CA2192623C - Medication vial/syringe liquid/transfer apparatus - Google Patents

Medication vial/syringe liquid/transfer apparatus Download PDF

Info

Publication number
CA2192623C
CA2192623C CA 2192623 CA2192623A CA2192623C CA 2192623 C CA2192623 C CA 2192623C CA 2192623 CA2192623 CA 2192623 CA 2192623 A CA2192623 A CA 2192623A CA 2192623 C CA2192623 C CA 2192623C
Authority
CA
Canada
Prior art keywords
vial
liquid
coupling
coupling end
syringe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 2192623
Other languages
French (fr)
Other versions
CA2192623A1 (en
Inventor
Steven F. Peterson
Michael F. Deily
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bioject Inc
Original Assignee
Bioject Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioject Inc filed Critical Bioject Inc
Publication of CA2192623A1 publication Critical patent/CA2192623A1/en
Application granted granted Critical
Publication of CA2192623C publication Critical patent/CA2192623C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2096Combination of a vial and a syringe for transferring or mixing their contents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/2006Piercing means
    • A61J1/201Piercing means having one piercing end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J2200/00General characteristics or adaptations
    • A61J2200/10Coring prevention means, e.g. for plug or septum piecing members

Abstract

Liquid-transfer apparatus, and methodology employing the same, operatively interposable a syringe and a vial, and accommodating both a single-mouth-size (single-size), two-vial transfer procedure, and a two-mouth-size (two-size), two-vial transfer procedure. The apparatus includes a liquid-transfer device having a syringe-coupling end, a vial-coupling end, and liquid-passage structure effectively communicating between these ends. In the case of accommodating a single-mouth-size (single-size), two-vial procedure, only the liquid-transfer device is employed, and the same is sized with a vial-coupling end that is constructed for direct coupling to the top of the single-size vial which is used. In the case of accommodating a two-mouth-size (two-size), two-vial operation, the liquid-transfer device is employed along with a vial-coupling adaptor which is removably receivable in a connected relationship with the vial-coupling end in the device to adapt the same for coupling to the top of a vial having the smaller of the two sizes of vials which are to be employed. Under these circumstances, the entire procedure begins with coupling of the apparatus to a syringe and to the smaller-size vial, with the vial-coupling adaptor connected to the liquid-transfer device's vial-coupling end. Following a liquid-transfer operation with this smaller vial, the same is decoupled, and such decoupling automatically disconnects the vial-coupling adaptor and the liquid-transfer device.
Thereafter, a vial of the larger size is coupled to the vial-coupling end in the liquid-transfer device, and a transfer procedure is completed between the syringe and the larger coupled vial.

Description

His 6"' MEDICATION VIAL/SYRINGE LIQUID-TRAhtSFER APPARATUS
Technical Field The present invention relates to liquid-transfer apparatus which is interposabIe a syringe and a medication vial for facilitating the passage of liquid therebetween during the preparation of a dispensible pharmaceutical.
Background and Summary of the Invention In the field of medicine, it is often the case that liquid pharmaceuticals must be prepared for delivery to a patient by a syringe. Such preparation typically involves the withdrawing into a syringe of a diluent liquid contained in a first vial, the subsequent injection of that liquid from the syringe into a second vial which contains a blendable, dissolvable medicine in powder form, and thereafter the withdrawal of the now-blended pharmaceutical medicine from that second vial back into the syringe. It is most frequently, though not always, the situation that the first vial from which diluent liquid is withdrawn is smaller (in mouth-opening-diameter size) than the second vial wherein blending occurs -- which second vial has a larger mouth-opening-diameter size. A
procedure falling within this category is referred to herein as involving first a smaller-size vial, and thereafter a larger-size vial. One should note that such references to smaller, and larger vial sizes are related to mouth-opening sizes, and not necessarily to vial volume sizes. In the balance of preparation situations, two vials of the same mouth-opening size are employed throughout the operation.
To aid in the practice of such back-and-forth transfer/delivery of liquid between a vial and a syringe, and to take into account safety and health concerns regarding, infer alia, contaminization, loss of sterilization, and exposure of medical personnel to injuries from sharps (such as hypodermic needles), prior work in this field has witnessed the creation and development of various liquid-transfer devices, or interfaces, which allow both for convenient coupling to a syringe and to a vial for liquid transfer, and for minimization of the several kinds of safety and health concerns just mentioned.
Two issues which are not well addressed by known prior art approaches to such liquid-transfer requirements are, first, that highly convenient accommodation of transfer apparatus to the handling of two different vial sizes has not been offered, and second, that a testy problem, referred to as "foaming", has not apparently been well addressed. Foaming is a bubbling action which can and does readily occur during that part of a liquid-transfer process wherein diluent is injected into a vial containing dissolvable powdered medicine. Foaming introduces problematic air bubbles which must be removed before any delivery to a patient.
Accordingly, it is desired to provide an improved form of liquid-transfer apparatus which offers all of the key advantages of known prior art devices aimed at this purpose, but which, in addition, avoids the drawbacks (i.e., the not well-addressed issues) mentioned above.
The invention provides an elongate, unitary liquid-transfer device operatively interposable between a syringe and a vial, and which is constructed for use with a vial of the type including a vessel with a mouth closed by a pierceable stopper, and where the stopper includes a hollow-interior, central, annular, projecting wall structure with an open end defining a cup with a base facing the interior of the vessel, said device comprising a syringe-coupling end, a vial-coupling end, and liquid-passage structure including an elongate channel extending axially centrally in said device from said syringe-coupling end toward said vial-coupling end, and at least one laterally facing port communicating with said channel adjacent said vial-coupling end, said liquid-passage structure, at the region of communication between said channel and said port, being constructed to limit liquid flow out of said port predominantly to generally radial flow relative to the length of said channel, said vial-coupling end being constructed whereby, with the device coupled to such a vial, said port is located within the stopper's cup and closely adjacent the cup's base.
The invention also provides liquid-transfer apparatus operatively interposable between a syringe and a vial, and accommodating sequential operative coupling first to the top of a vial having one size, and thereafter to the top of a vial having another, larger size, said apparatus comprising a liquid-transfer device including a syringe-coupling end, a vial-coupling end and liquid-passage structure effectively communicating between said ends, said vial-coupling end being sized for direct coupling to the top of a vial having such other, larger size, and a vial-coupling adaptor removably receivable in a connected relationship with said vial-coupling end to adapt the same for coupling of the apparatus to the top of a vial having such smaller, one size.
2a The invention further provides a method of transferring liquid between a syringe and a vial, where the vial is of the type including a pierceable stopper having an inwardly facing cup with an inwardly facing base, said method comprising utilizing a transfer device which includes a syringe-coupling end, a vial-coupling end, and liquid-passage structure communicating therebetween and including at least one laterally-facing port open adjacent the vial-coupling end, coupling a selected syringe and a selected vial to such respective ends, and by said coupling action, as such relates to the selected vial, piercing the vial's stopper and establishing a coupled condition with the vial wherein the mentioned port in the liquid-passage structure is positioned within the vial's stopper's cup, closely adjacent the cup's base.
The invention further provides a method of transferring liquid between a syringe and a vial under circumstances that require accommodating sequential operative coupling first to the top of the vial having one size, and thereafter to the top of a vial having another larger size, said method comprising utilizing liquid-transfer apparatus which includes a liquid-transfer device including a syringe-coupling end, a vial-coupling end sized to receive directly the top of a vial having such other, larger size, and liquid-passage structure communicating between these ends, and a vial-coupling adaptor removably receivable in a connected relationship with the mentioned vial-coupling end to adapt the same 2b for coupling of the apparatus to the top of a vial having such smaller, one size, establishing a connected relationship between the liquid-transfer device and the vial-coupling adaptor, coupling a selected syringe and a selected vial having such smaller, one size, performing a liquid-transfer operation between the selected syringe and the selected vial, decoupling the first selected vial, and by said decoupling automatically disconnecting the vial-coupling adaptor and the liquid-transfer device, selecting a second vial of the type characterized by such other, larger size and coupling the same to the vial-coupling end in the liquid-transfer device, and performing at least one other liquid-transfer operation.
The disclosed apparatus readily and easily accommodates transfers back and forth of liquid between a syringe and vials of the same size, as well as such transfers between a syringe and vials of two different sizes.
The transfer apparatus which uniquely creates an "ejection"
liquid-flow into a vial that contains dissolvable powdered medicine in a fashion that greatly minimizes, and in very many instances completely avoids, the problem mentioned above known as foaming.
The apparatus includes a ported spike which pierces and extends through the usual elastomeric stopper found in a vial, and, further, is constructed in such a manner that with the 2c spike piercing a conventional stopper, ports in the spike are contained within the usually present inwardly facing "cup" in the stopper, and in particular, in a condition closely adjacent the base in the cup. This ensures a situation wherein it is possible, predictably, and with no special effort required, and during withdrawing of liquid from a vial, to gather substantially all of the liquid in that vial.
Considering what we view to be the preferred organization of the present invention, that organization takes fi,mdamentally two different forms. In one form, which form is desired to deal with the situation where only vials of the same size are ever used, the apparatus of the invention employs but a single unit, which we refer to as a liquid-transfer device. This device has a syringe-coupling end, a vial-coupling end which is sized to accommodate coupling to the particular single vial size that will be encountered, and special liquid passage structure which e;~tends effectively for communication between the two mentioned ends of the device. The second organizational form of the invention is aimed at addressing, inter alia, the situation where two different sizes of vials need to be coupled-to during a preparation operation. In this form of the invention, two components are employed. One of these is a liquid-transfer device of the kind just mentioned above, with this transfer device being sized, at its vial-coupling end, to accommodate coupling to the larger size of the two vials which will be addressed. The other component takes the form of a slider/adaptor that fits in a connected (such as nested), removable relationship with respect to the vial-coupling end in the transfer device to accommodate direct coupling to a vial of the smaller of the two vial sizes which will be addressed.
wth respect to both of these two forms of the invention, when an appropriate vial (of arty size) is coupled-to for a liquid-transfer operation, and under circumstances where liquid is being -, ~ ~:~~ °~~
injected through the transfer device into an attached vial, the liquid passage structure mentioned above directs liquid flow into the vial via a pair of tiny, laterally facing ports which reside, relatively positionally, within the hollow interior of an annular projection formed in the vial's stopper, which hollow interior faces the interior of the vial. This conventional annular projection and hollow interior thereof define what is referred to herein as a cup that faces (axially) the interior of the associated vial, and the port in the apparatus of the invention is located within the interior of this cup and closely adjacent the base of the cup. With this relationship extant -- a relationship which exists because of certain special constructional features proposed according to the invention --and with the two ports organized as generally described, liquid flow into a vial is predominantly generally radial in nature, and IO uniquely suited to creating major liquid :low into the vial down the inside wall of the vial to minimize foaming.
Another feature of this kind of relationship which exists between the ports of the invention and the stopper's cup under circumstances where liquid is being withdrawn from a vial is that, with appropriate inversion of a val, substantially all of liquid content can easily be withdrawn.
These and other objects, features and advantages which are offered by the present invention will become more fully apparent as the description that now follows is read in conjunction with the accompanying drawings.
Description of the Drawings Fig. I is a side elevation of apparatus constructed in accordance with the present 20 invention, displayed horizontally alongside a conventional syringe with respect to which it is intended for use. The apparatus of the invention (pictured in cross section in the figure) includes two elements (shown separated), both of which are employed according to ~ one organization of the invention ~~ ~ ~ ~~~ =w .
designed to handle two different sizes of vials, and one only of which is employed according to another organization of the invention wherein only a single-size vial is involved.
Fig. 2 is a view, on a larger scale than that employed in Fib. 1, of the two invention components pictured in Fib. 1.
Fig. 2A is an enlarged, fragmentary detail taken generally along line 2 A-2A
in Fig. ?.
Fig. 3 is a view on about the same scale as that used in Fig. 2, illustrating the two "separated" components of Fig. 2 assembled horizontally in such a fashion that the left-hand component in the figure is slidably nested within structure That forms part of the right-hand component in the figure.
Fig. 4 is a side view, partly in cross section, illustrating what is referred to herein as a smaller-size vial, with this vial displayed in a vertical or upright condition.
Fig. 5 is an upright side view, partly in cross section, of what is referred to herein as a larger-size vial.
Fig. 6 snows the apparatus and syringe of Fig. 1 in fially-assembled form in a condition of readiness to begin a pharmaceutical preparation operation involving the sequential coupling to two different vial sizes, beginning with coupling to a smaller vial size, and ending with coupling to a lamer vial size, as will shortly be explained.
Figs. 7-14, inclusive, illustrate stages in the use of the apparatus of this invention to perform a liquid pharmaceutical preparation of the most commonly encountered type which requires sequential coupling to two different sizes of vials, commencing with the smaller one of these two sizes.
Various features illustrated in the drawings, though close to, are not necessarily depicted in enact scale and/or proportion.

Detailed Description of, and Best Mode for Carrvina Out, the invention Turning attention now to the drawings, and referring first of ail to Figs. 1 and 2, indicated generally at 20, in non-attached, non-coupled condition, is liquid-transfer apparatus constructed in accordance with the present invention. This apparatus is intended for use, as will be explained, with a conventional syringe, such as the syringe shown in Fig. 1 at 22. Apparatus 20 irciudes what we refer to herein as a liquid-transfer device 24, and a vial-coupling adaptor 26. In the most commonly used form of the invention, both device ?4 and adaptor 26 are employed. In a somewhat less common application, only device 24 is employed. Initially, the description of the invention herein will proceed with the view that both device 24 and adaptor 26 are used. Following that description will come a description of how the invention is employed utilizing only device 24.
Syringe 22 which, as has been mentioned, is a conventional syringe, includes a body 22a having a communication end 22b which is, in the specinc style of syringe illustrated, threaded for a so-called (and well-known) Luer-type screw connection, and an elongate plunger 22c. While syringe 22 is described and illustrated herein in conjunction with having a Luer-type screw connection at its communication end, it could just as well be formed with what is known as a Luer-type tapered compression (non-screw) connection at that end, or, in fact, with any other type of appropriate connection.
Focussing attention now on the details of construction of the two invention components illustrated; transfer device 24, which preferably is formed of a suitable molded thermoplastic material, includes a syringe-coupling end 24a that joins unitarily with a vial-coupling end 24b. _End 24a is constructed, as illustrated herein, with threading projection structure 24c which accommodates a screw connection with communication end 22b of syringe 22. It should be understood, of course, that end 24a can be constructed accordingly to accommodate connection with syringes having various other styles of communication ends. Device 24 is, in large part, a body of revolution which is centered on and about a longitudinal axis shown at 28.
End 24b is formed with a central vial-stopper-piercing spike 24d which is symmetrically circumsurrounded by an annular shroud/collar .4e, on the inside cylindrical wall of which are formed plural, distributed, slightly domed protuberances, such as protuberance 24_f. These protuberances, of which there are six, equiangularly distributed, are disposed close to the left open face of end 24b in Figs. 1 and 2. As will be explained later, they function as a vial-grip structure.
Extending axially centrally into end 24a, and partially into end 24b via spike 24d, is what can be thought of as, generally, a stepped-diameter central channel 24g.
The right end of channel 24g in Figs. l and 2 is open along axis 28, whereas the left end of this channel in these figures is barriered across axis 28 by a generally planar barrier wall ?4h. Wall 24h extends in a plane which is substantially normal to axis 28.
Considering now Fig. 2A along with Fias. 1 and 2, communicating with the left end of channel 24g in Figs. 1 and 2 are two, generally rectangular, laterally-facing ports 24i. Focusing attention especially on Fig. 2A, each of ports 24i has a width, measured as indicated by the letter W, lying within the range of about 0.02- to about 0.03-inches, and preferably toward the lower end of this range. The length of each port, indicated by L, preferably lies within the range of about 0.02- to about 0.03-inches. Dimensions W and L, referred to herein as transverse dimensions, and as seen in Fig. 2A, mark the lateral boundaries of what is referred to herein as an exit profile for the port which has an area lying within the range of about 0.0004-in2 to about 0.0009-in'', and preferably witty an area toward the lower end of this range. In the particular embodiment now being described dimension W is slightly >~i~ ~,, ~-~
!~ =ho , war smaller than dimension L. Barrier wall 24h is refer, ed to herein as at least partially defining a region of communication between channel 24g and ports 24i. The channel and ports are referred to collectively herein as a liquid-passage structure.
In relation to the delivery of liquid through device 24 from end 24a toward end 24b, end 24a is referred to as the upstream end of the device, and end 24b as the downstream end. Such liquid delivery results in ejection of liquid from ports 24i which is limited predominantly to generally radial flow relative to long axis 28.
Continuing a description of device 24, and in the context of the apparatus of the invention being used in conjunction with two different sizes of vials, the inside of shroud/coilar 24e is sized to receive, directly and moderately snugly, the banded mouth end (top) of the larger one of the two vial sizes involved. In particular, it is adapted to receive this vial end in such a fashion that what we refer to as the underside shoulder of the band in the vial is borne against, and grripped in place, by protuberances 24_f. This condition is clearly illustrated in, and will be mentioned again in conjunction with, anotrer drawing figure still to be discussed. A special feature to note at this point is that, effectively, protuberances 24f are located downstream from ports 24i relative to channel 24g. It is this relationship which results in important positioning of ports 24i within the cup of the typical vial stopper -- a condition also still to be described in relation with a yet-to-be-discussed, other drawing figure.
Adaptor 26 is preferably formed of a suitable molded thermoplastic material.
It includes an outer cylindrical skirt portion, or skirt, 26a, extending inwardly from the left end of which in Figs. 1 and 2 are plural, conicallv converging spring fingers, such as those shown at 26b. Extending circumferentially around the outside of skirt 26a at an appropriate location axially therealong, which location will be discussed more fully shortly, is a shallow ~oove 26c. The left side or end of adaptor 26 in Figs. 1 and 2 is referred to herein as its vial-facing end.

6.~ Tt P':
Considering Fig. 3, now along with Figs. 1 and 2, adaptor 26 is intended to coact with transfer device 24 to adapt the same for dealing with the smaller-size vial that is employed in a two-size, two-vial preparation operation. At the beginning of such an operation, adaptor 26 is inserted slidably into shroud/collar 24e to the received position indicated in Fig. 3.
In this received position, protuberances 24f snap, in a detent-like way, into groove 26c, thus to tend to retain device 24 and adaptor 26 in a fit-together connected condition. The particular connected condition, or relationship, illustrated in Fig. 3 is one that we refer to as a "nested" condition. Other fit-together, connected conditions could, of course, be used.
During operation of the apparatus of the invention with the mentioned smaller-size vial, when the top of that vial is coupled to the apparatus, the underside shoulder of the band surrounding the mouth in that vial is borne against, and gripped by, the inner free ends of fingers 26b in adaptor 26.
These fingers, therefore, are referred to also herein as vial-grip structure.
Looking especially at what is illustrated in Fig. 3, in the embodiment of the invention now being described, with device 24 and adaptor 26 in the relative positions indicated in Fig. 3, one can see that the free ends of the fingers are located "downstream" from ports 24i.
Fig. 4 illustrates at ~0 what is referred to herein as a smaller-size vial, and Fig. ~
illustrates at 32 what is referred to herein as a larder-size vial. The most commonly used vial sizes today in the field of medicine are referred to as 13-mm vials and 20-mm vials, and accordingly, the apparatus of the invention now being described is specifically sized to handle these two sizes of vials.
These two discussions are vial mouth diameter dimensions. It should be evident to those skilled in the art that the apparatus could be sized to handle other specific vial sizes if so desired.
Vial 30 includes a vessel 34 with a mouth 34a which is closed off by an elastomeric stopper 36 that is held in sealing relationship with mouth 34a by an annular band, typically a metallic band, 38 which has what we refer to herein as an underside shoulder 38a. The upper central surface of stopper 36 is exposed for piercing to gain access to the interior of the vessel, and the underside of this stopper, as pictured in Fig. 4, includes a hollow-interior, central, annular projecting wall structure 36a which has an open end (the lower end in Fig. 4) facing, axially, the interior of vessel 34. This open end defines in stopper 36 a cup 36b that has a downwardly facing base 36c. In a two-size, two-vial procedure, the smaller-size vial, like vial 30, contains an appropriate liquid diluent.
wth the exception of the fact that vial 32 is larger than vial 34, vial 32 is, generically in other respects, substantially the same as vial 30. Thus, vial 32 includes a vessel 40 with a mouth 40a which is closed by an elastomeric stopper 42 that is held in sealing relationship with the vessel by an annular band 44 which has an underside shoulder 44a. Stopper 42 includes a wall structure 42a which is somewhat like previously-mentioned wall structure 36a, and a cup 42b which is somewhat like previously-mentioned cup 36b. Cup 42b has a downwardly facing base 42c.
In a two-size, two-vial procedure, the larger-size vial, like vial 32, contains, at least initially, powdered medicine which is dissolvable in and by the diluent contained in the smaller-size vial.
Having thus now described the constituent elements of the apparatus of the present invention, and the external structures (syringe and vials) with respect to which the invention is intended for use, let us now launch into a typical two-size, two-vial liquid pharmaceutical preparation procedure.
As was mentioned earlier, Fig. 6 in the drawings illustrates the beginning of the procedure wherein device 24 and adaptor 26 are fit together, and the communication end of syringe 22 is coupled to syringe-coupling end 24a in device 24.
This assemblage is then confronted with the mouth end of a diluent-containing, smailer-size vial, like vial 30, and as pictured in Fig. 7, these two separated elements are driven toward one another until the vial is fully coupled to the transfer apparatus -- a condition illustrated in Fig. 3. The ' 1 r l'r, ,, ,r ~j L~ ~!
conical organization of fingers 26b tends to guide and direct the vial centrally into vial-coupling end 24b_, and into a condition with spike 24d centrally piercing the stopper in the vial. The inner ends of fingers 26b bear against the underside shoulder of the band in the vial, and tend to hold the vial in place against involuntary ejection under the now-present influence of the deflected central portion of the vial's stopper.
Focusing attention on Fig. 9 which, as has been mentioned, is an enlarged detail derived from Fig. 8, one can see the central deflection which exists in the stopper, and that ports 24i are received well within the stopper's cup in the stopper in the vial, and closely adjacent the base of the cup.
Preferably, now, by up-ending tl'~is filly connected organization so that vial 30 is inverted, the plunger in the syringe is withdrawn, as indicated by the arrow in Fig. 8, to draw liquid diluent from the vial into the body of the syringe. The fact that ports 24i are well within the cup in the stopper, and closely adjacent the base of the cup, results in substantial assurance that essentially all of the liquid in the vial will be gathered.
Ne,~ct, the now-emptied small vial is withdrawn by pulling it to the left away from the coupled syringe, as indicated in Fig. 10, with such withdrawal action automatically causing adaptor 26 to separate from device 24 and to remain attached to the smaller vial. Such convenient, automatic separation of adaptor 26 and device 24 is an advantageous feature of the apparatus of the invention.
Next, and looking now at Fig. 11, the mouth end of a larger-size vial, such as vial 32, is directed as indicated toward vial-coupling end 24b, with the portion of shroud/collar 24e which extends longitudinally beyond spike 26d tending to gather, guide and centralize the mouth end of the vial relative to spike 24d. This action results in full coupling of the larder vial with device 24, as indicated in Fig. 12. Under these circumstances, and now referring to Fig. 13, along with Fig. 12, one ~~ ~~"°~
can see that the underside shoulder of the band in vial 32 is borne against and therefore gripped by protuberances 24~ and that ports 24i are positioned within the cup in the vial's stopper closely adjacent the base of that cup. Protuberances 24f tend to hold this larger vial in place against the same land of involuntary ejection mentioned earlier -- such ejection being promoted under the influence of central deflection in the stopper, which deflection is clearly evident in Fig. 13.
The plunger in the syringe is then moved as indicated by the double-ended arrow in Fig. 12, first inwardly into the body of the syringe to eject diluent liquid into vial 32 for the purpose of mixing and blending with the dry powdered medicine initially resident in vial 32, and after mixing, then outwardly from the body of the syringe to extract fully-blended pharmaceutical liquid.
With the construction of the apparatus of the invention as described, and considering the construction of the liquid-passage structure, liquid ejected into vial 32 exits ports 24i substantially radially against the adjacent surfaces of the stopper cup, and this action tends to cause liquid entering the vial to flow outwardly and downwardly along the inside wall of the vessel in the vial so as to minimize unwanted foaming. Ordinarily, this ejection activity takes place with the vial generally upright, or at least at some upwardly inclined angle. Withdrawing of blended material from vial 32 is typically accomplished by inverting the coupled assemblage so that substantially all of the blended material in the vial ultimately gathers near the base of the stopper's cup where it is readily accessible for extraction through into ports 24i.
With the syringe now filled with a fully-prepared dispensible liquid pharmaceutical, the syringe is decoupled from device 24 as indicated by Fig. 14.
In modern practice, the constituent elements of the apparatus of the invention are not re-used, and so remain with the now-spent vials with which they are discharged.

_ ~ i;, Reviewing very briefly an aspect of the procedure which has just been described, one should note that, because of the positional relationship which exists in each case where a vial is fully coupled for liquid transfer, the acting vial-grip structure is positioned relative to ports 24i in such a manner that the ports become properly positioned witrin the associated stopper cup.
Under circumstances where the apparatus of the invention is intended to be used in a single-size, two-vial procedure, only a device like liquid-transfer device 24 needs to be employed. The manner of practicing this procedure should be clear from the description which has just been given above, recognizing that decoupling of the first-used val in the procedure is done without removing device 24 from the communication end of a coupled syringe.
Accordingly, the apparatus of the invention clearly meets the objectives and offer s the advantages ascribed to it earlier herein. For example, it affords ready accommodation both of same-vial-sizes and of different-vial-sizes in a very easy manner. Foaming problems are greatly minimized, if not all together avoided. Gathering and withdrawing of liquid from a vial is facilitated by the close positioning which exists between the ports in the apparatus of the invention and the base of a cup in the stopper of a coupled vial.
While a preferred structural form of the invention has been described and illustrated herein, we appreciate that certain variations and modifications may be made without departing from the spirit of the invention.

Claims (23)

1. An elongate, unitary liquid-transfer device operatively interposable between a syringe and a vial, and which is constructed for use with a vial of the type including a vessel with a mouth closed by a pierceable stopper, and where the stopper includes a hollow-interior, central, annular, projecting wall structure with an open end defining a cup with a base facing the interior of the vessel, said device comprising a syringe-coupling end, a vial-coupling end, and liquid-passage structure including an elongate channel extending axially centrally in said device from said syringe-coupling end toward said vial-coupling end, and at least one laterally facing port communicating with said channel adjacent said vial-coupling end, said liquid-passage structure, at the region of communication between said channel and said port, being constructed to limit liquid flow out of said port predominantly to generally radial flow relative to the length of said channel, said vial-coupling end being constructed whereby, with the device coupled to such a vial, said port is located within the stopper's cup and closely adjacent the cup's base.
2. The device of claim 1 which further includes vial-grip structure located adjacent said vial-coupling end.
3. The device of claim 2, wherein said vial-grip structure is located downstream from said port relative to said channel.
4. The device of claim 1, 2 or 3, wherein said region of communication between said channel and said port is at least partially defined by a generally planar barrier wall which extends in a plane substantially normal to the length of said channel.
5. The device of any one of claims 1 to 4, wherein said vial-coupling end is formed with a central vial-stopper-piercing spike which includes both said port and a portion of said channel, and an annular shroud/collar symmetrically circumsurrounding said spike.
6. The device of claim 5, wherein said shroud/collar projects longitudinally beyond said spike.
7. The device of claim 2, wherein said vial-coupling end is formed with a central vial-stopper-piercing spike which includes both said port and a portion of said channel, and an annular shroud/collar symmetrically circumsurrounding said spike, and said vial-grip structure includes at least one protuberance formed on the inside wall of said shroud/collar, with said protuberance located downstream relative to said port.
8. The device of any one of claims 1 to 7, wherein said port has an exit profile which has maximum transverse dimensions that lie in the range of about 0.02- to about 0.03-inches.
9. The device of claim 8, wherein said exit profile has a cross-sectional area in the range of about 0.0004-in2 to about 0.0009-in2.
10. Liquid-transfer apparatus operatively interposable between a syringe and a vial, and accommodating sequential operative coupling first to the top of a vial having one size, and thereafter to the top of a vial having another, larger size, said apparatus comprising a liquid-transfer device including a syringe-coupling end, a vial-coupling end and liquid-passage structure effectively communicating between said ends, said vial-coupling end being sized for direct coupling to the top of a vial having such other, larger size, and a vial-coupling adaptor removably receivable in a connected relationship with said vial-coupling end to adapt the same for coupling of the apparatus to the top of a vial having such smaller, one size.
11. The apparatus of claim 10, wherein the connected relationship mentioned is a nested relationship.
12. The apparatus of claim 10 or claim 11, wherein said liquid-passage structure includes an elongate channel extending axially centrally in said device from said syringe-coupling end toward said vial-coupling end, and at least one laterally facing port communicating with said channel adjacent said vial-coupling end, said liquid-passage structure, at the region of communication between said channel and said port, being constructed to limit liquid flow out of said port predominantly to generally radial flow relative to the length of said channel.
13. The apparatus of claim 12, wherein said port has an exit profile which has maximum transverse dimensions that lie in the range of about 0.02- to about 0.03-inches.
14. The apparatus of claim 13, wherein said exit profile has a cross-sectional area in the range of about 0.0004-in2 to about 0.0009-in2.
15. The apparatus of any one of claims 12 to 14, wherein said liquid-transfer device further includes vial-grip structure located adjacent said vial-coupling end.
16. The apparatus of claim 15, wherein said vial-grip structure is disposed downstream from said port relative to said channel.
17. The apparatus of claim 12, wherein said adaptor includes vial-grip structure.
18. The apparatus of claim 17 in which, with the adaptor in a connected relationship with said vial-coupling end, said vial-grip structure is positioned downstream from said port relative to said channel.
19. The apparatus of claims 15, 16, 17 or 18 which is constructed for use with such different-sized vials each of a type including a vessel, with a mouth closed by a pierceable stopper, and where each such stopper includes a hollow-interior, central, annular, projecting wall structure with an open end defining a cup with a base facing the interior of the vessel, and wherein the positional relationship which exists between said port and said vial-grip structure, under circumstances with the device coupled to such a vial, is such that said port is located within the stopper's cup and closely adjacent the cup's base.

17a
20. The apparatus of claim 10, wherein said vial-coupling end includes an annular shroud/collar sized to receive the top of a vial having such other, larger size, and said adaptor takes the form generally of an annular slider, slidably fittable within said shroud/collar.
21. The apparatus of claim 20, wherein said slider includes a vial-facing end, and conically distributed spring fingers converging inwardly from said end, which fingers act as a vial-grip structure.
22. A method of transferring liquid between a syringe and a vial, where the vial is of the type including a pierceable stopper having an inwardly facing cup with an inwardly facing base, said method comprising utilizing a transfer device which includes a syringe-coupling end, a vial-coupling end, and liquid-passage structure communicating therebetween and including at least one laterally-facing port open adjacent the vial-coupling end, coupling a selected syringe and a selected vial 17b to such respective ends, and by said coupling action, as such relates to the selected vial, piercing the vial's stopper and establishing a coupled condition with the vial wherein the mentioned port in the liquid-passage structure is positioned within the vial's stopper's cup, closely adjacent the cup's base.
23. A method of transferring liquid between a syringe and a vial under circumstances that require accommodating sequential operative coupling first to the top of the vial having one size, and thereafter to the top of a vial having another larger size, said method comprising utilizing liquid-transfer apparatus which includes a liquid-transfer device including a syringe-coupling end, a vial-coupling end sized to receive directly the top of a vial having such other, larger size, and liquid-passage structure communicating between these ends, and a vial-coupling adaptor removably receivable in a connected relationship with the mentioned vial-coupling end to adapt the same for coupling of the apparatus to the top of a vial having such smaller, one size, establishing a connected relationship between the liquid-transfer device and the vial-coupling adaptor, coupling a selected syringe and a selected vial having such smaller, one size, performing a liquid-transfer operation between the selected syringe and the selected vial, decoupling the first selected vial, and by said decoupling automatically disconnecting the vial-coupling adaptor and the liquid-transfer device, selecting a second vial of the type characterized by such other, larger size and coupling the same to the vial-coupling end in the liquid-transfer device, and performing at least one other liquid-transfer operation.
CA 2192623 1996-01-12 1996-12-11 Medication vial/syringe liquid/transfer apparatus Expired - Fee Related CA2192623C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/586,566 1996-01-12
US08/586,566 US5893397A (en) 1996-01-12 1996-01-12 Medication vial/syringe liquid-transfer apparatus

Publications (2)

Publication Number Publication Date
CA2192623A1 CA2192623A1 (en) 1997-07-13
CA2192623C true CA2192623C (en) 2000-06-27

Family

ID=24346263

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2192623 Expired - Fee Related CA2192623C (en) 1996-01-12 1996-12-11 Medication vial/syringe liquid/transfer apparatus

Country Status (9)

Country Link
US (1) US5893397A (en)
EP (1) EP0783879B1 (en)
JP (1) JP3916713B2 (en)
AT (1) ATE240709T1 (en)
CA (1) CA2192623C (en)
DE (1) DE69628275T2 (en)
DK (1) DK0783879T3 (en)
ES (1) ES2200041T3 (en)
PT (1) PT783879E (en)

Families Citing this family (451)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL114960A0 (en) 1995-03-20 1995-12-08 Medimop Medical Projects Ltd Flow control device
US6475183B1 (en) * 1998-06-03 2002-11-05 Baxter International Inc. Direct dual filling device for sealing agents
US6093183A (en) * 1998-08-07 2000-07-25 Pavkovich; Mary Safety Intravenous connector
US6406455B1 (en) * 1998-12-18 2002-06-18 Biovalve Technologies, Inc. Injection devices
US6689095B1 (en) * 1999-04-22 2004-02-10 Gilbert Garitano Needleless permanent makeup and tattoo device
US7192713B1 (en) 1999-05-18 2007-03-20 President And Fellows Of Harvard College Stabilized compounds having secondary structure motifs
US6569123B2 (en) 1999-10-14 2003-05-27 Becton, Dickinson And Company Prefillable intradermal injector
US20020193740A1 (en) 1999-10-14 2002-12-19 Alchas Paul G. Method of intradermally injecting substances
US6569143B2 (en) 1999-10-14 2003-05-27 Becton, Dickinson And Company Method of intradermally injecting substances
US6843781B2 (en) * 1999-10-14 2005-01-18 Becton, Dickinson And Company Intradermal needle
US6776776B2 (en) * 1999-10-14 2004-08-17 Becton, Dickinson And Company Prefillable intradermal delivery device
US6494865B1 (en) 1999-10-14 2002-12-17 Becton Dickinson And Company Intradermal delivery device including a needle assembly
US6321941B1 (en) * 2000-04-20 2001-11-27 The Procter & Gamble Company Consumer safe fitment for connecting a reservoir to a dispensing appliance
WO2001051109A1 (en) * 2000-01-07 2001-07-19 Biovalve Technologies, Inc. Injection device
US8565860B2 (en) 2000-08-21 2013-10-22 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system
US8909325B2 (en) 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US8489176B1 (en) 2000-08-21 2013-07-16 Spectrum Dynamics Llc Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
GB0022742D0 (en) 2000-09-15 2000-11-01 Smithkline Beecham Biolog Vaccine
WO2002051470A2 (en) * 2000-11-30 2002-07-04 Biovalve Technologies, Inc. Injection systems
GB0100756D0 (en) 2001-01-11 2001-02-21 Powderject Res Ltd Needleless syringe
WO2002074336A2 (en) 2001-02-23 2002-09-26 Glaxosmithkline Biologicals S.A. Influenza vaccine formulations for intradermal delivery
JP2004529754A (en) 2001-03-14 2004-09-30 ペンジェット・コーポレーション System and method for removing dissolved gases from a solution
AU2002248537B2 (en) * 2001-03-27 2006-07-13 Eli Lilly And Company Kit including side firing syringe needle for preparing a drug in an injection pen cartridge
GB0109297D0 (en) 2001-04-12 2001-05-30 Glaxosmithkline Biolog Sa Vaccine
US6613010B2 (en) 2001-04-13 2003-09-02 Penjet Corporation Modular gas-pressured needle-less injector
US20050192530A1 (en) * 2001-04-13 2005-09-01 Penjet Corporation Method and apparatus for needle-less injection with a degassed fluid
US6755220B2 (en) 2001-04-27 2004-06-29 Penjet Corporation Method and apparatus for filling or refilling a needle-less injector
US20100221284A1 (en) 2001-05-30 2010-09-02 Saech-Sisches Serumwerk Dresden Novel vaccine composition
MY134424A (en) 2001-05-30 2007-12-31 Saechsisches Serumwerk Stable influenza virus preparations with low or no amount of thiomersal
WO2003002069A2 (en) * 2001-06-29 2003-01-09 Becton, Dickinson And Company Intradermal delivery of vaccines and gene therapeutic agents via microcannula
US20060018877A1 (en) * 2001-06-29 2006-01-26 Mikszta John A Intradermal delivery of vacccines and therapeutic agents
JP4817564B2 (en) * 2001-09-28 2011-11-16 株式会社細川洋行 Needle case and infusion container
US6824526B2 (en) 2001-10-22 2004-11-30 Penjet Corporation Engine and diffuser for use with a needle-less injector
US6989891B2 (en) 2001-11-08 2006-01-24 Optiscan Biomedical Corporation Device and method for in vitro determination of analyte concentrations within body fluids
US6875205B2 (en) * 2002-02-08 2005-04-05 Alaris Medical Systems, Inc. Vial adapter having a needle-free valve for use with vial closures of different sizes
US7238167B2 (en) * 2002-06-04 2007-07-03 Bioject Inc. Needle-free injection system
US7156823B2 (en) * 2002-06-04 2007-01-02 Bioject Inc. High workload needle-free injection system
JP4427965B2 (en) * 2002-07-02 2010-03-10 ニプロ株式会社 Chemical container with communication means
US6935384B2 (en) * 2003-02-19 2005-08-30 Bioject Inc. Needle-free injection system
US7261698B2 (en) * 2003-04-24 2007-08-28 Sherwood Services Ag Transfer needle safety apparatus
CN1833030B (en) 2003-05-22 2014-07-23 美国弗劳恩霍夫股份有限公司 Recombinant carrier molecule for expression, delivery and purification of target polypeptides
FR2858931B1 (en) * 2003-08-21 2007-04-13 Becton Dickinson France DEVICE FOR ORAL ADMINISTRATION OF A MEDICINAL PRODUCT
AU2003270473A1 (en) * 2003-09-09 2005-04-27 University Of Florida Desferrithiocin derivatives and their use as iron chelators
US6997916B2 (en) * 2004-01-02 2006-02-14 Smiths Medical Asd, Inc. Fluid transfer holder assembly and a method of fluid transfer
US8571881B2 (en) 2004-11-09 2013-10-29 Spectrum Dynamics, Llc Radiopharmaceutical dispensing, administration, and imaging
US8586932B2 (en) 2004-11-09 2013-11-19 Spectrum Dynamics Llc System and method for radioactive emission measurement
US7968851B2 (en) 2004-01-13 2011-06-28 Spectrum Dynamics Llc Dynamic spect camera
US9470801B2 (en) 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
WO2005067383A2 (en) 2004-01-13 2005-07-28 Spectrum Dynamics Llc Multi-dimensional image reconstruction
WO2008010227A2 (en) 2006-07-19 2008-01-24 Spectrum Dynamics Llc Imaging protocols
IL161660A0 (en) 2004-04-29 2004-09-27 Medimop Medical Projects Ltd Liquid drug delivery device
EP1778957A4 (en) 2004-06-01 2015-12-23 Biosensors Int Group Ltd Radioactive-emission-measurement optimization to specific body structures
EP2181714A3 (en) 2004-09-22 2010-06-23 GlaxoSmithKline Biologicals S.A. Immunogenic composition for use in vaccination against staphylococcei
US9492400B2 (en) 2004-11-04 2016-11-15 Massachusetts Institute Of Technology Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
US8615405B2 (en) * 2004-11-09 2013-12-24 Biosensors International Group, Ltd. Imaging system customization using data from radiopharmaceutical-associated data carrier
US9943274B2 (en) 2004-11-09 2018-04-17 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
US8423125B2 (en) 2004-11-09 2013-04-16 Spectrum Dynamics Llc Radioimaging
EP1827505A4 (en) 2004-11-09 2017-07-12 Biosensors International Group, Ltd. Radioimaging
ES2354018T3 (en) * 2005-02-14 2011-03-09 Medimop Medical Projects Ltd. MEDICAL DEVICE FOR THE IN SITU RECONSTITUTION OF LIQUID DRUGS IN MEDICINAL CONTAINERS.
US20070060904A1 (en) * 2005-03-14 2007-03-15 Becton, Dickinson And Company Filling system and method for syringes with short needles
US20090081253A1 (en) 2005-03-23 2009-03-26 Glaxosmithkline Biologicals S.A. Composition
MX2007012226A (en) 2005-04-04 2007-12-10 Univ Florida Desferrithiocin polyether analogues.
US8644910B2 (en) 2005-07-19 2014-02-04 Biosensors International Group, Ltd. Imaging protocols
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
KR101446025B1 (en) 2005-08-03 2014-10-01 아이바이오, 인크. Compositions and methods for production of immunoglobulins
ATE529088T1 (en) 2005-08-11 2011-11-15 Medimop Medical Projects Ltd TRANSFER DEVICES FOR LIQUID MEDICINAL PRODUCTS FOR FAIL-SAFE CORRECT LATCH CONNECTION ON MEDICAL AMPOULES
DK1957028T3 (en) * 2005-10-30 2017-09-11 Medimop Medical Projects Ltd Needleless additive control valve
TWI457133B (en) 2005-12-13 2014-10-21 Glaxosmithkline Biolog Sa Novel composition
WO2007070682A2 (en) * 2005-12-15 2007-06-21 Massachusetts Institute Of Technology System for screening particles
GB0607088D0 (en) 2006-04-07 2006-05-17 Glaxosmithkline Biolog Sa Vaccine
TW201350129A (en) 2005-12-22 2013-12-16 Glaxosmithkline Biolog Sa Streptococcus pneumoniae immunogenic composition comprising capsular saccharide conjugates, vaccine and kit comprising the same and uses thereof
KR20080106433A (en) * 2006-02-13 2008-12-05 프라운호퍼 유에스에이, 인코포레이티드 Influenza antigens, vaccine compositions, and related methods
US8277816B2 (en) * 2006-02-13 2012-10-02 Fraunhofer Usa, Inc. Bacillus anthracis antigens, vaccine compositions, and related methods
AU2007215082B2 (en) * 2006-02-13 2012-07-12 Ibio, Inc. HPV antigens, vaccine compositions, and related methods
US20070202186A1 (en) 2006-02-22 2007-08-30 Iscience Interventional Corporation Apparatus and formulations for suprachoroidal drug delivery
EP1998684A4 (en) * 2006-03-10 2014-09-17 Massachusetts Inst Technology Triggered self-assembly conjugates and nanosystems
US7666912B2 (en) 2006-03-23 2010-02-23 Massachusetts Eye And Ear Infirmary Compositions and methods for reducing body fat
CA2647441C (en) 2006-03-30 2021-02-23 Glaxosmithkline Biologicals S.A. Immunogenic composition comprising staphylococcus aureus saccharides
ES2776100T3 (en) 2006-03-31 2020-07-29 Massachusetts Inst Technology System for targeted delivery of therapeutic agents
US20090325944A1 (en) * 2006-04-12 2009-12-31 Suzanne Walker Kahne Methods and Compositions for Modulating Glycosylation
US8894974B2 (en) 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
JP5630998B2 (en) 2006-05-15 2014-11-26 マサチューセッツ インスティテュート オブ テクノロジー Polymers for functional particles
EP2526919B1 (en) 2006-05-25 2016-10-05 Bayer Healthcare LLC Reconstitution device
ES2570334T3 (en) 2006-06-02 2016-05-17 Harvard College Surface protein remodeling
WO2007150030A2 (en) 2006-06-23 2007-12-27 Massachusetts Institute Of Technology Microfluidic synthesis of organic nanoparticles
US7601966B2 (en) * 2006-06-28 2009-10-13 Spectrum Dynamics Llc Imaging techniques for reducing blind spots
DK2422810T3 (en) 2006-07-17 2014-11-24 Glaxosmithkline Biolog Sa Influenza vaccine
WO2008021367A2 (en) 2006-08-11 2008-02-21 President And Fellows Of Harvard College Moenomycin biosynthesis-related compositions and methods of use thereof
US20090269342A1 (en) * 2006-08-14 2009-10-29 Massachusetts Institute Of Technology Hemagglutinin Polypeptides, and Reagents and Methods Relating Thereto
AU2007284496A1 (en) * 2006-08-14 2008-02-21 Massachusetts Institute Of Technology Glycan data mining system
US7942845B2 (en) * 2006-09-19 2011-05-17 Bioject, Inc. Needle-free injector and process for providing serial injections
US7547293B2 (en) 2006-10-06 2009-06-16 Bioject, Inc. Triggering mechanism for needle-free injector
JO3598B1 (en) 2006-10-10 2020-07-05 Infinity Discovery Inc Boronic acids and esters as inhibitors of fatty acid amide hydrolase
EP2433648A3 (en) 2006-10-12 2012-04-04 GlaxoSmithKline Biologicals S.A. Vaccine comprising an oil in water emulsion adjuvant
ES2397714T3 (en) 2006-10-12 2013-03-08 Glaxosmithkline Biologicals S.A. Vaccine comprising an oil-in-water emulsion adjuvant
US8610075B2 (en) 2006-11-13 2013-12-17 Biosensors International Group Ltd. Radioimaging applications of and novel formulations of teboroxime
WO2008147456A2 (en) * 2006-11-20 2008-12-04 Massachusetts Institute Of Technology Drug delivery systems using fc fragments
MX2009005727A (en) 2006-12-01 2009-08-27 Anterios Inc Amphiphilic entity nanoparticles.
WO2008073856A2 (en) * 2006-12-08 2008-06-19 Massachusetts Institute Of Technology Delivery of nanoparticles and/or agents to cells
WO2008075362A2 (en) 2006-12-20 2008-06-26 Spectrum Dynamics Llc A method, a system, and an apparatus for using and processing multidimensional data
DK2474525T3 (en) 2006-12-26 2020-07-13 Lantheus Medical Imaging Inc Ligands for imaging cardiac innervation
EP2118123B1 (en) 2007-01-31 2015-10-14 Dana-Farber Cancer Institute, Inc. Stabilized p53 peptides and uses thereof
EP2134830A2 (en) * 2007-02-09 2009-12-23 Massachusetts Institute of Technology Oscillating cell culture bioreactor
US7744563B2 (en) * 2007-02-23 2010-06-29 Bioject, Inc. Needle-free injection devices and drug delivery systems therefor
US8324397B2 (en) 2007-03-15 2012-12-04 University Of Florida Research Foundation, Inc. Desferrithiocin polyether analogues
US7960139B2 (en) 2007-03-23 2011-06-14 Academia Sinica Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells
JP5631201B2 (en) 2007-03-28 2014-11-26 プレジデント アンド フェローズ オブ ハーバード カレッジ Stitched polypeptide
JP2010523595A (en) 2007-04-04 2010-07-15 マサチューセッツ インスティテュート オブ テクノロジー Poly (amino acid) targeting part
WO2008124634A1 (en) 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Polymer-encapsulated reverse micelles
IL182605A0 (en) 2007-04-17 2007-07-24 Medimop Medical Projects Ltd Fluid control device with manually depressed actuator
US8778348B2 (en) * 2007-04-28 2014-07-15 Ibio Inc. Trypanosoma antigens, vaccine compositions, and related methods
GB0708758D0 (en) * 2007-05-04 2007-06-13 Powderject Res Ltd Particle cassettes and process thereof
WO2008144575A2 (en) 2007-05-18 2008-11-27 Optiscan Biomedical Corporation Fluid injection and safety system
PT2175881E (en) * 2007-06-14 2012-10-22 Crucell Switzerland Ag Intradermal influenza vaccine
US8524444B2 (en) 2007-06-15 2013-09-03 President And Fellows Of Harvard College Methods and compositions for detections and modulating O-glycosylation
AU2008267208B2 (en) 2007-06-26 2012-01-19 Glaxosmithkline Biologicals S.A. Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
CA2692933C (en) 2007-07-11 2016-10-18 Fraunhofer Usa, Inc. Yersinia pestis antigens, vaccine compositions, and related methods
JP2010538744A (en) 2007-09-18 2010-12-16 メディモップ・メディカル・プロジェクツ・リミテッド Drug mixing injection device
IL186290A0 (en) 2007-09-25 2008-01-20 Medimop Medical Projects Ltd Liquid drug delivery devices for use with syringe having widened distal tip
DE102007046951B3 (en) * 2007-10-01 2009-02-26 B. Braun Melsungen Ag Device for introducing a medicament into an infusion container
EP2205074A4 (en) * 2007-10-04 2013-07-31 Harvard College Moenomycin analogs, methods of synthesis, and uses thereof
WO2009051837A2 (en) 2007-10-12 2009-04-23 Massachusetts Institute Of Technology Vaccine nanotechnology
US8521253B2 (en) 2007-10-29 2013-08-27 Spectrum Dynamics Llc Prostate imaging
US20090137949A1 (en) * 2007-11-26 2009-05-28 Bioject Inc. Needle-free injection device with nozzle auto-disable
US8617099B2 (en) * 2007-11-26 2013-12-31 Bioject Inc. Injection device plunger auto-disable
CA2646261A1 (en) * 2007-12-14 2009-06-14 Tyco Healthcare Group Lp Blood collection device with tube retaining structure
WO2009089119A2 (en) * 2008-01-03 2009-07-16 Massachusetts Institute Of Technology Decoy influenza therapies
US8193182B2 (en) 2008-01-04 2012-06-05 Intellikine, Inc. Substituted isoquinolin-1(2H)-ones, and methods of use thereof
PE20091838A1 (en) * 2008-04-09 2009-12-18 Infinity Pharmaceuticals Inc FATTY ACID AMIDA HYDROLASE INHIBITORS
CN102099052A (en) 2008-04-16 2011-06-15 葛兰素史密丝克莱恩生物有限公司 Vaccine
CN102066405B (en) * 2008-04-28 2015-09-30 哈佛大学校长及研究员协会 For the supercharged proteins of cell-penetrating
US20110212157A1 (en) 2008-06-26 2011-09-01 Anterios, Inc. Dermal delivery
DK2318832T3 (en) 2008-07-15 2014-01-20 Academia Sinica Glycan arrays on PTFE-like aluminum coated slides and related methods
EP2356139A4 (en) 2008-07-23 2013-01-09 Harvard College Ligation of stapled polypeptides
WO2010011318A2 (en) * 2008-07-23 2010-01-28 Massachusetts Institute Of Technology Activatiqn of histone deacetylase 1 (hdac1) protects against dna damage and increases neuronal survival
WO2010037046A1 (en) 2008-09-28 2010-04-01 Fraunhofer Usa, Inc. Humanized neuraminidase antibody and methods of use thereof
US8591905B2 (en) 2008-10-12 2013-11-26 The Brigham And Women's Hospital, Inc. Nicotine immunonanotherapeutics
US8343498B2 (en) * 2008-10-12 2013-01-01 Massachusetts Institute Of Technology Adjuvant incorporation in immunonanotherapeutics
US8343497B2 (en) * 2008-10-12 2013-01-01 The Brigham And Women's Hospital, Inc. Targeting of antigen presenting cells with immunonanotherapeutics
US8277812B2 (en) 2008-10-12 2012-10-02 Massachusetts Institute Of Technology Immunonanotherapeutics that provide IgG humoral response without T-cell antigen
US9974844B2 (en) 2008-11-17 2018-05-22 The Regents Of The University Of Michigan Cancer vaccine compositions and methods of using the same
EP2376619A4 (en) 2008-12-15 2012-07-04 Greenlight Biosciences Inc Methods for control of flux in metabolic pathways
EP2379728A4 (en) * 2008-12-22 2016-04-13 Greenlight Biosciences Inc Compositions and methods for the production of a compound
US20100160889A1 (en) * 2008-12-22 2010-06-24 Baxter International Inc. Vial access spike assembly
US8864725B2 (en) 2009-03-17 2014-10-21 Baxter Corporation Englewood Hazardous drug handling system, apparatus and method
USD641080S1 (en) 2009-03-31 2011-07-05 Medimop Medical Projects Ltd. Medical device having syringe port with locking mechanism
EP2416660B1 (en) 2009-04-07 2014-07-02 Infinity Pharmaceuticals, Inc. Inhibitors of fatty acid amide hydrolase
CA2757622A1 (en) 2009-04-07 2010-10-14 Infinity Pharmaceuticals, Inc. Inhibitors of fatty acid amide hydrolase
JP2012525146A (en) 2009-04-28 2012-10-22 プレジデント アンド フェロウズ オブ ハーバード カレッジ Overcharged protein for cell penetration
US9149465B2 (en) * 2009-05-18 2015-10-06 Infinity Pharmaceuticals, Inc. Isoxazolines as inhibitors of fatty acid amide hydrolase
US8927551B2 (en) * 2009-05-18 2015-01-06 Infinity Pharmaceuticals, Inc. Isoxazolines as inhibitors of fatty acid amide hydrolase
US8765735B2 (en) * 2009-05-18 2014-07-01 Infinity Pharmaceuticals, Inc. Isoxazolines as inhibitors of fatty acid amide hydrolase
