CA2194867C - Annuloplasty distensible ring - Google Patents

Annuloplasty distensible ring Download PDF

Info

Publication number
CA2194867C
CA2194867C CA002194867A CA2194867A CA2194867C CA 2194867 C CA2194867 C CA 2194867C CA 002194867 A CA002194867 A CA 002194867A CA 2194867 A CA2194867 A CA 2194867A CA 2194867 C CA2194867 C CA 2194867C
Authority
CA
Canada
Prior art keywords
ring
segment
annuloplasty ring
segments
distensible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002194867A
Other languages
French (fr)
Other versions
CA2194867A1 (en
Inventor
Alexandre Carpentier
Alain F. Carpentier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Lifesciences Corp
Original Assignee
Edwards Lifesciences Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edwards Lifesciences Corp filed Critical Edwards Lifesciences Corp
Publication of CA2194867A1 publication Critical patent/CA2194867A1/en
Application granted granted Critical
Publication of CA2194867C publication Critical patent/CA2194867C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • A61F2/2448D-shaped rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0082Additional features; Implant or prostheses properties not otherwise provided for specially designed for children, e.g. having means for adjusting to their growth

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

The distensible annuloplasty ring which may be enlarged, in situ, by application of dilaroty pressure by way of a balloon or other dilating apparatus. The distensible annuloplasty ring of the invention is usable in pediatric patients whose growth, subsequent to surgical implantation of the ring, will necessitate subsequent enlargement of the ring to accommodate growth of the annulus. The invention includes a transluminal and/or transeptal method for post-implantation enlargement of the annuloplasty ring via catheter.

Description

21~48~'~
DISTENSIBLE ANNULOPLASTY RING FOR SURGICAL REMODELLING
OF AN ATRIOVENTRICULAR VALVE AND NONSURGICAL METHOD
FOR POST-IMPLANTATION DISTENSION THEREOF
TO ACCOMMODATE PATIENT GROWTH
Field of the Invention The present invention relates generally to medical devices, and more particularly to annuloplasty ring useable for surgical correction of certain disorders of the atrio-ventricular (i.e., mitral and tricuspid) valves of the human heart.
Background of the Invention In many patients who suffer from disfunction of the mitral and/of tricuspid valves) of the heart, surgical repair of the valve (i.e. "valvuloplasty") is a desirable alternative to valve replacement. One specific group of patients who are typically candidates for such surgery are children who suffer from congenital atrioventricular septal defect (AVSD) .
Remodelling of the valve annulus (i.e. "annuloplasty") is central to many reconstructive valvuloplasty procedures.
Such remodelling of the valve annulus may be accomplished by implantation of a prosthetic ring (i.e. "annuloplasty ring") to stabilize the annulus and to correct or prevent valvular insufficiency which may result from defect or disfunction of the valve annulus.
The prior art has included numerous annuloplasty rings, such as those described in United States Patents Nos: 4,042,979 (Angell); 4,290,151 (Massana); 4,898,446 (Reed); 4,602,911 (Ahmadi et al.); 5,061,277 (Carpentier et al.); and 5,201,880 (Wright et al.), as well as International Patent Publication WO 91/17721 and Foreign Patent Publication SU197710.
One problem associated with the annuloplasty rings of the prior art is that, when such annuloplasty rings are implanted into children (such as pediatric patients with 219486' AVSD) the subsequent growth of the patient may render the annuloplasty ring too small for its intended function.
Thus, follow-up surgery my be necessary to replace the originally implanted annuloplasty ring with a larger ring suitable for the then-current size of the patient.
Although some of the annuloplasty rings of the pr-for art have incorporated means for adjusting the size of the ring at the time of implantation, applicant is aware of no prior art annuloplasty ring which is constructed and equipped for post-implantation size adjustment, in situ, to accommodate changes in annular size due to growth of the patient.
Summary of the Invention The present invention provides a distensible annuloplasty ring which may be expanded, in situ, by way of a transvascularly and/or transeptally positionable valve expansion apparatus.
In accordance with a presently preferred embodiment of the invention, the annuloplasty ring may be made up of a plurality of separate segments or leaves which are slidably or movably secured to one another to form a ring having the desired configuration of the mitral or tricuspid valve annulus. When dilatory or outward pressure is exerted against the inner surface of the ring, as may be accomplished by way of a radially expandable member (e. g., a balloon or expandable wire cage) introduced within the annulus of the remodeled valve, such pressure will cause the segments or leaves to slide or distend relative to one another. Such sliding or distention of the segments or leaves will expand the ring to a larger annular size.
It is preferable that the individual segments or leaves which form the ring incorporate locator lugs and notches, or other suitable registry apparatus or frictional locator apparatus, for controlling the amount of distension which results from eawh appl=_cation of dilatory pressure, and for preventing the segments or leaves from inadvertently sl_ippin~_I or mo~,ring relative to one another.
The ring ma~% k:~e ~~overted by a stretchable or distensible sheat::)n to prevent: blood f=rom entering into and/or stagr;atincx in ~:he spaces between the articulating surfaces of the =i.ndividua:l segments or leaves. Also, a stretchable or d_istensible suture ring, formed of :needle-penetrable mater_i.al such as I:)acron mesh, i;~ mounted on the ring to faci=l.i.tate sut,~zr_~ng--in-place of the ring at the time of impla.nt.ation.
In accordancve wi.:h an alternative embodiment of the invention, the annuloplasty ring may be formed of a nonelastic polymE>r or othex, distensible material which will remain distended after t:,he application of outward dilatory pressurc:~ has been terminated.
Still f=urthc>r in accordance with the invention, there is provided a method f<7r performing remodelling annuloplasty of an atx-iove_nt=-ic,~zlar val ve, with a subsequent t.rans:Lt.~rlinal and/or t_ranseptal procedure for enlargement of the a annu:lop_~asty ring to accommodate growth of the pat::.ient.
According tc_~ one aspect of the invention, there is provided a distensible annulc:~plasty ring for implantation in a heart valve annulus, compr=i.sing:
a plurality of b=~ocompatib=1_e ring segments defining a periphery of tine ring;
a first cooperating structure formed on at least one segment; and a second coc:aperat:ing structure formed on another segment, the fir;~t and se~om:a cooperating structures engaging to previ:~r~t. contraction of the ring and allow distension thereof= .

