CA2166831C - Portable radio telephones and methods of operation - Google Patents

Portable radio telephones and methods of operation Download PDF

Info

Publication number
CA2166831C
CA2166831C CA002166831A CA2166831A CA2166831C CA 2166831 C CA2166831 C CA 2166831C CA 002166831 A CA002166831 A CA 002166831A CA 2166831 A CA2166831 A CA 2166831A CA 2166831 C CA2166831 C CA 2166831C
Authority
CA
Canada
Prior art keywords
radio telephone
channel
slots
portable radio
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002166831A
Other languages
French (fr)
Other versions
CA2166831A1 (en
Inventor
Nguyen Quan Tat
Robert Stanley Saunders
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Oyj
Original Assignee
Nokia Mobile Phones Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Mobile Phones Ltd filed Critical Nokia Mobile Phones Ltd
Publication of CA2166831A1 publication Critical patent/CA2166831A1/en
Application granted granted Critical
Publication of CA2166831C publication Critical patent/CA2166831C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • H04M1/72502Cordless telephones with one base station connected to a single line
    • H04M1/72505Radio link set-up procedures
    • H04M1/72511Searching for available channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources

Abstract

A portable radio telephone (5) communicates with base stations (1, 2) in a digital radio telephone system, such as DECT, employing TDMA transmission. The portable radio telephone is programmed with an algorithm which is operative to select a communication channel by storing a blind slot mask (7) representative of the time slots in each frame which are excluded, either by virtue of being occupied by the base station or by the portable radio telephone itself. Hence, any channel attempted and failed in an occupied time slot is excluded and marked blind in the blind slot mask.
Further, the algorithm is operative to check the time slots for availability in a predetermined sequence which corresponds to the temporal sequence of the slots (or the reverse thereof) to promote orderly filling of the time slots at the base stations.

Description

2?66831 PORTABLE RADIO TELEPHONES AND METHODS OF OPERATION
Background of the Invention This invention relates to portable radio telephones and in particular to such telephones for communication with base stations in a digital cellular radio telephone system employing transmission by a plurality of carrier frequencies in frames, such as TDMA frames, each consisting of a predetermined number of time slots. The invention also relates to a method of operation of such radio telephones, frequently called handsets. The invention is concerned with the allocation of a channel (that is a combination of a carrier frequency and time slot) to a portable radio telephone when a connection is first required ("call set-up") or when a change in channel is required ("handover") during a call to maintain call quality. Handover can either be to a different channel at the same base station (intracell) or to a different channel at a different base station (intercell).
Most of the currently manufactured DECT base station equipment only contains a single transceiver, and is therefore unable to open more than a single communication channel on different frequency carriers at the same instant. This restricts single transceiver base stations to only using a single time slot at any one time, effectively excluding the other carriers on this time slot and thereby turning them "blind". The DECT standards have foreseen this and include the blind slot information message to inform the handset of time slots it should avoid using. However, this information is not totally reliable, particularly on intercell handover when it is very difficult to obtain the blind slot information of any base station other than the one that the handset is connected to unless a separate 'observation' channel is opened. In addition to slots "blinded" by the base station, a handset will be unable to switch communication channels to a slot immediately adjacent to that which it is using.

This invention aims to provide a portable radio telephone, and a method of operation, employing a dynamic channel assignment algorithm that gives very robust performance, regardless of the availability and accuracy of the blind slot information. In addition to this, if an identical algorithm is deployed on every portable radio telephone in the system, further improvements in call blocking and call quality are likely.
mma of the Invention According to an aspect of the present invention, there is provided a portable radio telephone for communication with base stations in a digital cellular radio telephone system employing transmission by a plurality of carrier frequencies in frames each consisting of a predetermined number of time slots, wherein the portable radio telephone comprises a processor operative to select for the radio telephone a communication channel, that is a combination of carrier frequency and time slot, by excluding from selection any communication channel associated with a time slot where an attempt at communication to a base station on any of the carrier frequencies during the associated time slot has failed.
It will be appreciated that the exclusion of a time slot will be temporary and that a particular slot will be "unblinded" by subsequent events. Preferably, the exclusion of a slot prevails for a number of unsuccessful channel selection attempts.
Preferably, on call handover from a current channel to a new channel the processor additionally exclude any channel in the three adjacent time slots centered on the current channel.
The portable radio telephone may comprise storage means for storing a blind slot mask representative of the slots in each frame which are excluded, the remaining slots being available for selection of a channel.

