CA2082882C - A rotor type flow meter with optical detection - Google Patents

A rotor type flow meter with optical detection Download PDF

Info

Publication number
CA2082882C
CA2082882C CA002082882A CA2082882A CA2082882C CA 2082882 C CA2082882 C CA 2082882C CA 002082882 A CA002082882 A CA 002082882A CA 2082882 A CA2082882 A CA 2082882A CA 2082882 C CA2082882 C CA 2082882C
Authority
CA
Canada
Prior art keywords
rotor
blades
flow meter
ring
markings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002082882A
Other languages
French (fr)
Other versions
CA2082882A1 (en
Inventor
Theodora Antonia Teunissen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP92910547A priority Critical patent/EP0539561B1/en
Priority to AT92910547T priority patent/ATE127216T1/en
Priority to JP51039792A priority patent/JP3254485B2/en
Priority to DK92910547.6T priority patent/DK0539561T3/en
Priority to PCT/EP1992/001037 priority patent/WO1992021004A1/en
Priority to US07/961,715 priority patent/US5388466A/en
Priority to ES92910547T priority patent/ES2076765T3/en
Priority to DE59203460T priority patent/DE59203460D1/en
Application filed by Individual filed Critical Individual
Priority to CA002082882A priority patent/CA2082882C/en
Publication of CA2082882A1 publication Critical patent/CA2082882A1/en
Priority to GR950402355T priority patent/GR3017269T3/en
Application granted granted Critical
Publication of CA2082882C publication Critical patent/CA2082882C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
    • G01P5/06Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer using rotation of vanes
    • G01P5/07Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer using rotation of vanes with electrical coupling to the indicating device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/10Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with axial admission
    • G01F1/103Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with axial admission with radiation as transfer means to the indicating device, e.g. light transmission

Abstract

The flow meter has in a substantially cylindrical inner housing (1) a helically designed diffusor (4), which imparts a swirl to the medium flowing through the inner housing. Downstream of the diffuser there is rotatably mounted a rotor (8), which has blades (13) extending from its rotational spindle (9) as well as a ring (14) which connects the blade ends to one another and is coaxial to the spindle. The rotor (8) is set in rotation by impingement of the blades (13) by the flowing medium. On the outer circumferential surface (15) of the ring (11) there is on a circular line a multiplicity of markings (16) arranged at equal angular intervals from one another. Through a window (18) in the inner housing (1), a light beam strikes the outer circumferential surface (15) of the ring (14), provided with the markings (16). Upon rotation of the rotor (8), the sequence of the.
markings is transmitted by an optical-fibre cable (20) and sensed by a sensor (21), so that from the signals received the flow rate can be determined. The flow meter has the advantage that the medium to be measured does not have to be transparent as in the application of the light barrier and that the multiplicity of markings allows an increase in the measuring accuracy.

Description

The invention relates to a flow meter having a rotor with curved blades that is rotatably mounted in a passage and is preceded by a helical diffusor which divides up the medium flowing through the passage into part streams and generates a swirl in order to cause rotation of the rotor or tape.
A flow meter of the specified type is known, for example, from European Patent Specification 0,228,577. In the case of this flow meter, there is arranged upstream of the rotor, which is arranged in a passage for the medium, a helical diffusor for generating a swirl. in order to impinge on the axially parallel extending and circumferentially bent blades of the rotor and set the latter in rotation. Each blade of the rotor has a window designed as an axially parallel slit. A beam of a light barrier, directed at right angles to the rotor spindle, passes the window, the light source of the said light barrier being arranged on one side and the light receiver being arranged on the opposite side of the rotor on the housing. This principle presupposes, however, that the medium of which the flow rate is to be measured is transparent for the transmission of the light beam of the light barrier and restricts its possible applications. In addition, the number of pulses to be received per rotor revolution for the measurement when blade windows are to be passed is restricted to three for reasons of blade overlapping.
whereas the known flow meter operates reliably in applications with relatively great flow rates, at small rates it shows that it is not capable of supplying accurate measuring results.
The present invention is therefore based on the object of providing an inexpensively producible flow meter which, on account of accurate measuring results even at the smallest rates, can be used universally.
The invention provides flow meter having a rotor which is arranged coaxially in a substantially cylindrical passage, is mounted rotatably and is provided with curved blades, and a helical diffusor which is arranged in the passage coaxially upstream of the said rotor for dividing up the medium flowing through the passage into part-streams and for generating a swirl in order to set the rotor in rotation by impingement of its blades on their concave side, as well as having means for signal generation which interact with the rotor and are arranged outside the passage, characterised in that the blades have a full surface area and in that the rotor has a cylindrical ring which is arranged coaxial to the rotor spindle, surrounds the blades and on which the latter are anchored by their outer ends, said ring having markings arranged circumferentially distributed on its outer circumferential surface.
The use of a ring on the rotor in combination with the impingement of the curved blades on their concave side brings about an increase in the response sensitivity. The cause for this is likely to be an approximately complete utilisation of the kinetic energy of the flow of which the throughput is to be measured. This takes place by preventing a radial flow-off in the blade region. In this case, due to the rigid anchoring of the blades, the ring can also be used for stiffening the said blades at their outer ends. This allows the blade mass to be reduced without reducing the impinged surface area. The overall mass of the rotor consequently does not experience any increase due to the ring.