JP2012528858A (en) 2009-06-01 2012-11-15 プレジデント アンド フェロウズ オブ ハーバード カレッジ O-GlcNAc transferase inhibitor and use thereof
USD616984S1 (en) 2009-07-02 2010-06-01 Medimop Medical Projects Ltd. Vial adapter having side windows
US9163330B2 (en) 2009-07-13 2015-10-20 President And Fellows Of Harvard College Bifunctional stapled polypeptides and uses thereof
US8338788B2 (en) 2009-07-29 2012-12-25 Spectrum Dynamics Llc Method and system of optimized volumetric imaging
GB0913681D0 (en) 2009-08-05 2009-09-16 Glaxosmithkline Biolog Sa Immunogenic composition
EP2483307A1 (en) 2009-09-29 2012-08-08 Fraunhofer USA, Inc. Influenza hemagglutinin antibodies, compositions, and related methods
USD630732S1 (en) 2009-09-29 2011-01-11 Medimop Medical Projects Ltd. Vial adapter with female connector
IL201323A0 (en) 2009-10-01 2010-05-31 Medimop Medical Projects Ltd Fluid transfer device for assembling a vial with pre-attached female connector
CA2778105C (en) 2009-10-23 2019-04-02 Amgen Inc. Vial adapter and system
IL202070A0 (en) 2009-11-12 2010-06-16 Medimop Medical Projects Ltd Inline liquid drug medical device
IL202069A0 (en) 2009-11-12 2010-06-16 Medimop Medical Projects Ltd Fluid transfer device with sealing arrangement
US11377485B2 (en) 2009-12-02 2022-07-05 Academia Sinica Methods for modifying human antibodies by glycan engineering
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
AU2010343102B2 (en) 2009-12-29 2016-03-24 Dana-Farber Cancer Institute, Inc. Type II Raf kinase inhibitors
CA2787940C (en) 2010-01-27 2020-01-07 Massachusetts Institute Of Technology Engineered polypeptide agents for targeted broad spectrum influenza neutralization
RU2569061C2 (en) 2010-02-03 2015-11-20 Инфинити Фармасьютикалз, Инк. Inhibitors of amide-hydrolase of fatty acids
JP5709905B2 (en) 2010-02-24 2015-04-30 メディモップ・メディカル・プロジェクツ・リミテッド Liquid transfer device including vial adapter with vent
CN102711712B (en) 2010-02-24 2014-08-13 麦迪麦珀医疗工程有限公司 Fluid transfer assembly with venting arrangement
JP5827962B2 (en) 2010-03-08 2015-12-02 スローン ケタリング インスティテュート フォア キャンサー リサーチ Cdc7 kinase inhibitors and uses thereof
GB201003922D0 (en) 2010-03-09 2010-04-21 Glaxosmithkline Biolog Sa Conjugation process
GB201003920D0 (en) 2010-03-09 2010-04-21 Glaxosmithkline Biolog Sa Method of treatment
US9102697B2 (en) 2010-03-22 2015-08-11 President And Fellows Of Harvard College Trioxacarcins and uses thereof
WO2011130332A1 (en) 2010-04-12 2011-10-20 Academia Sinica Glycan arrays for high throughput screening of viruses
CA2798330A1 (en) 2010-05-05 2011-11-10 Infinity Pharmaceuticals, Inc. Tetrazolones as inhibitors of fatty acid synthase
WO2011140296A1 (en) 2010-05-05 2011-11-10 Infinity Pharmaceuticals Triazoles as inhibitors of fatty acid synthase
CA2797786C (en) 2010-05-07 2020-09-22 Greenlight Biosciences, Inc. Methods for control of flux in metabolic pathways through enzyme relocation
KR101726471B1 (en) 2010-05-11 2017-04-12 랜티우스 메디컬 이메징, 인크. Compositions, methods and systems for the synthesis and use of imaging agents
US9193989B2 (en) 2010-06-18 2015-11-24 Taiho Pharmaceutical Co., Ltd. PRPK-TPRKB modulators and uses thereof
JPWO2012002314A1 (en) * 2010-06-30 2013-08-22 テルモ株式会社 Connectors and connector assemblies
WO2012019168A2 (en) 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
DK2603600T3 (en) 2010-08-13 2019-03-04 Aileron Therapeutics Inc PEPTIDOMIMETIC MACROCYCLES
JP6280367B2 (en) 2010-08-31 2018-02-14 グリーンライト バイオサイエンシーズ インコーポレーテッドGreenlight Biosciences,Inc. A method for the control of fluxes in metabolic pathways via protease manipulation
EP2640405A4 (en) 2010-09-21 2015-04-15 Massachusetts Inst Technology Human-adapted ha polypeptides, vaccines, and influenza treatment
WO2012040459A2 (en) 2010-09-22 2012-03-29 President And Fellows Of Harvard College Beta-catenin targeting peptides and uses thereof
PL3590949T3 (en) 2010-10-01 2022-08-29 Modernatx, Inc. Ribonucleic acids containing n1-methyl-pseudouracils and uses thereof
SG189236A1 (en) 2010-10-04 2013-05-31 Massachusetts Inst Technology Hemagglutinin polypeptides, and reagents and methods relating thereto
USD669980S1 (en) 2010-10-15 2012-10-30 Medimop Medical Projects Ltd. Vented vial adapter
JP2013545749A (en) 2010-11-10 2013-12-26 インフィニティー ファーマシューティカルズ, インコーポレイテッド Heterocyclic compounds and uses thereof
IL209290A0 (en) 2010-11-14 2011-01-31 Medimop Medical Projects Ltd Inline liquid drug medical device having rotary flow control member
MX347708B (en) 2011-01-10 2017-05-09 Infinity Pharmaceuticals Inc Processes for preparing isoquinolinones and solid forms of isoquinolinones.
ES2687494T3 (en) 2011-01-19 2018-10-25 Topokine Therapeutics, Inc. Methods and compositions to reduce body fat
CN109464393A (en) 2011-01-24 2019-03-15 安特里奥公司 Nanoparticulate compositions
JP2014503586A (en) 2011-01-24 2014-02-13 アンテリオス, インコーポレイテッド Oil composition
BR112013018920A2 (en) 2011-01-24 2017-11-28 Anterios Inc nanoparticle compositions, formulations thereof and their uses
EP3510998A1 (en) 2011-03-03 2019-07-17 Tersus Pharmaceuticals, LLC Compositions and methods comprising c16:1n7-palmitoleate
GB201103836D0 (en) 2011-03-07 2011-04-20 Glaxosmithkline Biolog Sa Conjugation process
WO2012135615A2 (en) 2011-03-30 2012-10-04 Brown University Enopeptins, uses thereof, and methods of synthesis thereto
AU2012236099A1 (en) 2011-03-31 2013-10-03 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
AU2012236573B2 (en) 2011-03-31 2016-06-02 Amgen Inc. Vial adapter and system
IL212420A0 (en) 2011-04-17 2011-06-30 Medimop Medical Projects Ltd Liquid drug transfer assembly
CA2834834A1 (en) 2011-05-17 2012-11-22 Glaxosmithkline Biologicals S.A. Vaccine against streptococcus pneumoniae
WO2012177997A1 (en) 2011-06-22 2012-12-27 The General Hospital Corporation Treatment of proteinopathies
WO2013009897A1 (en) 2011-07-11 2013-01-17 Medpro Safety Products, Inc. Fluid delivery device and methods
US9220660B2 (en) 2011-07-15 2015-12-29 Antares Pharma, Inc. Liquid-transfer adapter beveled spike
PT3050588T (en) * 2011-07-15 2018-05-29 Antares Pharma Inc Liquid-transfer adapter beveled spike
CA2842190A1 (en) 2011-07-19 2013-01-24 Infinity Pharmaceuticals Inc. Heterocyclic compounds and uses thereof
JP6027610B2 (en) 2011-07-19 2016-11-16 インフィニティー ファーマシューティカルズ, インコーポレイテッド Heterocyclic compounds and uses thereof
DK2734510T3 (en) 2011-07-22 2019-03-04 Massachusetts Inst Technology CLASS I-HISTONDEACETYLASES (HDAC) ACTIVATORS AND APPLICATIONS THEREOF
EP2751093A1 (en) 2011-08-29 2014-07-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9550000B2 (en) 2011-09-09 2017-01-24 Lantheus Medical Imaging, Inc. Compositions, methods, and systems for the synthesis and use of imaging agents
JP2014526250A (en) 2011-09-09 2014-10-06 グリーンライト バイオサイエンシーズ インコーポレーテッド Cell-free preparation of carbapenem
EP2755693A4 (en) 2011-09-12 2015-05-20 Moderna Therapeutics Inc Engineered nucleic acids and methods of use thereof
US9630979B2 (en) 2011-09-29 2017-04-25 Infinity Pharmaceuticals, Inc. Inhibitors of monoacylglycerol lipase and methods of their use
RS62993B1 (en) 2011-10-03 2022-03-31 Modernatx Inc Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
IL215699A0 (en) 2011-10-11 2011-12-29 Medimop Medical Projects Ltd Liquid drug reconstitution assemblage for use with iv bag and drug vial
MX358886B (en) 2011-10-18 2018-08-31 Aileron Therapeutics Inc Peptidomimetic macrocyles.
US9382239B2 (en) 2011-11-17 2016-07-05 Dana-Farber Cancer Institute, Inc. Inhibitors of c-Jun-N-terminal kinase (JNK)
GB201119999D0 (en) 2011-11-20 2012-01-04 Glaxosmithkline Biolog Sa Vaccine
GB201120000D0 (en) 2011-11-20 2012-01-04 Glaxosmithkline Biolog Sa Vaccine
EP4144378A1 (en) 2011-12-16 2023-03-08 ModernaTX, Inc. Modified nucleoside, nucleotide, and nucleic acid compositions
BR112014014544A2 (en) 2011-12-16 2017-06-13 Univ Florida Uses of 4'-Desferritiocine Analogs
US8426471B1 (en) 2011-12-19 2013-04-23 Topokine Therapeutics, Inc. Methods and compositions for reducing body fat and adipocytes
USD737436S1 (en) 2012-02-13 2015-08-25 Medimop Medical Projects Ltd. Liquid drug reconstitution assembly
USD674088S1 (en) 2012-02-13 2013-01-08 Medimop Medical Projects Ltd. Vial adapter
USD720451S1 (en) 2012-02-13 2014-12-30 Medimop Medical Projects Ltd. Liquid drug transfer assembly
AU2013221433B2 (en) 2012-02-15 2018-01-18 Aileron Therapeutics, Inc. Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles
CN112500466B (en) 2012-02-15 2022-05-03 艾瑞朗医疗公司 Peptidomimetic macrocycles
IL219065A0 (en) 2012-04-05 2012-07-31 Medimop Medical Projects Ltd Fluid transfer device with manual operated cartridge release arrangement
EP2850090B1 (en) 2012-04-06 2018-10-03 President and Fellows of Harvard College Chemoenzymatic methods for synthesizing moenomycin analogs
EP2834254A2 (en) 2012-04-06 2015-02-11 President and Fellows of Harvard College Moenomycin analogs, methods of synthesis, and uses thereof
WO2013151697A1 (en) 2012-04-06 2013-10-10 President And Fellows Of Harvard College Methods and compounds for identifying glycosyltransferase inhibitors
US8940742B2 (en) 2012-04-10 2015-01-27 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
US9597385B2 (en) 2012-04-23 2017-03-21 Allertein Therapeutics, Llc Nanoparticles for treatment of allergy
WO2013169377A1 (en) 2012-05-10 2013-11-14 Massachusetts Institute Of Technology Agents for influenza neutralization
US10799423B2 (en) 2012-07-12 2020-10-13 Ferring International Center S.A. Liquid-transfer adapter beveled spike
JP2015521949A (en) 2012-07-12 2015-08-03 アンタレス・ファーマ・インコーポレーテッド Chamfered spike on liquid transfer adapter
US20140037680A1 (en) 2012-08-06 2014-02-06 Glaxosmithkline Biologicals, S.A. Novel method
CA2879939A1 (en) 2012-08-06 2014-02-13 Glaxosmithkline Biologicals S.A. Novel method
AU2013203000B9 (en) 2012-08-10 2017-02-02 Lantheus Medical Imaging, Inc. Compositions, methods, and systems for the synthesis and use of imaging agents
CA2880701A1 (en) 2012-08-18 2014-02-27 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
IL221634A0 (en) 2012-08-26 2012-12-31 Medimop Medical Projects Ltd Universal drug vial adapter
IL221635A0 (en) 2012-08-26 2012-12-31 Medimop Medical Projects Ltd Drug vial mixing and transfer device for use with iv bag and drug vial
DK2872100T3 (en) 2012-09-13 2017-07-10 Medimop Medical Projects Ltd Telescopic female adapter for drug ampoule
CA2925035C (en) 2012-09-26 2021-05-25 President And Fellows Of Harvard College Proline-locked stapled peptides and uses thereof
US20150225471A1 (en) 2012-10-01 2015-08-13 President And Fellows Of Harvard College Stabilized polypeptide insulin receptor modulators
LT2909204T (en) 2012-10-12 2019-05-10 The Broad Institute, Inc. Gsk3 inhibitors and methods of use thereof
US10112927B2 (en) 2012-10-18 2018-10-30 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
WO2014063054A1 (en) 2012-10-19 2014-04-24 Dana-Farber Cancer Institute, Inc. Bone marrow on x chromosome kinase (bmx) inhibitors and uses thereof
USRE48175E1 (en) 2012-10-19 2020-08-25 Dana-Farber Cancer Institute, Inc. Hydrophobically tagged small molecules as inducers of protein degradation
RS58023B2 (en) 2012-11-01 2021-12-31 Infinity Pharmaceuticals Inc Treatment of cancers using pi3 kinase isoform modulators
BR112015009470A2 (en) 2012-11-01 2019-12-17 Aileron Therapeutics Inc disubstituted amino acids and their methods of preparation and use
WO2014071247A1 (en) 2012-11-02 2014-05-08 Dana-Farber Cancer Institute, Inc. Pyrrol-1 -yl benzoic acid derivates useful as myc inhibitors
MX2012013347A (en) 2012-11-16 2013-10-08 Leopoldo Meneses Fernandez System for dispensing drugs.
EP2922542A4 (en) 2012-11-21 2016-10-05 Topokine Therapeutics Inc Methods and compositions for locally increasing body fat
WO2014082065A1 (en) 2012-11-26 2014-05-30 President And Fellows Of Harvard College Trioxacarcins, trioxacarcin-antibody conjugates, and uses thereof
SI2922554T1 (en) 2012-11-26 2022-06-30 Modernatx, Inc. Terminally modified rna
EP2735300A1 (en) 2012-11-26 2014-05-28 Becton Dickinson France Adaptor for multidose medical container
USD734868S1 (en) 2012-11-27 2015-07-21 Medimop Medical Projects Ltd. Drug vial adapter with downwardly depending stopper
WO2014100695A1 (en) 2012-12-21 2014-06-26 Epizyme, Inc. Prmt5 inhibitors and uses thereof
CA2894130A1 (en) 2012-12-21 2014-06-26 Epizyme, Inc. Prmt5 inhibitors containing a dihydro- or tetrahydroisoquinoline and uses thereof
UA118548C2 (en) 2012-12-21 2019-02-11 Епізайм, Інк. Teatrahydro- and dihydro-isoquinoline prmt5 inhibitors and uses thereof
WO2014100716A1 (en) 2012-12-21 2014-06-26 Epizyme, Inc. Prmt5 inhibitors and uses thereof
USD713931S1 (en) 2013-01-09 2014-09-23 Central Garden & Pet Company Sprayer
EP3434774A1 (en) 2013-01-17 2019-01-30 ModernaTX, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
CA2900008A1 (en) 2013-02-07 2014-08-14 Children's Medical Center Corporation Protein antigens that provide protection against pneumococcal colonization and/or disease
WO2014124319A2 (en) 2013-02-07 2014-08-14 Massachusetts Institute Of Technology Human adaptation of h5 influenza
US20140257204A1 (en) * 2013-03-05 2014-09-11 Stuart Robert Lessin Apparatus for reconstituting and dispensing drugs for topical application
WO2014159813A1 (en) 2013-03-13 2014-10-02 Moderna Therapeutics, Inc. Long-lived polynucleotide molecules
BR112015022872A2 (en) 2013-03-13 2017-11-07 Harvard College stapled and stitched polypeptides, their use, their method of preparation, their composition and amino acid
US20160024051A1 (en) 2013-03-15 2016-01-28 Infinity Pharmaceuticals, Inc. Salts and solid forms of isoquinolinones and composition comprising and methods of using the same
CA2907915C (en) 2013-04-03 2023-03-07 Allertein Therapeutics, Llc Immunomodulatory nanoparticle compositions comprising a plurality of nanoparticles comprising biodegradable or biocompatible polymers and hydrophilic and hydrophobic cellular components
WO2014165792A2 (en) 2013-04-04 2014-10-09 President And Fellows Of Harvard College Macrolides and methods of their preparation and use
ES2774330T3 (en) 2013-04-09 2020-07-20 Massachusetts Inst Technology Drug supply polymer and uses thereof
IL225734A0 (en) 2013-04-14 2013-09-30 Medimop Medical Projects Ltd Ready-to-use drug vial assemblages including drug vial and drug vial closure having fluid transfer member, and drug vial closure therefor
US10301359B2 (en) 2013-04-30 2019-05-28 Massachusetts Institute Of Technology Human adaptation of H3 influenza
US9315472B2 (en) 2013-05-01 2016-04-19 Massachusetts Institute Of Technology 1,3,5-triazinane-2,4,6-trione derivatives and uses thereof
CN105246529B (en) 2013-05-03 2019-06-14 科尼尔赛德生物医学公司 Device and method for ocular injection
BR112015027555B1 (en) 2013-05-10 2022-02-01 Medimop Medical Projects Ltd Medical device for use with a needleless syringe, a vial and a liquid carrier to fill the needleless syringe with an injection solution for injection into a patient
NO2753788T3 (en) 2013-05-10 2018-06-16
EP3003309B1 (en) 2013-05-30 2020-09-09 Infinity Pharmaceuticals, Inc. Treatment of cancers using pi3 kinase isoform modulators
WO2014197723A2 (en) 2013-06-05 2014-12-11 Massachusetts Institute Of Technology Human adaptation of h7 ha
AU2014278231B2 (en) 2013-06-11 2017-05-25 KALA BIO, Inc. Urea derivatives and uses thereof
US10227390B2 (en) 2013-06-14 2019-03-12 President And Fellows Of Harvard College Stabilized polypeptide insulin receptor modulators
EP3013365B1 (en) 2013-06-26 2019-06-05 Academia Sinica Rm2 antigens and use thereof
WO2014210564A1 (en) 2013-06-27 2014-12-31 Academia Sinica Glycan conjugates and use thereof
RU2016105108A (en) 2013-07-25 2017-08-30 Дана-Фарбер Кэнсер Инститьют, Инк. TRANSCRIPTION FACTOR INHIBITORS AND THEIR APPLICATION
CN105658807A (en) 2013-08-05 2016-06-08 绿光生物科技股份有限公司 Engineered proteins with protease cleavage site
AU2014304545A1 (en) 2013-08-05 2016-02-25 Glaxosmithkline Biologicals S.A. Combination immunogenic compositions
USD765837S1 (en) 2013-08-07 2016-09-06 Medimop Medical Projects Ltd. Liquid transfer device with integral vial adapter
USD767124S1 (en) 2013-08-07 2016-09-20 Medimop Medical Projects Ltd. Liquid transfer device with integral vial adapter
WO2015019343A1 (en) 2013-08-07 2015-02-12 Medimop Medical Projects Ltd Liquid transfer devices for use with infusion liquid containers
US9782476B2 (en) 2013-09-06 2017-10-10 Academia Sinica Human iNKT cell activation using glycolipids with altered glycosyl groups
EP2851057A1 (en) * 2013-09-23 2015-03-25 Becton Dickinson France Assembly for coupling an adaptor with a medical container
JP6284218B2 (en) * 2013-09-26 2018-02-28 テルモ株式会社 Vial adapter
PE20160685A1 (en) 2013-10-04 2016-07-23 Infinity Pharmaceuticals Inc HETEROCYCLIC COMPOUNDS AND USES OF THEM
WO2015051241A1 (en) 2013-10-04 2015-04-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9982009B2 (en) 2013-10-15 2018-05-29 Massachusetts Institute Of Technology Methods for treating polycystic kidney disease and polycystic liver disease
WO2015057958A2 (en) 2013-10-16 2015-04-23 Massachusetts Institute Of Technology Enterobactin conjugates and uses thereof
US10047070B2 (en) 2013-10-18 2018-08-14 Dana-Farber Cancer Institute, Inc. Polycyclic inhibitors of cyclin-dependent kinase 7 (CDK7)
AU2014337122B2 (en) 2013-10-18 2019-01-03 Dana-Farber Cancer Institute, Inc. Heteroaromatic compounds useful for the treatment of proliferative diseases
WO2015061204A1 (en) 2013-10-21 2015-04-30 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
CN106061261B (en) 2013-11-01 2018-04-24 卡拉制药公司 Crystal form of therapeutic compounds and application thereof
ES2743452T3 (en) * 2013-11-06 2020-02-19 Becton Dickinson & Co Ltd System with adapter for closed fluid transfer
EP3065693B1 (en) 2013-11-06 2019-02-06 Becton Dickinson and Company Limited Adapter for vial access device
JP6494631B2 (en) 2013-12-24 2019-04-03 プレジデント アンド フェローズ オブ ハーバード カレッジ Colchistatin analogues and their synthesis and use
WO2015109180A2 (en) 2014-01-16 2015-07-23 Academia Sinica Compositions and methods for treatment and detection of cancers
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
US10793571B2 (en) 2014-01-31 2020-10-06 Dana-Farber Cancer Institute, Inc. Uses of diazepane derivatives
AU2015226911B2 (en) 2014-03-07 2018-03-01 The Arizona Board Of Regents On Behalf Of The University Of Arizona Non-narcotic CRMP2 peptides targeting sodium channels for chronic pain
MX2016012021A (en) 2014-03-19 2017-04-13 Infinity Pharmaceuticals Inc Heterocyclic compounds for use in the treatment of pi3k-gamma mediated disorders.
CN106415244B (en) 2014-03-27 2020-04-24 中央研究院 Reactive marker compounds and uses thereof
JP6836400B2 (en) 2014-03-28 2021-03-03 ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション Breast and ovarian cancer vaccines
CA2946563C (en) * 2014-04-21 2019-03-12 Becton Dickinson and Company Limited Vial stabilizer base with connectable vial adapter
US9862688B2 (en) 2014-04-23 2018-01-09 Dana-Farber Cancer Institute, Inc. Hydrophobically tagged janus kinase inhibitors and uses thereof
US10017477B2 (en) 2014-04-23 2018-07-10 Dana-Farber Cancer Institute, Inc. Janus kinase inhibitors and uses thereof
WO2015168079A1 (en) 2014-04-29 2015-11-05 Infinity Pharmaceuticals, Inc. Pyrimidine or pyridine derivatives useful as pi3k inhibitors
US10039816B2 (en) 2014-04-30 2018-08-07 Massachusetts Institute Of Technology Siderophore-based immunization against gram-negative bacteria
CN114805527A (en) 2014-05-21 2022-07-29 哈佛大学的校长及成员们 RAS inhibitory peptides and uses thereof
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
CA2950415A1 (en) 2014-05-27 2015-12-03 Academia Sinica Anti-cd20 glycoantibodies and uses thereof
JP6894239B2 (en) 2014-05-27 2021-06-30 アカデミア シニカAcademia Sinica Compositions and methods for universal glycoforms for enhanced antibody efficacy
CA2950440A1 (en) 2014-05-27 2015-12-03 Academia Sinica Anti-her2 glycoantibodies and uses thereof
TWI732738B (en) 2014-05-28 2021-07-11 中央研究院 Anti-tnf-alpha glycoantibodies and uses thereof
JP6664338B2 (en) 2014-06-13 2020-03-13 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム Immunogenic combination
MA40240B1 (en) 2014-06-19 2019-03-29 Ariad Pharma Inc Heteroaryl compounds of kinase inhibition
WO2015200425A1 (en) 2014-06-27 2015-12-30 Topokine Therapeutics, Inc. Topical dosage regimen
EP3164379A1 (en) 2014-07-02 2017-05-10 Massachusetts Institute of Technology Polyamine-fatty acid derived lipidoids and uses thereof
EP3169699A4 (en) 2014-07-18 2018-06-20 The University of Washington Cancer vaccine compositions and methods of use thereof
US10736966B2 (en) 2014-08-12 2020-08-11 Massachusetts Institute Of Technology Brush-poly (glycoamidoamine)-lipids and uses thereof
WO2016040369A2 (en) 2014-09-08 2016-03-17 Academia Sinica HUMAN iNKT CELL ACTIVATION USING GLYCOLIPIDS
USD757933S1 (en) 2014-09-11 2016-05-31 Medimop Medical Projects Ltd. Dual vial adapter assemblage
SG10201902598VA (en) 2014-09-24 2019-04-29 Aileron Therapeutics Inc Peptidomimetic macrocycles and formulations thereof
CN112245565A (en) 2014-09-24 2021-01-22 艾瑞朗医疗公司 Peptidomimetic macrocycles and uses thereof
US9708348B2 (en) 2014-10-03 2017-07-18 Infinity Pharmaceuticals, Inc. Trisubstituted bicyclic heterocyclic compounds with kinase activities and uses thereof
KR20210142781A (en) 2014-10-21 2021-11-25 다케다 야쿠힌 고교 가부시키가이샤 Crystalline forms of 5-chloro-n4-[2-(dimethylphosphoryl)phenyl]-n2-{2-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]pyrimidine-2,4-diamine
US20180015101A1 (en) 2014-10-28 2018-01-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Compositions and methods for antigen-specific tolerance
EP3461904A1 (en) 2014-11-10 2019-04-03 ModernaTX, Inc. Alternative nucleic acid molecules containing reduced uracil content and uses thereof
WO2016086026A1 (en) 2014-11-26 2016-06-02 Kala Pharmaceuticals, Inc. Crystalline forms of a therapeutic compound and uses thereof
EP3230272B1 (en) 2014-12-10 2020-08-19 Kala Pharmaceuticals, Inc. 1-amino-triazolo(1,5-a)pyridine-substituted urea derivative and uses thereof
WO2016105528A2 (en) 2014-12-23 2016-06-30 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (cdk7)
EP3237066B1 (en) 2014-12-23 2020-10-21 Sloan-Kettering Institute for Cancer Research Polymorph of granaticin b
JP6358724B2 (en) 2015-01-05 2018-07-18 ウエスト・ファーマ.サービシーズ・イスラエル,リミテッド Dual vial adapter assembly with easy removable pill adapter to ensure accurate use
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
US10495645B2 (en) 2015-01-16 2019-12-03 Academia Sinica Cancer markers and methods of use thereof
WO2016118191A1 (en) 2015-01-24 2016-07-28 Academia Sinica Novel glycan conjugates and methods of use thereof
SG11201707750YA (en) 2015-03-20 2017-10-30 Aileron Therapeutics Inc Peptidomimetic macrocycles and uses thereof
WO2016160617A2 (en) 2015-03-27 2016-10-06 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
CA2980172A1 (en) 2015-03-30 2016-10-06 Greenlight Biosciences, Inc. Cell-free production of ribonucleic acid
JP1544111S (en) * 2015-04-07 2016-02-22
US10570104B2 (en) 2015-04-27 2020-02-25 University Of Florida Research Foundation, Incorporated Metabolically programmed metal chelators and uses thereof
WO2016178591A2 (en) 2015-05-05 2016-11-10 Gene Predit, Sa Genetic markers and treatment of male obesity
US10702527B2 (en) 2015-06-12 2020-07-07 Dana-Farber Cancer Institute, Inc. Combination therapy of transcription inhibitors and kinase inhibitors
CN107848988B (en) 2015-06-19 2021-10-22 麻省理工学院 Alkenyl substituted 2, 5-piperazinediones and their use in compositions for delivering an agent to a subject or cell
WO2017004548A1 (en) 2015-07-01 2017-01-05 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
CN113143759B (en) 2015-07-16 2024-01-30 西部制药服务以色列有限公司 Liquid drug transfer device for secure telescopic snap-fit on an injection vial
EP3347018B1 (en) 2015-09-09 2021-09-01 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
JP2018528217A (en) 2015-09-10 2018-09-27 エルロン・セラピューティクス・インコーポレイテッドAileron Therapeutics,Inc. Peptidomimetic macrocycles as modulators of MCL-1
CR20180199A (en) 2015-09-11 2018-05-25 Dana Farber Cancer Inst Inc ACETAMIDE TIENOTRIAZOLODIAZEPINAS AND USES OF THE SAME
PE20181287A1 (en) 2015-09-11 2018-08-07 Dana Farber Cancer Inst Inc CYANE HAS ANOTHRIAZOLPIRAZINES AND USES OF THE SAME
DK3350333T3 (en) 2015-09-17 2022-01-31 Modernatx Inc POLYNUCLEOTIDES CONTAINING A STABILIZING TAIL REGION
ES2910425T3 (en) 2015-09-17 2022-05-12 Modernatx Inc Compounds and compositions for the intracellular delivery of therapeutic agents
EP3355882A1 (en) 2015-10-01 2018-08-08 Kythera Biopharmaceuticals, Inc. Compositions comprising a statin for use in methods of adipolysis
GB201518684D0 (en) 2015-10-21 2015-12-02 Glaxosmithkline Biolog Sa Vaccine
USD801522S1 (en) 2015-11-09 2017-10-31 Medimop Medical Projects Ltd. Fluid transfer assembly
JP6523569B2 (en) 2015-11-25 2019-06-05 ウエスト・ファーマ.サービシーズ・イスラエル,リミテッド Dual vial adapter assembly comprising a vial adapter having a self sealing access valve
CN108472295B (en) 2015-11-25 2022-04-15 达纳-法伯癌症研究所股份有限公司 Bivalent bromodomain inhibitors and uses thereof
WO2017096238A1 (en) * 2015-12-03 2017-06-08 Drexel University Medical fluid delivery system
SI3394030T1 (en) 2015-12-22 2022-04-29 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
JP2019515876A (en) 2016-03-08 2019-06-13 アカデミア シニカAcademia Sinica Methods for module synthesis of N-glycans and their arrays
US10759806B2 (en) 2016-03-17 2020-09-01 Infinity Pharmaceuticals, Inc. Isotopologues of isoquinolinone and quinazolinone compounds and uses thereof as PI3K kinase inhibitors
WO2017176963A1 (en) 2016-04-06 2017-10-12 Greenlight Biosciences, Inc. Cell-free production of ribonucleic acid
IL245803A0 (en) 2016-05-24 2016-08-31 West Pharma Services Il Ltd Dual vial adapter assemblages including vented drug vial adapter and vented liquid vial adapter
IL245800A0 (en) 2016-05-24 2016-08-31 West Pharma Services Il Ltd Dual vial adapter assemblages including identical twin vial adapters
MX2018014887A (en) 2016-06-03 2019-06-06 Sanofi Pasteur Inc Modification of engineered influenza hemagglutinin polypeptides.
IL246073A0 (en) 2016-06-06 2016-08-31 West Pharma Services Il Ltd Fluid transfer devices for use with drug pump cartridge having slidable driving plunger
US10105449B2 (en) 2016-06-07 2018-10-23 Massachusetts Institute Of Technology Drug delivery polymers and uses thereof
WO2017214269A1 (en) 2016-06-08 2017-12-14 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
JP2019525901A (en) 2016-06-14 2019-09-12 モデルナティエックス インコーポレイテッドModernaTX,Inc. Stabilized preparation of lipid nanoparticles
GB201610599D0 (en) 2016-06-17 2016-08-03 Glaxosmithkline Biologicals Sa Immunogenic Composition
KR102467074B1 (en) 2016-08-05 2022-11-11 사노피 파스퇴르 인코포레이티드 Polyvalent pneumococcal polysaccharide-protein conjugate composition
BR112019001971A2 (en) 2016-08-05 2019-05-07 Sanofi Pasteur, Inc. multivalent pneumococcal polysaccharide-protein conjugate composition
IL247376A0 (en) 2016-08-21 2016-12-29 Medimop Medical Projects Ltd Syringe assembly
AU2017316663B2 (en) 2016-08-22 2024-02-22 CHO Pharma Inc. Antibodies, binding fragments, and methods of use
WO2018089540A1 (en) 2016-11-08 2018-05-17 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
USD832430S1 (en) 2016-11-15 2018-10-30 West Pharma. Services IL, Ltd. Dual vial adapter assemblage
WO2018106738A1 (en) 2016-12-05 2018-06-14 Massachusetts Institute Of Technology Brush-arm star polymers, conjugates and particles, and uses thereof
IL249408A0 (en) 2016-12-06 2017-03-30 Medimop Medical Projects Ltd Liquid transfer device for use with infusion liquid container and pincers-like hand tool for use therewith for releasing intact drug vial therefrom
WO2018170306A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
US20200129445A1 (en) 2017-03-15 2020-04-30 Modernatx, Inc. Lipid nanoparticle formulation
US11555031B2 (en) 2017-03-20 2023-01-17 The Broad Institute, Inc. Compounds and methods for regulating insulin secretion
IL251458A0 (en) 2017-03-29 2017-06-29 Medimop Medical Projects Ltd User actuated liquid drug transfer devices for use in ready-to-use (rtu) liquid drug transfer assemblages
BR112019020810A2 (en) 2017-04-05 2020-04-28 Biogen Ma Inc tricyclic compounds as glycogen synthase kinase 3 (gsk3) inhibitors and uses thereof
EP3638678A1 (en) 2017-06-14 2020-04-22 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
EP4327876A2 (en) 2017-06-23 2024-02-28 Affinivax, Inc. Immunogenic compositions
WO2019013790A1 (en) 2017-07-12 2019-01-17 Curza Global, Llc Antimicrobial compounds and uses thereof
WO2019013789A1 (en) 2017-07-12 2019-01-17 Curza Global, Llc Antimicrobial compounds
CA3073211A1 (en) 2017-08-31 2019-03-07 Modernatx, Inc. Methods of making lipid nanoparticles
IL254802A0 (en) 2017-09-29 2017-12-31 Medimop Medical Projects Ltd Dual vial adapter assemblages with twin vented female vial adapters
AU2018347405B2 (en) 2017-10-11 2022-02-03 Greenlight Biosciences, Inc. Methods and compositions for nucleoside triphosphate and ribonucleic acid production
JP7209710B2 (en) * 2017-11-02 2023-01-20 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Container adapter, delivery assembly, and method of delivering liquid to a patient
US11786477B2 (en) 2017-12-01 2023-10-17 North Carolina State University Fibrin particles and methods of making the same
GB201721582D0 (en) 2017-12-21 2018-02-07 Glaxosmithkline Biologicals Sa S aureus antigens and immunogenic compositions
GB201721576D0 (en) 2017-12-21 2018-02-07 Glaxosmithkline Biologicals Sa Hla antigens and glycoconjugates thereof
EP3793504B1 (en) * 2018-05-17 2024-03-13 Becton Dickinson France Connector for connecting a medical injection device to a container
JP1630477S (en) 2018-07-06 2019-05-07
EP3853202A1 (en) 2018-09-19 2021-07-28 ModernaTX, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
CN113271926A (en) 2018-09-20 2021-08-17 摩登纳特斯有限公司 Preparation of lipid nanoparticles and methods of administration thereof
AU2020209167A1 (en) 2019-01-16 2021-08-12 Curza Global, Llc Antimicrobial compounds and methods
EP3911644A1 (en) 2019-01-16 2021-11-24 Curza Global LLC Antimicrobial compounds and methods
USD923812S1 (en) 2019-01-16 2021-06-29 West Pharma. Services IL, Ltd. Medication mixing apparatus
JP1648075S (en) 2019-01-17 2019-12-16
CN113543761A (en) * 2019-01-18 2021-10-22 西医药服务以色列有限公司 Liquid delivery device for Intravenous (IV) bottles
EP3917486B1 (en) 2019-01-31 2023-03-08 West Pharma. Services IL, Ltd Liquid transfer device
CA3128215A1 (en) 2019-01-31 2020-08-06 Modernatx, Inc. Methods of preparing lipid nanoparticles
WO2020168466A1 (en) 2019-02-19 2020-08-27 Stemirna Therapeutics Co., Ltd. Modified nucleoside and synthetic methods thereof
WO2020222220A1 (en) 2019-04-30 2020-11-05 West Pharma. Services IL, Ltd. Liquid transfer device with dual lumen iv spike
US11604204B2 (en) 2019-06-03 2023-03-14 University Of Washington Self-contained systems and methods for controlled dispensing of hazardous fluid
WO2021022173A1 (en) 2019-07-31 2021-02-04 Modernatx, Inc. Compositions and methods for delivery of rna interference agents to immune cells
US20220265803A1 (en) 2019-07-31 2022-08-25 Sanofi Pasteur Inc. Multivalent pneumococcal polysaccharide-protein conjugate compositions and methods of using the same
US11311458B2 (en) 2019-09-11 2022-04-26 B Braun Medical Inc. Binary connector for drug reconstitution
CN115297930A (en) 2019-11-13 2022-11-04 库扎环球有限责任公司 Antimicrobial compounds and methods
CA3169669A1 (en) 2020-01-31 2021-08-05 Modernatx, Inc. Methods of preparing lipid nanoparticles
WO2021173965A1 (en) 2020-02-28 2021-09-02 Massachusetts Institute Of Technology Identification of variable influenza residues and uses thereof
WO2021231729A1 (en) 2020-05-13 2021-11-18 Sanofi Adjuvanted stabilized stem hemagglutinin nanoparticles and methods of using the same to induce broadly neutralizing antibodies against influenza
USD956958S1 (en) 2020-07-13 2022-07-05 West Pharma. Services IL, Ltd. Liquid transfer device
EP4238979A1 (en) 2020-10-30 2023-09-06 Xeno-Interface Inc. Beta-strand type crosslinked peptide
EP4238567A1 (en) 2020-10-30 2023-09-06 Keio University Novel treatment and prevention of sarcopenia-related diseases
AR124267A1 (en) 2020-12-09 2023-03-01 Genentech Inc HIGH THROUGH METHODS FOR PREPARING LIPID NANOPARTICLES AND THEIR USES
EP4305088A1 (en) 2021-03-09 2024-01-17 Massachusetts Institute of Technology Branched poly(-amino esters) for the delivery of nucleic acids
TW202313065A (en) 2021-05-28 2023-04-01 美商季卡尼醫療公司 Compounds for treating genetic diseases
WO2023018817A1 (en) 2021-08-11 2023-02-16 Sanofi Pasteur Inc. Truncated influenza neuraminidase and methods of using the same
US20230233667A1 (en) 2021-09-08 2023-07-27 Affinivax, Inc. Coronavirus vaccine
CA3233926A1 (en) 2021-10-08 2023-04-13 Sanofi Pasteur Inc. Multivalent influenza vaccines
WO2023081798A1 (en) 2021-11-05 2023-05-11 Sanofi Pasteur Inc. Multivalent influenza vaccines comprising recombinant hemagglutinin and neuraminidase and methods of using the same
WO2023079113A1 (en) 2021-11-05 2023-05-11 Sanofi Hybrid multivalent influenza vaccines comprising hemagglutinin and neuraminidase and methods of using the same
WO2023114889A1 (en) 2021-12-16 2023-06-22 Modernatx, Inc. Processes for preparing lipid nanoparticles
WO2023129963A1 (en) 2021-12-30 2023-07-06 Curza Global, Llc Antimicrobial compounds and methods
WO2023144206A1 (en) 2022-01-27 2023-08-03 Sanofi Pasteur Modified vero cells and methods of using the same for virus production
WO2023177579A1 (en) 2022-03-14 2023-09-21 Sanofi Pasteur Inc. Machine-learning techniques in protein design for vaccine generation
WO2023193002A1 (en) 2022-04-01 2023-10-05 Modernatx, Inc. Cross mixers for lipid nanoparticle production, and methods of operating the same
WO2023235380A1 (en) 2022-06-01 2023-12-07 Zikani Therapeutics, Inc. Macrolides for treating genetic diseases
WO2023250513A1 (en) 2022-06-24 2023-12-28 Zikani Therapeutics, Inc. 13-membered macrolide compounds for treating diseases mediated by abnormal protein translation
US11547630B1 (en) * 2022-07-21 2023-01-10 Omar Hassad Intravenous “Y” shaped (yaseen) adapter
WO2024026475A1 (en) 2022-07-29 2024-02-01 Modernatx, Inc. Compositions for delivery to hematopoietic stem and progenitor cells (hspcs) and related uses
WO2024026482A1 (en) 2022-07-29 2024-02-01 Modernatx, Inc. Lipid nanoparticle compositions comprising surface lipid derivatives and related uses
WO2024026487A1 (en) 2022-07-29 2024-02-01 Modernatx, Inc. Lipid nanoparticle compositions comprising phospholipid derivatives and related uses
WO2024049994A1 (en) 2022-09-01 2024-03-07 Zikani Therapeutics, Inc. Treatment of familial adenomatous polyopsis using a 13-membered macrolide

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE681331C (en) * 1937-05-04 1939-09-20 Seitz Werke Gmbh Bottle insert for filling devices
US2584397A (en) * 1945-10-03 1952-02-05 Louis K Pitman Apparatus for transferring liquid from one container to another
US3580423A (en) * 1969-02-27 1971-05-25 Realistic Co Container closure and apparatus for opening same
US3729031A (en) * 1971-12-06 1973-04-24 Mpl Inc Liquid dispenser and plunger and method and apparatus for filling same
US3779371A (en) * 1972-03-13 1973-12-18 W Rovinski Package of separated materials to be mixed
US3940003A (en) * 1974-05-07 1976-02-24 Pharmaco, Inc. Safety cap for medicament vial having puncturable seal
US3938520A (en) * 1974-06-10 1976-02-17 Abbott Laboratories Transfer unit having a dual channel transfer member
US4128098A (en) * 1976-12-06 1978-12-05 American Hospital Supply Corporation Valved spike transfer device
US4516967A (en) * 1981-12-21 1985-05-14 Kopfer Rudolph J Wet-dry compartmental syringe
SE456637B (en) * 1982-04-13 1988-10-24 Gambro Lundia Ab HEATER RELIABLE CLUTCH
EP0107873B1 (en) * 1982-10-27 1987-06-24 Duphar International Research B.V Hypodermic syringe having a telescopic assembly between cartridge and medicament holder
US4507113A (en) * 1982-11-22 1985-03-26 Derata Corporation Hypodermic jet injector
US4515586A (en) * 1982-11-30 1985-05-07 Abbott Laboratories Powder syringe mixing system
US4505709A (en) * 1983-02-22 1985-03-19 Froning Edward C Liquid transfer device
AU575814B2 (en) * 1983-03-03 1988-08-11 Bengt Gustavsson A device for transferring a substance
US4543101A (en) * 1984-03-28 1985-09-24 Adria Laboratories, Inc. Valve device to aid in reconstituting injectable powders
US4581014A (en) * 1984-04-03 1986-04-08 Ivac Corporation Fluid infusion system
US5088996A (en) * 1984-04-16 1992-02-18 Kopfer Rudolph J Anti-aerosoling drug reconstitution device
US4607671A (en) * 1984-08-21 1986-08-26 Baxter Travenol Laboratories, Inc. Reconstitution device
US4759756A (en) * 1984-09-14 1988-07-26 Baxter Travenol Laboratories, Inc. Reconstitution device
US4614437A (en) * 1984-11-02 1986-09-30 Dougherty Brothers Company Mixing container and adapter
US4675020A (en) * 1985-10-09 1987-06-23 Kendall Mcgaw Laboratories, Inc. Connector
US4662878A (en) * 1985-11-13 1987-05-05 Patents Unlimited Ltd. Medicine vial adaptor for needleless injector
US4886495A (en) * 1987-07-08 1989-12-12 Duoject Medical Systems Inc. Vial-based prefilled syringe system for one or two component medicaments
US4940460A (en) * 1987-06-19 1990-07-10 Bioject, Inc. Patient-fillable and non-invasive hypodermic injection device assembly
US4941880A (en) * 1987-06-19 1990-07-17 Bioject, Inc. Pre-filled ampule and non-invasive hypodermic injection device assembly
US4768568A (en) * 1987-07-07 1988-09-06 Survival Technology, Inc. Hazardous material vial apparatus providing expansible sealed and filter vented chambers
IT1231892B (en) * 1987-10-14 1992-01-15 Farmitalia Carlo Erba S P A Mi APPARATUS WITH SAFETY LOCKING ORGANS FOR CONNECTION OF A SYRINGE TO A BOTTLE CONTAINING A DRUG
US5211638A (en) * 1988-01-25 1993-05-18 Baxter International Inc. Pre-slit injection site
US5100394A (en) * 1988-01-25 1992-03-31 Baxter International Inc. Pre-slit injection site
US4913699A (en) * 1988-03-14 1990-04-03 Parsons James S Disposable needleless injection system
JPH021277A (en) * 1988-03-31 1990-01-05 Fujisawa Pharmaceut Co Ltd Infusion container
BR8801952A (en) * 1988-04-22 1989-11-14 Sergio Landau DISPOSABLE CAPSULE, NOT RE-USABLE, CONTAINING INDIVIDUAL DOSE OF VACCINE TO BE HYPODERMICALLY INJECTED, WITHOUT NEEDLE, WITH PRESSURE INJECTOR
US5195992A (en) * 1988-05-13 1993-03-23 Baxter International Inc. Protector shield for needles
US4944736A (en) * 1989-07-05 1990-07-31 Holtz Leonard J Adaptor cap for centering, sealing, and holding a syringe to a bottle
US4997430A (en) * 1989-09-06 1991-03-05 Npbi Nederlands Produktielaboratorium Voor Bloedtransfusieapparatuur En Infusievloeistoffen B.V. Method of and apparatus for administering medicament to a patient
US5312335A (en) * 1989-11-09 1994-05-17 Bioject Inc. Needleless hypodermic injection device
US5304165A (en) * 1991-12-09 1994-04-19 Habley Medical Technology Corporation Syringe-filling medication dispenser
US5163583A (en) * 1992-01-03 1992-11-17 Whitworth Ted N Aspiration cap for dispensing blood or other fluids for diagnostic purposes
US5281198A (en) * 1992-05-04 1994-01-25 Habley Medical Technology Corporation Pharmaceutical component-mixing delivery assembly
US5312577A (en) * 1992-05-08 1994-05-17 Bioject Inc. Method for manufacturing an ampule
US5279576A (en) * 1992-05-26 1994-01-18 George Loo Medication vial adapter
US5383851A (en) * 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
US5334179A (en) * 1992-10-16 1994-08-02 Abbott Laboratories Latching piercing pin for use with fluid vials of varying sizes
US5364386A (en) * 1993-05-05 1994-11-15 Hikari Seiyaku Kabushiki Kaisha Infusion unit
US5360423A (en) * 1993-05-25 1994-11-01 Mccormick William Means for safe collection and transfer of body fluids
US5472022A (en) * 1993-11-02 1995-12-05 Genentech, Inc. Injection pen solution transfer apparatus and method
DE4408498C2 (en) * 1993-11-16 1997-06-12 Christian Eichler Transfer device for medicine and pharmacy
US5505697A (en) * 1994-01-14 1996-04-09 Mckinnon, Jr.; Charles N. Electrically powered jet injector
US5466220A (en) * 1994-03-08 1995-11-14 Bioject, Inc. Drug vial mixing and transfer device
US5526853A (en) * 1994-08-17 1996-06-18 Mcgaw, Inc. Pressure-activated medication transfer system
US5647845A (en) * 1995-02-01 1997-07-15 Habley Medical Technology Corporation Generic intravenous infusion system

Also Published As

Publication number Publication date
ATE240709T1 (en) 2003-06-15
DK0783879T3 (en) 2003-09-15
DE69628275T2 (en) 2004-04-01
EP0783879A3 (en) 1997-11-26
JPH09290012A (en) 1997-11-11
DE69628275D1 (en) 2003-06-26
JP3916713B2 (en) 2007-05-23
EP0783879A2 (en) 1997-07-16
ES2200041T3 (en) 2004-03-01
US5893397A (en) 1999-04-13
PT783879E (en) 2003-09-30
EP0783879B1 (en) 2003-05-21
CA2192623A1 (en) 1997-07-13

Similar Documents

Publication Publication Date Title
CA2192623C (en) Medication vial/syringe liquid/transfer apparatus
US5364387A (en) Drug access assembly for vials and ampules
EP1145702B1 (en) Adapter for mixing and injection of preparations
US5232029A (en) Additive device for vial
CA1296296C (en) Connector and disposable assembly utilizing said connector
US4505709A (en) Liquid transfer device
US5632315A (en) Liquid dispensers
US3788524A (en) Additive container
JP4163961B2 (en) Kit including a side-spout syringe needle for preparing medication in an infusion pen cartridge
US7425208B1 (en) Needle assembly facilitating complete removal or nearly complete removal of a composition from a container
US5356380A (en) Drug delivery system
US7678333B2 (en) Fluid transfer assembly for pharmaceutical delivery system and method for using same
US4599082A (en) Two-component syringe assembly
CA2221434C (en) Syringe filling and delivery device
EP0357288A1 (en) Device for storage, mixing and dispensing of two different fluids
US4775376A (en) Method and apparatus for catching fluids purged from a syringe
CA2071280A1 (en) Transfer adaptors
KR980008252A (en) Syringe Filling and Carrying Device
US20150101708A1 (en) Inter-vial transfer system
JPS6072561A (en) Two-drug component syringe having vein display capacity
JPH05146510A (en) Pressure injection type vessel soluble upon application
CN217909831U (en) Needleless medicine dispensing device
CN110236943A (en) It is a kind of to shift filter with the medical fluid of cam pin and filter structure
EP3911292B1 (en) Liquid transfer devices for use with intravenous (iv) bottles
WO2011092513A2 (en) An assembly for delivering a fluid drug and method

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20141211