CA2155726C - Fusion stabilization chamber - Google Patents

Fusion stabilization chamber Download PDF

Info

Publication number
CA2155726C
CA2155726C CA002155726A CA2155726A CA2155726C CA 2155726 C CA2155726 C CA 2155726C CA 002155726 A CA002155726 A CA 002155726A CA 2155726 A CA2155726 A CA 2155726A CA 2155726 C CA2155726 C CA 2155726C
Authority
CA
Canada
Prior art keywords
hollow
members
chamber
hollow member
stabilization chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002155726A
Other languages
French (fr)
Other versions
CA2155726A1 (en
Inventor
Fraser C. Henderson
Rebecca Sasscer Henderson
John W. Newman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2155726A1 publication Critical patent/CA2155726A1/en
Application granted granted Critical
Publication of CA2155726C publication Critical patent/CA2155726C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30153Convex polygonal shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30158Convex polygonal shapes trapezoidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30261Three-dimensional shapes parallelepipedal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/3028Three-dimensional shapes polyhedral different from parallelepipedal and pyramidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30362Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
    • A61F2002/30364Rotation about the common longitudinal axis
    • A61F2002/30367Rotation about the common longitudinal axis with additional means for preventing said rotation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30362Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
    • A61F2002/3037Translation along the common longitudinal axis, e.g. piston
    • A61F2002/30373Translation along the common longitudinal axis, e.g. piston with additional means for preventing said translation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30433Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using additional screws, bolts, dowels, rivets or washers e.g. connecting screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30507Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a threaded locking member, e.g. a locking screw or a set screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30537Special structural features of bone or joint prostheses not otherwise provided for adjustable
    • A61F2002/3055Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30576Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30593Special structural features of bone or joint prostheses not otherwise provided for hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30601Special structural features of bone or joint prostheses not otherwise provided for telescopic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • A61F2002/30787Plurality of holes inclined obliquely with respect to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • A61F2002/30909Nets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0033Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0041Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using additional screws, bolts, dowels or rivets, e.g. connecting screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0019Angular shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0026Angular shapes trapezoidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0082Three-dimensional shapes parallelepipedal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/907Composed of particular material or coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/32Articulated members
    • Y10T403/32254Lockable at fixed position
    • Y10T403/32467Telescoping members
    • Y10T403/32475Telescoping members having detent
    • Y10T403/32491Threaded

Abstract

A fusion stabilization chamber stabilizes the spine following removal of one or more vertebrae, and facilitates bone growth. The chamber includes two hollow members (1), (3), preferably having slightly trapezoidal cross sections, which slide relative to each other in a telescoping manner. The hollow members preferably have walls made of a metal mesh (5). Barrel vaults (7) attached to the hollow members form guides for screws (9) which can attach the chamber to the vertebrae adjacent the corpectomy site. Because of its adjustability, the chamber can fit a wide variety of corpectomy sites. One can fill the chamber with bone material, which can eventually fuse to the adjacent bone. A pair of stabilizing plates (13) prevents the surgeon from pushing the chamber too far towards the spinal cord. The chamber eliminates the need to maintain a large and costly inventory of screws, and neurosurgeons can learn to use it quickly and easily.

Description

FUSION STABIEIZATION CHAMBER

BACKGROUND OF THE INVENTION
The present invention relates to the field of neurosurgery, and pro-vides a device which facilitates the implantation of bone into the spine following removal of vertebrae, and which also facilitates the fusion of the implanted bone with the surrounding bone. The invention also in-cludes a method of performing spinal surgery, and in particular, of stabilizing the spine following removal of one or more vertebrae.
Cancer or trauma or degenerative changes can cause parts of the human vertebrae to develop outgrowths or ridges that can touch the spinal cord and cause pain and/or paralysis. Neurosurgeons have developed means of treating such conditions, by removing part of the vertebrae, and, where appropriate, replacing the removed bone with something else. The removal of all or part of a vertebra is called a "corpectomy" or a "ver-tebrectomy". In some cases, one can replace the bone removed by corpec-tomy with bone taken from another site on the body of the patient; in other cases, one can obtain bone from a "bone bank". Given the right conditions, the new bone material will fuse to the bone surrounding the corpectomy site, and can become for practical purposes a part of the patient's body. To achieve the desired fusion, one must stabilize the spine so that the bone has time to fuse. The fusion process can take from six weeks to six months.
In performing spinal surgery, one can approach the spine either from the front (anterior) or rear (posterior) sides. The posterior approach has the disadvantage that since the vertebrae lie on the anterior side of WO 94/18913 ~15 5 7 2 ~ PCT/US94/01484 the spinal cord, the surgeon must navigate past the spinal cord before reaching the vertebrae, and must take special care not to disturb the spinal cord. Conversely, with the anterior approach, the surgeon does not encounter the spinal cord while en route to the vertebrae. The pres-ent invention concerns the anterior appr~oach.
The prior art contains many systèms for stabilizing various parts of the spine following surgery. The development of such systems has made it possible to treat certain lesions of the spine aggressively, instead of simply immobilizing them in a brace. The typical external immobilizing device of the prior art comprises the halo vest. The typical internal immobilizing device comprises the Caspar plate, described below.
The Caspar plate system, named after Dr. Wolfhard Caspar, comprises a means for stabilizing the spine after anterior spinal surgery. The Caspar system includes a set of plates which one attaches to the remain-ing vertebrae surrounding the corpectomy site. In the Caspar procedure, one screws a plate directly onto the spine, the screws approaching within about one or two millimeters of the spinal cord. The Caspar system pro-vides immediate stabilization of the spine following a corpectomy, and in other cases where the spine has become unstable following an accident.
The Caspar system also eliminates the need for wearing the very cumber-some halo vest, and eliminates the need to undergo a separate surgical procedure from the rear.
However, the Caspar system also has disadvantages. It requires a large inventory of expensive equipment, including screws and plates of all sizes. The latter expense can represent a formidable obstacle to many medical institutions. Also, one needs to insert the screws through the spine, engaging the posterior cortex. Although one can monitor the WO 94/18913 215 5 7 ~ ~ PCT/US94/01484 position of the screws with an appropriate real-time viewing apparatus, the procedure carries the potential risk of spinal cord injury or lacera-tion of the vertebral artery. When a competent surgeon performs the pro-cedure, these complications rarely occur, but other complications such as loosening of the screws and persistent instability may develop. More-over, the difficulty of the procedure discourages many surgeons from even attempting the anterior plating procedure.
The Synthes cervical spine locking plate constitutes another anterior plating system of the prior art. In the Synthes system, one inserts a second screw into the head of the anchor screw, thus creating a second affixation of the plate to the vertebrae. Many regard the Synthes system as easier, safer, and faster to use than the Caspar plate system, because the anchor screw does not penetrate the posterior cortex and be-cause one therefore does not need to monitor the precise position of the screw during insertion. However, the Synthes locking plate has less ver-satility than the Caspar plate, as it provides the ability to fuse only two to three levels of the cervical spine.
Both the Caspar and Synthes systems also have the disadvantage that they do not work well in patients with osteoporosis, rheumatoid arthritis, ankylosing spondylitis, and other conditions of poor bone growth or metabolic bone disease.
- Both the Caspar and Synthes systems have additional disadvantages inherent with the use of screws. First, as mentioned above, screws do become loose. If one uses the screws as the primary means of affixing the stabilizing device to the spine of the patient, loosening of the screws represents a major problem. Moreover, the use of screws presents a technical challenge to the surgeon. Correct screw placement requires experience, as well as a large inventory of expensive equipment, as well
2~5~ ~
3 PCT/US94/01484 as imaging devices for monitoring the position of such screws. Also, with screw-based systems of the prior art, the surgeon must create a large opening in the patient, so as to view the screw along its shaft.
Such an opening creates additional risks to the patient, such as the risk of injury to vascular structure and to nearby nerves.
In addition to the problem of how to stabilize the spine immediately after performing a corpectomy, vertebral surgery poses problems relating to the replacement of the removed bone. Some systems of the prior art require the use of a bone strut to replace the diseased bone segments removed in surgery. This bone grafting material costs a great deal, and sometimes one cannot obtain enough material when performing multiple ver-tebrectomies. Furthermore, bone graft material, usually taken from cadavers, has typically been sterilized by radiation, a process believed to weaken or destroy the strength and osteoconductive properties of bone.
While it is possible to use other means of sterilization, such as ethylene oxide or freeze drying, it usually turns out that the best bone graft material comes from the patient, because the patient's own bone will likely fuse more rapidly than bone obtained elsewhere. Unfortunate-ly, harvesting such bone consumes substantial time, involves substantial pain to the patient, and presents other risks, such as risk of infection at the harvest site, hemorrhage, and peripheral nerve injury.
The present invention overcomes the disadvantages of the prior art systems described above. First, the invention provides a device which surgeons can learn to use very easily, and which they can insert without intraoperative fluoroscopy or other means of accurately monitoring the position of a device within the body. Most neurosurgeons can use the device of the present invention with instruments already in their posses-~ WO 94/18913 2 ~ 5 5 7 2 6 PCT/US94/01484 s sion.
Secondly, the invention provides an adjustable device which can fita large range of patients. This feature eliminates the need to keep a large inventory of parts in order to accommodate every possible patient.
Thirdly, the device allows one to use the patient's own cancellous bone which one removes during the vertebrectomy, possibly with the addi-tion of further cancellous bone material from an external source. In any event, the invention reduces or eliminates the need to obtain a pelvic bone autograft from the patient.
The device of the present invention also reduces or eliminates the problem of loosening of screws, which can occur with the plating systems of the prior art, and which clearly can cause substantial pain and ex-pense.

