CA2272970A1 - Endoluminal support assembly with capped ends - Google Patents

Endoluminal support assembly with capped ends Download PDF

Info

Publication number
CA2272970A1
CA2272970A1 CA002272970A CA2272970A CA2272970A1 CA 2272970 A1 CA2272970 A1 CA 2272970A1 CA 002272970 A CA002272970 A CA 002272970A CA 2272970 A CA2272970 A CA 2272970A CA 2272970 A1 CA2272970 A1 CA 2272970A1
Authority
CA
Canada
Prior art keywords
stent
generally cylindrical
length
assembly according
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002272970A
Other languages
French (fr)
Inventor
John E. Nolting
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Vascular Inc
Original Assignee
Medtronic AVE Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic AVE Inc filed Critical Medtronic AVE Inc
Publication of CA2272970A1 publication Critical patent/CA2272970A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/852Two or more distinct overlapping stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0058Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • A61F2250/0063Nested prosthetic parts

Abstract

An endovascular support assembly, or stent assembly, and a covered endovascular support assembly, or stent-graft assembly, with caps on either or both ends for improved and uniform deployment of the assembly. Additionally, the caps serve to capture the graft material between the caps and the endovascular support device or stent.

Description

ENDOLUMINAL SUPPORT ASSEI~LY WITH CAPPED ENDS
FIELD OF THE INVENTION
This present invention relates generally to implantable devices for maintaining the patency of stenotic or diseased lumens. And, more specifically, to an endoluminal or covered endoluminal support assembly having additional support devices at either or both ends for more uniform deployment of the assembly.
BACKGROUND OF THE INVENTION
Cardiovascular disease is the leading cause of death in the United States. A number of methods have been developed for treating coronary heart disease. One common procedure is percutaneous transluminal coronary angioplasty ("PTCA"). PTCA typically involves advancing a catheter, ~_ having an inflatable balloon on the distal end thereof, through a patient's arterial system until the balloon crosses an atherosclerotic lesion. The balloon is then inflated to dilate the artery. After dilation, the balloon is deflated and the catheter removed leaving an enlarged arterial passageway or lumen, thereby increasing blood flow. A significant number of PTCA procedures, however, result in a restenosis or renarrowing of the lumen.
To lessen the risk of stenosis or restenosis of lumens, various endovascular devices have been proposed for mechanically keeping an affected lumen open after completion of procedures, such as PTCA. For purposes of the instant invention, the lumen to be treated is not limited to coronary arteries, but also includes any other similar body conduit that tends to improperly constrict as a result of disease or malfunction, such as: arteries located within the mesentery, peripheral, or cerebral vasculature; veins;
gastrointestinal tract; biliary tract; urethra; trachea;
hepatic shunts; and fallopian tubes.
Endovascular devices generally referred to as "stents," and covered endovascular support devices generally referred to as "stent-grafts," are typically inserted ~to the lumen, positioned across a lesion, and then expanded to keep the passageway clear. Effectively, the stent or stent-graft overcomes the natural tendency of some lumen walls to close due to restenosis, thereby maintaining a more normal flow of blood through that lumen than would be possible if the stent or stent-graft were not in place or if only a PTCA procedure were performed.
There are two general categories of stents, self-expanding stem s and balloon-expandable stents. Some self-expanding stem s are made from stainless steel wire or wire braid. Such stents are typically compressed into a first .
shape and inserted into a sheath or cartridge. During insertion, the stent is positioned along a delivery device, such as a catheter, that is extended to make the stent diameter as small as possible. When the stmt is positioned across the lesion, the sheath is withdrawn causing the stmt to radially expand and abut the vessel wall.
Depending on the materials used in construction of the stent, the wire or wire braid maintains the new shape either through mechanical force or otherwise.
Another type of self-expanding stent is made from a shape-memory alloy such as NITINOL. This stent has been pre-treated to assume an expanded state at body temperatu~. Prior to delivery to the affected area, the stent is typically crimped or compressed near or below room temperature.
Balloon-expandable stents are typically introduced into a lumen on a catheter having an inflatable balloon on the distal end thereof. When the stent is at the desired location in the lumen, the balloon is inflated to circumferentially expand the stent. The balloon is then deflated and the catheter is withdrawn, leaving the circumferentially expanded stent in the lumen, usually as a permanent prosthesis for helping to hold the lumen open.