Once channel selection has been unsuccessfully attempted in each of the remaining slots, the blind slot mask can be reversed so that those slots that have not previously been tried are rendered available for possible selection of a channel.
The processor may be operative to check the slots for availability in a predetermined sequence which may correspond to the temporal sequence of the slots or to the reverse of the temporal sequence of the slots, until an available slot is found and a channel therein is selected.
In the preferred embodiment to be described, slots are checked for availability in sequence, starting from the first slot in the frame allocated for handset transmission and progressing to the final slot, before returning to the first slot According to another aspect of the present invention, in a method of communicating between a portable radio telephone and base stations in a digital cellular radio telephone system employing transmission by carrier frequencies in frames each consisting of a predetermined number of time slots, there is provided the improvement comprising selecting for the radio telephone a communication channel, that is a combination of carrier frequency and time slot, by excluding from selection any communication channel associated with a time slot where an attempt at communication to a base station on any of the carrier frequencies during the associated time slot has failed.
According to yet another aspect of the present invention, there is provided a portable radio telephone for communication with base stations in a digital cellular radio telephone system employing transmission by a plurality of carrier frequencies in frames each consisting of a predetermined number of time slots, wherein the portable radio telephone comprises a processor operative to select for the radio telephone a communication channel, that is a combination of carrier frequency and time slot, such that successive attempts at communication to a base station on any of the carrier frequencies are made 3a in respective ones of the predetermined number of time slots and any communication channel associated with a time slot is excluded from selection where an attempt at communication to a base station on any of the carrier frequencies during the associated time slot has failed.

21,66831 Brief Description of the Drawings A portion of a digital cellular radio telephone system consisting of two base stations and a portable radio telephone (in the form of a handset) according to the invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Figure 1 is a diagram of the radio telephone system, Figure 2 is a flow chart representing the logic steps followed by an algorithm in the handset on call set-up, Figure 3 is a diagram showing an exemplary channel list stored in the handset, Figure 4 is a diagram showing a channel list and an associated blind slot mask of the handset and a blind slot message from a base station, on call set-up, Figure 5 is a diagram corresponding to that of Figure 4 but for intracell handover, Figure 6 shows a blind slot message on a current base station and a blind slot message on a new base station, to explain intercell handover, Figures 7 to 9 are diagrams corresponding to that of Figure 4 but for attempted (Figures 7 and 8) and successful (Figure 9) intercell handover, and Figure 10 is a diagram illustrating how the algorithm generates an inverse blind slot mask after all time slots in the mask are marked blind.

