CA2318020C - Bone plate - Google Patents

Bone plate Download PDF

Info

Publication number
CA2318020C
CA2318020C CA002318020A CA2318020A CA2318020C CA 2318020 C CA2318020 C CA 2318020C CA 002318020 A CA002318020 A CA 002318020A CA 2318020 A CA2318020 A CA 2318020A CA 2318020 C CA2318020 C CA 2318020C
Authority
CA
Canada
Prior art keywords
bone
screw
base
receiving opening
bone plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002318020A
Other languages
French (fr)
Other versions
CA2318020A1 (en
Inventor
Bernd Schafer
Henry Halm
Ulf Liljenqvist
Donald Chan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DePuy Spine SARL
Original Assignee
DePuy Spine SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DePuy Spine SARL filed Critical DePuy Spine SARL
Publication of CA2318020A1 publication Critical patent/CA2318020A1/en
Application granted granted Critical
Publication of CA2318020C publication Critical patent/CA2318020C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7044Screws or hooks combined with longitudinal elements which do not contact vertebrae also having plates, staples or washers bearing on the vertebrae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7059Cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/809Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with bone-penetrating elements, e.g. blades or prongs

Abstract

A bone plate for osteosynthesis having a plate-shaped base and a top, with the base defining only a single receiving opening for retaining a bone screw that attaches it, for example, to a vertebra.

Description

BONE PLATE
BACKGROUND OF THE INVENTION

This invention relates to a bone plate for osteosynthesis having a plate-like base and a top, with the base having a receiving opening for retaining a bone screw that attaches it, for example, to a vertebra, with a screw head of the bone screw being received by the receiving opening.

Bone plates for osteosynthesis are generally known. Such bone plates are attached, for example, to vertebrae, in order to stabilize the vertebrae.
In this regard, individual bone plates are connected to each other by rods, with the rods being attached to, specifically fixedly clamped into, the bone plates.
Bone screws that pass through the bone plates and are screwed into the vertebrae are used for attaching the bone plates to the vertebrae. The bone plate is generally secured by the screw head.

It is generally recognized that, particular in thoracic applications, bone plates having small structural lengths are preferable. Additionally, the bone plates should have small overall heights. However, these requirements are not fulfilled by bone plates that are attached to bones by pluralities of bone screws, particularly to vertebrae.

It is an object of this invention is to provide a bone plate that can be used problem-free for thoracic application.
SUMMARY OF THE INVENTION
According to principles of this invention, a base of a bone plate of the type set forth in the opening paragraph above has only one receiving opening therein.

The bone plate of the invention is, therefore, driven into the bone in a conventional manner, and fastened thereto by a bone screw. However, only a single bone screw inserted into the single receiving hole provided for it is used for the fastening. The bone screw secures the bone plate to the bone by this receiving opening. Since only a single bone screw is used, only one receiving opening is required, so that an overall length of the bone plate is significantly reduced. Thoracic use of this bone plate, therefore, causes no problems at all.

An enhancement provides that the base has a receiving area for the setting rod, and the receiving opening is positioned within this receiving area.
In this way, no additional areas are needed in which receiving openings for the bone screw must be positioned. Because the receiving area for the setting rod is located in the base anyway, the receiving opening for the screw head of the bone screw can also be placed there.

Specifically, the receiving opening is located at, but below, the setting rod. Therefore, the setting rod extends above the screw head of the bone screw. This permits optimal transmission of force of those forces exerted by the setting rod to the bone, without subjecting the bone plate to high levels of moment, which would also have to be supported.

Positioning the receiving opening symmetrically within the receiving area also contributes to this. The receiving opening is located preferably on the center line of symmetry, that is in a symmetrical vertical center plane of the bone plate.
Preferably the receiving opening is structured as a countersunk receptacle for a countersink-formed screw head of the bone screw. The receiving opening is also preferably spherically-formed and the screw head of the bone screw is spherically shaped. In this way, on the one hand, the base of the bone plate is optimally fastened, and on the other hand, only minimal overall height is required for receiving the screw head.