2a The ring is expediently designed in one piece together with the blades and the rotor spindle, which benefits both the stiffness and the reduction in mass.
Moreover, a rotor produced in one piece allows corresponding assembly costs to be avoided. According to a preferred further development of the flow meter according to the invention, the counting or measuring signals are obtained by scanning the outer surface of the rotor ring, provided with markings. Since the flow meter consequently does not have to keep a beam path clear for a light barrier, the form of the rotor is simplified. The universal applicability of the flow meter is further increased inter alia by the fact that the medium does not have to be transparent. Apart from this, virtually any number of signals can be generated per revolution.
Further details and advantages emerge from the following description, in which an embodiment of the flow meter is described in more detail purely by way of example with reference to the drawings, in which:
Fig. 1 shows a longitudinal section through a flow meter, on a scale enlarged approximately ten times.
Fig. 2 shows a cross-section through the flow meter along the line 1-1 in Fig. 1.
The flow meter has an inner housing l, which is of a tubular design, preferably consists of a plastic material and can be connected at both ends to hose lines. A liquid medium flows through the inner housing 1 in the direction of the arrow 2 from right to left. In the cylindrical passage 3 of the inner housing 1 there is arranged a diffusor 4, designed as a multi-thread screw or worm. An axial core 5, from which the threads 6 start, is extended forwards on the onflow side into a stream-lined body 7. This diffuser divides the inflowing medium up into various part-streams, which thereby receive a swirling motion and are accelerated.
Arranged downstream of the diffuser 5 is a rotor 8. The rotor spindle 9 is mounted with play on the onflow side in a bore 10, formed in the core 5 of the diffuser 4. On the other side, the rotor spindle 9 is mounted, likewise with play, in a bore 11 which is formed in a narrow traverse 12, passing transversely through the passage 3.
Fastened on the rotor spindle 9 in axially parallel position are three identical blades 13 which are arranged circumferentially distributed and are curved over their radial extent about one or more, exclusively axially parallel axes of curvature. The thin-walled blades 13 have a full surface area and, in the exemplary embodiment represented, have an axial extent which remains constant over the radial extent. The ends of the blades are fastened on a cylindrical ring 14 coaxial to the rotor spindle 9. The ring 14 represented is of the same width as that of the blades 13, which corresponds to an advantageous configuration. However, the axial extent of the ring may be both greater than and less than that of the blades. Similarly, an axially symmetrical arrangement of the ring with respect to the blades is not necessary. An arrangement in which the ring is arranged offset in the axial direction in such a way that it leaves the blades clear on one side and projects axially over them to the other side may also be expedient. In any event, the ring has a full surface area and end faces lying in parallel radial planes.
The curvature of the rotor blades 13 is designed in such a way that the latter are impinged on their concavely curved side by the helical flow formed by the diffusor 5.
In any event, the rotor, comprising rotor spindle 9, blades 13 and ring 14, is expediently designed in one piece. Even with the thinnest-wall design of the, blades and of the ring, this produces high strength and dimen-sional stability with the least rotor mass. At the same time, such a one-piece rotor can be produced with a relatively simple mould in an injection process, for example from plastic material, if the blades are curved only about axes which run parallel to the spindle of the rotor.
However, it is essential for the flow meter according to the invention, or the dynamic behaviour thereof, that the configuration and/or arrangement of the ring 14 on the rotor enforces a flowing away of the medium in approximately axial direction and prevents any radial flowing away, in particular at the radially outer ends of the blades 13. Since clearance losses between rotor and surrounding passage are consequently already eliminated to a great extent, the flow energy of the medium is retained completely for the impingement of the blades. It has been shown that the impingement of the blades on the concave side, together with the ring, significantly increases the response sensitivity and plays a part in increasing the measuring accuracy, in particular at smaller flow rates.
The clearance between rotor-ring 14 and the inner wall of the passage, which can be seen in the drawing, is of course not shown to scale in its radial dimension and in reality is very narrow. By means of an inwardly protruding circumferential shoulder in the passage, which shoulder is arranged before or, as shown, after the ring (considered in the direction of flow, a flowing away of the medium past the rotor is avoided to the greatest extent.
If the ring 14 extends in particular less far downstream than the blades 13, the inside diameter of the passage must be approximately the same there as the inside diameter of the ring in order to avoid any radial flowing away of the medium.
On the outer circumferential surface 15 of the ring 14 there are formed or arranged a multiplicity of markings 16 on a circular line at equal angular intervals from one another. The markings are preferably depressions worked into the surface during production of the ring;
colour markings are also possible. The markings 16 are sensed when the rotor 8 is rotating by a light beam 17 directed against the outer surface 15 of the ring l4, for example by a laser beam which passes from outside through a window 18 in the inner housing 1 to strike the outer circumferential surface 15 of the ring 14 in the region of the markings 16 present there. When the rotor 8 is rotating, the light beam thus alternately strikes a marking 16 and the annular surface between the markings, and the light returned with varying intensity is focused by a lens 19 arranged externally in front of the window 18 and fed via a glass-fibre cable 20 to a sensor 21.
From the signals thus obtained, the flow rate per unit of time can be determined. The glass-fibre cable 20 is connected to an outside housing 22, which can be screwed on and in which the lens 19 is also exchangeably arranged.
Devices for the emitting of a light radiator and for the optical sensing of the reflected light pulses are known. For example, the glass-fibre cable 20 may have regions which are separate from one another in the longitudinal direction, one of which conducts the light beam directed against the rotor outer surface 15 and passes the returned light pulses through the other region to the optical sensor 21.
The advantage of this device is that, for the generation of~ signals, it is not dependent on the interruption of a light path and consequently allows a closed ring without windows, completely covering over the blades. Obviously this device does not allow the generation of a number of signals per rotor revolution corresponding to the number of blades each having a window, but the generation of a multiplicity of signals corresponding to the number of markings present on the circumference of the ring. The significantly increased signal sequence allows the accuracy of the flow meter to be increased in certain applications. It is likewise of advantage that the flow meter described is also suitable for measuring the flow rate of any non-transparent medium.
Together with the great number of signals per revolution, the increased response sensitivity of the low-mass rotor produces extremely accurate measuring results in all areas of application.

