-10 1991-06-11 Biegeleisen Ken P Venoscope
US5148809A (en) * 1990-02-28 1992-09-22 Asgard Medical Systems, Inc. Method and apparatus for detecting blood vessels and displaying an enhanced video image from an ultrasound scan
US5122494A (en) * 1991-02-19 1992-06-16 Shell Oil Company Olefin polymerization catalyst
GB9118670D0 (en) * 1991-08-30 1991-10-16 Mcnicholas Thomas A Surgical devices and uses thereof
US5586982A (en) * 1992-04-10 1996-12-24 Abela; George S. Cell transfection apparatus and method
US5354323A (en) * 1992-10-20 1994-10-11 Premier Laser Systems, Inc. Optical heating system
US5707403A (en) * 1993-02-24 1998-01-13 Star Medical Technologies, Inc. Method for the laser treatment of subsurface blood vessels
US5327349A (en) * 1993-04-15 1994-07-05 Square D Company Method and apparatus for analyzing and recording downtime of a manufacturing process
US5441530A (en) 1994-01-25 1995-08-15 The United States Of America As Represented By The Department Of Health And Human Services Photochemotherapy dosimeter
US5474528A (en) 1994-03-21 1995-12-12 Dusa Pharmaceuticals, Inc. Combination controller and patch for the photodynamic therapy of dermal lesion
US5464436A (en) * 1994-04-28 1995-11-07 Lasermedics, Inc. Method of performing laser therapy
US5571151A (en) 1994-10-25 1996-11-05 Gregory; Kenton W. Method for contemporaneous application of laser energy and localized pharmacologic therapy
WO1996025882A1 (en) * 1995-02-22 1996-08-29 Groenningsaeter Aage Method for ultrasound guidance during clinical procedures
US5865840A (en) * 1997-10-22 1999-02-02 Light Sciences Limited Partnership Enhancement of light activation effect by immune augmentation
US6210425B1 (en) * 1999-07-08 2001-04-03 Light Sciences Corporation Combined imaging and PDT delivery system

Also Published As

Publication number Publication date
EP1199996A4 (en) 2009-01-14
EP1199996A1 (en) 2002-05-02
US6238426B1 (en) 2001-05-29
CA2377293A1 (en) 2001-01-25
AU5295600A (en) 2001-02-05
WO2001005316A1 (en) 2001-01-25
JP2003525074A (en) 2003-08-26
AU757479B2 (en) 2003-02-20

Similar Documents

Publication Publication Date Title
CA2377293C (en) Real-time monitoring of photodynamic therapy over an extended time
US6210425B1 (en) Combined imaging and PDT delivery system
US9149651B2 (en) Non-invasive vascular treatment systems, devices, and methods of using the same
US4973848A (en) Laser apparatus for concurrent analysis and treatment
US20060282136A1 (en) Switched photodynamic therapy apparatus and method
US5823993A (en) Computer controlled drug injection system and method
US8235975B2 (en) Light transmission system for photoreactive therapy
EP2344039B1 (en) Energetic modulation of nerves
US7722539B2 (en) Treatment of unwanted tissue by the selective destruction of vasculature providing nutrients to the tissue
US20130331739A1 (en) Energetic modulation of nerves
US10888304B2 (en) Real-time photoacoustic and ultrasound imaging system and method
US20130138018A1 (en) Nerve treatment system
US20080221560A1 (en) Intravascular Diagnostic or Therapeutic Apparatus Using High-Intensity Pulsed Light
JP2021505289A (en) Controlling therapeutic agent delivery in microbubble-enhanced ultrasound procedures
CA2224333A1 (en) Method and apparatus for dermatology treatment
CA2339384C (en) Improved method for targeted topical treatment of disease
KR102359900B1 (en) Photo dynamic and sono dynamic therapy apparatus based on complex luminous source
US8709056B2 (en) Phototherapy apparatus with built-in ultrasonic image module
JP3742771B2 (en) Ultrasound diagnostic treatment device
US10617564B1 (en) Area scanning photomedicine device and method
LT6795B (en) Laser therapy fiber optic probe
Masumoto et al. Tissue distribution of a new photosensitizer ATX-S10Na (II) and effect of a diode laser (670 nm) in photodynamic therapy
US20230248997A1 (en) Energy radiation treatment method and system supporting energy radiation treatment
Jankun et al. Computer model for photodynamic therapy of the prostate
RU2492882C2 (en) Method for laser exposure on biotissue cavity interface

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20200526