In one embodiment, the receiving opening has a surface structure over at least a partial area of a surface which faces toward the screw head.
Because of the surface structure in the receiving opening, against which the screw head lies, a retaining effect, that is in a screwing out direction, is achieved for the screw head. The bone plate is thus not only connected by a force fit with the screw head, but also with a form fit. Owing to this form-fit connection, a risk of the screw loosening, that is losing its firm hold in the bone, is reduced. Moreover, there remains, as before, a connection between the screw head and bone plate even if the bone changes its shape in the area where it bears on the bone plate.

The receiving opening is preferably circular in shape. Such openings allow the screw head to be screwed in and fit closely without any problems.
Although the surface structure must be provided only over a partial area of a perimeter forming the receiving opening, in a preferred embodiment the surface structure extends over the entire inner perimeter forming the receiving opening. This has the significant advantage that the head of the bone screw is likewise secured over its entire outer perimeter, since it is formed-locked anchored in the receiving opening.

A further enhancement provides that the area of the receiving opening facing away from the bone has a surface structure. Particularly in spherically-shaped receiving openings in which a spherically-shaped head of the bone screw is lodged, a nearly perpendicular, i.e. minimally inclined, area of the receiving opening facing away from the bone has the surface structure, at which a holding of the screw head is more secure than in the inclined area. In the area that runs essentially perpendicular to the screw axis, the screw head moves essentially parallel to and along the inner surface of the receiving opening when the screw is being screwed in. Only immediately at the end of the screwing-in process does the lower area of the screw head rest upon the inclined section of the dome-shaped receiving opening, thereby securing the bone plate to the bone.

Preferably, in the circumferential direction, the surface structure has a structural grain. In this way, an inhibition of movement is achieved in the circumferential direction, that is, in the rotational direction of the screw.

Preferred embodiments provide that the surface structure is in the form of longitudinal grooves, teeth, ribs, or similar structures. It is also conceivable that the surface structure is provided by roughening of the surface.

A preferred embodiment provides that the longitudinal grooves or teeth are structured in the form of sawteeth. In this arrangement, each sawtooth of a saw-toothed area has one steep and one flat flank. In order to inhibit movement of the screw in the unscrewing direction, the flat flank rises in the screw-in direction of the bone screw. Therefore the bone screw can be screwed in relatively easily, and is secured against becoming unscrewed by the steep flank of the sawteeth.

This inhibition of movement is optimized in that the screw head has a surface structure that supports this inhibition of movement. Specifically, the screw head may also have grooves running in a longitudinal direction, or similar arrangements. Sawteeth are also conceivable.

BRIEF DESCRIPTION OF THE DRAWINGS
Further benefits, characteristics and details of the invention are explained in more detail below using an embodiment shown in the drawings. The described and drawn features, can be used individually or in preferred combinations in other embodiments of the invention. The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of a preferred embodiment of the invention, as illustrated in the accompanying drawings in which reference characters refer to the same parts throughout the different views. The drawing are not necessarily to scale, emphasis instead being placed upon illustrating principles of the invention in a clear manner.

Figure 1 is a side view of a bone plate of this invention having a top in the closed position;
Figure 2 is a perspective view of a base of the bone plate, with the top removed; and Figure 3 is a top view of the base with the top open.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Figure 1 shows a bone plate, designated generally by the reference number 10, which has a base 12 and a top 14. The top 14 is pivotally attached to the base 12 by a hinge 16. The base 12 has a total of four anchoring wedges 20 (only two of which are illustrated) on its underside 18 facing toward a bone. These anchoring wedges 20 are driven into the bone until the underside 18 lies closely against a bone surface. An upper side 22 of the base 12 has a receiving area 24 for a setting rod, which is placed into this receiving area. The setting rod is fastened to the base 12 at the receiving area 24 by pivoting the top 14, which is screwed onto the base 12 by a screw through a threaded hole 26 (Figures 2 and 3).