S One type of balloon-expandable stmt is a tubular-slotted stmt, which involves what may be thought of as a tube having a number of slots cut in its wall, resulting in a mesh when expanded. A tubular-slotted stent is typically cut out of a hypo-tube, or out of a sheet, which is then rolled, and welded to form a the tube. Example of such stents include, but are not limited to, those disclosed in U.S. Patent Nos. 4,733,665, 4,776,337, 4,739,762 and 5,102,417 all issued to Palmaz, U.S. Patent No. 5,195,984 issued to Schatz, U.S. Patent No. 5,421,955 issued to Lau et al., or U.S. Patent No. 5,449,373 issued to Pinchasik et al.
A baboon-expandable stent referred to as a wire stent overcomes some of the problems associated with tubular-slotted stem s. A wire stent is generally formed by winding a circular shaped wire into supportive elements, which typically have a circular cross-section. The problem with wire stents is that the supportive elements comprising the stent can axially displace with respect to each other, resulting in a stent that fails to provide adequate support.
U.S. Patent Nos. 5,292,331 and 5,674,278 both issued to Boneau, which are hereby incorporated by reference, S disclose another type of wire-like stmt. This stent is made by taking a ring or toroid having a circular cross-section, and then forming the ring into a series of sinusoidally-shaped elements. While preferably employing a single piece of material, suitably welded wire is also acceptable. Such a stmt has excellent radial strength while retaining the flexibility of wire stents. This endovascular support device may include a plurality of stents mounted on the balloon.
All these stent can be used alone or in conjunction with a covering or graft.
During a PTCA procedure as discussed above, atheromato'~s plaques undergo fissuring, thereby creating a thrombogenic environment in the lumen. Excessive scarring may also occur following the procedure, potentially resulting in reocclusion of the treated lumen. Attempts to address these problems include providing a suitable surface within the lumen for more controlled healing to occur in addition to the support provided by a stmt. These attempts include providing a lining or covering in conjunction with a stmt. The covering of a stmt-graft may prevent excessive tissue prolapse or protrusion of tissue growth through the interstices of the stmt while allowing limited tissue in-growth to occur to enhance the implantation. The surface of the graft material at the same time minimizes thrombosis, prevents scarring from occluding the lumen and minimizes the contact between the fissured plaque and the hematological elements in the bloodstream.
The stents, and stent-graft, assemblies are mounted on a balloon of a balloon catheter and forcibly expanded from pressure exerted during expansion of the balloon, as discussed above. These stem s and stmt-grafts are circumscribe most but not all of the length of the balloon.
The exposed ends of the balloon, coupled with the fact that the ends a'~'the stent or stent-graft will inherently deploy under less force than the medial portion thereof, results in the stent or stent-graft being deployed in a non-uniform fashion. More specifically, the ends of the stents begin to deploy prior to the reminder of the stent.
Further, with regard to prior art stent-grafts, much focus has been directed towards adhering or attaching the graft material to the stent.
SU1~ARY OF THE INVENTION
The present invention provides a stent or stmt-graft for helping to hold open a lumen. The stent or stent-graft comprises a first stmt and at least one additional stent serving as an end cap at one or both ends of the first stent.
According to the assemblies described herein, the present invention increases the amount of pressure needed to circumferentially expand the ends of the assembly, thereby providing a more uniform deployment of the assembly.
Also according to the invention, the graft material or lining is sandwiched between the first stmt and the end caps.
There'"fore, it is an object of the instant invention to provide a stent or stent-graft assembly with more uniform deployment characteristics.
It is a further object of the invention to provide a stent-graft assembly with simply and positively attaches the graft material to the stent assembly.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a side view of an illustrative embodiment of a stent assembly embodying the principles of the present invention.
Figure 2A is a side view of an illustrative embodiment of a stmt-graft assembly embodying the principles of the present invention.
Figure 2B is a cross-section view along line A-A of Figure 2A.
DETAILED DESCRIPTION OF THE EMBODIMENTS