Claims (9)

1. Flow meter having a rotor which is arranged coaxially in a substantially cylindrical passage, is mounted rotatably and is provided with curved blades, and a helical diffusor which is arranged in the passage coaxially upstream of the said rotor for dividing up the medium flowing through the passage into part-streams and for generating a swirl in order to set the rotor in rotation by impingement of its blades on their concave side, as well as having means for signal generation which interact with the rotor and are arranged outside the passage, characterised in that the blades have a full surface area and in that the rotor has a cylindrical ring which is arranged coaxial to the rotor spindle, surrounds the blades and on which the latter are anchored by their outer ends, said ring having markings arranged circumferentially distributed on its outer circumferential surface.
2. Flow meter according to claim 1, wherein the means for signal generation includes light-beam focusing means as well as an optical sensor for the generation of signals for determining the flow rate.
3. Flow meter according to claim 1 or 2, characterised in that the blades of the rotor are of an axially parallel curved design and the ring of full surface area extends over the width of the blades.
4. Flow meter according to claim 2 or 3, characterised in that the ring, the blades and the rotor spindle are designed in one piece.
5. Flow meter according to claim 3, characterised in that the ring is arranged symmetrically with respect to the blade width in axial direction.
6. Flow meter according to claim 2, characterised in that the outer circumferential surface of the ring has a multiplicity of colour markings thereon, arranged on a circular line at equal angular intervals.
7. Flow meter according to claim 2, characterised in that the markings are designed as punctiform elevations.
8. Flow meter according to any one of claims 2 to 7, characterised in that the rotor is arranged in an inner housing which is surrounded by an outer housing in which is arranged a lens for focusing the light beam, and including a connection for an optical-fibre cable, which connects the flow meter to the optical sensor.
9. Method of measuring the flow rate of a medium flowing through a passage, which medium sets in rotation a rotor which is mounted rotatably in the passage and is provided with blades, characterised in that a ring, which surrounds the blade ends, is coaxial to the rotor spindle and has markings arranged circumferentially distributed on its outer circumferential surface, is impinged from outside the passage by a focused light beam and the reflected light pulses produced on account of the rotatingly moved markings are sensed by an optical sensor, which emits suitable signals for determining the flow rate.
CA002082882A 1991-05-14 1992-11-13 A rotor type flow meter with optical detection Expired - Fee Related CA2082882C (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP51039792A JP3254485B2 (en) 1991-05-14 1992-05-11 Flowmeter
DK92910547.6T DK0539561T3 (en) 1991-05-14 1992-05-11 flowmeter
AT92910547T ATE127216T1 (en) 1991-05-14 1992-05-11 FLOW METER.
US07/961,715 US5388466A (en) 1991-05-14 1992-05-11 Flow meter
DE59203460T DE59203460D1 (en) 1991-05-14 1992-05-11 FLOWMETER.
PCT/EP1992/001037 WO1992021004A1 (en) 1991-05-14 1992-05-11 Flow meter
EP92910547A EP0539561B1 (en) 1991-05-14 1992-05-11 Flow meter
ES92910547T ES2076765T3 (en) 1991-05-14 1992-05-11 FLOWMETER.
CA002082882A CA2082882C (en) 1991-05-14 1992-11-13 A rotor type flow meter with optical detection
GR950402355T GR3017269T3 (en) 1991-05-14 1995-08-31 Flow meter.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH144091 1991-05-14
PCT/EP1992/001037 WO1992021004A1 (en) 1991-05-14 1992-05-11 Flow meter
CA002082882A CA2082882C (en) 1991-05-14 1992-11-13 A rotor type flow meter with optical detection