Figures 2 and 3 show a receiving opening 28 that holds a screw head of a bone screw. The bone plate 10 is secured to the bone by this bone screw. The receiving opening 28 is spherical-shaped, and is located on a longitudinal center plane 30 of the bone plate 10. Moreover, the receiving opening 28 is located in the receiving area 24 for the setting rod. After the bone screw is placed in the receiving opening 28 and the bone plate 10 is secured to the bone by the bone screw, the receiving opening 28 completely receives the screw head, so that there is no collision or interference between the bone screw and the setting rod; that is, the setting rod can be put into the receiving area 24 problem-free, and can be fastened by the top 14. It is also conceivable that the receiving opening 28 may be offset with respect to the longitudinal center plane 30. This is particularly advantageous if a bone screw having a screw head of rather large diameter is used. Then receiving openings 28 having larger diameters can be provided. Additionally, the length of the plate can also be slightly reduced by offsetting the receiving opening 28 relative to the longitudinal center plane 30.

Claims (11)

1. A bone plate for osteosynthesis comprising:
a pivotable top; and a plate-shaped base having a bone-screw receiving opening for receiving a bone screw that attaches the base to a bone, with a screw head of the bone screw being received by the bone-screw receiving opening, wherein the base has only one bone-screw receiving opening, wherein the base has a setting-rod receiving area for fixedly clamping a setting rod between the base and the pivotable top, and wherein the pivotable top is hingedly attached to the base.
2. The bone plate as in claim 1, wherein the bone-screw receiving opening is countersunk.
3. The bone plate as in claim 1, wherein the bone-screw receiving opening is spherical-shaped.
4. The bone plate according to claim 1, wherein the base contains at least one anchoring wedge that is driven into the bone.
5. The bone plate according to claim 1, wherein said top is fixedly onto said base by a fixing screw being placed into a fixing screw opening.
6. The bone plate according to claim 1, wherein said setting-rod receiving area further contains a surface structure.
7. The bone plate according to claim 6, wherein said surface structure is in the form of longitudinal grooves, teeth, or ribs.
8 8. A bone plate for osteosynthesis comprising:
a pivotable top; and plate-shaped base having a bone-screw receiving opening for receiving a bone screw that attaches the base to a bone, with a screw head of the bone screw being received by the bone-screw receiving opening, wherein the base has only one bone-screw receiving opening, wherein the base has a setting-rod receiving area for fixedly clamping a setting rod between the base and the pivotable top, wherein the pivotable top is hingedly attached to the base, and wherein the bone-screw receiving opening is positioned at the setting-rod receiving area.
9. The bone plate as in claim 8, wherein the bone-screw receiving opening is located below the setting-rod receiving area.
10. The bone plate as in claim 8, wherein the bone-screw receiving opening is positioned symmetrically relative to the setting-rod receiving area.
11. The bone plate according to claim 1, wherein the bone-screw receiving opening passes through the setting-rod receiving area.
CA002318020A 1999-10-18 2000-09-11 Bone plate Expired - Fee Related CA2318020C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19950252.8-5 1999-10-18
DE19950252A DE19950252C2 (en) 1999-10-18 1999-10-18 bone plate

Publications (2)

Publication Number Publication Date
CA2318020A1 CA2318020A1 (en) 2001-04-18
CA2318020C true CA2318020C (en) 2008-05-13

Family

ID=7926112

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002318020A Expired - Fee Related CA2318020C (en) 1999-10-18 2000-09-11 Bone plate

Country Status (6)

Country Link
US (1) US6656179B1 (en)
EP (1) EP1093763B1 (en)
AT (1) ATE355794T1 (en)
CA (1) CA2318020C (en)
DE (2) DE19950252C2 (en)
ES (1) ES2283257T3 (en)

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833250B2 (en) 2004-11-10 2010-11-16 Jackson Roger P Polyaxial bone screw with helically wound capture connection
US8377100B2 (en) 2000-12-08 2013-02-19 Roger P. Jackson Closure for open-headed medical implant
US6726689B2 (en) 2002-09-06 2004-04-27 Roger P. Jackson Helical interlocking mating guide and advancement structure
US6872210B2 (en) 2001-02-23 2005-03-29 James P. Hearn Sternum fixation device
US10729469B2 (en) 2006-01-09 2020-08-04 Roger P. Jackson Flexible spinal stabilization assembly with spacer having off-axis core member
US8292926B2 (en) 2005-09-30 2012-10-23 Jackson Roger P Dynamic stabilization connecting member with elastic core and outer sleeve
US10258382B2 (en) 2007-01-18 2019-04-16 Roger P. Jackson Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US8353932B2 (en) 2005-09-30 2013-01-15 Jackson Roger P Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
US7862587B2 (en) 2004-02-27 2011-01-04 Jackson Roger P Dynamic stabilization assemblies, tool set and method
FR2842724B1 (en) 2002-07-23 2005-05-27 Spine Next Sa VERTEBRAL FASTENING SYSTEM
US7179260B2 (en) 2003-09-29 2007-02-20 Smith & Nephew, Inc. Bone plates and bone plate assemblies
US8876868B2 (en) 2002-09-06 2014-11-04 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
US8282673B2 (en) 2002-09-06 2012-10-09 Jackson Roger P Anti-splay medical implant closure with multi-surface removal aperture
US8257402B2 (en) 2002-09-06 2012-09-04 Jackson Roger P Closure for rod receiving orthopedic implant having left handed thread removal
JP2004097707A (en) * 2002-09-12 2004-04-02 Showa Ika Kohgyo Co Ltd Vertebral body plate for spine fixing system
FR2848408B1 (en) * 2002-12-17 2005-08-19 Vitatech DEVICE WITH ANTERIOR PLATE FOR MAINTAINING THE RACHIS
US20040162558A1 (en) * 2003-02-18 2004-08-19 Hegde Sajan K. Spinal plate having an integral rod connector portion
US6716214B1 (en) 2003-06-18 2004-04-06 Roger P. Jackson Polyaxial bone screw with spline capture connection
US8540753B2 (en) 2003-04-09 2013-09-24 Roger P. Jackson Polyaxial bone screw with uploaded threaded shank and method of assembly and use
US7621918B2 (en) 2004-11-23 2009-11-24 Jackson Roger P Spinal fixation tool set and method
US8100976B2 (en) * 2003-04-21 2012-01-24 Rsb Spine Llc Implant subsidence control
US9278009B2 (en) * 2003-04-21 2016-03-08 Rsb Spine Llc Spine implants
US20170020683A1 (en) 2003-04-21 2017-01-26 Rsb Spine Llc Bone plate stabilization system and method for its use
US7985255B2 (en) * 2003-04-21 2011-07-26 Rsb Spine Llc Implant subsidence control
US8613772B2 (en) * 2003-04-21 2013-12-24 Rsb Spine Llc Lateral mount implant device
US7377923B2 (en) 2003-05-22 2008-05-27 Alphatec Spine, Inc. Variable angle spinal screw assembly
US7766915B2 (en) 2004-02-27 2010-08-03 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
US8366753B2 (en) 2003-06-18 2013-02-05 Jackson Roger P Polyaxial bone screw assembly with fixed retaining structure
US8814911B2 (en) 2003-06-18 2014-08-26 Roger P. Jackson Polyaxial bone screw with cam connection and lock and release insert
US8092500B2 (en) 2007-05-01 2012-01-10 Jackson Roger P Dynamic stabilization connecting member with floating core, compression spacer and over-mold
US8926670B2 (en) 2003-06-18 2015-01-06 Roger P. Jackson Polyaxial bone screw assembly
US8257398B2 (en) * 2003-06-18 2012-09-04 Jackson Roger P Polyaxial bone screw with cam capture
US8398682B2 (en) 2003-06-18 2013-03-19 Roger P. Jackson Polyaxial bone screw assembly
US8377102B2 (en) 2003-06-18 2013-02-19 Roger P. Jackson Polyaxial bone anchor with spline capture connection and lower pressure insert
US7967850B2 (en) 2003-06-18 2011-06-28 Jackson Roger P Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US7776067B2 (en) 2005-05-27 2010-08-17 Jackson Roger P Polyaxial bone screw with shank articulation pressure insert and method
US8137386B2 (en) 2003-08-28 2012-03-20 Jackson Roger P Polyaxial bone screw apparatus
US7179261B2 (en) 2003-12-16 2007-02-20 Depuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US7527638B2 (en) 2003-12-16 2009-05-05 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US8152810B2 (en) 2004-11-23 2012-04-10 Jackson Roger P Spinal fixation tool set and method