Detailed Description of the Invention Referring to Figure 1, the portion of the radio system depicted comprises two fixed base stations 1 and 2 serving respective cells 3 and 4 representing geographical areas of coverage which may be inside or outside buildings. A user or subscriber to the system carries a portable handset 5 which is capable of two-way radio communication with one or other of the base stations 1, 2, and with other base stations (not shown).
In the described example shown in the drawings, the radio telephone system conforms to the DECT (Digital European Cordless Telecommunications) standard and uses ten carrier frequencies, separated by 1.728 MHz, within a frequency band from 1880 MHz to 1900 MHz. This system divides time into TDMA frames, with each frame having a time duration of 10ms. Each frame is divided into 24 time slots, numbered from 0 to 23. Each frame is divided into two halves, the first half (slots 0 to 11 ) being reserved for the transmission of the base station and the second half (slots 12 to 23) being reserved for the transmission of the handset.
The handset 5 has processing means programmed with an algorithm which is operative to select for the handset a communication channel, ie a combination of carrier frequency and time slot, taking into account the quietness of each channel, ie the degree of signal interference in that channel. To achieve this, the numbered signal strength of all channels is monitored at regular time intervals and the measured signal strengths are stored in the handset in a channel list, an example of which is shown in Figure 3 in which the time axis extends horizontally and the frequency axis extends vertically.
Referring to Figure 3, the twelve slots 1 - 11 of a representative frame are shown as columns, with the ten carrier frequencies being represented by horizontal rows.
Hence, the array of Figure 3 has 120 boxes, each representing a particular channel, ie a particular combination of time slot and carrier frequency. Signal strength is allocated a level from 0 to 12 (typically 6dB bands are used), with 0 being the quietest (ie feast interference) and 12 being the least quiet (ie most interference).
Representative quietness levels for each channel are shown in Figure 3 and the channels that satisfy the quietness requirement are shown shaded. Figure 3 also shows the base station scan. The base station scans one carrier every time frame and works through all ten carriers in ten frames.
The algorithm fulfils three theoretical principles that all improve the probability of the portable handset assigning itself an available channel. These are:
1. Once a quiet channel has been attempted on a particular base station it can be assumed that this slot is blind, and no other channel on this slot should be attempted until all other slots have been tried first.
2. Once all the timeslots on the strongest base station have been attempted it can be assumed that it is full to capacity, and the same procedure can be applied to the next strongest base station.
3. Channels that fulfill the quality criteria for use (in DECT the least interfered channels are assumed to fulfill this criterion) should then be sorted for assignment in slot order. Then if all handsets use the same ordering for channels, slots will be blinded at approximately the same rate on all base stations if roughly even numbers of calls exist in each cell. This would have the effect of matching blind slot messages from all the base stations in the system.
Using the quietness bands to specify signal strength, the quality criteria for channel assignment is as follows:
1. The quietest available channel 216b~31 2. If this quietest channel cannot be attempted within the next three frames (ie it is within three carriers of the current primary scan of the base station) a channel that can be attempted within three frames can be selected if it is within 2 bands of the quietest, otherwise the quietest is selected.
Figure 4 shows at 6 the blind slot message received by the handset 5 from the base station 1 on call set-up. This indicates that the first three time slots are blind. Since the handset 5 imposes no blind slots, the blind slot mask 7 on the handset corresponds to the blind slot message 6 from the base station. Hence, the first three time slots in the channel list 8 stored in the handset are blind. The algorithm is operative to check availability of time slots in a sequence which proceeds from the first time slot allocated for base station transmission to the last time slot allocated for base station transmission, before returning to the first slot: Hence, quiet channels are checked for availability progressing from left to right in the channel list 8 in Figure 4, so that there is a tendency for channels to be filled in an orderly sequence which, if all handsets operate the same system, will promote efficient channel allocation at the base stations. This check could be in reverse order, and could commence with any time slot.
The algorithm attempts set-up in a channel at "X" in the immediate slot after the blind slots in the mask, if one of these channels is one of the quietest. Since the blind slot information on the portable is correct, set-up succeeds.
Next, referring to Figure 5, it is assumed that an intracell handover is required because the current channel degrades in quality. In this case the blind slot message 9 from the base station indicates that the first three slots remain blinded, together with the fourth slot because this is occupied by the transmission of the handset 5.
The channel currently occupied by the handset, together with a channel either side thereof, is blinded by the handset, so the blind slot mask on the handset is a shown at 10, the resulting channel list being shown at 11.

~166~31 g This time the channel assigned, channel X, is slightly out of slot order on the base station. However, this vacant slot will soon be filled by another handset, due to the channel assignment procedure being in slot order. This type of algorithm (if used on every handset in the system) will tend to have the effect of assigning adjacent slots at the base station. This also decreases the chance of blind slots at the handset not actually being blind at the base station.
Next, referring to Figure 6, it is assumed that intercell handover is required, and that the blind slot message 12 at the new base station 2 is different from the blind slot message 13 at the current base station 1. This might not be the case if the proposed algorithm is used on every portable terminal in the system.
On the handset, the current transmission channel and the two immediately adjacent channels are blinded so, referring to Figure 7, the blind slot message from the currently connected base station 1 is shown at 14 and the blind slot mask on the handset at 15, the resulting channel list on the handset being as illustrated at 16. The handset tries channels in the fourth time slot but as this is blinded at the new base station (as shown by the blind slot message 12) channel assignment fails.
Once the handset fails assignment in a channel, it then marks this slot as blind and tries channels in the next slot. As shown in Figure 8, the handset fails in this slot (the eighth) also, marks it as blind and tries the next slot (the ninth), as shown in Figure 9.
This time, channel assignment is successful and handover occurs.
To ensure all possible slots are attempted at least once, the following procedure is used. Once all the slots in the blind slot mask have been marked blind, an inverse of the blind slot message is used to reset the blind slot mask, and the process continues as before. This is shown in Figure 10.

21C~~31 This ensures that if an available slot exists on the base station (and it is not one of those thought to be blind by the handset) that it will be found. Once all the available slots at a single base station have been attempted, then an alternative base station can be tried. In general the number of attempts necessary to try all the available slots is the number of time slots in a frame less the number of slots blinded by the handset itself. In this particular case the number of attempts necessary is nine. To avoid additional unnecessary attempts at set-up or handover, reducing the efficiency of the set-up or handover process, it is desirable to make the number of attempts before handover/setup is discontinued for a specified period period of, say, two to three seconds correspond to the number of attempts necessary to try all the available time slots.
The first base station tried is usually the strongest, and the second tried will be the second strongest. Once a new base station is decided upon, the blind slot mask is reset and the procedure starts again.
The important features of the algorithm are:
1. The slot ordering of channels that meet a defined quality criteria for channel assignment, particularly on every handset in the system. This has two beneficial effects:
- Blind slots on the base stations are more likely to be the same, thus improving the probability that portable handsets using the current base station blind slot information can perform intercell handover to an available slot at other base stations.
- Channels will be used at base stations that are generally immediately adjacent to each other, thus the likelihood of hansets (that have blind slots adjacent to the one in use) missing available slots at the base station is reduced.

21 E6~31 2. The marking of the entire slot as blind (in addition to those already blind) once assignment has failed at a single channel in this time slot.
3. When using (2), the limiting of channel assignment attempts at a single base station to the maximum number of available slots minus the number of blind slots at the handset.
4. Using (3) to detect a "busy" base station and then starting the channel assignment procedure anew with a different base station Figure 2 shows the steps followed by the algorithm in call set-up. Commencing at start, box 20, the next step, box 22, is to measure signal strengths, accept the blind slot message from a base station (if available) and load into the storage means in the handset the blind slot mask. Channel selection (box 23) then proceeds from the first time slot. If an available time slot is found, channel set-up is attempted until all nine channels are attempted, after which set-up with an alternative base station is attempted. Each time set-up in a channel fails, the time slot containing that particular channel is marked blind. If the blind slot mask is full (decision block 24), the original blind slot message is inverted (box 25) and the process repeated (box 26).
what is claimed is

Claims (14)

  1. A portable radio telephone for communication with base stations in a digital cellular radio telephone system employing transmission by a plurality of carrier frequencies in frames each consisting of a predetermined number of time slots, wherein the portable radio telephone comprises a processor operative to select for the radio telephone a communication channel, that is a combination of carrier frequency and time slot, by excluding from selection any communication channel associated with a time slot where an attempt at communication to a base station on any of the carrier frequencies during the associated time slot has failed.
  2. 2. A portable radio telephone according to claim 1, wherein the exclusion of a slot prevails for a number of unsuccessful channel selection attempts.
  3. 3. A portable radio telephone according to claim 1, wherein on call handover from a current channel to a new channel the processor additionally excludes any channel in the three adjacent time slots centered on the current channel.
  4. 4. A portable radio telephone according to claim 1, wherein the portable radio telephone comprises storage means for storing a blind slot mask representative of the slots in each frame which are excluded, the remaining slots being available for selection of a channel.
  5. 5. A portable radio telephone according to claim 4, wherein if all the slots in the blind slot mask are excluded the processor constructs a new blind slot mask in which those slots excluded by virtue of their occupation by transmission by the base station are rendered available for possible selection of a channel.
  6. 6. A portable radio telephone according to claim 4, wherein the storage means additionally store signal strengths of at least certain channels and wherein the processor selects a channel in an available time slot by reference to signal strength in that channel.
  7. 7. A portable radio telephone according to claim 6, wherein the signal strengths are representative of interference and must not exceed a predetermined threshold for channel selection to occur.
  8. 8. A portable radio telephone according to claim 1, wherein the predetermined threshold is 0, 1 or 2 in a range of zero to twelve, where zero represents the least interference and twelve represents the most interference.
  9. 9. A portable radio telephone according to claim 1, wherein the processor is operative to check the slots for availability in a predetermined sequence which corresponds to the temporal sequence of the slots or to the reverse of the temporal sequence of the slots, until an available slot is found and a channel therein is selected.
  10. 10. A portable radio telephone according to claim 9, wherein the predetermined sequence corresponds to the temporal sequence of the slots or to the reverse of the temporal sequence of the slots.
  11. 11. A portable radio telephone according to claim 9 and forming one of a plurality of such radio telephones each of which checks slots according to the same predetermined sequence, to promote orderly filling of the time slots at all base stations.
  12. 12. A portable radio telephone according to claim 1 and conforming to the DECT (Digital European Cordless Telecommunications) standard.
  13. 13. In a method of communicating between a portable radio telephone and base stations in a digital cellular radio telephone system employing transmission by carrier frequencies in frames each consisting of a predetermined number of time slots, the improvement comprising: selecting for the radio telephone a communication channel, that is a combination of carrier frequency and time slot, by excluding from selection any communication channel associated with a time slot where an attempt at communication to a base station an any of the carrier frequencies during the associated time slot has failed.
  14. 14. A portable radio telephone for communication with base stations in a digital cellular radio telephone system employing transmission by a plurality of carrier frequencies in frames each consisting of a predetermined number of time slots, wherein the portable radio telephone comprises a processor operative to select for the radio telephone a communication channel, that is a combination of carrier frequency and time slot, such that successive attempts at communication to a base station on any of the carrier frequencies are made in respective ones of the predetermined number of time slots and any communication channel associated with a time slot is excluded where an attempt at communication to a base station on any of the carrier frequencies during the associated time slot has failed.
CA002166831A 1995-01-10 1996-01-09 Portable radio telephones and methods of operation Expired - Fee Related CA2166831C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9500799.3 1995-01-10
GB9500799A GB2297014B (en) 1995-01-10 1995-01-10 Portable radio telephones and method of operation