SUMMARY OF THE INVENTION
The fusion stabilization chamber of the present invention includes a pair of hollow members, both of which may have a rectangular or slightly trapezoidal cross-section. One of the hollow members slides within the other. Thus, the chamber comprises two telescoping hollow members. Each hollow member includes at least one barrel vault at one end, each barrel vault comprising threaded means for receiving a screw. The barrel vaults are arranged in a mutually oblique manner, such that the screws inserted into the vaults also lie along mutually oblique lines. The hollow members preferably comprise enclosures defined by four walls formed of a metal mesh. The hollow members may also include means for locking the members in a desired position relative to each other.
In using the stabilization chamber described above, the surgeon first removes the diseased portion of vertebra in the usual manner. The surgeon measures the length of the corpectomy site (the length of the space to be filled), and adjusts the length of the chamber accordingly.
One may fasten the locking means so that the telescoping chamber main-tains its desired position. Then, the surgeon fills the chamber with bone material, such as bone chips obtained from the corpectomy operation itself, or bone material from other sources, and inserts the chamber into the corpectomy site. The surgeon gently taps the device into place, so that it fills most of the corpectomy site, i.e. the space formerly oc-cupied by the removed vertebra. The chamber does not extend all of the way towards the spinal cord, due to the retaining action of a pair of stabilizing plates.
The surgeon then drills holes in the surrounding bone, using the barrel vaults as guides for the drill bit. The surgeon then inserts the screws through the barrel vaults and fastens them to the bone. Due to the orientation of the barrel vaults, the screws lie along mutually oblique paths, reducing the likelihood that the device will become dis-lodged.
In an alternative embodiment, one can provide threaded holes in the stabilizing plates also, so that additional screws can pass directly through the stabilizing plates and into the surrounding bone.
The present invention therefore has the primary object of providing an improved method and apparatus for performing spinal surgery, and in particular, for stabilizing the spine following removal of one or more vertebrae.
The invention has the further object of providing a device which promotes bone fusion in addition to providing stabilization of the spine.

~ WO 94/18913 21~ ~ 7 2 6 PCT/US94/01484 The invention has the further object of simplifying the surgical process of stabilizing the spine after performing a corpectomy.
The invention has the further object of reducing the cost and com-plexity of the equipment needed to practice spinal surgery.
The invention has the further object of reducing the time required for a surgeon to learn to stabilize the spine following a corpectomy.
Persons skilled in the art will recognize other objects and ad-vantages of the invention, from a reading of the following brief descrip-tion of the drawings, the detailed description of the invention, and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 provides a side elevational view of the fusion stabiliza-tion chamber of the present invention.
Figure 2 shows an end view of the stabilization chamber of the pres-ent invention.
Figure 3 provides a perspective view of the fusion stabilization chamber.
Figure 4 shows a top view of the stabilization chamber.
Figure 5 provides a diagrammatic view showing the fusion stabiliza-tion chamber inserted into a corpectomy site.
Figure 6 provides a perspective view of an alternative embodiment of the invention, wherein additional screws pass directly through the stabilizing plates.

WO 94/18913 PCT/US94101484 ~
2155~ 8 DETAILED DESCRIPTION OF THE INVENTION
Figures 1-4 show the physical structure of the fusion stabilization chamber of the present invention. The chamber includes first hollow mem-ber 1 and second hollow member 3. Both hollow members have a slightly trapezoidal cross-section, as illustrated in the end view of Figure 2.
Figure 2 exaggerates the trapezoidal shape of the cross-section; in prac-tice, the width of the member might increase by one millimeter for each 15 mm of depth, but one could use other dimensions. Thus, by "slightly trapezoidal", one means that the members are nearly rectangular in cross-section, except for the variation in width described above. The trape-zoidal cross-section helps to maintain the chamber in position within the corpectomy site. One inserts the narrower portion of the hollow member into the body cavity first, with the wider portion oriented towards the outside. Thus, the chamber tends to become wedged in its place within the corpectomy site; once pushed in, it becomes difficult to pull out.
Although the preferred embodiment includes the trapezoidal cross-section, one can also form the chamber with a perfectly rectangular cross-section, within the scope of the invention.
The first hollow member 1 slides within the second hollow member 3.
The members 1 and 3 preferably have walls formed of metal mesh 5. One prefers walls having openings which permit bone growth from the adjacent vertebrae, through the interior of the chamber. However, the walls can have a different construction. They can even comprise solid metal, as bone can fuse to metal. In the latter case, the chamber could be empty.
In the preferred embodiment, the chamber has two pairs of barrel vaults 7, arranged at the opposite ends of the hollow members. One can vary the number of barrel vaults, within the scope of the invention. The ~l~S72~