EP1720468A4 (en) 2004-02-27 2010-01-27 Roger P Jackson Orthopedic implant rod reduction tool set and method
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US7160300B2 (en) 2004-02-27 2007-01-09 Jackson Roger P Orthopedic implant rod reduction tool set and method
US7651502B2 (en) 2004-09-24 2010-01-26 Jackson Roger P Spinal fixation tool set and method for rod reduction and fastener insertion
JP2008519656A (en) 2004-11-10 2008-06-12 ロジャー・ピー・ジャクソン Helical guide and forward flange with break extension
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
WO2006057837A1 (en) 2004-11-23 2006-06-01 Jackson Roger P Spinal fixation tool attachment structure
US9918745B2 (en) 2009-06-15 2018-03-20 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US7875065B2 (en) 2004-11-23 2011-01-25 Jackson Roger P Polyaxial bone screw with multi-part shank retainer and pressure insert
US8444681B2 (en) 2009-06-15 2013-05-21 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US9216041B2 (en) 2009-06-15 2015-12-22 Roger P. Jackson Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US8308782B2 (en) 2004-11-23 2012-11-13 Jackson Roger P Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
US9980753B2 (en) 2009-06-15 2018-05-29 Roger P Jackson pivotal anchor with snap-in-place insert having rotation blocking extensions
WO2006058221A2 (en) 2004-11-24 2006-06-01 Abdou Samy M Devices and methods for inter-vertebral orthopedic device placement
US10076361B2 (en) 2005-02-22 2018-09-18 Roger P. Jackson Polyaxial bone screw with spherical capture, compression and alignment and retention structures
US7901437B2 (en) 2007-01-26 2011-03-08 Jackson Roger P Dynamic stabilization member with molded connection
US20060259141A1 (en) * 2005-05-13 2006-11-16 Walter Lorenz Surgical, Inc. Pectus bar stabilizer
FR2889437B1 (en) * 2005-08-02 2008-04-18 Euro Sa SPINAL IMPLANT HAVING SWIVEL BLOCKING FOR A CONNECTING ROD
FR2890850B1 (en) 2005-09-20 2009-04-17 Abbott Spine Sa VERTEBRAL FASTENING SYSTEM
FR2890851B1 (en) * 2005-09-21 2008-06-20 Abbott Spine Sa ANCILLARY TO TENSION A FLEXIBLE LINK.
US8105368B2 (en) 2005-09-30 2012-01-31 Jackson Roger P Dynamic stabilization connecting member with slitted core and outer sleeve
AU2006297215A1 (en) * 2005-09-30 2007-04-12 Paradigm Spine, Llc Hinged polyaxial screw and methods of use
US20070118128A1 (en) * 2005-11-22 2007-05-24 Depuy Spine, Inc. Implant fixation methods and apparatus
US20070118129A1 (en) * 2005-11-22 2007-05-24 Depuy Spine, Inc. Implant fixation methods and apparatus
US20070118127A1 (en) * 2005-11-22 2007-05-24 Depuy Spine, Inc. Implant fixation methods and apparatus
US20070118130A1 (en) * 2005-11-22 2007-05-24 Depuy Spine, Inc. Implant fixation methods and apparatus
US7704271B2 (en) 2005-12-19 2010-04-27 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
US7731735B2 (en) 2006-04-28 2010-06-08 Warsaw Orthopedic, Inc. Open axle surgical implant
US8439956B2 (en) * 2006-06-09 2013-05-14 Gyrus Productions, Inc. Method of performing a decompressive craniectomy
EP2047813A1 (en) 2007-10-11 2009-04-15 Abbott Spine Bone fixing system and method of use
CA2670988C (en) 2006-12-08 2014-03-25 Roger P. Jackson Tool system for dynamic spinal implants
US8475498B2 (en) 2007-01-18 2013-07-02 Roger P. Jackson Dynamic stabilization connecting member with cord connection
US8366745B2 (en) 2007-05-01 2013-02-05 Jackson Roger P Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US8012177B2 (en) 2007-02-12 2011-09-06 Jackson Roger P Dynamic stabilization assembly with frusto-conical connection
US8979904B2 (en) 2007-05-01 2015-03-17 Roger P Jackson Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control
US10383660B2 (en) 2007-05-01 2019-08-20 Roger P. Jackson Soft stabilization assemblies with pretensioned cords
US7951173B2 (en) 2007-05-16 2011-05-31 Ortho Innovations, Llc Pedicle screw implant system
US8197518B2 (en) 2007-05-16 2012-06-12 Ortho Innovations, Llc Thread-thru polyaxial pedicle screw system
US7947065B2 (en) 2008-11-14 2011-05-24 Ortho Innovations, Llc Locking polyaxial ball and socket fastener
US7942911B2 (en) 2007-05-16 2011-05-17 Ortho Innovations, Llc Polyaxial bone screw
US7942910B2 (en) 2007-05-16 2011-05-17 Ortho Innovations, Llc Polyaxial bone screw