Publications (2)

Publication Number Publication Date
CA2082882A1 CA2082882A1 (en) 1994-05-14
CA2082882C true CA2082882C (en) 2002-09-10

Family

ID=25675662

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002082882A Expired - Fee Related CA2082882C (en) 1991-05-14 1992-11-13 A rotor type flow meter with optical detection

Country Status (10)

Country Link
US (1) US5388466A (en)
EP (1) EP0539561B1 (en)
JP (1) JP3254485B2 (en)
AT (1) ATE127216T1 (en)
CA (1) CA2082882C (en)
DE (1) DE59203460D1 (en)
DK (1) DK0539561T3 (en)
ES (1) ES2076765T3 (en)
GR (1) GR3017269T3 (en)
WO (1) WO1992021004A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2713760B1 (en) * 1993-12-07 1996-03-08 Schlumberger Ind Sa Method and device for monitoring the evolution of the current value of a fluid flow rate in a fluid meter.
US5581041A (en) * 1995-04-18 1996-12-03 Bouchillon; Jerry L. Apparatus for measuring flow of granular particles in conduit
IL115456A0 (en) * 1995-09-28 1995-12-31 Rosenfeld Haim A method and a device for monitoring the milk volume during breast feeding
US7287398B2 (en) * 2001-09-25 2007-10-30 Alsius Corporation Heating/cooling system for indwelling heat exchange catheter
MA25068A1 (en) * 2000-02-09 2000-10-01 Noureddine Chajjad PROPELLER WATER METER FOR DOMESTIC COMMERCIAL USE, INDUSTRIAL CALIBER 50 MM BORE AND OUTER DIAMETER 54 MM (MILLIMETERS)
ITTO20020518A1 (en) * 2002-06-17 2003-12-17 Eltek Spa DEVICE FOR THE MEASUREMENT OR CONTROL OF A FLUID, IN PARTICULAR FOR BEVERAGE DOSERS AND RELATED MANUFACTURING METHOD
AU2003267555A1 (en) * 2002-08-30 2004-03-19 Sensor Highway Limited Method and apparatus for logging a well using a fiber optic line and sensors
DE10312620A1 (en) * 2003-03-22 2004-10-07 Imeter B.V. Electronic turbine gas meter
US7275474B2 (en) * 2005-05-31 2007-10-02 Parker-Hannifincorporation Optical position sensing and method
US7437952B2 (en) * 2005-06-10 2008-10-21 The Boeing Company Shrouded body flow meter assembly
US8069719B2 (en) * 2009-02-11 2011-12-06 Ecolab Usa Inc. Gear flow meter with optical sensor
US9657464B2 (en) 2010-05-25 2017-05-23 Kerry Dunki-Jacobs Flow control system
US8807521B2 (en) 2010-05-25 2014-08-19 Kerry Dunki-Jacobs Flow control system
DE102012216817A1 (en) * 2012-09-19 2014-03-20 Nordson Corporation Metering device for a fluid
ITMO20130051A1 (en) * 2013-02-27 2014-08-28 Lorenzo Ferioli "REGULATION VALVE WITH ENERGY RECOVERY"
US9597229B2 (en) * 2013-03-15 2017-03-21 Abbott Medical Optics Inc. Phacoemulsification flow rate detection system and method
GB201413708D0 (en) 2014-08-01 2014-09-17 Cascade Technologies Holdings Ltd Leak detection system
GB2532705B (en) 2014-08-19 2016-10-05 Wwws Uk Ltd Spirometer
JP6235986B2 (en) * 2014-11-26 2017-11-22 株式会社鷺宮製作所 Flow sensor
CN105841755B (en) * 2016-04-28 2019-06-25 东北大学 A kind of modified optic fibre turbo flowmeter
KR102088879B1 (en) * 2019-08-12 2020-03-13 동해에코에너지(주) Remote control system of self-generating smart valve
WO2023002263A1 (en) * 2021-07-21 2023-01-26 Intelligent Agricultural Solutions, Llc Spray flow sensing with optical signature analysis

