CA2165890A1 - Crosslinked acidic polysaccharides and their uses - Google Patents

Crosslinked acidic polysaccharides and their uses

Info

Publication number
CA2165890A1
CA2165890A1 CA 2165890 CA2165890A CA2165890A1 CA 2165890 A1 CA2165890 A1 CA 2165890A1 CA 2165890 CA2165890 CA 2165890 CA 2165890 A CA2165890 A CA 2165890A CA 2165890 A1 CA2165890 A1 CA 2165890A1
Authority
CA
Canada
Prior art keywords
acid
dianhydride
tetracarboxylic acid
dicarboxyphenyl
acid dianhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2165890
Other languages
French (fr)
Inventor
Tuyen T. Nguyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hercules LLC
Original Assignee
Hercules LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hercules LLC filed Critical Hercules LLC
Publication of CA2165890A1 publication Critical patent/CA2165890A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/735Mucopolysaccharides, e.g. hyaluronic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/042Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/937Utility as body contact e.g. implant, contact lens or I.U.D.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2525Coating or impregnation functions biologically [e.g., insect repellent, antiseptic, insecticide, bactericide, etc.]

Abstract

Acidic polysaccharides crosslinked by reaction with di- or polyanhydrides. The use of anhydride-crosslinked hyaluronic acid as a treatment for arthritis, as a drug delivery vehicle, to reduce the incidence of post-operative adhesion formation, to promote the healing of chronic wounds and ulcers, and as a component of cosmetic formulations.

Description

2 1 ~

This invention relateQ to acidic polysaccharideQ
crosslinked by reaction with di- or polyanhydrides, and preferably hyaluronic acid crosslinked with dianhydrides.
The crosslinked hyaluronic acid may be used as a treatment for arthritis, as a drug deli~ery vehicle, to reduce the incidence of p~Qt-operat~ve adhesion formation, to promote the healing of chronic wound-Q and ulcers, and as a component of cosmetic formulationQ.
The synovial fluid found in m~mm~lian joints functions as a lubricant and shock absorber. The most important component of the synovial fluid is sodium hyaluronate, which makes the greatest contribution to the m~rh~n~cal properties of the fluid. ~yaluronic acid is a naturally occurring high molecular weight glycosaminoglycan having a repeating disaccharide unit of D-glucuronic acid and N-acetylglucosamino-2-acetamido-2-deso~y-D-glucose joined by a ~1-3 glucosidic bond. The disaccharides are joined to form an unbranched, uncrosslinked polys~cch~ride chain by ~1~4 glucosidic bonds. In addition to its presence in synovial fluids, hyaluronic acid occur-Q in cell coats, pericellular gels, the e~tracellular matris substance of connective tissues of vertebrates, the vitreous humor of the eye, human umbilical cord tissue, rooster combs and in some bacteria.

Q

In healthy synovial fluid, the molecular weight of the sodium hyaluronate is very high, ranging from 1,600,000 to 10,900,000. Because the molecular weight is so high, even d lute solutions e~hibit significant viscoelastic properties. In typical human synovial fluid the concentration of sodium hyaluronate is about 0.3%.
During inflammation of a joint caused by osteo- or rheumatoid arthritis both the molecular weight of hyaluronic acid and its concentration are reduced. This lowering of molecular weight decreases the ability of synovial fluid to act as a shock absorber, and thus the fluid does not provide adequate protection for the cartilage of the joint. In the case of advanced arthri~is ~e cartilage is corroded away, leading to pain when t~e joint is in m~tion (see for e~ample, "The Merck Manual of Diagnosis and Therapy-16th Edition", p 1338-42).
Relatively ~ derate ~ lecular weight sodium hyaluronate has been used successfully as a supplemental synovial fluid in the leg joint of race horses (Balazs et al., J. Equine Vet. Sci., p. 217-228, 1985). ~owever human synovial fluid contains substantially higher molecular weight sodium hyaluronate than that of horse~.
Solutions of sodium hyaluronate also have been tested as supplemental synovial fluid for human osteoarthritic joints by injection into the joints. Treatment of arthritis by injection of sodium hyaluronate has been disclosed by 2~

Weiss et al., Semin. Arthriti~ Rheum., 11, p. 143, (1981);
Nakimi et al., J. Clin. phArmrol. Therapy Tosicology, 20, p.
501, (1982); Greco~ ro et al., Pharmatherapeutica, 5, p.
137, (1987) and Briganiti et al., Clinical Trials Journal, 24, p. 333, (1987). ~owever, the ~ st recent evaluations of such proce~ures in~icate that intra-articular injections of sodium hyaluronate solutions do not perform mea3urably differently from placeboq (Dahlberg et al., in "Arthritis &
Rheumatism" 37, p.521, 1994). Brown et al. in Esp. Physiol.
_ , p.125, (1991), showed that the half-life of hyaluronic acid injected in a joint i-~ only about 13 hour~. Dahlberg, vide supra, ha~ pointed out that a 13 hour half-life i~
short for therapeutic value.
One of the causes for the high rate of loss of sodium hyaluronate from the synovial cavity i-Q the degradation of the molecule by enzymes and hydrosy radicals. Enzymes such as hyaluronidase, glucuronidase and glucosidase are found in the human body (A.J. Bollet, J. Biological Chem., 238, p. 3522, 1963). The most active enzyme is hyaluronidase, which CUtQ sodium hyaluronate along the backbone. The other two enzymes attack the polymer from the end~.
~ydro~y radical~ come from two ~ources. The primary source is white blood cells, where macrophage-~ and neutrophils release santhine perosidase and other enzymes to form supero~ide anion, hydrogen pero~ide and hypochlorite, which upon breakdown form hydro~y radical. Another source ~1fi~

for hydrosy radical i5 the reduction of osygen by reducing agents in the presence of iron. A comm~n reducing agent in the body is ascorbic acid. Oxygen i~ reduced by iron(II) to form superoxide anion, which then reacts with iron (III) to form hydrogen peroside. ~ydrogen peroside i~ reduced to hydrosy radical.
Increasing the molecular weight of sodium hyaluronate by cross~ ng has been accomplished in a number of ways.
Sakurai et al. in U.S. Patent No. 4,716,224, disclo~e crosslinked hyaluronic acid or salts thereof prepared by crosslinking hya~ur~nic acid or itQ salt~ with a polyfunctional epoxide. The cro~ e~ compo~ition~ are stated to be resistant to hyaluronidase enzyme and possibly to be useful in treatment of arthritis and a~ a component of cosmetics. In U.S. Patent No. 4,863,907 Sakurai et al.
disclose crosslinked glycosaminoglycan or salt~ thereof, prepared by crosslinking a glycosaminoglycan or a salt thereof with a polyfunctional eposy compound. The crosslinked compositions are stated to have escellent resistance to glycosidase enzyme and to be useful in medical deviceQ, ophth~lmologic drug-~ and cosmRticQ.
~uang et al., in European Patent Application No. 0 507 604 A2, disclose ionically crosslinked carbosyl-cont~;ning polysaccharides where the cross~ ing agent is a compound possessing a trivalent cation. The compositions are stated 2 ~

to be useful in preventing po~t-operati~e adhesion formation following surgery.
Malson et al., in U.S. Patent No. 4,716,154 disclose crosslinking hyaluronic acid with bi- or polyfunctional eposideQ or their corre~ponding halohydrinQ, epihalohydrins or halides, and divinyl sulfone. The croQ~linked materials are said to be useful a-~ substitutes for ~itreous humor of the eye. Malson et al., in U.S. Patent No. 4,772,419 also disclose crosslinking hyaluronic acid with polyfunctional eposide Q .
In U.S. Patent No. 4,957,744 della Valle et al.
disclose crosslinked esters of hyaluronic acid prepared by esterifying the carbosyl groups of hyaluronic acid with polyhydric alcohols. It is proposed that the crosslinked material~ be used aq therapeutic agentQ, e.g. as drugs for treatment of arthriti~, and a~ ingredient~ of cosmRtic formulations.
Balazs et al., in U.S. Patent Nos. 4,582,865, 4,605,691 and 4,636,524, disclose crosslinking of hyaluronic acid and its ~alts, and of other polysaccharides, by reaction with divinylsulfone. In U.S. Patent Nos. 5,128,326 and 4,582,865, Balazs et al. disclose crosslinking hyaluronic acid with formaldehyde, eposide~, polyaziridyl compound-~ and di~inyl sulfone. In U.S. Patent No. 4,713,448 Balaz~ et al.
disclose chemically m~difying hyaluronic acid by reaction with aldehydes such as formaldehyde, glutaraldehyde and ~ 658~

glyosal, and teach the possibility that crosslin~;ng ha-Q
occurred. In U.S. Patent Nos. 4,582,865, 4,605,691, 4,636,524, 5,128,326, 4,582,865 and 4,713,448 the uses disclosed for the productQ are cosmetic formulations and drug delivery systemQ.
In U.S. Patent No. 5,356,883 Ruo et al. disclose crosslinking hyaluronic acid by reaction with biscarbodiimides. The hydrogelQ that are produced are taught to have utility as biocompatible gel, film~ or sponges.
This invention pertainQ to crosQlin~e~ compo-Qitions comprising linked polysaccharideQ cont~ining acidic groups or their salts, wherein at leaQt one hydrosyl group of each linked polysaccharide is esterified with a carbosyl group contained in a polycarbosylic acid cont~; n; ng at least four carbosyl group~, and at least two carbosyl group~ of the polycarbosylic acid are esterified with hydrosyl groups of the polysaccharides. A novel feature of the cro~-Qlinked compo-Qitions is the ester linkage formed from hydrosyl groupQ on the polysaccharide and the tetracarbosylic acid.
In a preferred ~m~o~im~ he ~olysAccha-i~e comprises hyaluronic acid or a salt of hyaluronic acid; the polycarbosylic acid iQ a tetracarbosylic acid, and the crosslinked composition ha~ substantially greater resistance to the enzyme hyaluronidase and to hydrosy radicalQ than hyaluronic acid or its sodium salt.