US7942909B2 (en) 2009-08-13 2011-05-17 Ortho Innovations, Llc Thread-thru polyaxial pedicle screw system
CA2690038C (en) 2007-05-31 2012-11-27 Roger P. Jackson Dynamic stabilization connecting member with pre-tensioned solid core
US8911477B2 (en) 2007-10-23 2014-12-16 Roger P. Jackson Dynamic stabilization member with end plate support and cable core extension
US8128635B2 (en) 2007-10-23 2012-03-06 Zimmer Spine S.A.S. Bone fixation tensioning tool and method
ATE536824T1 (en) * 2007-10-23 2011-12-15 Zimmer Spine FASTENING DEVICES AND STABILIZATION SYSTEMS WITH THESE FASTENING DEVICES
US20090248077A1 (en) * 2008-03-31 2009-10-01 Derrick William Johns Hybrid dynamic stabilization
WO2010006195A1 (en) 2008-07-09 2010-01-14 Amei Technologies, Inc. Ankle arthrodesis nail and outrigger assembly
US8414584B2 (en) 2008-07-09 2013-04-09 Icon Orthopaedic Concepts, Llc Ankle arthrodesis nail and outrigger assembly
EP2442739A1 (en) 2008-08-01 2012-04-25 Jackson, Roger P. Longitudinal connecting member with sleeved tensioned cords
US8075603B2 (en) 2008-11-14 2011-12-13 Ortho Innovations, Llc Locking polyaxial ball and socket fastener
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
AU2010303934B2 (en) 2009-10-05 2014-03-27 Roger P. Jackson Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
EP2611373B1 (en) 2010-08-30 2015-11-04 Zimmer Spine, Inc. Polyaxial pedicle screw
EP2613719A1 (en) 2010-09-08 2013-07-17 Roger P. Jackson Dynamic stabilization members with elastic and inelastic sections
JP2013545527A (en) 2010-11-02 2013-12-26 ロジャー・ピー・ジャクソン Multi-axis bone anchor with pop-on shank and pivotable retainer
US8992579B1 (en) * 2011-03-08 2015-03-31 Nuvasive, Inc. Lateral fixation constructs and related methods
WO2012128825A1 (en) 2011-03-24 2012-09-27 Jackson Roger P Polyaxial bone anchor with compound articulation and pop-on shank
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US8911479B2 (en) 2012-01-10 2014-12-16 Roger P. Jackson Multi-start closures for open implants
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US9060815B1 (en) 2012-03-08 2015-06-23 Nuvasive, Inc. Systems and methods for performing spine surgery
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US9453526B2 (en) 2013-04-30 2016-09-27 Degen Medical, Inc. Bottom-loading anchor assembly
US9517089B1 (en) 2013-10-08 2016-12-13 Nuvasive, Inc. Bone anchor with offset rod connector
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9743968B2 (en) 2013-11-14 2017-08-29 Zimmer Biomet CMF and Thoracic, LLC Locking mechanism for pectus bar
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
JP2017525548A (en) 2014-08-28 2017-09-07 ネクストレミティ ソルーションズ インコーポレイテッドNextremity Solutions, Inc. Bone fixation device and method
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10820931B2 (en) 2017-02-10 2020-11-03 Zimmer Biomet CMF and Thoracic, LLC Pectus bar and stabilizer devices and methods
WO2018164808A1 (en) 2017-03-08 2018-09-13 Zimmer Biomet CMF and Thoracic, LLC Pectus bar support devices
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5344422A (en) * 1989-10-30 1994-09-06 Synthes (U.S.A.) Pedicular screw clamp
US5713898A (en) * 1993-05-18 1998-02-03 Schafer Micomed Gmbh Orthopedic surgical holding device
DE4414782C2 (en) * 1994-04-28 2000-03-09 Schaefer Micomed Gmbh Bone surgery holding device
US5662652A (en) * 1994-04-28 1997-09-02 Schafer Micomed Gmbh Bone surgery holding apparatus
DE4433360C2 (en) * 1994-07-19 1996-12-12 Schaefer Micomed Gmbh Bone surgery holding device
DE19509331C2 (en) * 1995-03-15 1998-01-15 Juergen Harms Element for stabilizing the cervical vertebrae
US5882350A (en) * 1995-04-13 1999-03-16 Fastenetix, Llc Polyaxial pedicle screw having a threaded and tapered compression locking mechanism
US5669911A (en) * 1995-04-13 1997-09-23 Fastenetix, L.L.C. Polyaxial pedicle screw
US5925047A (en) * 1998-10-19 1999-07-20 Third Millennium Engineering, Llc Coupled rod, anterior vertebral body screw, and staple assembly
US5947969A (en) * 1998-10-19 1999-09-07 Third Millennium Engineering, Llc Rotatable locking vertebral body screw, staple and rod assembly
US6302888B1 (en) * 1999-03-19 2001-10-16 Interpore Cross International Locking dovetail and self-limiting set screw assembly for a spinal stabilization member

Also Published As

Publication number Publication date
DE19950252C2 (en) 2002-01-17
ATE355794T1 (en) 2007-03-15
EP1093763A2 (en) 2001-04-25
US6656179B1 (en) 2003-12-02
DE19950252A1 (en) 2001-06-07
CA2318020A1 (en) 2001-04-18
ES2283257T3 (en) 2007-11-01
DE50014130D1 (en) 2007-04-19
EP1093763A3 (en) 2003-03-19
EP1093763B1 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
CA2318020C (en) Bone plate
US6572622B1 (en) Bone plate
CA2376030C (en) Bone screw with axially two-part screw head
CA2375533C (en) Angle-adjustable bone screw and device for the osteosynthetic bone fixation
US5725527A (en) Anchoring member
US7682379B2 (en) Device for osteosynthesis
US6146383A (en) Pivotal securing system at a bone screw
US6458133B1 (en) Spinal fixation and retrieval device
JP3308271B2 (en) Osteosynthesis fixation device
US20050234454A1 (en) Multi-axial screw with a spherical landing
US7455684B2 (en) Device comprising anterior plate for vertebral column support
US5738685A (en) Osteosynthesis device
EP0599640B1 (en) Osteosynthesis plate system
RU2043081C1 (en) Device for spinal column osteosynthesis
CA2508172A1 (en) Bone fracture fixation systems with both multidirectional and unidirectional stabilization pegs
CA2681172A1 (en) Arrangement for fastening and fixing a first element against another element
CA2212818A1 (en) Insert for connecting a bone screw to a bone plate
US7229442B2 (en) Cervical vertebra plate
EP1323390B1 (en) Spinal fixation and retrieval device
CA2669794C (en) Angle-adjustable bone screw and device for the osteosynthetic bone fixation
ZA200109471B (en) Angle-adjustable bone screw and device for the osteosynthetic bone fixation.
NZ515763A (en) Angle-adjustable bone screw and device for the osteosynthetic bone fixation
ZA200404242B (en) Device for performing osteosynthesis.

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20130911