barrel vaults comprise threaded cylinders through which screws 9 pass.
Figure 1 shows that the screws form an angle of about 30~ relative to the top longitudinal axis of the chamber. Figure 4 shows that the screws also form an angle of about 10- relative to the sides of the chamber.
One can vary these angles; one should not consider the invention limited to particular angles. In general, one selects angles which enable the screws to pass through the greatest possible thickness of bone, above and below the corpectomy site, and to provide an angle which, from the per-spective of the surgeon, facilitates insertion of the screws without the need to make a larger or additional incision.
As shown in the Figures, the barrel vaults comprise mutually oblique members. The screws become self-locking in the barrel vaults. One can also provide an adjustable hexagonal head screwdriver to facilitate tightening of the screws from any angle.
Locking screw 11 holds the first and second hollow members in place.
The locking screw thus permits adjustment of the size of the chamber.
One slides the hollow members until the chamber has the desired length, and then fixes the selected length by tightening the locking screw.
Figure 5 provides a diagram of the fusion stabilization chamber in-serted into a corpectomy site. The figure shows vertebrae 15, the spaces 17 between adjacent vertebrae representing intervertebral discs. Each vertebra includes an outer bony layer, or cortex 27, which surrounds can-cellous material 29 inside. Figure 5 also shows spinal cord 19, and the structures adjoining the spinal cord, including the posterior longitudi-nal ligament 21, the ligamentum flavum 23, and the posterior spinous pro-cesses 25. As shown in the figure, one has removed several vertebrae, and has inserted the chamber into the resulting empty space.
Stabilizing plates 13 extend from both hollow members, as shown in the Figures. The stabilizing plates serve several purposes. First, as illustrated in Figure 5, the stabilizing plates keep the chamber at an appropriate depth, preventing the chamber from touching spinal cord 19 or the ligaments surrounding it. By making the depth of the chamber less than the depth of the adjacent vertebrae, one prevents the chamber from coming too close to the spinal cord.
Secondly, the stabilizing plates tend to distribute the bending loads experienced by the chamber, and divert part of these loads away from the screws. As the vertebrae flex back and forth, the stabilizing plates tend to oppose some of the vertebral movement, and absorb some of the tension, thereby tending to prevent the screws from loosening or breaking.
Thirdly, the stabilizing plates help to rigidify the joints formed between the ends of the chamber and the respective adjacent vertebrae.
Keeping these joints rigid facilitates the growth of blood vessels from the adjacent vertebrae, through the holes in the chamber walls, and into the bone material within the chamber.
Figure 6 shows, in a perspective view, an alternative embodiment wherein a third screw passes through a threaded hole in each stabilizing plate, in addition to the pair of screws inserted through the associated barrel vaults. Figure 6 shows additional screw 10 inserted through the stabilizing plate on the right-hand side. The figure does not show the corresponding additional screw on the other side, in order to show the hole in the stabilizing plate, but in practice a similar additional screw 10 would normally bP provided. However, one should consider each screw as optional, since it is possible to affix the chamber to the adjacent bone using fewer than all of the available screws.

One would use the embodiment of Figure 6 in cases where the bone has become weakened. In rare cases, one might even attach the chamber only with the stabilizing plate screws, without any barrel vault screws. In all of the embodiments wherein one provides a threaded hole in the stabilizing plate, the holes should have low "profiles", so that the material defining the plate does not project significantly beyond the plane of the plate.
In using the chamber of the present invention, the surgeon begins by performing a corpectomy in the conventional manner. Immediately after removal of one or more vertebrae, the surgeon measures the length of the corpectomy site with calipers, and adjusts the length of the chamber to make it conform to the length of the corpectomy site. One adjusts the length of the chamber by pulling the hollow members 1 and 3 away from each other or pushing them together, as needed. Then one tightens the locking screw 11 to fix the length (and thus the volume) of the chamber.
Next, the surgeon fills the chamber with bone. The bone can com-prise bone chips obtained from the vertebrae removed in the corpectomy procedure, or it can comprise cancellous bone obtained from another site.
One might also use a biocompatible osteogenic polymer.
In a variation of the latter step, the surgeon may place bone chips, obtained from the corpectomy, into the chamber, while the corpectomy pro-gresses. However, in this case, one would still need to adjust the cham-ber to fit the corpectomy site, and one would also need to insure that the bone has substantially filled the volume of the chamber after adjust-ment of the size of the chamber.
The surgeon then inserts the bone-filled chamber into the corpectomy site, and gently taps it into place, such that the stabilization plates 13 come to rest on the vertebrae immediately adjacent to the corpectomy WO 94/18913 2j~SS 7 2 ~ PCT/US94/01484 site. The chamber should fit tightly within the corpectomy site. One may take a lateral spine X-ray to insure that the chamber has seated it-self properly in the corpectomy site.
Next, the surgeon drills holes into the adjacent vertebrae, using an appropriate drill, such as a 2mm twist drill. The barrel vaults 7 form guides for the drill bit, and thereby determine the direction of the holes. The orientation of the barrel vaults unambiguously determines the orientation of the holes. The holes therefore make the same angles as the barrel vaults, relative to the axes of the chamber.
The surgeon then threads the screws 9 into the barrel vaults 7. The barrel vaults direct the screws along the correct path. Due to the in-teraction of the heads of screws 9 with the barrel vaults, the barrel vaults also insure that the screws 9 become inserted to the correct depth. When tightened, the screws 9 tend to draw the adjacent vertebrae towards the chamber. Note also that the screws pass twice through the cortex of the vertebrae. In other words, each screw has a length suffi-cient to pass through the cortex 27 at one surface of the vertebra, then through the cancellous material 29 at the core of the vertebra, and again through the cortex as the screw exits the vertebra. Fastening the screws in this manner minimizes the likelihood that the screws will become dis-lodged.
Following the tightening of the screws, one can take a lateral X-ray to verify proper placement of the screws. If all is correct, one can then close the wound in the conventional manner.
The present invention has many advantages, as outlined below:
1. The fusion stabilization chamber does not rely on screws as the sole means of stabilizing the spine following surgery. Due to the trape-~5572~