?a According r_c~ another a.s~:;ect: of the invention, there is provided a di~;tens=ibi.e annuloplasty rind having a plurality of biooom,pat=.ib-~e ring segments defining <~
periphery of the zing hav-r:g a first. size, wherein a first cooperating struct~.;re i s formed on at: least one segment, and a :~Ec~~nd cooper~<ting structure is formed on another segment, t:-~e firjt: arid second cooperating i0 structures engagi.na to prevent vontraction of the ring and allow di.sten"i~~n t=herec: f , aCad Followed by the use of a dilation apparatus ~~nsertec; into the ring to distend the annuloplasty ring to a ss.ze larger than the first size, as a mean: to support t::e annulus of a heart ..
Further objE~cts and advantages of t:he invention wil,~
become apparent t o those ~~~,il.leca in the art , upon reading of the following Det<~;yled De~;cription of the Preferred Embodiments and consideration of the accompanying drawings.
Brief Description of the Drawings Figure 1 i:~ a part=ia1- perspective view of a first embodiment of the adjustable an~nuloplast~y ring of t:he present inventiom..
Figure 2 is a partial- cut--~~way perspective view of a second embodiment cf the ad just:~~ble annuloplasty rung~ of the present inver~.tion.

2~.~4~f'~
Figure 3 is a reduced perspective view of a third embodiment of the adjustable annuloplasty ring of the present invention.
Figure 3a is an enlarged, cut away perspective view, of a portion of the annuloplasty ring of Figure 3.
Figure 4 is a cut-away illustration of a human heart having an adjustable annuloplasty ring of the present invention implanted at the mitral position, and showing the manner in which a dilation apparatus (e. g., a balloon l0 catheter or expandable cage) may be advanced through a catheter, positioned transeptally, and utilized to effect in situ enlargement of the adjustable annuloplasty ring in accordance with the method of the present invention.
Detailed Description of the Preferred Embodiment The following detailed description and the accompanying drawings are intended to describe and show certain presently preferred embodiments of the invention only, and are not intended to limit the spirit or scope of the invention in any way.
With reference to the drawings, Figures 1-3 show alternative ways of constructing the adjustable ring members 10, 10a and lOb of the present invention. The ring members 10, 10a and lOb shown in Figures 1-3 have a generally "D-shaped" configuration which corresponds to the normal anatomical shape of the mitral valve annulus. It will be appreciated that, if these ring members 10, 10a and lOb were intended for use in remodelling of the tricuspid valve, they would have the generally round configuration of the normal anatomical shape of the tricuspid valve annulus.
The ring member 10 shown in figure 1 comprises first 12, second 14 and third 16 tubular segments. Each segment 12, 14, 16 is joined to the two other segments to form a substantially unitary ring structure. The first segment 12 is tubular in configuration, having open ends A and B into ~1~48fi7 which the corresponding ends of the second and third segments 14, 16 are inserted. The second segment 14 has a blunt tipped or closed first end C and an open tubular second end D. The third segment 16 has blunt tipped or 5 closed first and second ends E and F, respectively.
The first end C of second segment 14 is inserted into the open second end B of the first segment 12. A series of raised lugs or teeth 18a protrude from one side of the portion of the second segment 14 which inserts into the second end B of the first segment 12. A corresponding series of apertures or detents 20a is formed in the side wall of the first segment 12. The individual teeth 18a snap into and fractionally engage the individual detents 20a, as shown.
Similarly, the first end E of the third segment 16 is inserted into the open second end D of the second segment 14. A series of raised lugs or teeth 18b protrude from one side of the portion of the third segment 16 which inserts into the second end D of the second segment 14. A
corresponding series of apertures or detents 20b is formed in the side wall of the second segment 14. The individual teeth 18b snap into and fractionally engage the individual detents 20b, as shown.
Also, the second end F of the third segment 16 is inserted into the open first end A of the first segment 12.
A series of raised lugs or teeth 18c protrude from one side of the portion of the third segment 16 which inserts into the f first end A of the f first segment 12 . A corresponding series of apertures or detents 20c is formed in the sidewall of the first segment 12. The individual teeth 18c snap into and fractionally engage the individual detents 20c, as shown.
The individual teeth 18 are conf figured and constructed such that, when sufficient dilatory pressure is applied to the inner surface of the ring 10, the segments 12, 14, 16 . 219~:~~'~
will spread apart and the teeth 18 will be caused to move out of the detents 20 within which they are positioned and will slidably advance and snap into the next available detents in the series, thereby effecting one incremental increase in the annular size of the ring. Further application of additional dilatory pressure will cause the teeth 18 to move to the next available detents 20 in the series, thereby effecting a second incremental increase in size, and so on.
Figure 2 shows an alternative ring 10a comprising first and second semi-annular tubular segments 30, 32 which are joined together in end to end fashion, as shown, to form the desired annular configuration of the ring 10a.
Rack bars 34, 36 insert into the opposing open ends of the first and second tubular segments 30, 32. Teeth 18 protrude laterally from the portions of each rack bar 34, 36 which insert into the juxtaposed ends of the first and second semi-annular tubular segments 30, 32 ,as shown.
Corresponding apertures or detents 20 are formed in the side walls of the tubular members 30, 32. The individual teeth 18 snap into and fractionally engage the individual detents 20, as shown. As described here above with respect to the embodiment shown in Figure 1, the application of dilatory pressure against the inner surface of the ring 10a wyo cause the semi-annular tubular segments 30, 32 to move apart and the individual teeth 18 will advance to, and seat within, the next available detents 20, thereby causing the size of the ring 10a to increase by a predetermined incremental amount.
It will be appreciated that the components which make up the ring member 10 need not necessarily be of tubular configuration as shown in the embodiments of Figures 1 and 2. Indeed, as shown in Figure 3, the ring member 10b may comprise of a plurality of non-tubular arcuate leaves 40, 42, 44, 46 assembled in overlapping relation to one another and contained within a distensible outer sheath 50, as shown.
In any embodiment of the invention, a suture ring 52, formed of material such as Dacron Mesh TM, is mounted about the periphery of the ring member 10, is mounted about the periphery of the ring member 10, 10a, lOb to facilitate suturing-in-place of the ring member 10, 10a, lOb to surrounding anatomical tissue.
Figure 4 shows a schematic illustration of the human heart having an adjustable annuloplasty ring 10 of the present invention implanted at the mitral position therein. The anatomical structures and major blood vessels of the heart are labeled, on Figure 4, in accordance with the following legend:
PV . . . . . . Pulmonary Veins PA . . . . . . Pulmonary Artery RPA . . . . . . Right Pulmonary Artery LPA . . . . . . Left Pulmonary Artery SVC . . . . . . Superior Vena Cava IVC . . . . . . Inferior Vena Cava AO . . . . . . Aorta RA . . . . . . Right Atrium RV . . . . . . Right Ventricle LA . . . . . . Left Atrium LV . . . . . . Left Ventricle IS . . . . . . Interatrial Septum AV . . . . . . Aortic Valve Position MV . . . . . . Mural Valve Position TrV . . . . . . Tricuspid Valve PuV . . . . . . Pulmonic Valve As shown in Figure 4, one method by which the size of the annuloplasty ring 10 may be adjusted is through introduction of a guide catheter 50, via catheterization of the superior vena cava such that the distal end of the catheter is passed through the interatrial septum IS, using known septal penetration technique, and into the left atrium LA. A balloon dilation catheter 52, such as a valvuloplasty plasty catheter of the type commercially available, is then advanced through the lumen of the guide 21~486'~
catheter 50, and positioned such that the balloon 60 of the balloon catheter 52 is within the annulus of the mitral valve MV. Thereafter, the balloon 60 is inflated, as shown, to cause the adjustable annuloplasty ring 10 to expand to a larger annular configuration.
In embodiments, such as those described and shown hereabove in Figures 1-3, it will be appreciated that the balloon 60 may be expanded to a specific diameter which will evoke a single incremental increase (i.e., from one notch to the next) of the mechanical expansion-controlling system of teeth and notches formed in the annuloplasty ring 10.
Similarly, when the annuloplasty ring 10 is implanted at the tricuspid valve TrV it will be desirable to advance the guide catheter 50 through the superior vena cava SVC to a point where the distal end of the guide catheter 50 is positioned within the right atrium RA of the heart.
Thereafter, the balloon dilation catheter 52 may be advanced to a point where the distal portion of the balloon catheter 52 extends through the tricuspid valve TrV.
Thereafter, the balloon 60 will be dilated so as to expand an annuloplasty ring of the present invention (not shown) when implanted within the tricuspid valve TrV.
It will be appreciated by those skilled in the art that various modifications additions and deletions may be made to the above-described embodiments, without departing from the intended spirit and scope of the invention.
Accordingly, it is intended that all such modifications additions and deletions be included within the scope of the following claims.