The present invention relates to a stmt or stent-graft assembly having end caps which: cause a more uniform deployment of the assembly; and, in the case of a stent-graft, capture or sandwich the lining between the stent and the end caps. The following description is presented to enable one f ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
Figure 1 is a side view of an illustrative embodiment of the stent assembly according to the present invention.
Stent assembly 10 includes a first stmt 12 having a plurality of stmt sections 14a-g, each of which is made of an endless metal loop that has been bent into a plurality of straight sections or struts that are integrally joined by discrete axial turns, or crowns. Each section 14 may have more or less undulations or crowns than are shown in Fig. 1, but the simplified depictions shown herein will be sufficient to illustrate the present invention.
Although sections 14a-g may or may not be made of what would be regarded in some other arts as wire, the material of sections 14a-g is generally wire-like, and so the term "wire" is -A~metimes used herein to refer to such stent material. Axially adjacent sections 14a-g may be joined to one another at one or more aligned crowns. These connections 16 (if and to the extent present) may be made by fusing, welding, soldering, adhesive bonding, mechanical fastening, or in any other suitable manner.
End caps 18 and 19 are disposed at both ends of stent 12. These end caps are essentially, and act as, second and third stents, and provide additional resistance to pressure at either end of stmt assembly 10. This results in a more uniform expansion of the stent assembly under the influence of the expansion pressures exerted thereon from the balloon of the balloon catheter (not shown). Preferably, the length of each end cap is less than half of the length of first stent 12.
In the embodiment shown, end caps 18 and 19 each comprise two sections 18a, 18b and 19a and 19b, respectively, similar to stent sections 14. And are joined to each other in a similar manner. The end caps are joined to first stent 12 at both ends of stmt 12 at one or more radially adjacent crowns.
A typical technique for delivering stems of the general type shown as reference numeral 12 in Fig. 1 into a lumen is t~o initially dispose of the stent assembly in a circumferentially compressed form around a deflated balloon a balloon catheter. The catheter is then inserted into a tubular body structure to be stented until the balloon and stent are at the desired location along the body structure.
The balloon is then inflated to circumferentially expand the stent. Lastly, the balloon is deflated and the catheter is withdrawn, leaving the expanded stent behind in the body structure.
Typically, the balloon used is longer than the stent assembly, resulting in portions of the balloon extending proximally and distally of the stent assembly. Those exposed portions of the balloon tend to inflate prior to the remainder of the balloon which is circumferentially captured by the stent assembly. This causes uneven inflation of the balloon and deployment of the stmt, with the ends of the stent assembly tending to deploy before the remaining or intermediate portion of the stent assembly.
The end caps 18, 19 compensate for this by increasing the amount of pressure needed to deploy the ends of the stent assembly. Thereby, a more uniform deployment of the stent assembly is achieved.
Turning to Figures 2A and 2B, a stent-graft assembly in acco~ance with the teachings of the invention is depicted. In this embodiment, a lining or graft material 22 is captured or sandwiched between the first stmt 12 and 20 end caps 18, 19. Stent 12, comprising stent sections 14a-f, and end caps 18a, 18b and 19a, 19b are similar to that discussed with respect to Figure 1 above.
End cap sections 18a and 19b are connected to stent sections 14a and 14g, respectively. More specifically, the cap section is connected to the respective stmt section at one or more radially adjacent crowns such as by fusing, welding, soldering, or in any other suitable manner.
Suitable material for the lining includes, but is not limited to, polyesters, polytetrafluoroethylene, polyurethane and silicone. Lining 22 is preferably sized so as to terminate halfway between the ends or crowns of stent sections 14a and 14g. This provides uniform support of the graft material at either end thereof. More specifically, if the lining were to terminate at or near the crowns, there would be greater unsupported distances of the lining at the leading edge of the graft.
A stmt assembly with end caps for more uniform deployment of the assembly has been disclosed. A stent-graft assembly with end caps which also serves to capture the graft-Material has also been disclosed. Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention.
For example, other means for increasing the resistance to pressure at either end of the stent assembly such as an elastomeric or polymeric sleeve may be employed.
Additionally, stents of varying types can be used for the stent and the end caps or any combination thereof.
S