Publications (2)

Publication Number Publication Date
CA2166831A1 CA2166831A1 (en) 1996-07-11
CA2166831C true CA2166831C (en) 2003-07-15

Family

ID=10768088

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002166831A Expired - Fee Related CA2166831C (en) 1995-01-10 1996-01-09 Portable radio telephones and methods of operation

Country Status (6)

Country Link
US (1) US5825757A (en)
EP (1) EP0722258B1 (en)
JP (1) JPH08251650A (en)
CA (1) CA2166831C (en)
DE (1) DE69634427T2 (en)
GB (1) GB2297014B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2297013B (en) * 1995-01-10 1999-09-15 Nokia Mobile Phones Ltd Portable radio telephones and methods of operation
GB2303999B (en) * 1995-08-03 2000-01-26 Nokia Mobile Phones Ltd Radio telephones and methods of operation
US6577611B1 (en) * 1996-01-11 2003-06-10 Nokia Mobile Phones Limited Methods and apparatus for excluding communication channels in a radio telephone
GB2309859B (en) * 1996-01-31 2000-02-16 Nokia Mobile Phones Ltd Radio receivers and methods of operation
US6738364B1 (en) 1996-01-31 2004-05-18 Nokia Mobile Phones Limited Radio receivers and methods of operation
DE19632261C2 (en) * 1996-08-09 1998-07-09 Siemens Ag Method for establishing telecommunication connections between telecommunication devices in wireless telecommunication systems, in particular between DECT devices of a DECT system
DE19640450C1 (en) * 1996-09-30 1997-10-30 Siemens Ag Base station with fast channel switching for TDMA/FDMA radio communications system
GB2318481B (en) * 1996-10-16 2001-05-09 Motorola Inc A communication method
US5991622A (en) * 1997-08-22 1999-11-23 Ericsson Inc. Method and apparatus for automatic channel measurements
US6229996B1 (en) * 1997-12-12 2001-05-08 Nokia Mobile Phones Limited Method and apparatus for increasing a probability that a dual-band mobile station will acquire a desired autonomous system
IT1298198B1 (en) * 1998-01-26 1999-12-20 Italtel Spa METHOD FOR CHANGING WITHIN A SAME CELL CLUSTER AS A BEARER RADIO IN A DIGITAL TELECOMMUNICATION SYSTEM
IT1298795B1 (en) * 1998-03-26 2000-02-02 Italtel Spa METHOD FOR PERFORMING A FAST AND COMPLETE PRE-SELECTION OF CHANNELS IN A DIGITAL TELECOMMUNICATION SYSTEM
JPH11313357A (en) * 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd Hand-over method and transmitter-receiver
US6205334B1 (en) * 1998-11-24 2001-03-20 Ericsson Inc. Accelerated scanning of cellular channels by cellular radiotelephones
GB9904348D0 (en) * 1999-02-26 1999-04-21 Koninkl Philips Electronics Nv Wireless communication channel management
EP1087634A1 (en) * 1999-09-27 2001-03-28 Trt Lucent Technologies Method of managing the transmission between a terminal and a base station
DE60022691T2 (en) * 2000-05-31 2006-06-22 Telefonaktiebolaget Lm Ericsson (Publ) METHOD AND DEVICE FOR SELECTING A RADIO ACCESS UNIT IN A RADIO COMMUNICATION SYSTEM
US9002364B2 (en) * 2007-05-22 2015-04-07 Tango Networks, Inc. System, method, and computer-readable medium for concurrent termination of multiple calls at a mobile terminal
US8619640B2 (en) * 2010-12-16 2013-12-31 Intel Corporation Dynamic bandwidth control in interference situations
CN114513750B (en) * 2020-11-16 2024-02-23 福建星网元智科技有限公司 Price tag searching method and storage device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE466279B (en) * 1988-10-17 1992-01-20 Ericsson Telefon Ab L M RADIO UNIT FOR TRANSFER OF CALL INFORMATION IN A MOBILE PHONE SYSTEM WITH SHORT RANGE
GB2232326A (en) * 1989-05-26 1990-12-05 Philips Electronic Associated Data transmission over a tdm duplex frequency channel
SE500157C2 (en) * 1989-09-13 1994-04-25 Ericsson Telefon Ab L M Method for selecting base station, radio channel and time slot at a mobile station
FI894371A (en) * 1989-09-15 1991-03-16 Nokia Mobile Phones Ltd TELEFONSYSTEM.
JP3093243B2 (en) * 1990-07-12 2000-10-03 株式会社東芝 Mobile radio communication system
JP3034281B2 (en) * 1990-07-12 2000-04-17 株式会社東芝 Wireless communication system
GB2249918A (en) * 1990-11-14 1992-05-20 Philips Electronic Associated Channel scanning in tdd cordless telephone system
US5134709A (en) * 1990-12-14 1992-07-28 At&T Bell Laboratories Process and apparatus for flexible channel assignment in cellular radiotelephone systems
FI87615C (en) * 1991-04-05 1993-01-25 Nokia Mobile Phones Ltd Control system for a packet-linked CDMA data network
US5210771A (en) * 1991-08-01 1993-05-11 Motorola, Inc. Multiple user spread-spectrum communication system
IT1250515B (en) * 1991-10-07 1995-04-08 Sixtel Spa NETWORK FOR LOCAL AREA WITHOUT WIRES.
FI96157C (en) * 1992-04-27 1996-05-10 Nokia Mobile Phones Ltd Digital cellular radio telephone network based on time multiplexing to move a radio connection from the base station to a new base station
FI91345C (en) * 1992-06-24 1994-06-10 Nokia Mobile Phones Ltd A method for enhancing handover
US5416778A (en) * 1992-06-26 1995-05-16 U.S. Philips Corporation Digital radio communication system and primary and secondary station for use in such a system
US5410733A (en) * 1993-02-11 1995-04-25 Nokia Mobile Phones Ltd. Received signal strength information measurement useful in a mobile telephone system having mobile assisted handoff capability