Claims (13)

What is claimed is:
1. A distensible annuloplasty ring for implantation in a heart valve annulus, comprising:
a plurality of biocompatible ring segments defining a periphery of the ring;
a first cooperating structure formed on at least one segment; and a second cooperating structure formed on another segment, the first and second cooperating structures engaging to prevent contraction of the ring and allow distension thereof.
2. The distensible annuloplasty ring of claim 1, wherein said cooperating structure comprises ratcheting structure for incremental distension.
3. The distensible annuloplasty ring of claim 1 wherein a first one of the segments comprises an open tubular end and a second one of the segments comprises a closed end, and wherein the first cooperating structure comprises a plurality of apertures provided in a spaced-apart manner at the open tubular end of the first segment, and the second cooperating structure comprises a plurality of teeth provided in a spaced-apart manner at the closed end of the second segment for insertion into some of the apertures.
4. The distensible annuloplasty ring of claim 3 wherein each of the plurality of teeth further comprises:
a slanted edge and a substantially vertical edge, wherein the slanted edge allows for the tooth to be slid from one aperture into an adjacent aperture to distend the ring, and wherein tire substantially vertical edge prevents contraction of the ring.
5. The distensible annuloplasty ring of claim 1 wherein there are at least two first type of segments each comprising ar. open tubular end having a plurality of apertures provided in a spaced-apart manner, and at least one second type of segment comprising a bar having first and second ends that are insertable into the open tubular ends of the first type of segments, the bar comprising a plurality of teeth provided in a spaced-apart manner along the bar for insertion into some of the apertures of the first type of segments.
6. The distensible annuloplasty ring of claim 5 wherein each of the plurality of teeth further comprises:
a slanted edge and a substantially vertical edge, wherein the slanted edge allows for the tooth to be slid from one aperture into an adjacent aperture to distend the ring, and wherein the substantially vertical edge prevents the ring from contracting.
7. The distensible annuloplasty ring of claim 1 wherein the segments comprise:
a plurality of arcuate leaves movably coupled to one another by the first and second cooperating structure such that distention of the ring will cause the plurality of arcuate leaves to move apart from one another, thereby increasing the annular size of tree ring.
8. The distensible annuloplasty ring of claim 7 wherein the plurality of arcuate leaves comprise a first leaf and a second leaf, the first and second leaves each comprising first and second ends, and wherein first cooperating structure comprises a plurality of apertures provided in a spaced-apart manner at the first end of the first leaf, and the second cooperating structure comprises a plurality of teeth provided in a spaced-apart manner at the second end of the second leaf for insertion into some of the apertures.
9. The distansible annuloplasty ring of claim 1 further comprising a suturable material disposed on said ring to facilitate suturing-in-place of said ring to surrounding anatomical tissue.
10. The distensible annuloplasty ring of claim 9 wherein said suturable material comprises a fabric mesh.
11. The distensible annuloplasty ring of claim 1 further comprising:
a substantially impermeable sheath positioned around said ring to prevent blood from contacting said ring.
12. Use of a distensible annuloplasty ring having a plurality of biocompatible ring segments defining a periphery of the ring having a first size, wherein a first cooperating structure is formed on at least one segment, and a second cooperating structure is formed on another segment, the first and second cooperating structures engaging to prevent contraction of the ring and allow distension thereof, and followed by the use of a dilation apparatus inserted into the ring to distend the annuloplasty ring to a size larger than the first size, as a means to support the annulus of a heart.
13. Use according to claim 12, wherein said dilation apparatus comprises a balloon catheter.
CA002194867A 1994-07-29 1995-07-05 Annuloplasty distensible ring Expired - Lifetime CA2194867C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/283,059 US5593435A (en) 1994-07-29 1994-07-29 Distensible annuloplasty ring for surgical remodelling of an atrioventricular valve and nonsurgical method for post-implantation distension thereof to accommodate patient growth
US08/283,059 1994-07-29
PCT/US1995/008419 WO1996003938A1 (en) 1994-07-29 1995-07-05 Annuloplasty distensible ring