Claims (12)

1. An endoluminal support assembly comprising:
a first generally cylindrical stent having a length, first and second ends, an exterior and an interior, and a medial region, said first generally cylindrical stent defining a passageway therethrough;
a second generally cylindrical stent having a length and disposed radially outwardly and adjacent to one end of the first stent.
2. The endoluminal support assembly according to claim 1 wherein the second generally cylindrical stent is disposed radially outwardly and adjacent to the first end of the first stent, and further comprising a third generally cylindrical stent having a length and disposed radially outwardly and adjacent to the second end of the first stent.
3. The endoluminal support assembly according to claim 2 wherein the second generally cylindrical stent is connected to the first stent at the first end of the first stent, and the third generally cylindrical stent is connected to the first stent at the second end of the first stent.
4. The endoluminal support assembly according to claim 2 wherein the length of second generally cylindrical stent and the length of the third generally cylindrical stent are each less than half of the length of the first stent.
5. An endoluminal support assembly for implantation into a lumen, comprising:
a generally cylindrical endovascular support device having a length, first and second ends, an exterior and an interior, and a medial region, said generally cylindrical endovascular support device defining a passageway therethrough and having a compressed configuration for delivery to a site in the lumen and an expanded configuration;
means for applying a force to the endovascular support device to form said expanded configuration; and means disposed circumferentially about and along the exterior of one end of the endovascular support device for increasing the amount of force needed to expand said one end of the endovascular support device.
6. The endovascular support assembly according to claim 5 further comprising means disposed circumferentially about and along the exterior of both ends of the endovascular support device for increasing the amount of force needed to expand both ends of the endovascular support device.
7. A stent-graft assembly comprising:
a first generally cylindrical stent having a length, first and second ends, an exterior and an interior, and a medial region, said first generally cylindrical stent defining a passageway therethrough;
a second generally cylindrical stent disposed radially outwardly and adjacent to one end of the first stent; and a lining having a first and second end and covering at least a portion of the exterior of the first stent, and having one end thereof disposed between the first and second stents.
8. The stent-graft assembly according to claim 7 wherein the second generally cylindrical stent is disposed radially outwardly and adjacent to the first end of the first stent, and further comprising a third generally cylindrical stent having a length and disposed radially outwardly and adjacent to the second end of the first stent.
9. The stent-graft assembly according to claim 8 wherein the first end of lining is disposed between the first and second stents and the second end of the lining is disposed between the first and third stents.
10. The stent-graft assembly according to claim 8 wherein the second generally cylindrical stent is connected to the first stent at the first end of the first stent, and the third generally cylindrical stent is connected to the first stent at the second end of the first stent.
11. The stent-graft assembly according to claim 8 wherein the length of second generally cylindrical stent and the length of the third generally cylindrical stent are each less than half of the length of the first stent.
12. The stent-graft assembly according to claim 7 wherein the lining is a polymer selected from the group consisting of polyurethane, ePTFE, dimethyl terephthalate, polyester, polyethylene terephthalate and silicone.
CA002272970A 1998-05-28 1999-05-26 Endoluminal support assembly with capped ends Abandoned CA2272970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/086,781 1998-05-28
US09/086,781 US6099559A (en) 1998-05-28 1998-05-28 Endoluminal support assembly with capped ends