Also Published As

Publication number Publication date
US5825757A (en) 1998-10-20
DE69634427D1 (en) 2005-04-14
CA2166831A1 (en) 1996-07-11
GB9500799D0 (en) 1995-03-08
EP0722258A2 (en) 1996-07-17
EP0722258A3 (en) 1999-04-14
DE69634427T2 (en) 2006-04-13
EP0722258B1 (en) 2005-03-09
GB2297014B (en) 1999-07-28
JPH08251650A (en) 1996-09-27
GB2297014A (en) 1996-07-17

Similar Documents

Publication Publication Date Title
CA2166832C (en) Portable radio telephones and methods of operation
CA2166831C (en) Portable radio telephones and methods of operation
EP0440436B1 (en) Cellular mobile telephone system
US5864759A (en) Radio telephones and methods of operation
Fluhr et al. Advanced mobile phone service: Control architecture
US6577611B1 (en) Methods and apparatus for excluding communication channels in a radio telephone
AU720007B2 (en) Stabilized control channel planning using loosely coupled dedicated traffic channels
CA2174218C (en) Method and apparatus for accessing a cellular radiotelephone system without system identification comparison
GB2343089A (en) Allocation of radio resources
EP0789501B1 (en) Handset with monitoring means for handoff
WO1998048586A2 (en) Channel selection method in gsm/dcs-based cellular radio network
US6131033A (en) Methods and systems of performing system channel planning for wireless local loop communication
CA2310683C (en) Methods and systems of performing system channel planning for wireless local loop communication
CA2217192C (en) Stabilized control channel planning using loosely coupled dedicated traffic channels
Capone et al. Packet data access in DECT systems
EP1410670B1 (en) A method and an arrangement for selecting a radio access unit in a radio communication system

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKLA Lapsed

Effective date: 20100111