Publications (2)

Publication Number Publication Date
CA2194867A1 CA2194867A1 (en) 1996-02-15
CA2194867C true CA2194867C (en) 2003-04-08

Family

ID=23084313

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002194867A Expired - Lifetime CA2194867C (en) 1994-07-29 1995-07-05 Annuloplasty distensible ring

Country Status (7)

Country Link
US (2) US5593435A (en)
EP (1) EP0772426B1 (en)
JP (1) JP3022992B2 (en)
CA (1) CA2194867C (en)
DE (1) DE69531947T2 (en)
ES (1) ES2208682T3 (en)
WO (1) WO1996003938A1 (en)

Families Citing this family (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593435A (en) * 1994-07-29 1997-01-14 Baxter International Inc. Distensible annuloplasty ring for surgical remodelling of an atrioventricular valve and nonsurgical method for post-implantation distension thereof to accommodate patient growth
US6217610B1 (en) 1994-07-29 2001-04-17 Edwards Lifesciences Corporation Expandable annuloplasty ring
USD376206S (en) * 1995-03-24 1996-12-03 Republic Medical Inc. Heart valve locking ring
EP0871417B1 (en) * 1995-12-01 2003-10-01 Medtronic, Inc. Annuloplasty prosthesis
DE29618925U1 (en) * 1996-10-31 1997-01-23 Mahmoodi Mehrdad Mitral valve reconstruction ring
US6183411B1 (en) 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US6050936A (en) * 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US6406420B1 (en) * 1997-01-02 2002-06-18 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
AU5961498A (en) * 1997-01-29 1998-08-18 W.L. Gore & Associates, Inc. An annuloplasty ring
CA2297914C (en) * 1997-07-22 2006-10-03 Baxter International Inc. Expandable annuloplasty ring
FR2768324B1 (en) * 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US5984959A (en) * 1997-09-19 1999-11-16 United States Surgical Heart valve replacement tools and procedures
US6174332B1 (en) * 1997-12-05 2001-01-16 St. Jude Medical, Inc. Annuloplasty ring with cut zone
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6096074A (en) * 1998-01-27 2000-08-01 United States Surgical Stapling apparatus and method for heart valve replacement
US6250308B1 (en) 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
US6260552B1 (en) * 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6736845B2 (en) 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
ATE484241T1 (en) * 1999-04-09 2010-10-15 Evalve Inc METHOD AND DEVICE FOR HEART VALVE REPAIR
US7811296B2 (en) 1999-04-09 2010-10-12 Evalve, Inc. Fixation devices for variation in engagement of tissue
US8216256B2 (en) * 1999-04-09 2012-07-10 Evalve, Inc. Detachment mechanism for implantable fixation devices
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
US10327743B2 (en) * 1999-04-09 2019-06-25 Evalve, Inc. Device and methods for endoscopic annuloplasty
US7563267B2 (en) 1999-04-09 2009-07-21 Evalve, Inc. Fixation device and methods for engaging tissue
US20040044350A1 (en) 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US6797002B2 (en) * 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
US20050070999A1 (en) * 2000-02-02 2005-03-31 Spence Paul A. Heart valve repair apparatus and methods
US6537198B1 (en) * 2000-03-21 2003-03-25 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US6805711B2 (en) 2000-06-02 2004-10-19 3F Therapeutics, Inc. Expandable medical implant and percutaneous delivery
US7077861B2 (en) * 2000-07-06 2006-07-18 Medtentia Ab Annuloplasty instrument
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6616684B1 (en) * 2000-10-06 2003-09-09 Myocor, Inc. Endovascular splinting devices and methods
US8202315B2 (en) 2001-04-24 2012-06-19 Mitralign, Inc. Catheter-based annuloplasty using ventricularly positioned catheter
US20060069429A1 (en) * 2001-04-24 2006-03-30 Spence Paul A Tissue fastening systems and methods utilizing magnetic guidance
US6619291B2 (en) 2001-04-24 2003-09-16 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty
US20050125011A1 (en) * 2001-04-24 2005-06-09 Spence Paul A. Tissue fastening systems and methods utilizing magnetic guidance
US7037334B1 (en) 2001-04-24 2006-05-02 Mitralign, Inc. Method and apparatus for catheter-based annuloplasty using local plications
ITMI20011012A1 (en) * 2001-05-17 2002-11-17 Ottavio Alfieri ANNULAR PROSTHESIS FOR MITRAL VALVE
US7935145B2 (en) 2001-05-17 2011-05-03 Edwards Lifesciences Corporation Annuloplasty ring for ischemic mitral valve insuffuciency
US6726716B2 (en) * 2001-08-24 2004-04-27 Edwards Lifesciences Corporation Self-molding annuloplasty ring
US6908482B2 (en) 2001-08-28 2005-06-21 Edwards Lifesciences Corporation Three-dimensional annuloplasty ring and template
DE60227676D1 (en) 2001-09-07 2008-08-28 Mardil Inc METHOD AND DEVICE FOR EXTERNAL HEART STABILIZATION
US6805710B2 (en) * 2001-11-13 2004-10-19 Edwards Lifesciences Corporation Mitral valve annuloplasty ring for molding left ventricle geometry
US6575971B2 (en) * 2001-11-15 2003-06-10 Quantum Cor, Inc. Cardiac valve leaflet stapler device and methods thereof
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US7048754B2 (en) * 2002-03-01 2006-05-23 Evalve, Inc. Suture fasteners and methods of use
US7753922B2 (en) * 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Devices and methods for cardiac annulus stabilization and treatment
US20040243227A1 (en) * 2002-06-13 2004-12-02 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US20060122633A1 (en) * 2002-06-13 2006-06-08 John To Methods and devices for termination
US20050216078A1 (en) * 2002-06-13 2005-09-29 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US9949829B2 (en) 2002-06-13 2018-04-24 Ancora Heart, Inc. Delivery devices and methods for heart valve repair