In another embodiment the invention pertain~ to a mRthod for crosslinking a polysaccharide cont~ining acidic groups which comprises reacting the polysaccharide with a d-- or polyanhydride.
In another embodiment the invention also pertains to pharmaceutical composition~ for treating m~mm~l ian arthritis, for preventing post-operative adhesion formation and for promoting the healing of chronic wounds, comprising as the active com~onent the crosslinked hyaluronic acid of this invention, or it~ pharmaceutically acceptable salts.
In a further em~odLment the i~ention pertains to drug delivery systems and cosmetic composition-~ compri~ing the crosslinked hyaluronic acid of this invention.
In yet another embodiment the invention pertains to methods for treating m~mm~l ian arthritis, reducing the incidence of post-operative adhesion formation and promoting the healing of chronic wound~ and ulcer~ comprising injecting or applying an effec~ive ~mou~ of a pharmaceutical composition comprising as the active component the crosslinke~ hyaluronic acid of this invention, or its pharmaceutically acceptable salts.
The crosslinked compositions of thi~ invention comprise linked polysaccharides containing acidic groups or their salts, wherein at least one hydrosyl group of each linked polysaccharide is esterified with a carbo~yl group contained in a polycarbo~ylic acid containing at least four carboxyl '~:1 65~q~

groups, and at least two carbo~yl groups of the polycarbosylic acid are esterified with hydroxyl groups of the polysaccharides.
The preferred acidic groups comprise at least one member selected from the group con isting of carbosyl, sulfate, sulfite and phosphate. The most preferred acidic group is the carbosyl group.
Preferred polysaccharides for use in this invention comprise those selected from the group consisting of hyaluronic acid, chondroitin sulfate, keratan sulfate, dermatan sulfate, heparan sulfate, heparin, carbosymethyl cellulose, pectin, alginic acid, polygalacturonic acid, polymannuronic acid, polyglucuronic acid and carrageenan.
The m~st preferred is hyaluronic acid.
The preferred salts in the operation of this invention comprise salts of an Al k~li or ~ 1 i ne earth metal, aluminum or ammonium. The ~ st preferred salt is a salt of sodium.
The preferred polycarbosylic acids of this invention are tetracarbosylic acids, which comprise members selected from the group consisting of:

HOOC~Y--COOH HOOC--N--~--N H

where Yl is a tetravalent organic radical selected from the group consisting of aliphatic, aromatic, cycloaliphatic, heterocyclic and polymeric radical~, and where Y 2 iS a divalent organic radical selected from the group consisting of aliphatic, aromatic, cycloaliphatic, heterocyclic and polymeric radicals.
Preferably Yl is selected from the group consisting of 1,2,3,4-tetrasubstituted benzene, 1,2,4,5-tetrasubstituted benzene, 1,2,5,6-tetrasubstituted naphthalene, 1,2,4,5-tetrasubstituted naphthalene, 1,2,6,7-tetrasubstituted naphthalene, 1,2,7,8-tetrasubstituted naphthalene, 2,3,6,7-tetrasubstituted naphthalene, 1,4,5,8-tetrasubstituted naphthalene, 2,3,2',3'-tetrasubstituted biphenyl, 3,4,2',3'-tetrasubstituted biphenyl, 3,4,3',4'-tetrasubstituted biphenyl, 1,2,3,4-tetrasubstituted anthracene, 1,2,5,6-tetrasubstituted anthracene, 1,2,6,7-te~r~subs~ituted anthracene, 1,2,7,8-tetrasubstituted anthracene, 2,3,6,7-tetrasubstituted anthracene, 1,2,3,4-tetrasubstituted phenanthrene, 1,2,7,8-tetrasubstituted phenanthrene, 1,2,6,7-tetrasubstituted phenanthrene, 1,2,5,6-tetrasubstituted phenanthrene, 2,3,6,7-tetrasubstituted phenanthrene, 1,8,9,10-tetrasubstituted phenanthrene, 3,4,9,10-tetrasubstituted perylene, 2,3,5,6-tetrasubstituted pyrazine, 2,3,4,5-tetrasubstituted thiophene, 2,3,4,5-tetrasubstituted pyrrolidine, ~6~

~R~ ~R~ ~rR~

\~
where R comprises linear, branched, or cyclic alkyl, aryl, -O-, -S-, -SO 2-, -CO-, -COO-, -NR 1-, -CONR1-, -COS-, -N=N-, -N (O) =N-, -CR 2R3-, -C~I2-, -CHR2-, -R~-, -SiR2R3-, -OSiR2R3O-, -POR2-, -POR2O- and -A-X-B-;
where R1 is hydrogen or C1-C5 alkyli where R2, R3 and R~, which can be the same or different, are linear or cyclic alkyl, ary~, substituted aryl, perfluoroalkyl and perfluoroaryl;
where R5 is hydrogen, alkyl, aryl, or aralkyli where A and B, which can be the same or different, are -O-, -S-, -CO-, -SO 2-, -SO-, -POR 2- ~ -POR20-, -SiR2R3-, -CON~R2-, -CON~-, -NR 1- and -N~-; and where X is an oligomer of a polyalkylene ether, polyalkylene thioether, polyaryl ether, polyester, polybutadiene, polyarylether sulfone, polyetherimide, polyamide, polyamic acid, polyamide imide, polyimide, polyalkyl phenol, polyphenol, polyamine, polysilo~ane, polyvinyl alcohol, polyurethane, polyurea and polycarbonate.
Y2 is preferably selected from the group consisting of polyethers, polythioethers, polyesters, polyamides, 9 ~

polyimides, polyamic acid~, polyamide ;~;des, polysulfor.es, polyhydantoins, polyamineQ, polyurethane~, polyurea~, polysilosanes, tetracarbonate~ and polybutadiene.
Esemplary tetracarbosylic acid~ are 3,4,3',4'-benzophenone tetracarbosylic acid, 2,3,6,7-naphthalene tetracarbo~ylic acid, 1,4,5,8-naphthalene tetracarboxylic acid, 1,2,4,5-naphthalene tetracarbosylic acid, 1,2,5,6-naphthalene tetracarbosylic acid, 3,4,3'4'-diphenyl tetracarbosylic acid, 2,3,2',3'-diphenyl tetracarbosylic acid, 2,2-bis(3,4-dicarbosyphenyl)propane, 3,4,9,10-perylene tetracarboxylic acid, bis(3,4-dicarbosyphenyl)ether, 1,1-bis(2,3-dicarbosyphenyl)ethane, bis(3,4-dicarbosyphenyl)methane, decahydronaphthalene-1,4,5,8-tetracarbosylic acid, 4,8-dimethyl-1,2,3,4,5,6,7-hesahydronaphthalene-1,2,5,6-tetracarbosylic acid, pyromellitic acid, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic acid, cyclopentane tetracarbosylic acid, pyrrolidine-2,3,4,5-tetracarbo~ylic acid, pyrazine-2,3,5,6-tetracarbosylic acid, thiophene-2,3,4,5-tetracarbosylic acid, ethylenediamine tetraacetic acid, diethylenetriamine pentaacetic acid, 4,4-sulfonyldiphthalic acid and 1-(3,4-dicarbo~yphenyl~ 3,3-trime~hylindane-5,6(6,7)-dicarbosylic acid, 2,2'-bis(2,3-dicarbosyphenyl)propane, 1,1'-bis(3,4-dicarbosyphenyl)ethane, 1-(3'4-dicarbosyphenyl~-3-methylindane-5,6(6,7)-dicarbosylic acid, 3,4-dicarbosy-1,2,3,4-tetrahydro-1-naphthalenesuccinic acid, 216~g~

l-methyl-3,4-dicarbosy-1,2,3,4-tetrahydro-1-naphthalenesuccinic acid, 3,4,9,10-perylene tetracarboxylic acid, 1,8,9,10-phenanthrene tetr~carboxylic acid, 2,6-~.chloronaphthalene-1,4,5,8-tetrac~rho-ylic acid, 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic acid, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic acid, 2,3,3',4'-benzophenone tetracarbosylic acid, 2,3,2',3'-benzophenone tetracarboxylic acid, 4,4'-oxodiphthalic acid, 3,3'-osodiphthalic acid, 4,4'-thiodiphthalic acid, 3,3'-thiodiphthalic acid and 2,3,5,6-bicyclo(2,2,2)octane tetracarboxylic acid.
The most preferred tetracarboxylic acids are pyromellitic acid and 3,4,3',4'-benzophenone tetracarboxylic acid.
Operable polycarboxylic acids having more than four carboxyl groups comprise members selected from the group consisting of styrene/maleic acid copolymers, alkyl vinyl ether/maleic acid copolymers and:

R~R'm--A--R"--(COOHh~ p where n is 2 or 3, m is 0 or 1, p i-Q 2 to about 100,000, R
is aryl or saturated or unsaturated C l-ClOO000 alkyl, R' is aryl or saturated or unsaturated C l-ClO alkyl, R" is aryl or saturated or unsaturated C 2-C30 alkyl and A is:

2:1~58~

o o o~
where R is aryl or saturated or un-Qaturated C 1-C~O alkyl.
It has been found that when the crosslinked composition is derived from hyaluronic acid or its salts, the crosslinked composition has subQtantially greater resistance to ~egrada~ion cau~ed by hydro~y radical or enzyme~, in particular hyaluronida-~e, than does hyaluronic acid itself or its salts.
For esample, when an aqueou~ solution of sodium hyaluronate was treated with the enzyme hyaluronidase, the time it took to reduce the viscosity to one-half of the viscosity measured at 10 minute-~ (the visco~ity half-life) was only 0.5 hours. ~owever, when the test was carried out under the same conditions on a crosslinked composition of this invention where the polysaccharide was hyaluronic acid and the tetracarbosylic acid was pyLv",ellitic acid or 3,4,3',4'-benzophenone tetracarbosylic acid, the viscosity half-life waq 34 hours or 30 hours respectively.
In the tests for degradation by hydrosy radical the hydro~y radicals were generated by reaction of ferric chloride with ascorbic acid as described by Wong et al.
Inorganic Biochemistry, 14, p. 127 (1981). In a typical test the viscosity half-life was 0.9 hours for hyaluronic 8~

acid. When the same test waQ carried out under the same condition~ on a crosslinked compo~ition of this invention wherein the polysaccharide was hyaluronic acid and the tetracarbosylic acid waQ ~y~o ~llitic acid or 3,4,3',4'-benzophenone tetracarbosylic acid, the viscosity half-life was 24 hours or 6 hour~ respectively.
In another embodiment, the invention pertain~ to a method for crosslin~ing the acidic polysaccharides or their salts, comprising reacting the polysaccharides with a di- or polyanhydride, where polyanhydride~ are defined to mean those anydrides cont~i n i ng more than two anhydride groups per molecule.
The dianhydrides operable in the method of this invention comprise member-~ of the group ~elected from:

o o 0~ ~,0 where Yl is a tetravalent organic radical selected from the group consisting of aliphatic, aromatic, cycloaliphatic, heterocyclic and polymeric radicals, and where Y 2 iS a di~alent orga~ic ~adical ~elected from the group consiQting of aliphatic, aromatic, cycloaliphatic, heterocyclic and polymeric radical~.
Preferably Yl is selected from the group consisting of 1,2,3,4-tetrasubstituted benzene, 1,2,4,5-tetrasubstituted ~-1. 6~g ~

benzene, 1,2,5,6-tetrasubstituted naphthalene, 1,2,4,5-tetrasubstituted naphthalene, 1,2,6,7-tetrasubstituted naphthalene, 1,2,7,8-tetrasub~tituted naphthalene, 2,3,6,7-tetrasubstituted naphthalene, 1,4,5,8-tetrasubstituted naphthalene, 2,3,2',3'-tetrasubstituted biphenyl, 3,4,2',3'-tetrasubstituted biphenyl, 3,4,3',4'-tetrasubstituted ~iphenyl, 1,2,3,4-tetrasubstituted anthracene, 1,2,5,6-tetrasubstituted anthracene, 1,~,6,7-tetrasubstituted anthracene, 1,2,7,8-tetrasubstituted anthracene, 2,3,6,7-tetrasubstituted anthracene, 1,2,3,4-tetra~ubstituted phenanthrene, 1,2,7,8-tetrasubstituted phenanthrene, 1,2,6,7-tetrasubstituted phenanthrene, 1,2,5,6-tetrasubstituted phen~nthrene, 2,~S)~-tetrasubstituted phenanthrene, 1,8,9,10-tetrasubstituted phenanthrene, 3,4,9,10-tetrasubstituted perylene, 2,3,5,6-tetrasubstituted pyrazine, 2,3,4,5-tetrasubstituted thiophene, 2,3,4,5-tetrasubstituted pyrrolidine, ~R~ ~R~ ~R~

where R comprises linear, branched, or cyclic alkyl, aryl, -O-, -S-, -SO 2-, -CO-~ -COO-, -NRl-~ -CONRl-, -COS-, -N=N-, -N(O)=N-, -CR2R3-, -C~2-, -C~R2-, -~4- ~ -SiR2R3 -OSiR2R3O-, -POR2-, -POR2O- and -A-X-B-;
where Rl i~ hydrogen or C l-C5 alkyl;
where R2, R3 and R~, which can be the .Qame or different, are linear or cyclic alkyl, aryl, substituted aryl, perfluoroalkyl and perfluoroaryl;
where R 5 is hydrogen, alkyl, aryl, or aralkyli where A and B, which can be the same or different, are -O-, -S-, -CO-, -SO 2- / -SO-, -POR2-, -POR2O-, -SiR2R3-, -CONHR2-, -CONH-, -NR,- and -N~-; and where X is an oligomer of a polyalkylene ether, polyalkylene thioether, polyaryl ether, polyester, polybutadiene, polyarylether sulfone, polyetherimide, polyamide, polyamic acid, polyamide imide, polyimide, polyalkyl phenol, polyphenol, polyamine, polysilosane, polyvinyl alcohol, polyurethane, polyurea and polycarbonate.
Y2 is preferably selected from the group consisting of polyethers, p~ly~hioe~hers, polyesters~ polyamides, polyimides, polyamic acids, polyamide imideq, polysulfones, polyhydantoins, polyamine.Q, polyurethanes, polyurea~, polysilosanes, tetracarbonates and polybutadiene.
The dianhydrides are preferably selected from the group consisting of 3,4,3',4'-benzophenone tetracarbosylic acid dianhydride, 2,3,6,7-naphthalene tetracarbosylic acid dianhydride, 1,4,5,8-naphthalene tetracarbosylic acid dianhydride, 1,2,4,5-naphthalene tetracarbosylic acid 2 1 ~

dianhydride, 1,2,5,6-naphthalene tetracarbosylic acid dianhydride, 3,4,3',4'-diphenyl tetracarbosylic acid dianhydride, 2,3,2',3'-diphenyl tetracarbosylic acid dianhydride, 2,2-bis(3,4-dicarbosyphenyl)propane dianhydride, 3,4,9,10-perylene tetracarbosylic acid dianhydride, bis(3,4-dic~rbosyphenyl)ether dianhydride, 1,1-bis(2,3-dicarbosyphenyl~ethane dianhydride, bis(3,4-dicarbo~yphenyl)methane dianhydride, decahydronaphthalene-1,4,5,8-tetracarbosylic acid dianhydride, 4,8-dimethyl-1,2,3,4,5,6,7-hesahydronaphthalene-1,2,5,6-tetracarboxylic acid dianhydride, ~y~o-l~llitic acid dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic acid dianhydride, cyclopentane tetracarbo~ylic acid dianhydride, pyrrolidine-2,3,~,5-tetrac~r~o~yli~ acid dianhydride, pyrazine-2,3,5,6-tetracarboxylic acid dianhydride, thiophene-2,3,4,5-tetracarboxylic acid dianhydride, ethylenediamine tetraacetic acid dianhydride, diethylenetriamine pentaacetic acid dianhydride, 4,4-sulfonyldiphthalic acid dianhydride, 2,2'-bis(2,3-dicarbosyphenyl)propane dianhydride, 1-(3,4-dicarboxyphenyl)-1,3,3-trimethylindane-5,6(6,7)-dicarbosylic acid dianhydride, 1,1'-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1-(3'4-dicarboxyphenyl)-3-methylindane-5,6(6,7)-dicarboxylic acid dianhydride, 3,4-dicarbo~y-1,2,3,4-tetrahydro-1-naphthalenesuccinic acid 2 ~ ~x~

di~nhydride, 1-methyl-3,4-dicarbosy-1,2,3,4-tetrahydro-1-naphthalenesuccinic acid dianhydride, 3,4,9,10-perylene tetracarboxylic acid dianhydride, 1,8,9,10-phenanthrene tetracarboxylic acid dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetr~rho-ylic acid dianhydride, 2,7-dichloronaphthalene-1,4,5,8-tetr~rho~ylic acid dianhydr~e J 2,3,~6,7-te~rach~o~on~pht~e~e-1,~,5,8-tetracarboxylic acid dianhydride, 2,3,3',4'-benzophenone tetracarboxylic acid, 2,3,2',3'-benzophenone tetra~arboxylic acid dianhydride, 4,4'-osodiphthalic a~id dianhydride, 3,3'-oxodiphthalic acid dianhydride, 4,4'-thiodiphthalic acid dianhydride, 3,3'-thiodiphthalic acid dianhydride and 2,3,5,6-bicyclo(2,2,2)octane tetracarboxylic acid dianhydride.
The most preferred dianhydrides are ~y~Oll~llitic acid dianhydride and 3,4,3',4'-benzophenone tetracarboxylic acid dianhydride.
Polyanhydride~ operable in carrying out the method of this invention are member~ selected from the group consisting of styrene/maleic anhydride copolymers, alkyl vinyl ether/maleic anhydride copolymer~ and:

R--R'm--A--R~\O

;COOH~

8~

where where n i~ 0 or 1, m i~ 0 or 1, p iQ 2 to about 100,000, R i-~ aryl or qaturated or unsaturated C 1-ClOO,OOO
alkyl, R' is aryl or saturated or unsaturated C 1-ClO alkyl, R" is aryl or saturated or unQaturated ~ 2-C30 alkyl and A is:

o o -- or --N
0~
where R i Q aryl or saturated or unsaturated C 1-ClO alkyl.
The ~ st preferred polyanhydrides are obtained by reacting ~ nomeric or polymeric polyols or polyamineq with an escess of dianhydride, wherein the number of equivalents of anhydride i~ at lea~t twice that of the number of equivalent-~ of hydrosyl or amine contained in the polyol or polyamine, or by reacting monomeric or polymeric polyols or polyamines with an e~cess of monoanhydride also cont~i n ing an acyl halide, wherein the number of equivalents of anhydride plu~ acyl halide i5 at least twice that of the number of equivalent~ of hydrosyl or amine contained in the polyol or polyamine.
Because anhydride functionality i~ readily hydrolyzable in water, it is preferred that the reaction of the di- or polyanhydrides with polysaccharide be carried out in a polar, aprotic solvent. Preferred solvents are N-methyl pyrrolidinone, N-ethyl pyrrolidinone, N-cyclohesyl 2.~5g~

pyrrolidinone, 4-methyl morpholine N-oside, dimethyl formamide, sulfolane and dimethyl sulfoside.
Salts of the acidic polysaccharides may not be soluble in the preferred solvents. In particular, the sodium salt of hyaluronic acid is not soluble in the preferred solvents, and so it is generally convenient for the purpose of this embodiment to convert the sodium salt to a tetraalkyl amn~nium salt to increase solubility. After the crosslinking reaction of the tetraalkyl ammonium salt and the dianhydride, the product can then be converted back to the sodium form by ion eschange.
In the crosslin~ing reaction the ratio of di- or polyanhydride to polysaccharide is most readily espressed in terms of the equivalents of anhydride contained in the di-or polyanhydride per equivalent of repeating unit in the polysaccharide. For the purpose of the invention the ratio is from about 0.05 to about 4 equivalent~ of anhydride per equivalent of repeating unit. A preferred ratio is from about 0.08 to about 2, and the most preferred ratio from about 0.4 to a~o~t 1.6.
In still other embodiments the invention pertains to pharmaceutical compositions for treating m~mm~lian arthritis, for preventing post-operative adhesions and for promoting the healing of chronic wounds and ulcer~. The active component of these pharmaceutical compositions comprises crosslinked hyaluronic acid, or a ph~rmAceutically 8~G

acceptable salt of crosslinked hyaluronic acid, wherein at least one hydrosyl group of each linked hyaluronic acid is esterified with a carbosyl group contained in a polycarbosylic acid cont~i ni ng at least four carbosyl groups, and at least two carbosyl groups of the polycarbosylic acid are esterified with hydrosyl groups of the hyaluronic acid.
Pharmaceutically acceptable salt~ are preferably salts of an alkali or alkaline earth metal, aluminum or amn~nium.
The most preferred pharmaceutically acceptable salt is sodium.
The methods and compositions of this invention can be used to prevent post-operative adhesions in any ~nim~l that is susceptible to unwanted a & esion formation following surgery. The method and composition~ are used to prevent adhesions from developing in mAmmAl Q ~ preferably human beings. They are useful in all types of surgery where it is desired to inhibit the formation of post-surgical adhesions, e.g., ab~omin~l surgery, gynecological surgery, thoracic surgery, orthopedic surgery, neurological surgery and ophthAlm~logical surgery.
The adhesion preventative may be ~m;n;stered to the site of surgical trauma by any convenient mode such as, for example, by lavage, by coating directly on the site in a gel, cream, film or foam, or by any other convenient method.
The administration of the adhesion preventative can occur at ~6~

any time before significant wound healing has occurred. It is preferred to a~mi ni Qter it at the conclusion of surgery, just prior to closing of the wound. However, in some cases it may be desirable to administer the preventative continually over a period of time. An effective amount of adhesion preventative is an amount necessary to affect a reduction in the incidence of post-operative surgical adhes~on~. Preferably, the amount should be enough to coat the entire area exposed to the surgical trauma, and if desired an additional amount sufficient to coat body tissue adjacent to the area of trauma. The effective amount can be readily determined empirically.
The compositions of this invention can also be used to promote the healing of chronic wounds, e.g. burns, and ulcers, e.g. diabetes foot ulcers in mAmmAls, in particular, human beings. Hyaluronic acid retainQ ~ isture and also has angiogenesis characteristics that make it useful for this application. When utilized for wound healing the compositions may be used alone in aqueous solution, preferably physiological saline solution, or the solutions may be combined with wound healing drugs and other water soluble polymers. They may be A~mi ni stered to the site of the wound or ulcer by any convenient m~de such as, for example, by lavage, by coating directly on the site in a gel, cream, film or foam, by impregnation in a hAn~Age or wound dressing that iQ applied to wound or ulcer, or by any 8~0 other convenient method. An effective amcunt to promote healing is enough to coat the entire area of the wound or ulcer and if desired an additional amount sufficient to coat body tissue adjacent to the wound or ulcer. The effective amount can be readily dete-mi~ed empirically. A typical anhydride-crosslinked hyaluronic acid may contain as other ingredients water-soluble polymers, antibiotics, ~mmunosuppressant~ and pain reducer~.
In the application of the crosslinked hyaluronic acid of this invention to the treatment of arthritis in m~mn~ls, in particular human beings, the crosslinked hyaluronic acid is usually dissolved in physiological saline to a sufficient Yiscosity to pa-~s throu~h an injection needle, not m~re than about 50,000 cps, preferably about 5,000 to about 30,000 cps. The treatment solution is then injected into the diseased joint.
A typical knee joint synovial fluid supplementation injection procedure is similar to one described by Miller et al. in J. Bone and Joint Surgery, 40, p.636 (1985). A
sterile solution, 2.5 ml, of the sodium salt of anhydride-crosslinked hyaluronic acid (concentration of crosslinked hyaluronic acid 10 mg/ml) in buffered saline (sodium chloride 8.5 mg/ml, dibasic sodium phosphate 0.537 mg/ml, sodium dihydrogen phosphate 0.016 mg/ml) is slowly drawn into a syringe to ensure the absence of air pockets. The knee is then prepared for injection by cleaning with soap, ~6~D

wiping with cetyl trimethylamm~nium bromide and painting with tincture of iodine. The ~olution i~ injected into a synovium cavity through a premarked triangular arc at the lateral side of the joint bound by the tibial plateau, the edge of the ligamentum patellae, and the curve of the lateral femoral condyle. Local anaesthesia may be used prior to injection. In certain cases knee aspiration with the buffered saline solution may be needed prior to the synovial fluid supplementation injection. Such a procedure is described by Dahlberg et al. in Arthritis ~ Rheumatism, 37, 1994, page 521.
The injectable solution may contain materials in addition to the crosslinked hyaluronic acid. These include water soluble polymers such a~ chondroitin sulfate, dermatan sulfate, and/or a phospholipid to improve the lubricity of the solution. Anesthetic~, anti-inflammatory reagents, antibiotics, antibacterials, cytotosin~ and sugar~ may be added also.
Anhydride-crosslinked hyaluronic acid may be used a-Q a drug delivery system. The crosslinked hyaluronic acid forms a molecular cage in which ~ lecule~ with pharmacological activity can be dispersed. The substance~ contained in the cage are delivered into the environment by diffusion. The drug molecule, or mi~ture of drug ~ lecules, may be covalently or non-covalently bonded to the hyaluronic acid.
The covalent bonding can be via attachment to the carbosylic ~6s~q~

-2~-acid or hydrosyl groups of the hyaluronic acid moieties.
The gels, film_, threads, particles or sponges of anhydride-crosslinked hyaluronic acid may be placed, sprayed, ingested, injected or implanted at the location where the contained pharmacological substance iQ needed. These substances may be therapeutic drugs (such as anesthetics, analgesics, anti-inflammatories, diuretics, antagonists, antibiotics~ hoDmones, antirheumatics, adrenergic agonists, cytostaticQ, antihypertensive~ or immunosuppressant agents), growth factors, enzymes or cellular anti-adhesion compounds.
The crosslinked hyaluronic acid of this invention can also function aQ a component of cosm~tics for topical uses.
Because hyaluronic acid has been.shown to hold ~ isture under low relative humidity conditionQ and yield a pleasant and smooth feeling at high relative humiditieQ, it has been used aQ a m~isturizer in cosmetic formulationQ. The crosslinked hyaluronic acid of thi-Q invention will provide similar effects. Mistures of crosslinked hyaluronic acid with other low cost water-soluble polymers such as carbo~ymethyl cellulose, pectin, alginate, soy protein, casein and gelatin may also be em~loyed.
Natural e~tractQ of plant sources, such as cactus aloe vera, mesquite, m, tricaria ch~m~milla, tumeric, carrot, jojoba, rose and others, may be blended into a cosmetic formulation cont~ g crosslinked hyaluronic acid. Alpha hydro~y acids such as lactic and hydro~y ethanoic may be 2 1 ~

added to the formulation to improve the plasticity of the skin.
A typical anti-aging cosmetic composition is:
2-hydro~yethanoic acid, 7%, propyleno glycol, 15%, crosslinked hyaluronic acid solution (1 g/100 ml), 1%, water, 60% and ethyl alcohol, 17%, where all percentages are by weight.
A formulation for facial soft gel is: aqueous slurry of carbo2ymethyl cellulose (3 g/100 ml), 25%, aqueous solutlon of triethanolamine (10 g/100 ml), 11%, Methyl Gluceth-10, 5%, crosslinked hyaluronic acid aqueous solution (1 g/100 ml), 1%, perfume and preservatives, 1%, water, 57%, where all percentages are be weig~t.
A typical essential skin moisturizer composition is hydro2yethyl cellulose, 0.5%, Methyl Gluceth-10, 2%, glycerin, 2%, cros-~linked hyaluronic acid aqueous solution (1 g/100 ml), 1%, water, 94%, preservatives and perfume, 0.5%, where all percentages are by weight.
The invention is illustrated by the following E2amples, which are provided for the purpose of representation, and are not to be construed as limiting the scope of the invention. All parts and percentages in the e2amples are by weight unless otherwise specified.
E2ample 1 The example describes the preparation of a methyltricaprylylamm~nium salt of hyaluronic acid.

~ ~5'~9Q

To a solution of 10 g of sodium hyaluronate (fermentation product, Chisso Corporation, Chiba, Japan) in 1000 ml of water wa~ added a solution of 50 g. of methyltricaprylylammonium chloride (Ali~uat 336, Aldrich Chemical, Milwaukee, Wi~con~in) in 50 ml of acetone. The mi~ture wa~ stirred overnight, and then the rubbery precipitate was filtered, washed with water and acetone, and then dried in vacuo overnight. It waQ again soaked in 500 ml of acetone for 7 hours and dried in vacuo overnight to yield 46.9 g of rubbery material.
Example~ 2-9 These e~ample~ deQcribe crosslinking of the methyltricaprylylammonium salt of hyaluronic acid with dianhydrides.
The product of E~ample 1, 2.0 g (0.46 meq of repeating unit), wa~ dissolved in 100 ml of N-methylpyrrolidinone. To this solution was added a dianhydride, and then the misture was tumble-stirred for 16 hours. The dianhydride~ utilized were ethylenediamine tetraacetic acid dianhydride (EDTAA), diethylenetriamine pe~taacetic acid dianhydride (DETPAA), 3,4,3',4'-benzophenone ~etracar~o~ylic acid dianhydride (BTDA~ and 4,4'o~odiphthalic acid dianhydride (OPDA).
E~amples 2 and 3 are control~ utilizing no anhydride.
The data in Table 1 show the gelation at the end of the 16 hour stirring period, demonstrating the crosslinking of 5~a the methyltricaprylylammonium salt of hyaluronic acid. The viscositieq are Brookfield visco-qitie~.

EYampl~Initial Anhydrid~ Anhydrid~ Anhydrid~ Final No.Vi~co~ity Amo~nt, g Amcunt,Visco~ity I1i -le~ (cp~) 2 2375 --- 0.00 --- 1505 3 2300 --- 0.00 --- 1555 4 2365 EDTAA 0.10 0.39 gelled 2340 EDTAA 0.15 0.59 gelled 6 2345 DETPAA 0.10 0.28 gelled 7 2300 DETPAA 0.15 0.42 gelled 8 2100 2TDA 0.10 0.3~ gelled 9 2165 OPDA 0.10 0.32 gelled E~amples 10-17 These e~ampleq describe conversion of the crosslinked mRthyltricaprylylammonium saltQ of hyaluronic acid prepared in E~ampleq 4-9 to the corresponding sodium saltq.
To the solutionQ of cros~linked methyltricaprylyl-amo~nium saltQ of hyaluronic acid (E~amples 4-9) in N-methylpyrrQli~inone at 1~ ~C wa~ added a ~olution of 1 g of salt in 50 ml of water. The resulting mixtures were stirred for 10 minutes, and then 10 ml of acetone waQ added. After 20 minuteq the resulting precipitates were filtered, washed with S0 ml of 4/1 acetone/water five timeq, washed three timeq with 30 ml potionQ of acetone and then dried in a vacuum oven until a constant weight was obtained. The resulting material~ were redissolved in 100 ml of phosphate buffered saline water (p~=7.4), and then the viscosities of the resulting solutions were measured. The data are in Table 2.
The substantial increase in viscosity found in Esamples 12 and 16 and formation of -~ubstantial amount-~ of gel in Examples 13-15 and 17 indicate the crosslinked nature of the material.

0EYample No.Cro~slinked galtgodium galt, Viscosity of 0.4 Aq.Solution (cps) Control, no 25 crossl in~ing 11 Control, no 26 crossl~ n~ ~ ng 12 E~ample 4 640 13 EYample 559 + in oluble gels 14 Exampl- 622 + insolubl~ gels EYample 726 + insoluble gel~
16 EYampl- 8 199 17 Example 911 + insoluble gels . E~ample 18 ThiQ e~ample illustrates the resistance of the anhydride-crosslinked hyaluronic acid to degradation by hyaluronidase.
Sample~ of hyaluronic acid crosslinked by reaction with pyromellitic acid dianhydride (PMDA) or a mi~ture of PMDA
and BTDA (1/1 by weight) were prepared by the method~ of 9 ~

E~ample-~ 1-17. They were tested and evaluated according to the following procedure.
To a 100 ml aqueous Qolution of sodium salt of crosslinked hyaluronate (0.4% wt/vol, buffered at pH 7.4) was added 1 ml of a solution of hyaluronidase ~EC 3.2.1.35;
type I-S, from bovine testes, lyophilized, 290 units/mg, Sigma Chemical, St. Louis, Mo.) with the concentration of 290 units/ml waQ added. The mi~ture was sh~en for about 10 seconds, and then the first viscosity (Brookfield) was measured after 10 minutes. The viscosity wa~ then monitored for a period of time. The viscosity at 10 minutes was considered to be 100~. The degradation resistance of the sample was assessed by measuring the time required to reduce the viscosity to 50% of the 10 minute value ~viscosity half-life). The control (E~ample 18A) con~i~ted of sodium hyaluronate. The results are in Table 3.

Table 3 ~yaluronidase Te~t of Anhydride-cro~slinked ~yaluronic Acid EYample Number Dianhydride Visco~ity ~alf-Life 18A -~ - 0.5 hours ~ 65~

E~am~le 19 This e~ample illu-QtrateQ the resiQtance of the anhydride-crosslinked hyaluronic acid to degradation by hydro~y radicals as generated by the reaction of ascorbic acid with ferric chloride.
Samples of hyaluronic acid cros~linked with PMDA and 3TDA ~ere pre~ared by the methods of E~amples 1-17. They were tested and evaluated according to the following procedure.
To a 100 ml aqueous solution of sodium salt of crosslinked hyaluronate (0.4% wt/vol, buffered at p~ 7.4) 1 ml of a 0.34 M ferric chloride solution and 1 ml of 0.18 M
ascorbic acid solution were added. The mi~ture was s~ken for about 10 seconds, and then the first viscosity (Brookfield) was measured after 10 minutes. The viscosity at this point was considered to be 100%. The degradation resistance of the sample was assessed by mRasuring the time required to reduce the viscosity to 50% of the 10 minute value (viscosity half-life). The control (E~ample l9A) consisted of sodium hyaluronate. The resultQ are in Table 4.

~ ~ 6 ~

Table 4 Ferric Chloride/A~corbic Acid Test of Anhydride-Cros~linked Hyaluronic Acid Example Number Dianhydride Viscosity Half-Life l9A -------- 0.9 hours Example 20 This e~ample describes crosslinking the methyltricaprylylammonium salt of hyaluronic acid with a polyanhydride.
The polyanhydride:

CH9CH2C--CH2~

was prepared by mi~ing a solution of 0.1 g (1 meq) of 1,2,4,5-benzene tetracarbo~ylic acid dianhydride and 0.020 g (0.45 meq) of 2-ethyl-2-hydro~ymethyl-1,3-propane diol in 10 ml of N-mRthylpyrrolidinone. The solution of the polyanhydride wa.~ then added to a solution of 0.7 g of the 2~ 6~q product of Esample 1 in 100 ml of N-methylpyrrolidinone.
After 1 hour, the ~olution became a dispersed gel with visible gel particle~.
Esample 21 This esample describes crossli n~i ng the methyltricaprylylammonium salt of hyaluronic acid with a polyanhydride.
The polyanhydride:

CH3CH~C~H2~[~

was prepared by mising a solution of 0.1 g (1 meq) of trimellitic anhydride acid chloride, 0.1 g (0.45 meq) of 2-ethyl-2-hydrorymethyl-1,3-propane diol and O.07 g of triethylamine in 10 ml of N-methylpyrrolidinone. The solution of the polyanhydride was then added to a solution of O.7 g of the product of Esample 1 in 100 ml of N-methylpyrrolidinone. After 1 hour, the solution became a dispersed gel with visible gel particles.
While the invention has been described with respect to specific embodiments, it should be understood that they are ~1~5~q~

not intended to be limiting and that many variations and modifications are pos~ible without departing from the scope of this invention.

Claims (18)

1. A crosslinked composition comprising linked polysaccharides containing acidic groups or their salts, wherein at least one hydroxyl group of each linked polysaccharide is esterified with a carboxyl group contained in a polycarboxylic acid having at least four carboxyl groups, and wherein at least two carboxyl groups of the polycarboxylic acid are esterified with hydroxyl groups of the polysaccharides.
2. The crosslinked composition of claim 1 wherein the polysaccharide comprises hyaluronic acid.
3. The crosslinked composition of claim 1 wherein the polysaccharide comprises the sodium salt of hyaluronic acid.
4. The crosslinked composition of any of the previous claims wherein the tetracarboxylic acid comprises at least one member selected from the group consisting of 3,4,3',4'-benzophenone tetracarboxylic acid, 2,3,6,7-naphthalene tetracarboxylic acid, 1,4,5,8-naphthalene tetracarboxylic acid, 1,2,4,5-naphthalene tetracarboxylic acid, 1,2,5,6-naphthalene tetracarboxylic acid, 3,4,3'4'-diphenyl tetracarboxylic acid, 2,3,2',3'-diphenyl tetracarboxylic acid, 2,2-bis(3,4-dicarboxyphenyl)propane, 3,4,9,10-perylene tetracarboxylic acid, bis(3,4-dicarboxyphenyl)ether, 1,1-bis(2,3-dicarboxyphenyl)ethane, bis(3,4-dicarboxyphenyl)methane, decahydronaphthalene-1,4,5,8-tetracarboxylic acid, 4,8-dimethyl-1,2,3,4,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic acid, pyromellitic acid, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic acid, cyclopentane tetracarboxylic acid, pyrrolidine-2,3,4,5-tetracarboxylic acid, pyrazine-2,3,5,6-tetracarboxylic acid, thiophene-2,3,4,5-tetracarboxylic acid, ethylenediamine tetraacetic acid, diethylenetriamine pentaacetic acid, 4,4-sulfonyldiphthalic acid and 1-(3,4-dicarboxyphenyl)-1,3,3-trimethylindane-5,6(6,7)-dicarboxylic acid, 2,2'-bis(2,3-dicarboxyphenyl)propane, 1,1'-bis(3,4-dicarboxyphenyl)ethane, 1-(3'4-dicarboxyphenyl)-3-methylindane-5,6(6,7)-dicarboxylic acid, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalenesuccinic acid, 1-methyl-3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalenesuccinic acid, 3,4,9,10-perylene tetracarboxylic acid, 1,8,9,10-phenanthrene tetracarboxylic acid, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic acid, 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic acid, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic acid, 2,3,3',4'-benzophenone tetracarboxylic acid, 2,3,2',3'-benzophenone tetracarboxylic acid, 4,4'-oxodiphthalic acid, 3,3'-oxodiphthalic acid, 4,4'-thiodiphthalic acid, 3,3'-thiodiphthalic acid and 2,3,5,6-bicyclo(2,2,2)octane tetracarboxylic acid.
5. The crosslinked composition of claims 1, 2 or 3 wherein the polycarboxylic acid containing more than four carboxyls comprises a member selected from the group consisting of styrene/maleic acid copolymers, alkyl vinyl ether/maleic acid copolymers and:

where n is 2 or 3, m is 0 or 1, p is 2 to about 100,000, R
is aryl or saturated or unsaturated C 1-C100,000 alkyl, R' is aryl or saturated or unsaturated C 1-C10 alkyl, R" is aryl or saturated or unsaturated C 2-C30 alkyl and A is:

, , , or where R''' is aryl or saturated or unsaturated C 1-C10 alkyl.
6. The crosslinked composition of claims 2 or 3 wherein the crosslinked composition has substantially greater resistance to the enzyme hyaluronidase than does hyaluronic acid or its salts.
7. The crosslinked composition of claims 2 or 3 wherein the crosslinked composition has substantially greater resistance to hydroxy radicals than does hyaluronic acid or its salts.
8. A method for crosslinking polysaccharides containing acidic groups or their salts, comprising reacting said polysaccharide with a di- or polyanhydride.
9. The method of claim 8 wherein the acidic groups comprise at least one member selected from the group consisting of carboxyl, sulfate, sulfite and phosphate.
10. The method of claim 8 wherein the polysaccharide comprises a member selected from the group consisting of hyaluronic acid, chondroitin sulfate, keratan sulfate, dermatan sulfate, heparan sulfate, heparin, carboxymethyl cellulose, pectin, alginic acid, polygalacturonic acid, polymannuronic acid, polyglucuronic acid and carrageenan.
11. The method of claim 8 wherein the polysaccharide comprises hyaluronic acid.
12. The method of claim 8 wherein the polysaccharide comprises a salt of hyaluronic acid.
13. The method of claim 12 wherein the salt of hyaluronic acid comprises a sodium salt.
14. The method of claim 12 wherein the salt of hyaluronic acid comprises a tetraalkylammonium salt.
15. The method of claims 8, 9, 10, 11, 12, 13 or 14 wherein the dianhydride is a member selected from the group consisting of:

and where Y1 is a tetravalent organic radical selected from the group consisting of aliphatic, aromatic, cycloaliphatic, heterocyclic and polymeric radicals, and where Y2 is a divalent organic radical selected from the group consisting of aliphatic, aromatic, cycloaliphatic, heterocyclic and polymeric radicals.
16. The method of claim 15 wherein the dianhydride comprises a member selected from the group consisting of 3,4,3',4'-benzophenone tetracarboxylic acid dianhydride, 2,3,6,7-naphthalene tetracarboxylic acid dianhydride, 1,4,5,8-naphthalene tetracarboxylic acid dianhydride, 1,2,4,5-naphthalene tetracarboxylic acid dianhydride, 1,2,5,6-naphthalene tetracarboxylic acid dianhydride, 3,4,3',4'-diphenyl tetracarboxylic acid dianhydride, 2,3,2',3'-diphenyl tetracarboxylic acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 3,4,9,10-perylene tetracarboxylic acid dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, decahydronaphthalene-1,4,5,8-tetracarboxylic acid dianhydride, 4,8-dimethyl-1,2,3,4,5,6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic acid dianhydride, pyromellitic acid dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic acid dianhydride, cyclopentane tetracarboxylic acid dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic acid dianhydride, pyrazine-2,3,5,6-tetracarboxylic acid dianhydride, thiophene-2,3,4,5-tetracarboxylic acid dianhydride, ethylenediamine tetraacetic acid dianhydride, diethylenetriamine pentaacetic acid dianhydride, 4,4-sulfonyldiphthalic acid dianhydride, 2,2'-bis(2,3-dicarboxyphenyl)propane dianhydride, 1-(3,4-dicarboxyphenyl)-1,3,3-trimethylindane-5,6(6,7)-dicarboxylic acid dianhydride, 1,1'-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1-(3'4-dicarboxyphenyl)-3-methylindane-5,6(6,7)-dicarboxylic acid dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalenesuccinic acid dianhydride, 1-methyl-3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalenesuccinic acid dianhydride, 3,4,9,10-perylene tetracarboxylic acid dianhydride, 1,8,9,10-phenanthrene tetracarboxylic acid dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic acid dianhydride, 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic acid dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic acid dianhydride, 2,3,3',4'-benzophenone tetracarboxylic acid, 2,3,2',3'-benzophenone tetracarboxylic acid dianhydride, 4,4'-oxodiphthalic acid dianhydride, 3,3'-oxodiphthalic acid dianhydride, 4,4'-thiodiphthalic acid dianhydride, 3,3'-thiodiphthalic acid dianhydride and 2,3,5,6-bicyclo(2,2,2)octane tetracarboxylic acid dianhydride.
17. The method of claims 8, 9, 10, 11, 12, 13 or 14 wherein the polyanhydride is a member selected from the group consisting of styrene/maleic anhydride copolymers, alkyl vinyl ether/maleic anhydride copolymers and:

where where n is 0 or 1, m is 0 or 1, p is 2 to about 100,000, R is aryl or saturated or unsaturated C 1-C100,000 alkyl, R' is aryl or saturated or unsaturated C 1-C30 alkyl, R" is aryl or saturated or unsaturated C 2-C30 alkyl and A is:

, , , or where R''' is aryl or saturated or unsaturated C 1-C10 alkyl.
18. The method of claims 8-17 wherein the equivalents of anhydride in the di- or polyanhydride per equivalent of repeating unit in the polysaccharide is from about 0.05 to about 4.
CA 2165890 1994-12-22 1995-12-21 Crosslinked acidic polysaccharides and their uses Abandoned CA2165890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US362,689 1989-06-07
US08/362,689 US5690961A (en) 1994-12-22 1994-12-22 Acidic polysaccharides crosslinked with polycarboxylic acids and their uses

Publications (1)

Publication Number Publication Date
CA2165890A1 true CA2165890A1 (en) 1996-06-23

Family

ID=23427122

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2165890 Abandoned CA2165890A1 (en) 1994-12-22 1995-12-21 Crosslinked acidic polysaccharides and their uses

Country Status (11)

Country Link
US (1) US5690961A (en)
EP (1) EP0718312A3 (en)
JP (1) JPH08253504A (en)
KR (1) KR960022568A (en)
CN (1) CN1131675A (en)
AR (1) AR000523A1 (en)
AU (1) AU697534B2 (en)
BR (1) BR9505996A (en)
CA (1) CA2165890A1 (en)
MX (1) MX9600065A (en)
PL (1) PL312026A1 (en)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356883A (en) 1989-08-01 1994-10-18 Research Foundation Of State University Of N.Y. Water-insoluble derivatives of hyaluronic acid and their methods of preparation and use
IT1288290B1 (en) * 1996-06-21 1998-09-11 Fidia Spa In Amministrazione S SELF-LETICULATED HYALURONIC ACID AND RELATED PHARMACEUTICAL COMPOSITIONS FOR THE TREATMENT OF ARTHROPATHIES
US6060534A (en) 1996-07-11 2000-05-09 Scimed Life Systems, Inc. Medical devices comprising ionically and non-ionically crosslinked polymer hydrogels having improved mechanical properties
DE19630879A1 (en) * 1996-07-31 1998-02-05 Hanno Lutz Prof Dr Baumann Production of blood-compatible material, for implants, containers etc.
EP2002846B1 (en) 1996-12-06 2017-01-25 Amgen Inc. Combination therapy using an IL-1 inhibitor for treating IL-1 mediated diseases
US6294170B1 (en) 1997-08-08 2001-09-25 Amgen Inc. Composition and method for treating inflammatory diseases
US6229009B1 (en) * 1997-08-29 2001-05-08 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Polycarboxylic based cross-linked copolymers
EP1129683A4 (en) * 1998-11-10 2002-06-19 Denki Kagaku Kogyo Kk Hyaluronic acid gel, process for the preparation thereof and medical materials containing the same
IT1303738B1 (en) * 1998-11-11 2001-02-23 Aquisitio S P A CARBOXYLATE POLYSACCHARIDE CROSS-LINKING PROCESS.
GB9902412D0 (en) * 1999-02-03 1999-03-24 Fermentech Med Ltd Process
GB9902652D0 (en) * 1999-02-05 1999-03-31 Fermentech Med Ltd Process
US6884427B1 (en) * 1999-02-08 2005-04-26 Aderans Research Institute, Inc. Filamentary means for introducing agents into tissue of a living host
US6410519B1 (en) * 1999-03-04 2002-06-25 United States Surgical Corporation Scar reduction
US6472379B1 (en) * 1999-03-15 2002-10-29 Trustees Of Boston University Angiogenesis inhibition
ATE277647T1 (en) * 1999-07-28 2004-10-15 United States Surgical Corp ANTI-ADHESION LAYER MADE OF HYALURONIC ACID
SK282717B6 (en) * 2000-03-10 2002-11-06 �Stav Experiment�Lnej Farmakol�Gie Sav Preparation method of ultrahigh molecular hyaluronans
WO2001093846A2 (en) * 2000-05-23 2001-12-13 The Trustees Of Columbia University In The City Of New York Method for treating respiratory disorders associated with pulmonary elastic fiber injury comprising the use of clycosaminoglycans
US7198641B2 (en) * 2000-08-08 2007-04-03 Aderans Research Institute, Inc. Scaffolds for tissue engineered hair
FR2820638B1 (en) * 2001-02-09 2005-01-21 Genevrier Lab PROCESS FOR PREPARING AN IMPREGNATED GAS
US6555118B1 (en) * 2001-02-22 2003-04-29 Sarfaraz K Niazi Pharmaceutical preparation for the treatment of topical wounds and ulcers
US6620927B2 (en) * 2001-02-22 2003-09-16 Anika Therapeutics, Inc. Thiol-modified hyaluronan
AU2002352113B2 (en) * 2001-12-21 2005-10-20 Unilever Plc Kit for preparing a spread
US20040235791A1 (en) * 2002-01-25 2004-11-25 Gruskin Elliott A. Scar reduction
US20040068284A1 (en) * 2002-01-29 2004-04-08 Barrows Thomas H. Method for stimulating hair growth and kit for carrying out said method
KR100493461B1 (en) * 2002-02-27 2005-06-07 재단법인서울대학교산학협력재단 Natural polymers bonded adhesion molecular, their preparation and their use
GB2386899B (en) * 2002-03-25 2005-10-26 Johnson & Johnson Medical Ltd Wound dressings comprising chemically modified polysaccharides
US20060153893A1 (en) * 2002-04-08 2006-07-13 Denki Kagaku Kogyo Kabushiki Kaisha Therapeutic composition for bone infectious disease
KR100523953B1 (en) * 2002-08-27 2005-10-25 주식회사 엘지생명과학 Microbeads of natural polysaccharide and hyaluronic acid and processes for preparing the same
TWI251596B (en) * 2002-12-31 2006-03-21 Ind Tech Res Inst Method for producing a double-crosslinked hyaluronate material
US8138265B2 (en) 2003-01-10 2012-03-20 The Cleveland Clinic Foundation Hydroxyphenyl cross-linked macromolecular network and applications thereof
US6982298B2 (en) 2003-01-10 2006-01-03 The Cleveland Clinic Foundation Hydroxyphenyl cross-linked macromolecular network and applications thereof
US8137688B2 (en) 2003-01-10 2012-03-20 The Cleveland Clinic Foundation Hydroxyphenyl cross-linked macromolecular network and applications thereof
US7465766B2 (en) 2004-01-08 2008-12-16 The Cleveland Clinic Foundation Hydroxyphenyl cross-linked macromolecular network and applications thereof
AU2003901834A0 (en) 2003-04-17 2003-05-01 Clearcoll Pty Ltd Cross-linked polysaccharide compositions
US8124120B2 (en) * 2003-12-22 2012-02-28 Anika Therapeutics, Inc. Crosslinked hyaluronic acid compositions for tissue augmentation
US7597885B2 (en) 2004-03-26 2009-10-06 Aderans Research Institute, Inc. Tissue engineered biomimetic hair follicle graft
US8293890B2 (en) * 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
EP1750769B1 (en) * 2004-05-20 2013-01-23 Mentor Worldwide LLC Methods for making injectable polymer hydrogels
WO2005113608A1 (en) * 2004-05-20 2005-12-01 Mentor Corporation Method of covalently linking hyaluronan and chitosan
US7758654B2 (en) 2004-05-20 2010-07-20 Kensey Nash Corporation Anti-adhesion device
ITMI20041373A1 (en) 2004-07-09 2004-10-09 Lima Lto S P A N-METHYL-CARBOXYMETHYLCELLULOSE ACID ALGINIC OR CARBOXYMETALAMIDE
AR050212A1 (en) * 2004-08-13 2006-10-04 Aderans Res Inst Inc ORGANOGENESIS FROM DISCELLED CELLS
EP2664334B1 (en) * 2004-12-30 2015-03-04 Genzyme Corporation Regimens for intra-articular viscosupplementation
CN1321692C (en) * 2005-08-16 2007-06-20 广东天普生化医药股份有限公司 Medicinal composition for treating arthritis
EP1928918B1 (en) * 2005-09-27 2011-11-16 UNIVERSITE JOSEPH FOURIER - Grenoble 1 Hydrogel functionalized with a polymerizable moiety and their uses as biosensors or bioreactors
TW200800240A (en) 2005-11-22 2008-01-01 Aderans Res Inst Inc Hair follicle graft from tissue engineered skin
US20080069855A1 (en) * 2006-08-21 2008-03-20 Bonutti Peter M Method of inhibiting the formation of adhesions and scar tissue and reducing blood loss
CN103356694B (en) 2006-12-06 2015-09-02 生化学工业株式会社 The long-acting medicament for the treatment of of arthritis disease
US7985537B2 (en) 2007-06-12 2011-07-26 Aderans Research Institute, Inc. Methods for determining the hair follicle inductive properties of a composition
EP2249891B1 (en) 2008-02-13 2016-05-25 The Cleveland Clinic Foundation Molecular enhancement of extracellular matrix and methods of use
WO2009135029A2 (en) 2008-04-30 2009-11-05 The Cleveland Clinic Foundation Compositions and methods to treat urinary incontinence
CZ301555B6 (en) * 2008-11-06 2010-04-14 Cpn S. R. O. Process for preparing DTPA crosslinked derivatives of hyaluronic acid and modification thereof
KR101406743B1 (en) 2009-01-13 2014-06-20 페르가뭄 아베 Hylauronic acid containing compositions for treatment of wounds, scars, post-surgical adhesion formation
JO3008B1 (en) 2009-08-13 2016-09-05 Seikagaku Kogyo Co Ltd Pharmaceutical Composition For Relieving Pain
CZ2009836A3 (en) 2009-12-11 2011-06-22 Contipro C A.S. Hyaluronic acid derivative oxidized in position 6 of saccharide glucosamine portion selectively to aldehyde, process of its preparation and modification method thereof
CZ2009835A3 (en) 2009-12-11 2011-06-22 Contipro C A.S. Process for preparing hyaluronic acid derivative oxidized in position 6 of saccharide glucosamine portion selectively to aldehyde and modification method thereof
BR112012026853A2 (en) * 2010-06-08 2016-07-12 Dow Global Technologies Llc method for preparing a particulate reversible crosslinked polymeric material and particulate reversible crosslinked particulate material
CN107412002A (en) * 2011-06-03 2017-12-01 阿勒根公司 Dermal filler composition including antioxidant
CZ2012136A3 (en) 2012-02-28 2013-06-05 Contipro Biotech S.R.O. Derivatives based on hyaluronic acid capable of forming hydrogels, process of their preparation, hydrogels based on these derivatives, process of their preparation and use
CZ304512B6 (en) 2012-08-08 2014-06-11 Contipro Biotech S.R.O. Hyaluronic acid derivative, process for its preparation, modification process and use thereof
CZ304654B6 (en) 2012-11-27 2014-08-20 Contipro Biotech S.R.O. C6-C18-acylated hyaluronate-based nanomicellar composition, process for preparing C6-C18-acylated hyaluronate, process for preparing nanomicellar composition and stabilized nanomicellar composition as well as use thereof
WO2014151592A1 (en) * 2013-03-15 2014-09-25 The Regents Of The University Of California Formaldehyde-free finishing of fabric materials
JP6077663B2 (en) 2013-08-29 2017-02-08 大日精化工業株式会社 Method for producing water-insoluble molded body and water-insoluble molded body
GB2518405A (en) * 2013-09-20 2015-03-25 Zeiss Carl Meditec Ag Composition comprising at least one viscoelastic polymer
CZ305153B6 (en) 2014-03-11 2015-05-20 Contipro Biotech S.R.O. Conjugates of hyaluronic acid oligomer or a salt thereof, process for their preparation and use
CZ2014451A3 (en) 2014-06-30 2016-01-13 Contipro Pharma A.S. Antitumor composition based on hyaluronic acid and inorganic nanoparticles, process of its preparation and use
JP6298576B2 (en) * 2015-02-27 2018-03-20 大日精化工業株式会社 Manufacturing method of medical material, medical material, and anti-adhesion material
JP6374088B2 (en) * 2015-02-27 2018-08-15 大日精化工業株式会社 Medical materials and anti-adhesion materials
JP6374089B2 (en) * 2015-02-27 2018-08-15 大日精化工業株式会社 Medical / beauty materials and anti-adhesion materials
CZ309295B6 (en) 2015-03-09 2022-08-10 Contipro A.S. Self-supporting, biodegradable film based on hydrophobized hyaluronic acid, method of its preparation and use
JP6046869B1 (en) * 2015-04-14 2016-12-21 キユーピー株式会社 A crosslinked product of carboxymethyl group-containing modified hyaluronic acid and / or a salt thereof, and a method for producing the same.
CZ306479B6 (en) 2015-06-15 2017-02-08 Contipro A.S. A method of crosslinking polysaccharides by using photolabile protecting groups
CZ306662B6 (en) 2015-06-26 2017-04-26 Contipro A.S. Sulphated polysaccharides derivatives, the method of their preparation, the method of their modification and the use
CN105061605B (en) * 2015-07-15 2017-12-26 中国科学院化学研究所 A kind of modification of polysaccharides with photoluminescent property and its preparation method and application
CN106009068A (en) * 2016-06-25 2016-10-12 仇颖超 Preparation method of hyaluronic acid grafted micromolecular chondroitin sulfate composite
CZ308106B6 (en) 2016-06-27 2020-01-08 Contipro A.S. Unsaturated derivatives of polysaccharides, preparing and using them
MA49265A (en) 2017-03-22 2020-02-05 Ascendis Pharma As Hydrogel cross-linked hyaluronic acid prodrug compositions and methods
CN111333879B (en) * 2020-04-16 2022-08-16 山东众山生物科技有限公司 Chondroitin sulfate compound for crosslinking hyaluronic acid and application thereof

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046779A (en) * 1975-05-30 1977-09-06 Standard Oil Company (Indiana) Dibenzofuran-2,3,6,7-tetracarboxylic acid dianhydride
US4152170A (en) * 1975-06-18 1979-05-01 Sumitomo Chemical Company, Ltd. Cross-linked pullulan
JPS5436388A (en) * 1977-08-26 1979-03-17 Sumitomo Electric Ind Ltd Porous polysaccharide and its preparation
JPS5889397A (en) * 1981-11-20 1983-05-27 Ricoh Co Ltd Heat-sensitive recording sheet
US5166331A (en) * 1983-10-10 1992-11-24 Fidia, S.P.A. Hyaluronics acid fractions, methods for the preparation thereof, and pharmaceutical compositions containing same
US4487865A (en) * 1983-12-15 1984-12-11 Biomatrix, Inc. Polymeric articles modified with hyaluronate
US4500676A (en) * 1983-12-15 1985-02-19 Biomatrix, Inc. Hyaluronate modified polymeric articles
US4716224A (en) * 1984-05-04 1987-12-29 Seikagaku Kogyo Co. Ltd. Crosslinked hyaluronic acid and its use
SE442820B (en) * 1984-06-08 1986-02-03 Pharmacia Ab GEL OF THE CROSS-BOND HYALURONIC ACID FOR USE AS A GLASS BODY SUBSTITUTE
US4863907A (en) * 1984-06-29 1989-09-05 Seikagaku Kogyo Co., Ltd. Crosslinked glycosaminoglycans and their use
SE456346B (en) * 1984-07-23 1988-09-26 Pharmacia Ab GEL TO PREVENT ADHESION BETWEEN BODY TISSUE AND SET FOR ITS PREPARATION
US4605691A (en) * 1984-12-06 1986-08-12 Biomatrix, Inc. Cross-linked gels of hyaluronic acid and products containing such gels
US4582865A (en) * 1984-12-06 1986-04-15 Biomatrix, Inc. Cross-linked gels of hyaluronic acid and products containing such gels
US4636524A (en) * 1984-12-06 1987-01-13 Biomatrix, Inc. Cross-linked gels of hyaluronic acid and products containing such gels
US5128326A (en) * 1984-12-06 1992-07-07 Biomatrix, Inc. Drug delivery systems based on hyaluronans derivatives thereof and their salts and methods of producing same
SE8501022L (en) * 1985-03-01 1986-09-02 Pharmacia Ab FORMAT CREATES AND PROCEDURES FOR ITS PREPARATION
US4713448A (en) * 1985-03-12 1987-12-15 Biomatrix, Inc. Chemically modified hyaluronic acid preparation and method of recovery thereof from animal tissues
US5099013A (en) * 1985-03-12 1992-03-24 Biomatrix, Inc, Hylan preparation and method of recovery thereof from animal tissues
US5202431A (en) * 1985-07-08 1993-04-13 Fidia, S.P.A. Partial esters of hyaluronic acid
US4851521A (en) * 1985-07-08 1989-07-25 Fidia, S.P.A. Esters of hyaluronic acid
US4851513A (en) * 1985-09-06 1989-07-25 Minnesota Mining And Manufacturing Company Viscoelastic collagen solution for opthalmic use and method of preparation
IT1198449B (en) * 1986-10-13 1988-12-21 F I D I Farmaceutici Italiani ESTERS OF POLYVALENT ALCOHOLS OF HYALURONIC ACID
US4795741A (en) * 1987-05-06 1989-01-03 Biomatrix, Inc. Compositions for therapeutic percutaneous embolization and the use thereof
JP2666210B2 (en) * 1988-01-21 1997-10-22 鐘紡株式会社 Skin cosmetics
IT1217458B (en) * 1988-05-02 1990-03-22 Crinos Ind Farmacoriologica S SULFOAMINO DERIVATIVES OF CONDROITIN SULPHATES, DERMATAN SULPHATE AND HYALURONIC ACID AND THEIR PHARMACOLOGICAL PROPERTIES
IT1219587B (en) * 1988-05-13 1990-05-18 Fidia Farmaceutici SELF-CROSS-LINKED CARBOXYLY POLYSACCHARIDES
SE8900586L (en) * 1989-02-21 1990-08-22 Pharmacia Ab COMPOSITION AND PROCEDURES TO PREVENT ADHESION BETWEEN BODY TISSUE
US5356883A (en) * 1989-08-01 1994-10-18 Research Foundation Of State University Of N.Y. Water-insoluble derivatives of hyaluronic acid and their methods of preparation and use
US4997906A (en) * 1989-10-16 1991-03-05 Exxon Research & Engineering Company Crosslinked copolymers of aliphatic polyester diols and dianhydrides
US5183707A (en) * 1989-11-07 1993-02-02 The Procter & Gamble Cellulose Company Individualized, polycarboxylic acid crosslinked fibers
JPH07116030B2 (en) * 1990-06-29 1995-12-13 参天製薬株式会社 Residual lens substance removal aid
US5246698A (en) * 1990-07-09 1993-09-21 Biomatrix, Inc. Biocompatible viscoelastic gel slurries, their preparation and use
US5191016A (en) * 1990-07-19 1993-03-02 Manssur Yalpani Functionalized poly(hydroxyalkanoates) and method of manufacturing same
GR920100122A (en) * 1991-04-05 1993-03-16 Ethicon Inc Ionically crosslinked carboxyl-containing polysaccharides for adhension prevention.
CA2072918A1 (en) * 1992-02-14 1993-08-15 Jian Qin Modified polysaccharides having improved absorbent properties and process for the preparation thereof
FR2688422A1 (en) * 1992-03-11 1993-09-17 Coletica MICROCAPSULES WITH POLYSACCHARIDE WALLS CONTAINING PRIMARY ALCOHOL FUNCTIONS, AND COMPOSITIONS CONTAINING SAME.
US5534589A (en) * 1994-05-04 1996-07-09 Minnesota Mining And Manufacturing Company Repulpable plastic films
US5478477A (en) * 1994-11-04 1995-12-26 Nalco Chemical Company Use of alginates to treat bauxite red mud

Also Published As

Publication number Publication date
BR9505996A (en) 1997-12-23
AU697534B2 (en) 1998-10-08
JPH08253504A (en) 1996-10-01
KR960022568A (en) 1996-07-18
CN1131675A (en) 1996-09-25
EP0718312A3 (en) 1997-01-15
AR000523A1 (en) 1997-07-10
EP0718312A2 (en) 1996-06-26
US5690961A (en) 1997-11-25
AU4063495A (en) 1996-06-27
MX9600065A (en) 1997-02-28
PL312026A1 (en) 1996-06-24

Similar Documents

Publication Publication Date Title
US5690961A (en) Acidic polysaccharides crosslinked with polycarboxylic acids and their uses
US5612321A (en) Antioxidant grafted polysaccharides
US8877243B2 (en) Cross-linked polysaccharide composition
FI94767C (en) For non-therapeutic use, complete and partial esters of hyaluronic acid are intended
AU610087B2 (en) Cross-linked ester of hyaluronic acid
EP2222713B1 (en) Mixed butyric-formic esters of acid polysaccharides, and their preparation and use as skin cosmetics
EP1305355A1 (en) Hydrogel films and methods of making and using therefor
US6569840B1 (en) Low-molecular heparin modification and remedy for skin ulcer
AU2004229592B2 (en) Cross-linked polysaccharide composition
AU2008329154B2 (en) Mixed butyric-formic esters of acid polysaccharides, and their preparation and use as skin cosmetics

Legal Events

Date Code Title Description
FZDE Discontinued