Publications (1)

Publication Number Publication Date
CA2272970A1 true CA2272970A1 (en) 1999-11-28

Family

ID=22200869

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002272970A Abandoned CA2272970A1 (en) 1998-05-28 1999-05-26 Endoluminal support assembly with capped ends

Country Status (5)

Country Link
US (1) US6099559A (en)
EP (1) EP0960607A1 (en)
JP (1) JPH11347133A (en)
AU (1) AU3126099A (en)
CA (1) CA2272970A1 (en)

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884029B1 (en) 1997-06-13 2004-12-22 Gary J. Becker Expandable intraluminal endoprosthesis
US6461380B1 (en) 1998-07-28 2002-10-08 Advanced Cardiovascular Systems, Inc. Stent configuration
CA2329213C (en) * 1999-01-22 2005-08-09 Gore Enterprise Holdings, Inc. Low profile stent and graft combination
US5976155A (en) 1999-03-05 1999-11-02 Advanced Cardiovascular Systems, Inc. System for removably securing a stent on a catheter assembly and method of use
US7226475B2 (en) 1999-11-09 2007-06-05 Boston Scientific Scimed, Inc. Stent with variable properties
US6428569B1 (en) * 1999-11-09 2002-08-06 Scimed Life Systems Inc. Micro structure stent configurations
US6475235B1 (en) 1999-11-16 2002-11-05 Iowa-India Investments Company, Limited Encapsulated stent preform
US6296661B1 (en) * 2000-02-01 2001-10-02 Luis A. Davila Self-expanding stent-graft
DE60121141T2 (en) * 2000-03-09 2007-05-31 Design & Performance - Cyprus Ltd. STENT WITH HOLLOW FASTENINGS
WO2001066037A2 (en) * 2000-03-09 2001-09-13 Diseño Y Desarrollo Médico, S.A. De C.V. Intraluminal prosthesis
US6929658B1 (en) 2000-03-09 2005-08-16 Design & Performance-Cyprus Limited Stent with cover connectors
US6436132B1 (en) 2000-03-30 2002-08-20 Advanced Cardiovascular Systems, Inc. Composite intraluminal prostheses
US6585747B1 (en) 2000-04-14 2003-07-01 Advanced Cardiovascular Systems, Inc. Interdigitating polymeric endcap for enhanced stent retention
US6680126B1 (en) * 2000-04-27 2004-01-20 Applied Thin Films, Inc. Highly anisotropic ceramic thermal barrier coating materials and related composites
US20030114918A1 (en) * 2000-04-28 2003-06-19 Garrison Michi E. Stent graft assembly and method
US6616689B1 (en) 2000-05-03 2003-09-09 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6613078B1 (en) * 2000-08-02 2003-09-02 Hector Daniel Barone Multi-component endoluminal graft assembly, use thereof and method of implanting
US7118592B1 (en) 2000-09-12 2006-10-10 Advanced Cardiovascular Systems, Inc. Covered stent assembly for reduced-shortening during stent expansion
US6929660B1 (en) 2000-12-22 2005-08-16 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6641607B1 (en) 2000-12-29 2003-11-04 Advanced Cardiovascular Systems, Inc. Double tube stent
US20010044650A1 (en) * 2001-01-12 2001-11-22 Simso Eric J. Stent for in-stent restenosis
US6620191B1 (en) 2001-03-27 2003-09-16 Advanced Cardiovascular Systems, Inc. System for releasably securing a stent on a catheter assembly and method of use
US6764505B1 (en) 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
US7862495B2 (en) 2001-05-31 2011-01-04 Advanced Cardiovascular Systems, Inc. Radiation or drug delivery source with activity gradient to minimize edge effects
US6939373B2 (en) * 2003-08-20 2005-09-06 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6629994B2 (en) 2001-06-11 2003-10-07 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6666880B1 (en) 2001-06-19 2003-12-23 Advised Cardiovascular Systems, Inc. Method and system for securing a coated stent to a balloon catheter
US6635083B1 (en) 2001-06-25 2003-10-21 Advanced Cardiovascular Systems, Inc. Stent with non-linear links and method of use
US6749629B1 (en) 2001-06-27 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent pattern with figure-eights
US6656216B1 (en) 2001-06-29 2003-12-02 Advanced Cardiovascular Systems, Inc. Composite stent with regioselective material
US6979346B1 (en) 2001-08-08 2005-12-27 Advanced Cardiovascular Systems, Inc. System and method for improved stent retention
US7399312B2 (en) 2001-10-10 2008-07-15 Scimed Life Systems, Inc. Stent design with sheath attachment members
GR1004173B (en) * 2001-10-31 2003-02-26 Μεντισπες Ιατροφαρμακευτικων Ειδων Ανωνυμη Εμπορικη Και Βιομηχανικη Εταιρεια Α.Ε.Β.Ε. Metallic stent with arms for the fixation and implantation of biological grafts
US7060089B2 (en) * 2002-01-23 2006-06-13 Boston Scientific Scimed, Inc. Multi-layer stent
US6656220B1 (en) 2002-06-17 2003-12-02 Advanced Cardiovascular Systems, Inc. Intravascular stent
US7169178B1 (en) 2002-11-12 2007-01-30 Advanced Cardiovascular Systems, Inc. Stent with drug coating
US8282678B2 (en) * 2002-11-13 2012-10-09 Allium Medical Solutions Ltd. Endoluminal lining
US20040148001A1 (en) * 2003-01-24 2004-07-29 Nolting John E. Solvent-bonded stent-graft assembly
US20050009074A1 (en) * 2003-07-07 2005-01-13 Medtronic Vascular, Inc. Implantable monitor of vulnerable plaque and other disease states
CN1741773A (en) * 2003-07-29 2006-03-01 太雄医疗器株式会社 Self-expandable stent
US20080264102A1 (en) 2004-02-23 2008-10-30 Bolton Medical, Inc. Sheath Capture Device for Stent Graft Delivery System and Method for Operating Same
US8500792B2 (en) 2003-09-03 2013-08-06 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US9198786B2 (en) 2003-09-03 2015-12-01 Bolton Medical, Inc. Lumen repair device with capture structure
US8292943B2 (en) 2003-09-03 2012-10-23 Bolton Medical, Inc. Stent graft with longitudinal support member
US20070198078A1 (en) * 2003-09-03 2007-08-23 Bolton Medical, Inc. Delivery system and method for self-centering a Proximal end of a stent graft
US11259945B2 (en) 2003-09-03 2022-03-01 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US11596537B2 (en) 2003-09-03 2023-03-07 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US7763063B2 (en) * 2003-09-03 2010-07-27 Bolton Medical, Inc. Self-aligning stent graft delivery system, kit, and method
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US7189255B2 (en) * 2003-10-28 2007-03-13 Cordis Corporation Prosthesis support ring assembly
IL158960A0 (en) 2003-11-19 2004-05-12 Neovasc Medical Ltd Vascular implant
US7497872B2 (en) * 2004-03-08 2009-03-03 Cook Incorporated Retainer for a stent-graft
US20050278017A1 (en) * 2004-06-09 2005-12-15 Scimed Life Systems, Inc. Overlapped stents for scaffolding, flexibility and MRI compatibility
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
GB0419954D0 (en) 2004-09-08 2004-10-13 Advotek Medical Devices Ltd System for directing therapy
US20080140172A1 (en) * 2004-12-13 2008-06-12 Robert Hunt Carpenter Multi-Wall Expandable Device Capable Of Drug Delivery Related Applications
US20070043418A1 (en) * 2005-08-19 2007-02-22 Medlogics Device Corporation Hybrid lumen-supporting stents having self-expanding end segments
US20070050011A1 (en) * 2005-08-26 2007-03-01 Medlogics Device Corporation Lumen-supporting stents and methods for creating lumen-supporting stents with various open/closed designs
US8187318B2 (en) 2005-08-31 2012-05-29 Advanced Bio Prosthetic Surfaces, Ltd. Covered stent with proximal and distal attachment, delivery catheter, and method of making same
US8043366B2 (en) 2005-09-08 2011-10-25 Boston Scientific Scimed, Inc. Overlapping stent
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US20070191926A1 (en) * 2006-02-14 2007-08-16 Advanced Cardiovascular Systems, Inc. Stent pattern for high stent retention
US8784477B2 (en) * 2011-01-05 2014-07-22 Abbott Cardiovascular Systems Inc. Stent graft with two layer ePTFE layer system with high plasticity and high rigidity
US20130190676A1 (en) 2006-04-20 2013-07-25 Limflow Gmbh Devices and methods for fluid flow through body passages
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
GB0617219D0 (en) * 2006-08-31 2006-10-11 Barts & London Nhs Trust Blood vessel prosthesis and delivery apparatus
US8778009B2 (en) * 2006-10-06 2014-07-15 Abbott Cardiovascular Systems Inc. Intravascular stent
US20080177376A1 (en) * 2007-01-18 2008-07-24 Medtronic Vascular, Inc. Stent With Improved Flexibility and Method for Making Same
US20080255606A1 (en) * 2007-04-16 2008-10-16 Medtronic Vascular, Inc. Filtering device for use within a body lumen
US10154917B2 (en) * 2007-06-22 2018-12-18 C. R. Bard, Inc. Helical and segmented stent-graft
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
GB2476451A (en) 2009-11-19 2011-06-29 Cook William Europ Stent Graft
US8728145B2 (en) 2008-12-11 2014-05-20 Cook Medical Technologies Llc Low profile non-symmetrical stents and stent-grafts
AU2015275256B2 (en) * 2007-12-26 2016-11-24 Cook Medical Technologies Llc Prosthesis
US8992593B2 (en) 2007-12-26 2015-03-31 Cook Medical Technologies Llc Apparatus and methods for deployment of a modular stent-graft system
US9180030B2 (en) 2007-12-26 2015-11-10 Cook Medical Technologies Llc Low profile non-symmetrical stent
US8574284B2 (en) 2007-12-26 2013-11-05 Cook Medical Technologies Llc Low profile non-symmetrical bare alignment stents with graft
US9226813B2 (en) 2007-12-26 2016-01-05 Cook Medical Technologies Llc Low profile non-symmetrical stent
GB0803302D0 (en) * 2008-02-22 2008-04-02 Barts & London Nhs Trust Blood vessel prosthesis and delivery apparatus
US10028747B2 (en) 2008-05-01 2018-07-24 Aneuclose Llc Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm
US10716573B2 (en) 2008-05-01 2020-07-21 Aneuclose Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm
WO2010005524A2 (en) 2008-06-30 2010-01-14 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
KR20110138350A (en) 2009-03-13 2011-12-27 볼턴 메디컬 인코퍼레이티드 System and method for deploying an endoluminal prosthesis at a surgical site
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm
US9757263B2 (en) 2009-11-18 2017-09-12 Cook Medical Technologies Llc Stent graft and introducer assembly
EP2608840B1 (en) 2010-08-26 2017-10-25 Acandis GmbH & Co. KG Electrode for medical applications, system having an electrode, and method for producing an electrode
DE102010035543A1 (en) 2010-08-26 2012-03-01 Acandis Gmbh & Co. Kg Medical device and system with such a device
WO2012052982A1 (en) 2010-10-22 2012-04-26 Neuravi Limited Clot engagement and removal system
DE102011115902B4 (en) * 2010-12-22 2021-07-01 Bentley Innomed Gmbh Stent-graft and its use
US11259824B2 (en) 2011-03-09 2022-03-01 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
EP2683309B1 (en) 2011-03-09 2021-04-21 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
JP5767494B2 (en) * 2011-03-28 2015-08-19 株式会社カネカ Covered stent, stent delivery catheter, and method for manufacturing covered stent
EP2606854B1 (en) * 2011-12-22 2016-10-19 Cook Medical Technologies LLC Low profile non-symmetrical stents and stent grafts
EP2846743B1 (en) 2012-04-12 2016-12-14 Bolton Medical Inc. Vascular prosthetic delivery device
CN105101912B (en) 2013-03-08 2017-08-29 林弗洛公司 There is provided or maintain the method and system of the fluid stream by body passage
US10561509B2 (en) 2013-03-13 2020-02-18 DePuy Synthes Products, Inc. Braided stent with expansion ring and method of delivery
WO2014140092A2 (en) 2013-03-14 2014-09-18 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
TR201820525T4 (en) 2013-03-14 2019-01-21 Neuravi Ltd A clot removal device for removing an occlusive clot from a blood vessel.
WO2014143750A1 (en) 2013-03-15 2014-09-18 Boston Scientific Scimed, Inc. Anti-migration micropatterned stent coating
US9439751B2 (en) 2013-03-15 2016-09-13 Bolton Medical, Inc. Hemostasis valve and delivery systems
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
KR101602389B1 (en) * 2014-05-13 2016-03-10 주식회사 엠아이텍 Stent and making method thereof
US10206796B2 (en) 2014-08-27 2019-02-19 DePuy Synthes Products, Inc. Multi-strand implant with enhanced radiopacity
US10617435B2 (en) 2014-11-26 2020-04-14 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
ES2920773T3 (en) 2014-11-26 2022-08-09 Neuravi Ltd A clot removal device to remove an occlusive clot from a blood vessel
US11253278B2 (en) 2014-11-26 2022-02-22 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US10076428B2 (en) 2016-08-25 2018-09-18 DePuy Synthes Products, Inc. Expansion ring for a braided stent
AU2017324233A1 (en) 2016-09-06 2019-04-04 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
US10292851B2 (en) 2016-09-30 2019-05-21 DePuy Synthes Products, Inc. Self-expanding device delivery apparatus with dual function bump
CN110730634A (en) 2017-04-10 2020-01-24 林弗洛公司 Apparatus and method for treating the vasculature of a lower limb
US10238513B2 (en) 2017-07-19 2019-03-26 Abbott Cardiovascular Systems Inc. Intravascular stent
KR102112820B1 (en) * 2017-12-01 2020-05-19 주식회사 비씨엠 A Stent
EP3801310A1 (en) 2018-06-11 2021-04-14 Boston Scientific Scimed Inc. Sphincterotomes and methods for using sphincterotomes
AU2019204522A1 (en) 2018-07-30 2020-02-13 DePuy Synthes Products, Inc. Systems and methods of manufacturing and using an expansion ring
US10456280B1 (en) 2018-08-06 2019-10-29 DePuy Synthes Products, Inc. Systems and methods of using a braided implant
US10278848B1 (en) 2018-08-06 2019-05-07 DePuy Synthes Products, Inc. Stent delivery with expansion assisting delivery wire
US10842498B2 (en) 2018-09-13 2020-11-24 Neuravi Limited Systems and methods of restoring perfusion to a vessel
US11406416B2 (en) 2018-10-02 2022-08-09 Neuravi Limited Joint assembly for vasculature obstruction capture device
AU2019359268A1 (en) 2018-10-09 2021-04-08 Limflow Gmbh Devices and methods for catheter alignment
US11039944B2 (en) 2018-12-27 2021-06-22 DePuy Synthes Products, Inc. Braided stent system with one or more expansion rings
US11712231B2 (en) 2019-10-29 2023-08-01 Neuravi Limited Proximal locking assembly design for dual stent mechanical thrombectomy device
WO2021087294A1 (en) 2019-11-01 2021-05-06 Limflow Gmbh Devices and methods for increasing blood perfusion to a distal extremity
US11517340B2 (en) 2019-12-03 2022-12-06 Neuravi Limited Stentriever devices for removing an occlusive clot from a vessel and methods thereof
US11730501B2 (en) 2020-04-17 2023-08-22 Neuravi Limited Floating clot retrieval device for removing clots from a blood vessel
US11717308B2 (en) 2020-04-17 2023-08-08 Neuravi Limited Clot retrieval device for removing heterogeneous clots from a blood vessel
US11871946B2 (en) 2020-04-17 2024-01-16 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11737771B2 (en) 2020-06-18 2023-08-29 Neuravi Limited Dual channel thrombectomy device
US11395669B2 (en) 2020-06-23 2022-07-26 Neuravi Limited Clot retrieval device with flexible collapsible frame
US11439418B2 (en) 2020-06-23 2022-09-13 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11864781B2 (en) 2020-09-23 2024-01-09 Neuravi Limited Rotating frame thrombectomy device

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604762A (en) * 1981-02-13 1986-08-12 Thoratec Laboratories Corporation Arterial graft prosthesis
SE446372B (en) * 1983-02-03 1986-09-08 Medinvent Sa BLOODKERL PROTES FOR USE AS SHUNT BETWEEN BLOODKERL
US5669936A (en) * 1983-12-09 1997-09-23 Endovascular Technologies, Inc. Endovascular grafting system and method for use therewith
US5275622A (en) * 1983-12-09 1994-01-04 Harrison Medical Technologies, Inc. Endovascular grafting apparatus, system and method and devices for use therewith
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US4994071A (en) * 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
FR2662632B1 (en) * 1990-05-30 1992-10-30 Plastic Omnium Cie PROCESS FOR PRODUCING THIN TUBES IN FLUORINATED RESIN, IN PARTICULAR IN POLYTETRAFLUORETHYLENE.
US5578071A (en) * 1990-06-11 1996-11-26 Parodi; Juan C. Aortic graft
US5360443A (en) * 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
WO1992006734A1 (en) * 1990-10-18 1992-04-30 Ho Young Song Self-expanding endovascular stent
CA2202800A1 (en) * 1991-04-11 1992-10-12 Alec A. Piplani Endovascular graft having bifurcation and apparatus and method for deploying the same
US5282860A (en) * 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
US5720776A (en) * 1991-10-25 1998-02-24 Cook Incorporated Barb and expandable transluminal graft prosthesis for repair of aneurysm
CA2079417C (en) 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
FR2683449A1 (en) * 1991-11-08 1993-05-14 Cardon Alain ENDOPROTHESIS FOR TRANSLUMINAL IMPLANTATION.
US5316023A (en) * 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5683448A (en) * 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5591224A (en) * 1992-03-19 1997-01-07 Medtronic, Inc. Bioelastomeric stent
DE69333161T2 (en) * 1992-05-08 2004-06-03 Schneider (Usa) Inc., Plymouth Stent for the esophagus
US5507771A (en) * 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5449382A (en) * 1992-11-04 1995-09-12 Dayton; Michael P. Minimally invasive bioactivated endoprosthesis for vessel repair
BE1006440A3 (en) * 1992-12-21 1994-08-30 Dereume Jean Pierre Georges Em Luminal endoprosthesis AND METHOD OF PREPARATION.
AU689094B2 (en) * 1993-04-22 1998-03-26 C.R. Bard Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
DE69317548T2 (en) * 1993-04-23 1998-08-13 Schneider Europ Gmbh Stent with a coating of elastic material and method for applying the coating on the stent
US5735892A (en) * 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5632772A (en) * 1993-10-21 1997-05-27 Corvita Corporation Expandable supportive branched endoluminal grafts
US5639278A (en) * 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5723004A (en) * 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
DE69419877T2 (en) * 1993-11-04 1999-12-16 Bard Inc C R Fixed vascular prosthesis
US5609627A (en) * 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
DE29522101U1 (en) * 1994-06-08 1999-12-09 Cardiovascular Concepts Inc Endoluminal prosthesis
DE69530891T2 (en) * 1994-06-27 2004-05-13 Corvita Corp., Miami Bistable luminal graft endoprostheses
US5522881A (en) * 1994-06-28 1996-06-04 Meadox Medicals, Inc. Implantable tubular prosthesis having integral cuffs
US5653743A (en) * 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
AU708360B2 (en) * 1994-09-15 1999-08-05 C.R. Bard Inc. Hooked endoprosthesis
US5522882A (en) * 1994-10-21 1996-06-04 Impra, Inc. Method and apparatus for balloon expandable stent-graft delivery
DE69532966T2 (en) * 1994-11-09 2004-10-21 Endotex Interventional Sys Inc COMBINATION OF DELIVERY CATHETER AND IMPLANT FOR AN ANEURYSMA
AU3783195A (en) * 1994-11-15 1996-05-23 Advanced Cardiovascular Systems Inc. Intraluminal stent for attaching a graft
US5637113A (en) * 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
AU4757596A (en) * 1995-01-14 1996-07-31 Prograft Medical, Inc. Kink-resistant stent-graft
EP0810845A2 (en) * 1995-02-22 1997-12-10 Menlo Care Inc. Covered expanding mesh stent
US5556414A (en) * 1995-03-08 1996-09-17 Wayne State University Composite intraluminal graft
US6124523A (en) * 1995-03-10 2000-09-26 Impra, Inc. Encapsulated stent
US5641373A (en) * 1995-04-17 1997-06-24 Baxter International Inc. Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5628786A (en) * 1995-05-12 1997-05-13 Impra, Inc. Radially expandable vascular graft with resistance to longitudinal compression and method of making same
EP0836449B1 (en) * 1995-06-06 2003-08-27 Endotex Interventional Systems, Inc. Prosthetic graft for aneurysm repair
US5591195A (en) * 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US5628788A (en) * 1995-11-07 1997-05-13 Corvita Corporation Self-expanding endoluminal stent-graft
US5788626A (en) * 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
CA2199890C (en) * 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
NZ331269A (en) * 1996-04-10 2000-01-28 Advanced Cardiovascular System Expandable stent, its structural strength varying along its length
US5741326A (en) * 1996-07-15 1998-04-21 Cordis Corporation Low profile thermally set wrapped cover for a percutaneously deployed stent
DE19720115C2 (en) * 1997-05-14 1999-05-20 Jomed Implantate Gmbh Stent graft

Also Published As

Publication number Publication date
EP0960607A1 (en) 1999-12-01
US6099559A (en) 2000-08-08
AU3126099A (en) 1999-12-09
JPH11347133A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
US6099559A (en) Endoluminal support assembly with capped ends
US7799064B2 (en) Bifurcated stent and delivery system
US8632579B2 (en) Bifurcated stent and delivery system
CA2649381C (en) Balloon expandable stent with a self-expanding portion
US5556414A (en) Composite intraluminal graft
EP0969777B1 (en) Coiled sheet stent having helical articulation and methods of use
US6695877B2 (en) Bifurcated stent
US6533807B2 (en) Radially-expandable stent and delivery system
EP0876805B1 (en) Intravascular stent and stent delivery system for ostial vessel obstructions
US6238409B1 (en) Articulated expandable intraluminal stent
US8012197B2 (en) Hybrid ballon expandable/self-expanding stent
US20050154447A1 (en) Ostium stent system
US7628806B2 (en) Stent with improved resistance to migration
US20020123790A1 (en) Enhanced engagement member for anchoring prosthetic devices in body lumen
US20090259299A1 (en) Side Branch Stent Having a Proximal Flexible Material Section

Legal Events

Date Code Title Description
FZDE Dead