US8287555B2 (en) 2003-02-06 2012-10-16 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7753924B2 (en) * 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US8641727B2 (en) 2002-06-13 2014-02-04 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7666193B2 (en) * 2002-06-13 2010-02-23 Guided Delivery Sytems, Inc. Delivery devices and methods for heart valve repair
US20060241656A1 (en) * 2002-06-13 2006-10-26 Starksen Niel F Delivery devices and methods for heart valve repair
AU2003245507A1 (en) * 2002-06-13 2003-12-31 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7753858B2 (en) * 2002-06-13 2010-07-13 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US7588582B2 (en) * 2002-06-13 2009-09-15 Guided Delivery Systems Inc. Methods for remodeling cardiac tissue
US7883538B2 (en) * 2002-06-13 2011-02-08 Guided Delivery Systems Inc. Methods and devices for termination
US7758637B2 (en) * 2003-02-06 2010-07-20 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US7608103B2 (en) * 2002-07-08 2009-10-27 Edwards Lifesciences Corporation Mitral valve annuloplasty ring having a posterior bow
JP4316503B2 (en) 2002-08-29 2009-08-19 ミトラルソリューションズ、インコーポレイテッド Implantable device for controlling an anatomical orifice or lumen
US8758372B2 (en) 2002-08-29 2014-06-24 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
US8979923B2 (en) * 2002-10-21 2015-03-17 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
EP1555949A4 (en) * 2002-10-21 2009-07-01 Mitralign Inc Method and apparatus for performing catheter-based annuloplasty using local plications
US7112219B2 (en) 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US7247134B2 (en) * 2002-11-12 2007-07-24 Myocor, Inc. Devices and methods for heart valve treatment
US10646229B2 (en) 2003-05-19 2020-05-12 Evalve, Inc. Fixation devices, systems and methods for engaging tissue
WO2004103223A1 (en) * 2003-05-20 2004-12-02 The Cleveland Clinic Foundation Apparatus and methods for repair of a cardiac valve
US20050038509A1 (en) * 2003-08-14 2005-02-17 Ashe Kassem Ali Valve prosthesis including a prosthetic leaflet
US7534204B2 (en) * 2003-09-03 2009-05-19 Guided Delivery Systems, Inc. Cardiac visualization devices and methods
KR100727264B1 (en) * 2003-12-15 2007-06-11 가부시키가이샤 무라타 세이사쿠쇼 Noise filter mounting structure
US20050273138A1 (en) * 2003-12-19 2005-12-08 Guided Delivery Systems, Inc. Devices and methods for anchoring tissue
US7431726B2 (en) * 2003-12-23 2008-10-07 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US8864822B2 (en) 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
US6974644B2 (en) * 2004-02-06 2005-12-13 Fuelcell Energy, Inc. Internal reforming fuel cell assembly with selectively adjustable direct and indirect internal reforming
JP4225237B2 (en) * 2004-04-21 2009-02-18 セイコーエプソン株式会社 ORGANIC EL DEVICE, METHOD FOR MANUFACTURING ORGANIC EL DEVICE, AND ELECTRONIC DEVICE
US7938856B2 (en) * 2004-05-14 2011-05-10 St. Jude Medical, Inc. Heart valve annuloplasty prosthesis sewing cuffs and methods of making same
CA2566666C (en) * 2004-05-14 2014-05-13 Evalve, Inc. Locking mechanisms for fixation devices and methods of engaging tissue
US7452376B2 (en) * 2004-05-14 2008-11-18 St. Jude Medical, Inc. Flexible, non-planar annuloplasty rings
EP2433591B1 (en) * 2004-05-14 2016-04-27 St. Jude Medical, Inc. Apparatus for holding an annuloplasty ring
US20050278022A1 (en) * 2004-06-14 2005-12-15 St. Jude Medical, Inc. Annuloplasty prostheses with improved anchoring structures, and related methods
US7396364B2 (en) 2004-06-29 2008-07-08 Micardia Corporation Cardiac valve implant with energy absorbing material
US20080183285A1 (en) * 2004-06-29 2008-07-31 Micardia Corporation Adjustable cardiac valve implant with selective dimensional adjustment
US20060015178A1 (en) * 2004-07-15 2006-01-19 Shahram Moaddeb Implants and methods for reshaping heart valves
US7635329B2 (en) 2004-09-27 2009-12-22 Evalve, Inc. Methods and devices for tissue grasping and assessment
US8052592B2 (en) * 2005-09-27 2011-11-08 Evalve, Inc. Methods and devices for tissue grasping and assessment
US20060074483A1 (en) * 2004-10-01 2006-04-06 Schrayer Howard L Method of treatment and devices for the treatment of left ventricular failure
CA2597066C (en) * 2005-02-07 2014-04-15 Evalve, Inc. Methods, systems and devices for cardiac valve repair
US8470028B2 (en) * 2005-02-07 2013-06-25 Evalve, Inc. Methods, systems and devices for cardiac valve repair
US20060206203A1 (en) * 2005-03-10 2006-09-14 Jun Yang Valvular support prosthesis
US7842085B2 (en) * 2005-03-23 2010-11-30 Vaso Adzich Annuloplasty ring and holder combination
US7575595B2 (en) 2005-03-23 2009-08-18 Edwards Lifesciences Corporation Annuloplasty ring and holder combination
EP1861045B1 (en) 2005-03-25 2015-03-04 St. Jude Medical, Cardiology Division, Inc. Apparatus for controlling the internal circumference of an anatomic orifice or lumen
US8864823B2 (en) 2005-03-25 2014-10-21 StJude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US20060247491A1 (en) * 2005-04-27 2006-11-02 Vidlund Robert M Devices and methods for heart valve treatment
US8685083B2 (en) * 2005-06-27 2014-04-01 Edwards Lifesciences Corporation Apparatus, system, and method for treatment of posterior leaflet prolapse
US8951285B2 (en) * 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US20070055206A1 (en) * 2005-08-10 2007-03-08 Guided Delivery Systems, Inc. Methods and devices for deployment of tissue anchors
BRPI0617066A2 (en) 2005-09-07 2011-07-12 Medtentia Ab heart valve function enhancement devices and method
US20070055368A1 (en) * 2005-09-07 2007-03-08 Richard Rhee Slotted annuloplasty ring
WO2007033360A2 (en) * 2005-09-14 2007-03-22 Micardia Corporation Left atrial balloon catheter
EP1968492A2 (en) * 2005-12-15 2008-09-17 Georgia Technology Research Corporation Systems and methods to control the dimension of a heart valve
CA2668988A1 (en) * 2005-12-15 2007-09-07 Georgia Tech Research Corporation Systems and methods for enabling heart valve replacement
WO2007100408A2 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Papillary muscle position control devices, systems & methods
US20070179602A1 (en) * 2006-01-27 2007-08-02 Genesee Biomedical, Inc. Method and Devices For Cardiac Valve Annulus Expansion
EP2029053B1 (en) * 2006-05-15 2011-02-23 Edwards Lifesciences AG A system for altering the geometry of the heart
MX2008014769A (en) * 2006-05-19 2009-07-02 Mitralsolutions Inc Implantable devices for controlling the size and shape of an anatomical structure or lumen.
US7879087B2 (en) 2006-10-06 2011-02-01 Edwards Lifesciences Corporation Mitral and tricuspid annuloplasty rings
AU2007330338A1 (en) * 2006-12-05 2008-06-12 Valtech Cardio, Ltd. Segmented ring placement
CA2674485A1 (en) 2007-01-03 2008-07-17 Mitralsolutions, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
WO2008081450A2 (en) * 2007-01-03 2008-07-10 Medical Research Fund At The Tel Aviv Sourasky Medical Center Device and method for remodeling a heart valve
US20080177380A1 (en) * 2007-01-19 2008-07-24 Starksen Niel F Methods and devices for heart tissue repair
EP2109419B1 (en) * 2007-02-09 2017-01-04 Edwards Lifesciences Corporation Progressively sized annuloplasty rings
US8911461B2 (en) 2007-03-13 2014-12-16 Mitralign, Inc. Suture cutter and method of cutting suture
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US8845723B2 (en) 2007-03-13 2014-09-30 Mitralign, Inc. Systems and methods for introducing elements into tissue
US8529620B2 (en) * 2007-05-01 2013-09-10 Ottavio Alfieri Inwardly-bowed tricuspid annuloplasty ring
US20090216322A1 (en) * 2007-08-10 2009-08-27 Le Le Adjustable annuloplasty ring and activation system
EP2185107B1 (en) 2007-09-07 2017-01-25 Edwards Lifesciences Corporation Active holder for annuloplasty ring delivery
WO2009100242A2 (en) 2008-02-06 2009-08-13 Guided Delivery Systems, Inc. Multi-window guide tunnel
SG155783A1 (en) * 2008-03-12 2009-10-29 Theodoros Kofidis An improved device and method for implantation of a prosthesis
US8152844B2 (en) 2008-05-09 2012-04-10 Edwards Lifesciences Corporation Quick-release annuloplasty ring holder
US20090287303A1 (en) 2008-05-13 2009-11-19 Edwards Lifesciences Corporation Physiologically harmonized tricuspid annuloplasty ring
US8287591B2 (en) * 2008-09-19 2012-10-16 Edwards Lifesciences Corporation Transformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation
US9314335B2 (en) 2008-09-19 2016-04-19 Edwards Lifesciences Corporation Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation
US9375310B2 (en) 2012-12-31 2016-06-28 Edwards Lifesciences Corporation Surgical heart valves adapted for post-implant expansion
EP2349020B1 (en) 2008-10-10 2020-06-03 Ancora Heart, Inc. Tether tensioning device
AU2009302169B2 (en) 2008-10-10 2016-01-14 Ancora Heart, Inc. Termination devices and related methods
US20100198192A1 (en) 2009-01-20 2010-08-05 Eugene Serina Anchor deployment devices and related methods
US8808371B2 (en) 2009-01-22 2014-08-19 St. Jude Medical, Cardiology Division, Inc. Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring
EP2477555B1 (en) 2009-09-15 2013-12-25 Evalve, Inc. Device for cardiac valve repair
US20110160849A1 (en) * 2009-12-22 2011-06-30 Edwards Lifesciences Corporation Bimodal tricuspid annuloplasty ring
US8449608B2 (en) * 2010-01-22 2013-05-28 Edwards Lifesciences Corporation Tricuspid ring
US9107749B2 (en) 2010-02-03 2015-08-18 Edwards Lifesciences Corporation Methods for treating a heart
BR112013004115B1 (en) 2010-08-24 2021-01-05 Edwards Lifesciences Corporation annuloplasty ring
EP2611387B1 (en) 2010-08-31 2017-06-14 Edwards Lifesciences Corporation Physiologic tricuspid annuloplasty ring
US9861350B2 (en) 2010-09-03 2018-01-09 Ancora Heart, Inc. Devices and methods for anchoring tissue
US8932350B2 (en) 2010-11-30 2015-01-13 Edwards Lifesciences Corporation Reduced dehiscence annuloplasty ring
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8945177B2 (en) 2011-09-13 2015-02-03 Abbott Cardiovascular Systems Inc. Gripper pusher mechanism for tissue apposition systems
US8920493B2 (en) 2011-09-16 2014-12-30 St. Jude Medical, Cardiology Division, Inc. Systems and methods for holding annuloplasty rings
US10543085B2 (en) 2012-12-31 2020-01-28 Edwards Lifesciences Corporation One-piece heart valve stents adapted for post-implant expansion
US10588746B2 (en) * 2013-03-08 2020-03-17 Carnegie Mellon University Expandable implantable conduit
US9687346B2 (en) 2013-03-14 2017-06-27 Edwards Lifesciences Corporation Multi-stranded heat set annuloplasty rings
CN103251464B (en) * 2013-05-17 2015-09-02 中国人民解放军第二军医大学 A kind of adjustable mitral valvuloplasty device
CN103271782B (en) * 2013-05-17 2016-05-04 中国人民解放军第二军医大学 A kind of adjustable Tricusp Valvuloplasty device
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
US10390943B2 (en) 2014-03-17 2019-08-27 Evalve, Inc. Double orifice device for transcatheter mitral valve replacement
ES2908178T3 (en) 2014-06-18 2022-04-28 Polares Medical Inc Mitral valve implants for the treatment of valvular regurgitation
ES2914153T3 (en) 2014-06-24 2022-06-07 Polares Medical Inc Systems to anchor an implant
US10188392B2 (en) 2014-12-19 2019-01-29 Abbott Cardiovascular Systems, Inc. Grasping for tissue repair
EP3265004B1 (en) 2015-03-05 2023-06-28 Ancora Heart, Inc. Devices of visualizing and determining depth of penetration in cardiac tissue
US10524912B2 (en) 2015-04-02 2020-01-07 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
DE102015107242B4 (en) * 2015-05-08 2022-11-03 Highlife Sas System for implanting an implant around a peripheral tissue structure in a heart and method for placing and delivering an implant on a guidewire of such a system
WO2016183386A1 (en) 2015-05-12 2016-11-17 Guided Delivery Systems Inc. Device and method for releasing catheters from cardiac structures
US10314707B2 (en) 2015-06-09 2019-06-11 Edwards Lifesciences, Llc Asymmetric mitral annuloplasty band
US10376673B2 (en) 2015-06-19 2019-08-13 Evalve, Inc. Catheter guiding system and methods
US10238494B2 (en) 2015-06-29 2019-03-26 Evalve, Inc. Self-aligning radiopaque ring
CR20170597A (en) 2015-07-02 2018-04-20 Edwards Lifesciences Corp INTEGRATED HYBRID HEART VALVES
CN107735051B (en) 2015-07-02 2020-07-31 爱德华兹生命科学公司 Hybrid heart valve adapted for post-implant expansion
US10667815B2 (en) 2015-07-21 2020-06-02 Evalve, Inc. Tissue grasping devices and related methods
US10413408B2 (en) 2015-08-06 2019-09-17 Evalve, Inc. Delivery catheter systems, methods, and devices
US10238495B2 (en) 2015-10-09 2019-03-26 Evalve, Inc. Delivery catheter handle and methods of use
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
EP3416593B1 (en) 2016-02-16 2024-04-03 Children's Medical Center Corporation Autonomously growing implantable device
US10736632B2 (en) 2016-07-06 2020-08-11 Evalve, Inc. Methods and devices for valve clip excision
US11071564B2 (en) 2016-10-05 2021-07-27 Evalve, Inc. Cardiac valve cutting device
US10722356B2 (en) 2016-11-03 2020-07-28 Edwards Lifesciences Corporation Prosthetic mitral valve holders
US10363138B2 (en) 2016-11-09 2019-07-30 Evalve, Inc. Devices for adjusting the curvature of cardiac valve structures
US10398553B2 (en) 2016-11-11 2019-09-03 Evalve, Inc. Opposing disk device for grasping cardiac valve tissue
US10426616B2 (en) 2016-11-17 2019-10-01 Evalve, Inc. Cardiac implant delivery system
CN116746975A (en) 2016-11-18 2023-09-15 复心公司 Myocardial implant load sharing apparatus and method for promoting LV function
US10779837B2 (en) 2016-12-08 2020-09-22 Evalve, Inc. Adjustable arm device for grasping tissues
US10314586B2 (en) 2016-12-13 2019-06-11 Evalve, Inc. Rotatable device and method for fixing tricuspid valve tissue
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
EP3595587A4 (en) 2017-03-13 2020-11-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US11065119B2 (en) 2017-05-12 2021-07-20 Evalve, Inc. Long arm valve repair clip
USD944398S1 (en) 2018-06-13 2022-02-22 Edwards Lifesciences Corporation Expanded heart valve stent
CN112437651B (en) 2018-07-30 2024-01-16 爱德华兹生命科学公司 Minimally Invasive Low Strain Annuloplasty Ring
WO2021011659A1 (en) 2019-07-15 2021-01-21 Ancora Heart, Inc. Devices and methods for tether cutting
WO2021126778A1 (en) 2019-12-16 2021-06-24 Edwards Lifesciences Corporation Valve holder assembly with suture looping protection
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2306671A1 (en) * 1975-04-11 1976-11-05 Rhone Poulenc Ind VALVULAR IMPLANT
CA1069652A (en) * 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
US4042979A (en) * 1976-07-12 1977-08-23 Angell William W Valvuloplasty ring and prosthetic method
US4164046A (en) * 1977-05-16 1979-08-14 Cooley Denton Valve prosthesis
US4183102A (en) * 1977-09-08 1980-01-15 Jacques Guiset Inflatable prosthetic device for lining a body duct
ES244903Y (en) * 1979-07-31 1980-12-01 ADJUSTABLE CANCELLATION OF PROSTHESIS FOR CARDIAC SURGERY
US4345340A (en) * 1981-05-07 1982-08-24 Vascor, Inc. Stent for mitral/tricuspid heart valve
US4489446A (en) * 1982-07-14 1984-12-25 Reed Charles C Heart valve prosthesis
DE3230858C2 (en) * 1982-08-19 1985-01-24 Ahmadi, Ali, Dr. med., 7809 Denzlingen Ring prosthesis
US4535483A (en) * 1983-01-17 1985-08-20 Hemex, Inc. Suture rings for heart valves
CA1303298C (en) * 1986-08-06 1992-06-16 Alain Carpentier Flexible cardiac valvular support prosthesis
IT1218951B (en) * 1988-01-12 1990-04-24 Mario Morea PROSTHETIC DEVICE FOR SURGICAL CORRECTION OF TRICUSPIDAL INSUFFICENCE
US4917698A (en) * 1988-12-22 1990-04-17 Baxter International Inc. Multi-segmented annuloplasty ring prosthesis
US5628790A (en) * 1989-07-25 1997-05-13 Smith & Nephew, Inc. Zirconium oxide zirconium nitride coated valvular annuloplasty rings
FR2662074A1 (en) * 1990-05-17 1991-11-22 Seguin Jacques PROSTHETIC RING FOR MITRAL OR TRICUSPID ANNULOPLASTY.
US5071431A (en) * 1990-11-07 1991-12-10 Carbomedics, Inc. Suture rings for heart valves and method of securing suture rings to heart valves
US5064431A (en) * 1991-01-16 1991-11-12 St. Jude Medical Incorporated Annuloplasty ring
US5258021A (en) * 1992-01-27 1993-11-02 Duran Carlos G Sigmoid valve annuloplasty ring
US5306296A (en) * 1992-08-21 1994-04-26 Medtronic, Inc. Annuloplasty and suture rings
US5201880A (en) * 1992-01-27 1993-04-13 Pioneering Technologies, Inc. Mitral and tricuspid annuloplasty rings
US5163953A (en) * 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
FR2708458B1 (en) * 1993-08-03 1995-09-15 Seguin Jacques Prosthetic ring for cardiac surgery.
US5593435A (en) * 1994-07-29 1997-01-14 Baxter International Inc. Distensible annuloplasty ring for surgical remodelling of an atrioventricular valve and nonsurgical method for post-implantation distension thereof to accommodate patient growth
US5593424A (en) * 1994-08-10 1997-01-14 Segmed, Inc. Apparatus and method for reducing and stabilizing the circumference of a vascular structure
EP0871417B1 (en) * 1995-12-01 2003-10-01 Medtronic, Inc. Annuloplasty prosthesis
US5716397A (en) * 1996-12-06 1998-02-10 Medtronic, Inc. Annuloplasty device with removable stiffening element

Also Published As

Publication number Publication date
US5593435A (en) 1997-01-14
DE69531947T2 (en) 2004-08-12
JPH10503399A (en) 1998-03-31
EP0772426A1 (en) 1997-05-14
DE69531947D1 (en) 2003-11-20
WO1996003938A1 (en) 1996-02-15
CA2194867A1 (en) 1996-02-15
US5888240A (en) 1999-03-30
JP3022992B2 (en) 2000-03-21
ES2208682T3 (en) 2004-06-16
EP0772426B1 (en) 2003-10-15

Similar Documents

Publication Publication Date Title
CA2194867C (en) Annuloplasty distensible ring
US6217610B1 (en) Expandable annuloplasty ring
EP0996393B1 (en) Expandable annuloplasty ring
CN106999273B (en) Segmented transcatheter valve prosthesis with unsupported valve segment
EP1626682B1 (en) Apparatus for repair of a cardiac valve
EP1690515B1 (en) Cardiac-valve prosthesis
EP1570809B1 (en) Cardiac-valve prosthesis
US6951571B1 (en) Valve implanting device
EP1418865B1 (en) Self-moulding annuloplasty ring
US20040210307A1 (en) Percutaneous transcatheter heart valve replacement
US20220323245A1 (en) Radially self-expanding stents
CA3116158A1 (en) Transcatheter pulmonic regenerative valve
US20220008233A1 (en) Self-growing heart valves
US20200352709A1 (en) Frame for prosthetic heart valve
US20240115376A1 (en) Prosthetic transcatheter heart valve (thv) system
US20240041595A1 (en) Geometrically-accommodating heart valve replacement device
EP4353192A1 (en) Valve prosthesis having depth of implant and clocking markers
WO2022177853A1 (en) Injectable or percutaneous automatic repair device and method for inserting the same

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20150706