zoidal cross-section of the chamber, the chamber becomes firmly wedged within the corpectomy site even before attachment of the screws.
2. The surgeon can learn to insert the fusion stabilization chamber much more quickly than devices of the prior art. Since the barrel vaults automatically determine the direction and depth of the screws, the surgeon will be less likely to make mistakes while using the present in-vention, and the invention therefore is less intimidating to the surgeon than devices of the prior art. In particular, the oblique direction of the screws lessens the potential damage to the spinal cord. Moreover, most neurosurgeons can use the fusion stabilization chamber with instruments already in their possession.
3. The oblique direction of the screws has the added benefit that it increases the compression effect, by drawing vertebrae above and below the chamber into firm contact with the chamber. Such compression speeds fusion of the bone.
4. The oblique direction of the screws has the additional advantage of reducing the required size of the surgical incision, because the surgeon can reach deeply into adjacent vertebrae, using the screws, with-out exposing those vertebrae.
5. Because of the ease and manner of insertion of the device, the surgeon need not use intraoperative fluoroscopy, or other monitoring means, while inserting the device.
6. The present invention eliminates the need for a large inventory of stabilization plates and screws for fitting different sizes of verte-brae. One can construct the present invention in two or three basic sizes, which together fit virtually all possible corpectomy sites, due to the telescoping feature of the chamber. Thus, the invention reduces the cost of maintaining an inventory of materials. Moreover, due to the WO 94/18913 2~5S7 2~ 14 PCT/US94/01484 simple structure of the fusion stabilization chamber, one can manufacture it relatively inexpensively.
7. One can make the fusion stabilization chamber of strong titanium metal mesh which allows bone to grow from end to end and from side to side. One can easily fill the chambèr with the patient's own cancellous bone mixed with hydroxyapatite crystals and/or other biocompatible syn-thetic bone substitutes known to increase the rate of bone formation.
Thus, the present invention reduces the need to harvest bone from other sites on the patient's body.
8. The structure of the fusion stabilization chamber provides stability through all three degrees of freedom of movement.

In an alternative embodiment, one can replace the locking screw with a screw device located inside the chamber and extending along the entire length of the chamber. Thus, the latter screw device would comprise a type of jack. Turning the latter screw would vary the overall length of the jack, which is equivalent to varying the length of the chamber. With this arrangement, one need not adjust the length of the chamber before inserting it into the corpectomy site. Instead, one would first insert the chamber, and then turn the screw to adjust the jack, until the cham-ber becomes long enough to occupy the entire space. The above-described screw device would then comprise the means for locking the hollow members into a fixed position relative to each other, and could be used instead of, or in addition to, locking screw 11. One would use a bevel gear, or equivalent mechanical device, for adjusting the jack while the chamber is in position. The latter alternative should be considered within the scope of the present invention.
In another alternative embodiment, one can coat the outside of the ~lSS726 chamber with an osteoconductive substance, such as hydroxyapatite, or the like, to promote fusion of the chamber to the surrounding bone. This coating can be instead of, or in addition to, the filling of the chamber with bone material. The invention should be considered to include the latter alternatives.
The chamber used in the present invention can have various cross-sections. The invention is not limited to the rectangular or trapezoidal cross-sections discussed above, but can include other shapes. For ex-ample, one could form the chamber with a circular cross-section, in which case the chamber would have the general shape of a cylinder.
The present invention is also not limited to a chamber having straight walls. Instead, the chamber could be curved along its length.
In this way, one can make the chamber fit the curvature of the spine. In the latter case, both hollow members would be curved, so that they could slide back and forth within each other, while maintaining the desired curvature. This embodiment would be useful for a corpectomy which spans a relatively large number of vertebrae.
While the above description illustrates the preferred embodiments of the invention, one can vary the invention in still other ways. For ex-ample, as noted above, one can vary the structure of the walls of the chamber. While one prefers a chamber having holes, such as provided by a metal mesh, one could use an empty box having solid walls. The position and number of barrel vaults can also vary. These and other modifica-tions, which those skilled in the art will recognize, should be consid-ered within the spirit and scope of the following claims.

Claims (13)

1. A fusion stabilization chamber, comprising:
a) first and second hollow members, the first hollow member being slidable within the second hollow member, b) both hollow members including at least one barrel vault for receiving a screw therein, at least one barrel vault of the first hollow member being mutually oblique to at least one barrel vault of the second hollow member, the hollow members being substantially filled with bone chips, c) wherein each hollow member is defined by walls formed of a metal mesh, the mesh defining openings sufficiently large to allow the bone chips located within the hollow member to fuse with bone material located outside the hollow member.
2. The fusion stabilization chamber of Claim 1, wherein each barrel vault includes a screw threaded therein.
3. The fusion stabilization chamber of Claim 1, further comprising means for locking the two hollow members in a position such that the hol-low members together define a predetermined volume.
4. The fusion stabilization chamber of Claim 1, wherein each hollow member is attached to a stabilizing plate, the stabilizing plates lying in generally the same plane, each stabilizing plate extending longitudi-nally outward from the hollow member.
5. The fusion stabilization chamber of Claim 4, wherein at least one stabilizing plate has a threaded hole, and a screw inserted through said threaded hole.
6. The fusion stabilization chamber of Claim 5, wherein each barrel vault includes a screw threaded therein.
7. The fusion stabilization chamber of Claim 1, wherein the hollow members have a slightly trapezoidal cross-section.
8. A fusion stabilization chamber, comprising:
a) first and second hollow members, the first hollow member being slidable within the second hollow member, the hollow members having a slightly trapezoidal cross-section, the hollow members being substan-tially filled with bone chips, b) both hollow members including at least two threaded barrel vaults with screws threaded in the barrel vaults, the barrel vaults of the first hollow being oblique to the barrel vaults of the second hollow member, c) the hollow members being formed generally of a metal mesh, and d) means for locking the two hollow members in a position such that the hollow members together define a predetermined volume.
9. The fusion stabilization chamber of Claim 8, wherein each hollow member is attached to a stabilizing plate, the stabilizing plates lying in generally the same plane, each stabilizing plate extending longitudi-nally outward from the hollow member.
10. The fusion stabilization chamber of Claim 9, wherein the stabilizing plates have threaded holes, and wherein there are screws in-serted through said threaded holes.
11. A fusion stabilization chamber, comprising:
a) first and second hollow members, the first member being mov-able with respect to the second member, both hollow members being sub-stantially filled with bone chips, wherein substantially all of each hol-low member is formed of a metal mesh, the mesh defining openings suffi-ciently large to allow the bone chips located with the hollow member to fuse with bone material located outside the hollow member, the fusion stabilization chamber also including means for fixing the first and second members in a desired position relative to each other, and b) means, attached to the first and second members, for affixing said first and second members to vertebrae adjacent a corpectomy site.
12. A fusion stabilization chamber, comprising:
a) first and second hollow members, the first hollow member being slidable within the second hollow member, the hollow members both having longitudinal axes, wherein the fusion stabilization chamber has a curvature which corresponds to a curvature of a patient's spine, b) both hollow members including at least one barrel vault for receiving a screw therein, at least one barrel vault of the first hollow memer being mutually oblique to at least one barrel vault of the second hollow member, the hollow members being substantially filled with bone chips, c) wherein each hollow member is defiend by walls formed of a metal mesh, the mesh defining openings sufficiently large to allow the bone chips located within the hollow member to fuse with bone matreial located outside the hollow member.
13. A fusion stabilization chamber, comprising:
a) first and second hollow members, the first member being movable with respect to the second member, both hollow members being substantially filled with bone chips, wherein substantially all of each hollow member is formed of a metal mesh, the mesh defining openings sufficiently large to allow the bone chips located within the hollow member to fuse with bone material located outside the hollow member, the fusion stabilization chamber also including means for fixing the first and second members in a desired position relative to each other, and b) means, attached to the first and second members, for affixing said first and second members to vertebrae adjacent a corpectomy site, wherein both hollow members have longitudinal axes, the hollow members being curved along their longitudinal axes, wherein the fusion stabilization chamber has a curvature which corresponds to a curvature of a patient's spine.
CA002155726A 1993-02-16 1994-02-16 Fusion stabilization chamber Expired - Lifetime CA2155726C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/018,373 US5405391A (en) 1993-02-16 1993-02-16 Fusion stabilization chamber
US08/018,373 1993-02-16
PCT/US1994/001484 WO1994018913A1 (en) 1993-02-16 1994-02-16 Fusion stabilization chamber

Publications (2)

Publication Number Publication Date
CA2155726A1 CA2155726A1 (en) 1994-09-01
CA2155726C true CA2155726C (en) 2003-07-29

Family

ID=21787581

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002155726A Expired - Lifetime CA2155726C (en) 1993-02-16 1994-02-16 Fusion stabilization chamber

Country Status (7)

Country Link
US (1) US5405391A (en)
JP (1) JP3236938B2 (en)
AU (1) AU6137194A (en)
CA (1) CA2155726C (en)
DE (2) DE4491034C2 (en)
GB (1) GB2290716B (en)
WO (1) WO1994018913A1 (en)

Families Citing this family (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066175A (en) * 1993-02-16 2000-05-23 Henderson; Fraser C. Fusion stabilization chamber
DE4323034C1 (en) * 1993-07-09 1994-07-28 Lutz Biedermann Placeholders, especially for an intervertebral disc
DE4340398C2 (en) * 1993-11-26 1997-06-19 Jeffrey D Dr Fairley Device for the passive connection of two bones in one plane, movable in one plane
CA2551185C (en) * 1994-03-28 2007-10-30 Sdgi Holdings, Inc. Apparatus and method for anterior spinal stabilization
FR2727003B1 (en) * 1994-11-18 1997-04-18 Euros Sa ANTERIOR STABILIZATION DEVICE OF THE LOMBO-SACRE SPINE
DE19500170C1 (en) * 1995-01-04 1996-02-08 Biedermann Motech Gmbh Holder for vertebrae of spine
US5782919A (en) 1995-03-27 1998-07-21 Sdgi Holdings, Inc. Interbody fusion device and method for restoration of normal spinal anatomy
US6206922B1 (en) 1995-03-27 2001-03-27 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
ATE286696T1 (en) * 1995-03-27 2005-01-15 Sdgi Holdings Inc SPINAL FUSION IMPLANT AND INSERTION AND VERIFICATION TOOLS
CA2154102C (en) * 1995-07-18 2003-10-07 Christian Ahmarani Vocal cord medializing device
US5989289A (en) 1995-10-16 1999-11-23 Sdgi Holdings, Inc. Bone grafts
DE29616778U1 (en) 1996-09-26 1998-01-29 Howmedica Gmbh Vertebral body placeholder
CA2269342C (en) 1996-10-23 2006-09-12 Sdgi Holdings, Inc. Spinal spacer
US20050165483A1 (en) * 2004-01-27 2005-07-28 Ray Eddie F.Iii Bone grafts
US6416515B1 (en) 1996-10-24 2002-07-09 Spinal Concepts, Inc. Spinal fixation system
EP0934026B1 (en) 1996-10-24 2009-07-15 Zimmer Spine Austin, Inc Apparatus for spinal fixation
US5827328A (en) * 1996-11-22 1998-10-27 Buttermann; Glenn R. Intervertebral prosthetic device
CA2523814C (en) * 1997-02-11 2007-02-06 Gary Karlin Michelson Segmentable skeletal plating system
DE69837626T2 (en) * 1997-02-11 2007-12-20 Warsaw Orthopedic, Inc., Warsaw Plate with locking mechanism for the anterior cervical spine
EP0975288B1 (en) 1997-04-15 2002-10-02 Synthes AG Chur Telescopic vertebral prosthesis
US6045579A (en) * 1997-05-01 2000-04-04 Spinal Concepts, Inc. Adjustable height fusion device
US5897556A (en) * 1997-06-02 1999-04-27 Sdgi Holdings, Inc. Device for supporting weak bony structures
US6149651A (en) * 1997-06-02 2000-11-21 Sdgi Holdings, Inc. Device for supporting weak bony structures
US5928243A (en) * 1997-07-16 1999-07-27 Spinal Concepts, Inc. Pedicle probe and depth gage
US6030389A (en) * 1997-08-04 2000-02-29 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6454769B2 (en) * 1997-08-04 2002-09-24 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6053921A (en) * 1997-08-26 2000-04-25 Spinal Concepts, Inc. Surgical cable system and method
US5964769A (en) 1997-08-26 1999-10-12 Spinal Concepts, Inc. Surgical cable system and method
ATE247442T1 (en) 1997-09-30 2003-09-15 Ct Pulse Orthopedics Ltd TUBULAR SUPPORT BODY FOR BRIDGING TWO VERTEBRATES
FR2774280B1 (en) * 1998-01-30 2000-07-28 Dimso Sa IMPLANT TO REPLACE A VERTEBRA
USRE38614E1 (en) 1998-01-30 2004-10-05 Synthes (U.S.A.) Intervertebral allograft spacer
US6986788B2 (en) * 1998-01-30 2006-01-17 Synthes (U.S.A.) Intervertebral allograft spacer
DE19803700A1 (en) * 1998-01-30 1999-08-19 Koenigsee Implantate & Instr Height-adjustable vertebral implant
US6368325B1 (en) 1998-05-27 2002-04-09 Nuvasive, Inc. Bone blocks and methods for inserting bone blocks into intervertebral spaces
GR1003160B (en) * 1998-06-29 1999-06-21 Plate-cylinder system of vertebral prosthesis
US6086593A (en) * 1998-06-30 2000-07-11 Bonutti; Peter M. Method and apparatus for use in operating on a bone
US6228085B1 (en) * 1998-07-14 2001-05-08 Theken Surgical Llc Bone fixation system
US20060241763A1 (en) * 1998-08-03 2006-10-26 Synthes (Usa) Multipiece bone implant
WO2000007527A1 (en) 1998-08-03 2000-02-17 Synthes Ag Chur Intervertebral allograft spacer
US6099531A (en) 1998-08-20 2000-08-08 Bonutti; Peter M. Changing relationship between bones
US6025538A (en) * 1998-11-20 2000-02-15 Musculoskeletal Transplant Foundation Compound bone structure fabricated from allograft tissue
AU3187000A (en) 1999-03-07 2000-09-28 Discure Ltd. Method and apparatus for computerized surgery
US6342074B1 (en) * 1999-04-30 2002-01-29 Nathan S. Simpson Anterior lumbar interbody fusion implant and method for fusing adjacent vertebrae
US7094239B1 (en) * 1999-05-05 2006-08-22 Sdgi Holdings, Inc. Screws of cortical bone and method of manufacture thereof
US6491724B1 (en) * 1999-08-13 2002-12-10 Bret Ferree Spinal fusion cage with lordosis correction
US6419705B1 (en) * 1999-06-23 2002-07-16 Sulzer Spine-Tech Inc. Expandable fusion device and method
AU768636B2 (en) * 1999-07-07 2003-12-18 Children's Hospital Medical Center Spinal correction system
US6866682B1 (en) 1999-09-02 2005-03-15 Stryker Spine Distractable corpectomy device
US6447543B1 (en) 1999-09-28 2002-09-10 Sulzer Orthopedics Ltd. Basket-like container for implanting bone tissue
US6331179B1 (en) 2000-01-06 2001-12-18 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US7635390B1 (en) 2000-01-14 2009-12-22 Marctec, Llc Joint replacement component having a modular articulating surface
AR027685A1 (en) * 2000-03-22 2003-04-09 Synthes Ag METHOD AND METHOD FOR CARRYING OUT
PT1267755E (en) 2000-03-31 2006-09-29 Konigsee Implantate Inst Osteo IMPLANT FOR VERTEBRA BODY ADJUSTABLE IN HEIGHT
US6852126B2 (en) 2000-07-17 2005-02-08 Nuvasive, Inc. Stackable interlocking intervertebral support system
US6547778B1 (en) * 2000-07-21 2003-04-15 Joseph H. Sklar Graft ligament strand tensioner
US6629998B1 (en) * 2000-08-23 2003-10-07 Chih-I Lin Intervertebral retrieval device
US20050010227A1 (en) * 2000-11-28 2005-01-13 Paul Kamaljit S. Bone support plate assembly
US6503250B2 (en) * 2000-11-28 2003-01-07 Kamaljit S. Paul Bone support assembly
KR100631787B1 (en) * 2000-12-15 2006-10-11 스파인올로지,인코포레이티드 Spine Segment Stabilizer
US6827743B2 (en) * 2001-02-28 2004-12-07 Sdgi Holdings, Inc. Woven orthopedic implants
US7344539B2 (en) 2001-03-30 2008-03-18 Depuy Acromed, Inc. Intervertebral connection system
NL1017932C2 (en) * 2001-04-24 2002-10-29 Paul De Windt Fixing device for fixing swirl parts.
US6648917B2 (en) 2001-10-17 2003-11-18 Medicinelodge, Inc. Adjustable bone fusion implant and method
US6923814B1 (en) 2001-10-30 2005-08-02 Nuvasive, Inc. System and methods for cervical spinal fusion
US20030083749A1 (en) * 2001-10-31 2003-05-01 Kuslich Stephen D. Corpectomy device
US20030083746A1 (en) 2001-10-31 2003-05-01 Kuslich Stephen D. Vertebral spacer for spinal stabilization
US7766947B2 (en) 2001-10-31 2010-08-03 Ortho Development Corporation Cervical plate for stabilizing the human spine
US20030125738A1 (en) * 2002-01-03 2003-07-03 Khanna Rohit Kumar Laminoplasty with laminar stabilization method and system
US6761723B2 (en) * 2002-01-14 2004-07-13 Dynamic Spine, Inc. Apparatus and method for performing spinal surgery
AR038680A1 (en) * 2002-02-19 2005-01-26 Synthes Ag INTERVERTEBRAL IMPLANT
US6682563B2 (en) 2002-03-04 2004-01-27 Michael S. Scharf Spinal fixation device
DE60314096T2 (en) 2002-03-11 2008-01-24 Spinal Concepts, Inc., Austin DEVICE FOR INSERTING SPINE IMPLANTS
US6783547B2 (en) * 2002-04-05 2004-08-31 Howmedica Corp. Apparatus for fusing adjacent bone structures
US7618423B1 (en) 2002-06-15 2009-11-17 Nuvasive, Inc. System and method for performing spinal fusion
US7776049B1 (en) 2002-10-02 2010-08-17 Nuvasive, Inc. Spinal implant inserter, implant, and method
US7682392B2 (en) * 2002-10-30 2010-03-23 Depuy Spine, Inc. Regenerative implants for stabilizing the spine and devices for attachment of said implants
US7320708B1 (en) 2002-11-13 2008-01-22 Sdgi Holdings, Inc. Cervical interbody device
ES2393099T3 (en) 2003-02-06 2012-12-18 Synthes Gmbh Intervertebral implant
WO2004084742A1 (en) 2003-03-24 2004-10-07 Theken Surgical Llc Spinal implant adjustment device
US7819903B2 (en) 2003-03-31 2010-10-26 Depuy Spine, Inc. Spinal fixation plate
US20170020683A1 (en) 2003-04-21 2017-01-26 Rsb Spine Llc Bone plate stabilization system and method for its use
EP1651150B1 (en) 2003-08-07 2021-03-24 Dynamic Spine, Inc. Intervertebral prosthetic device and associated devices and methods for implanting the intervertebral prosthetic device
US7226482B2 (en) * 2003-09-02 2007-06-05 Synthes (U.S.A.) Multipiece allograft implant
US7938858B2 (en) 2003-09-15 2011-05-10 Warsaw Orthopedic, Inc. Spinal implant system
US7182782B2 (en) * 2003-09-30 2007-02-27 X-Spine Systems, Inc. Spinal fusion system and method for fusing spinal bones
US9078706B2 (en) 2003-09-30 2015-07-14 X-Spine Systems, Inc. Intervertebral fusion device utilizing multiple mobile uniaxial and bidirectional screw interface plates
US7641701B2 (en) * 2003-09-30 2010-01-05 X-Spine Systems, Inc. Spinal fusion system and method for fusing spinal bones
US8372152B2 (en) 2003-09-30 2013-02-12 X-Spine Systems, Inc. Spinal fusion system utilizing an implant plate having at least one integral lock and ratchet lock
US8062367B2 (en) 2003-09-30 2011-11-22 X-Spine Systems, Inc. Screw locking mechanism and method
US8821553B2 (en) * 2003-09-30 2014-09-02 X-Spine Systems, Inc. Spinal fusion system utilizing an implant plate having at least one integral lock
US7918891B1 (en) * 2004-03-29 2011-04-05 Nuvasive Inc. Systems and methods for spinal fusion
US7544208B1 (en) 2004-05-03 2009-06-09 Theken Spine, Llc Adjustable corpectomy apparatus
WO2006069089A2 (en) 2004-12-21 2006-06-29 Packaging Service Corporation Of Kentucky Cervical plate system
US9456907B1 (en) * 2005-03-24 2016-10-04 Igip, Llc Extendable spinal implant
US8361149B2 (en) * 2005-03-24 2013-01-29 Cardinal Spine, Llc Wedge-like spinal implant
US8673006B2 (en) * 2005-03-24 2014-03-18 Igip, Llc Spinal implant
US8246683B2 (en) * 2005-03-24 2012-08-21 Cardinal Spine, Llc Spinal implant
US8226718B2 (en) * 2005-03-24 2012-07-24 Cardinal Spine, Llc Spinal implant and method of using spinal implant
US9675385B2 (en) 2005-04-12 2017-06-13 Nathan C. Moskowitz Spinous process staple with interdigitating-interlocking hemi-spacers for adjacent spinous process separation and distraction
US9532821B2 (en) 2005-04-12 2017-01-03 Nathan C. Moskowitz Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs with vertical hemi-bracket screw locking mechanism
US9814601B2 (en) 2005-04-12 2017-11-14 Nathan C. Moskowitz Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs
US11903849B2 (en) 2005-04-12 2024-02-20 Moskowitz Family Llc Intervertebral implant and tool assembly
US7942903B2 (en) 2005-04-12 2011-05-17 Moskowitz Ahmnon D Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion
US7846188B2 (en) 2005-04-12 2010-12-07 Moskowitz Nathan C Bi-directional fixating transvertebral body screws, zero-profile horizontal intervertebral miniplates, total intervertebral body fusion devices, and posterior motion-calibrating interarticulating joint stapling device for spinal fusion
US9744052B2 (en) 2005-04-12 2017-08-29 Nathan C. Moskowitz Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs
US9848993B2 (en) 2005-04-12 2017-12-26 Nathan C. Moskowitz Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion
US7972363B2 (en) 2005-04-12 2011-07-05 Moskowitz Ahmnon D Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs and posterior cervical and lumbar interarticulating joint stapling guns and devices for spinal fusion
US9888918B2 (en) 2005-04-12 2018-02-13 Nathan C. Moskowitz Horizontal-transvertebral curvilinear nail-screws with inter-locking rigid or jointed flexible rods for spinal fusion
AU2006244021A1 (en) * 2005-05-11 2006-11-16 Children's Hospital Medical Center Spinal correction system
EP1909704A2 (en) * 2005-06-02 2008-04-16 Zimmer Spine, Inc. Interbody fusion ring and method of using the same
US8623088B1 (en) 2005-07-15 2014-01-07 Nuvasive, Inc. Spinal fusion implant and related methods
EP1912578B1 (en) 2005-07-28 2018-02-07 NuVasive, Inc. Total disc replacement system
US9072554B2 (en) * 2005-09-21 2015-07-07 Children's Hospital Medical Center Orthopedic implant
CA2622854A1 (en) * 2005-09-21 2007-03-29 Children's Hospital Medical Center Endoscopic instruments and method for the delivery of spinal implant
US20070123987A1 (en) * 2005-11-02 2007-05-31 Bernstein Avi J Curvilinear cervical interbody device
US7887595B1 (en) 2005-12-05 2011-02-15 Nuvasive, Inc. Methods and apparatus for spinal fusion
WO2007098288A2 (en) 2006-02-27 2007-08-30 Synthes (U.S.A.) Intervertebral implant with fixation geometry
US7879096B2 (en) 2006-04-27 2011-02-01 Warsaw Orthopedic, Inc. Centrally driven expandable implant
US7981157B2 (en) 2006-04-27 2011-07-19 Warsaw Orthopedic, Inc. Self-contained expandable implant and method
US7575601B2 (en) * 2006-04-27 2009-08-18 Warsaw Orthopedic, Inc. Locking expandable implant and method
US7914581B2 (en) * 2006-04-27 2011-03-29 Warsaw Orthopedic, Inc. Expandable implant, instrument, and method
US7758648B2 (en) 2006-04-27 2010-07-20 Warsaw Orthopedic, Inc. Stabilized, adjustable expandable implant and method
USD741488S1 (en) 2006-07-17 2015-10-20 Nuvasive, Inc. Spinal fusion implant
US7862618B2 (en) * 2006-07-19 2011-01-04 Warsaw Orthopedic, Inc. Expandable vertebral body implants and methods of use
US7731752B2 (en) * 2006-07-21 2010-06-08 Warsaw Orthopedic, Inc. Implant with nested members and methods of use
US8114162B1 (en) 2006-08-09 2012-02-14 Nuvasive, Inc. Spinal fusion implant and related methods
US8100975B2 (en) * 2006-08-11 2012-01-24 Warsaw Orthopedic, Inc. Intervertebral implants with attachable flanges and methods of use
US8043377B2 (en) * 2006-09-02 2011-10-25 Osprey Biomedical, Inc. Implantable intervertebral fusion device
US8506636B2 (en) 2006-09-08 2013-08-13 Theken Spine, Llc Offset radius lordosis
US20080077150A1 (en) * 2006-09-22 2008-03-27 Linh Nguyen Steerable rasp/trial member inserter and method of use
USD708747S1 (en) 2006-09-25 2014-07-08 Nuvasive, Inc. Spinal fusion implant
US7674279B2 (en) * 2006-10-13 2010-03-09 Spinal U.S.A. Bone plate
US9439948B2 (en) * 2006-10-30 2016-09-13 The Regents Of The University Of Michigan Degradable cage coated with mineral layers for spinal interbody fusion
US8673005B1 (en) 2007-03-07 2014-03-18 Nuvasive, Inc. System and methods for spinal fusion
AU2008224951A1 (en) 2007-03-13 2008-09-18 Synthes Gmbh Adjustable intervertebral implant
US20080312699A1 (en) * 2007-04-11 2008-12-18 Jeffrey Johnson Recessed plate system
US8480715B2 (en) 2007-05-22 2013-07-09 Zimmer Spine, Inc. Spinal implant system and method
US20090012620A1 (en) * 2007-07-06 2009-01-08 Jim Youssef Implantable Cervical Fusion Device
US7922767B2 (en) 2007-07-07 2011-04-12 Jmea Corporation Disk fusion implant
US7963982B2 (en) * 2007-07-16 2011-06-21 X-Spine Systems, Inc. Implant plate screw locking system and screw having a locking member
USD671645S1 (en) 2007-09-18 2012-11-27 Nuvasive, Inc. Intervertebral implant
US8852280B2 (en) 2007-09-27 2014-10-07 Warsaw Orthopedic, Inc. Intervertebral implant
US8142441B2 (en) * 2008-10-16 2012-03-27 Aesculap Implant Systems, Llc Surgical instrument and method of use for inserting an implant between two bones
US8591587B2 (en) 2007-10-30 2013-11-26 Aesculap Implant Systems, Llc Vertebral body replacement device and method for use to maintain a space between two vertebral bodies within a spine
US8182537B2 (en) 2007-10-30 2012-05-22 Aesculap Implant Systems, Llc Vertebral body replacement device and method for use to maintain a space between two vertebral bodies within a spine
US8241331B2 (en) * 2007-11-08 2012-08-14 Spine21 Ltd. Spinal implant having a post-operative adjustable dimension
CA2705684A1 (en) 2007-11-16 2009-05-22 Synthes Usa, Llc Low profile intervertebral implant
US9101491B2 (en) 2007-12-28 2015-08-11 Nuvasive, Inc. Spinal surgical implant and related methods
US8083796B1 (en) 2008-02-29 2011-12-27 Nuvasive, Inc. Implants and methods for spinal fusion
USD621509S1 (en) 2008-10-15 2010-08-10 Nuvasive, Inc. Intervertebral implant
WO2010054208A1 (en) 2008-11-07 2010-05-14 Synthes Usa, Llc Vertebral interbody spacer and coupled plate assembly
US8182533B2 (en) * 2009-01-19 2012-05-22 Richard Perkins Annular repair device and method
US8142435B2 (en) 2009-02-19 2012-03-27 Aesculap Implant Systems, Llc Multi-functional surgical instrument and method of use for inserting an implant between two bones
USD754346S1 (en) 2009-03-02 2016-04-19 Nuvasive, Inc. Spinal fusion implant
US9387090B2 (en) 2009-03-12 2016-07-12 Nuvasive, Inc. Vertebral body replacement
US9687357B2 (en) 2009-03-12 2017-06-27 Nuvasive, Inc. Vertebral body replacement
US9351845B1 (en) 2009-04-16 2016-05-31 Nuvasive, Inc. Method and apparatus for performing spine surgery
US8287597B1 (en) 2009-04-16 2012-10-16 Nuvasive, Inc. Method and apparatus for performing spine surgery
US9095444B2 (en) 2009-07-24 2015-08-04 Warsaw Orthopedic, Inc. Implant with an interference fit fastener
USD731063S1 (en) 2009-10-13 2015-06-02 Nuvasive, Inc. Spinal fusion implant
US8840668B1 (en) 2009-11-11 2014-09-23 Nuvasive, Inc. Spinal implants, instruments and related methods
US8740983B1 (en) 2009-11-11 2014-06-03 Nuvasive, Inc. Spinal fusion implants and related methods
US8277509B2 (en) * 2009-12-07 2012-10-02 Globus Medical, Inc. Transforaminal prosthetic spinal disc apparatus
EP2510247A1 (en) * 2009-12-11 2012-10-17 Faurecia Exteriors GmbH Mechanical interconnection of thin-walled components which have to be visually appealing
US9402744B2 (en) * 2010-06-11 2016-08-02 International Spinal Innovations, Llc Pre-packed corpectomy device to improve fusion
US8480747B2 (en) 2010-08-11 2013-07-09 Warsaw Orthopedic, Inc. Interbody spinal implants with extravertebral support plates
US9220604B2 (en) 2010-12-21 2015-12-29 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US9241809B2 (en) 2010-12-21 2016-01-26 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US9308099B2 (en) 2011-02-14 2016-04-12 Imds Llc Expandable intervertebral implants and instruments
US9283086B2 (en) * 2011-03-03 2016-03-15 Life Spine, Inc. Expandable corpectomy cage
US8454694B2 (en) 2011-03-03 2013-06-04 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US9700425B1 (en) 2011-03-20 2017-07-11 Nuvasive, Inc. Vertebral body replacement and insertion methods
US9198765B1 (en) 2011-10-31 2015-12-01 Nuvasive, Inc. Expandable spinal fusion implants and related methods
USD721808S1 (en) 2011-11-03 2015-01-27 Nuvasive, Inc. Intervertebral implant
USD675320S1 (en) 2011-11-03 2013-01-29 Nuvasive, Inc. Intervertebral implant
US20140277478A1 (en) * 2013-03-13 2014-09-18 K2M, Inc. Spinal implant and surgical method
USD745159S1 (en) 2013-10-10 2015-12-08 Nuvasive, Inc. Intervertebral implant
US10478313B1 (en) 2014-01-10 2019-11-19 Nuvasive, Inc. Spinal fusion implant and related methods
EP2907480B1 (en) * 2014-02-18 2016-05-25 Biedermann Technologies GmbH & Co. KG Length adjustable implant
US9901457B2 (en) 2014-10-16 2018-02-27 Jmea Corporation Coiling implantable prostheses
US9867718B2 (en) 2014-10-22 2018-01-16 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
USD858769S1 (en) 2014-11-20 2019-09-03 Nuvasive, Inc. Intervertebral implant
US9987052B2 (en) 2015-02-24 2018-06-05 X-Spine Systems, Inc. Modular interspinous fixation system with threaded component
JP6949006B2 (en) 2015-08-25 2021-10-13 アイエムディーエス リミテッド ライアビリティ カンパニー Expandable facet implant
JP6537432B2 (en) * 2015-10-19 2019-07-03 HOYA Technosurgical株式会社 Spacer
CN105615972B (en) * 2016-03-31 2018-12-11 西安市红会医院 A kind of cervical intervertebral emerging system
CN110114040B (en) 2016-10-25 2022-06-14 增强医疗公司 Method and apparatus for expanding interbody fusion cage
US10945859B2 (en) 2018-01-29 2021-03-16 Amplify Surgical, Inc. Expanding fusion cages

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3637314A1 (en) * 1986-11-03 1988-05-11 Lutz Biedermann SPACE HOLDER IMPLANT
DE8807485U1 (en) * 1988-06-06 1989-08-10 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
US5236460A (en) * 1990-02-12 1993-08-17 Midas Rex Pneumatic Tools, Inc. Vertebral body prosthesis
JPH04114644A (en) * 1990-09-05 1992-04-15 Natsuo Yasui Artificial centrum
US5290312A (en) * 1991-09-03 1994-03-01 Alphatec Artificial vertebral body

Also Published As

Publication number Publication date
DE4491034T1 (en) 1996-04-25
AU6137194A (en) 1994-09-14
DE4491034C2 (en) 2003-04-30
JP3236938B2 (en) 2001-12-10
GB2290716B (en) 1996-10-09
US5405391A (en) 1995-04-11
GB2290716A (en) 1996-01-10
WO1994018913A1 (en) 1994-09-01
CA2155726A1 (en) 1994-09-01
JPH08506753A (en) 1996-07-23
GB9516631D0 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
CA2155726C (en) Fusion stabilization chamber
US6066175A (en) Fusion stabilization chamber
US6461359B1 (en) Spine stabilization device
US8430929B2 (en) Spine reduction and stabilization device
AU2010314958B2 (en) Spinal implant configured for midline insertion
EP0611116B1 (en) Spinal column retaining apparatus
US7033392B2 (en) Posterior oblique lumbar arthrodesis
CN102512231B (en) Interlaminar-interspinous vertebral stabilization system
EP0932367B1 (en) Anterior spinal instrumentation
US10624675B2 (en) Spinal stabilization system
US20140288655A1 (en) Spinal implant configured for midline insertion and related instruments
US20090171394A1 (en) Devices And Methods For The Treatment Of Facet Joint Disease
US10390861B2 (en) Spinal stabilization device, system, and method of use
US20110245880A1 (en) Spinal fixator and method of use thereof
Kalfas Anterior thoracolumbar stabilization
US20230310169A1 (en) Implant system and methods of use
WO2023240032A2 (en) Implant system and methods of use
US20170209188A1 (en) Rodless bivertebral transpedicular fixation with interbody fusion

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20140217