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2209700A (en) * 1938-03-08 1940-07-30 Frank V Mayo Liquid metering and cost computing apparatus
US3036460A (en) * 1959-04-10 1962-05-29 Jersey Prod Res Co Fluid meter
US3240063A (en) * 1960-10-27 1966-03-15 Lynch Corp Flowmeter
US3217539A (en) * 1961-04-07 1965-11-16 Pneumo Dynamics Corp Turbine flow meter
US3307396A (en) * 1964-02-28 1967-03-07 Rotron Mfg Co Fluid flow measuring device
US3680378A (en) * 1970-09-11 1972-08-01 Fibre Optics Ind Inc Fluid flow rate meter
DE2047785A1 (en) * 1970-09-29 1972-04-06 Siemens Ag Flow indicator
US3898883A (en) * 1972-01-17 1975-08-12 Kozak Zdenek Stator assembly for flowmeters and the like
NL8003374A (en) * 1979-12-21 1981-07-16 Nevamo Inc FLUID METER.
US4393723A (en) * 1981-04-16 1983-07-19 Glen Brand Fluid flow meter
US4428243A (en) * 1981-11-13 1984-01-31 Taylor Lionel I A Flowmeters
FI78781C (en) * 1984-06-21 1989-09-11 Vesinieminen Ky MAETANORDNING FOER MAETNING AV STROEMNING OCH / ELLER DESS EGENSKAPER.
CH669039A5 (en) * 1985-12-12 1989-02-15 Bieo Ag FLOWMETER.

Also Published As

Publication number Publication date
JP3254485B2 (en) 2002-02-04
JPH05508231A (en) 1993-11-18
ES2076765T3 (en) 1995-11-01
ATE127216T1 (en) 1995-09-15
GR3017269T3 (en) 1995-11-30
WO1992021004A1 (en) 1992-11-26
DE59203460D1 (en) 1995-10-05
EP0539561B1 (en) 1995-08-30
CA2082882A1 (en) 1994-05-14
EP0539561A1 (en) 1993-05-05
US5388466A (en) 1995-02-14
DK0539561T3 (en) 1995-09-18

Similar Documents

Publication Publication Date Title
CA2082882C (en) A rotor type flow meter with optical detection
CN102176023B (en) Laser radar apparatus that measures direction and distance of an object
EP0682232A2 (en) Fluid sensing/flow detection apparatus
GB2285128A (en) Optical sensor for measurement of blade oscillations in a turbine engine
NL8802809A (en) GAS FLOW METER.
CA1078488A (en) Line scanning device for detecting defects in webs of material
US4428243A (en) Flowmeters
GB2310285A (en) Flowmeter
US5668327A (en) Flowmeter having reversible transmitter and receiver
RU2146966C1 (en) Mixer and apparatus for analysis of liquid flow parameters
AU655333B2 (en) Flow meter
US5067814A (en) Apparatus for measuring fine particles in liquid
US4733570A (en) Flowmeter
US5943785A (en) Curve length measuring apparatus having caster
US3792611A (en) Unidirectional flowmeter indicating changes of flow direction
JPS5635016A (en) Transducer
US11885614B2 (en) Optical rotary sensor
CA1166870A (en) Flowmeters
JPH0139529B2 (en)
SU1107056A1 (en) Photoelectric wind meter
JPS608716A (en) Detector for flow rate
JPH0140298B2 (en)
JPS6337327B2 (en)
JPH06249686A (en) Vortex flowmeter
GB2116703A (en) Position sensor for flowmeter prover

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed